
IMS

IMS Connector for Java 9.1.0.1 and 9.1.0.2

Online Documentation for Rational

Application Developer 6.0

SC18-9593-01

���

IMS

IMS Connector for Java 9.1.0.1 and 9.1.0.2

Online Documentation for Rational

Application Developer 6.0

SC18-9593-01

���

Note

Before using this information and the product it supports, read the information in Notices at the end of this book.

Second Edition (September 2005)

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. What is the IMS resource

adapter? 1

Chapter 2. Preparing to use the IMS

resource adapter 5

Prerequisites for using the IMS resource adapter . . 5

Platform configurations and communication protocol

considerations 6

Chapter 3. Developing your application 9

Creating IMS Java data bindings 9

Creating a J2C Java bean 11

Verifying your server instance configuration . . 13

Exposing InteractionSpec and ConnectionSpec

properties for input as data 13

Exposing InteractionSpec output properties as data 15

Creating a web page, web service, or EJB from a J2C

Java bean 17

Providing initial values for fields of a Faces JSP

page 18

Displaying javax.resource.ResourceException on a

faces JSP page 19

Using IMS data bindings in a CCI application . . . 20

Chapter 4. Running your web

application 23

Running your web application using the Rational

Application Developer test environment 23

Running your application in a standalone

WebSphere Application Server 24

Exporting your application as an EAR file . . . 24

Installing the IMS resource adapter in WebSphere

Application Server 24

Creating a connection factory for the IMS

resource adapter 25

Installing your EAR file in WebSphere

Application Server 25

Chapter 5. Configuring your application 27

Execution timeout 27

Valid execution timeout values 27

Setting execution timeout values 28

Socket timeout 30

Setting the Socket Timeout Value 30

Connection properties 31

IMSInteractionSpec properties 33

Chapter 6. Security 41

IMS resource adapter security 41

Component-managed EIS sign-on 42

Configuring component-managed EIS sign-on . . . 42

Container-managed EIS sign-on 44

Configuring container-managed EIS sign-on . . . 44

Overview of secure socket layer (SSL) 45

Using secure socket layer (SSL) support 47

Chapter 7. Commit mode processing 51

Overview of commit mode processing 51

SYNC_SEND programming model 55

SYNC_SEND_RECEIVE programming model . . . 56

Retrieving asynchronous output 58

Displaying output message counts 60

Chapter 8. Transaction processing . . . 63

Global transaction support with two-phase commit 63

Two-phase commit prerequisites 66

Using global transaction support in your application 66

Two-phase commit environment considerations . . 67

Chapter 9. Diagnosing problems 69

Diagnosing problems when using the IMS resource

adapter 69

Logging and tracing with the IMS resource adapter 70

J2CA0056I, WLTC0017E, HWSP1445E, and

HWSSL00E Error Messages 71

IMS resource adapter messages and exceptions . . 72

Notices 97

© Copyright IBM Corp. 2000, 2005 iii

iv IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 1. What is the IMS resource adapter?

The IMS resource adapter is used by Java applications to access IMS transactions running on host IMS

systems. The IMS resource adapter is available in a number of Java integrated development environments

(IDEs) provided by IBM. Two of these IDEs are WebSphere Studio Application Developer Integration

Edition and Rational Application Developer with the optional J2EE Connector Architecture (J2C) feature.

The IMS resource adapter is also used at runtime by WebSphere Application Server when a Java

application accesses an IMS transaction running on a host IMS system. The IMS resource adapter is also

called IMS Connector for Java.

The process of using Rational Application Developer with the J2C Connector tools to build a Java

application that runs an IMS transaction is summarized by the following steps:

1. Import C or COBOL definitions of the IMS transaction input and output messages into the Java Data

Binding wizard to map to Java data structures. This wizard creates Java data bindings for the input

and output messages.

2. Provide Java data bindings to the J2C Java Bean wizard. This wizard creates a J2C Java bean with

methods that can be used to run IMS transactions on the host.

3. Provide the J2C Java bean to the J2C dynamic wizard used to create a J2EE resource. This J2EE

resource can be deployed to WebSphere Application Server and used to run your IMS transactions.

The types of J2EE resources that can be created from a J2C Java bean are:

v JSP

v Web Service

v EJB
4. Test the J2EE resource directly from the development environment using the WebSphere test

environment provided with Rational Application Developer.

5. Export the J2EE resource, packaged as an EAR file by Rational Application Developer, so that it can

be deployed to and run on a stand alone WebSphere Application Server.

The following figure illustrates the use of the IMS resource adapter during development:

© Copyright IBM Corp. 2000, 2005 1

At run time, the IMS resource adapter is used with IBM WebSphere® Application Server. When a Java™

application runs, it submits a transaction request to IMS™ through the host product, IMS Connect. The

IMS resource adapter communicates with IMS Connect using TCP/IP or Local Option. IMS Connect then

sends the transaction request to IMS OTMA using XCF (Cross-system Coupling Facility), and the

transaction runs in IMS. The response is returned to the Java application using the same path. The

following figure illustrates the run-time process:

Two IMS resource adapters are provided as part of the J2C feature of Rational Application Developer.

IMS Connector for Java Version 9.1.0.1.x is based on Version 1.0 of the J2EE Connector Architecture and

IMS Connector for Java Version 9.1.0.2.x is based on Version 1.5 of the J2EE Connector Architecture. A

license for IMS V9.1 is required to run an application that uses IMS Connector for Java V9.1.0.x.x. This

2 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

information does not describe the J2EE Connector architecture in general. For information on the JCA

architecture and its concepts, see the J2EE Connector Architecture Specification at

http://java.sun.com/j2ee/download.html.

Both IMS resource adapter:

v Provides global transaction and two-phase-commit support

v Provides run as thread identity support

v Supports component-managed and container-managed security

v Supports pooling and reuse of connections

v Supports SSL communication between IMS Connector for Java and IMS Connect

v Supports both commit mode 1 and commit mode 0 IMS transactions

v Supports the retrieval of output messages queued as the result of a failed commit mode 0 interaction

or by insertion to an alternate PCB

v Supports conversational processing

v Provides control of whether undelivered output for commit mode 0 interactions on shareable persistent

socket connections is queued or discarded. This function is controlled by the purgeAsyncOutput

property.

v Supports specification of the name of a destination for undelivered output for commit mode 0

interactions on shareable persistent socket connections. This function is controlled by the reRoute flag

and reRouteName properties.

v Provides enhanced control of the retrieval of undelivered output with the introduction of two new

interaction verbs: SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT.

v Supports the use of RACF keyrings as SSL keystores and truststores.

See IMS resource adapter APIs for additional information on the IMS resource adapter’s J2C classes and

interfaces.

The IMS resource adapter is included in WebSphere Studio Application Developer Integration Edition

and the optional J2EE Connector Architecture (J2C) feature of Rational Application Developer for use in

the development of Java applications. The IMS resource adapter runtime is a component of the IMS

product. It is packaged as a Resource Adapter Archive (RAR) file and can be deployed to WebSphere

Application Server for use by J2EE applications. The IMS resource adapter runtime is available for

download from the IMS Web site (www.ibm.com/software/data/ims) and is also available for

installation on z/OS using SMP/E.

The IMS resource adapter is primarily intended for use by services that submit transactions to IMS.

However, the IMS resource adapter can also be used by services that submit IMS commands to IMS.

Chapter 1. What is the IMS resource adapter? 3

http://java.sun.com/j2ee/download.html
www.ibm.com/software/data/ims

4 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 2. Preparing to use the IMS resource adapter

If you are planning to develop a Java application that runs an IMS transaction, you must import the IMS

resource adapter into your workbench.

There are two IMS resource adapters provided as part of the J2C feature of Rational Application

Developer. IMS Connector for Java Version 9.1.0.1.1X is based on Version 1.0 of the J2EE Connector

Architecture and IMS Connector for Java Version 9.1.0.2.x is based on Version 1.5 of the J2EE Connector

Architecture.

The version of the IMS resource adapter that you use depends on which J2EE Connector Architecture

version your application uses.

The J2C wizard in Rational Application Developer enables you to create J2C applications, either as a

standalone program, or as added functionality to existing applications. This wizard also dynamically

imports your selected resource adapter.

For information on how to deploy the IMS resource adapter on WebSphere® Application Server, see the

file Howto.html that is packaged with the runtime component of IMS Connector for Java.

Prerequisites for using the IMS resource adapter

This topic describes the prerequisites for using the IMS resource adapter as well as the supported

software configurations.

This topic describes the prerequisites for using the IMS resource adapter as well as the supported

software configurations.

Rational Application Developer with the optional J2EE Connector Architecture (J2C) feature includes two

versions of the IMS resource adapter:

v IMS Connector for Java Version 9.1.0.2.x

This version of the IMS resource adapter is based on Version 1.5 of the J2EE Connector Architecture

(JCA 1.5). IMS Connector for Java Version 9.1.0.2.x is not included in WebSphere Studio Application

Developer Integration Edition. Because IMS Connector for Java Version 9.1.0.2.x is a JCA 1.5 resource

adapter, it will only run in a JCA 1.5 application server or WebSphere Application Server Version 6.0

(or above) for distributed and z/OS platforms.

In the future, enhancements to IMS Connector for Java will be made to the JCA 1.5 version only.

v IMS Connector for Java Version 9.1.0.1.x

This version of the IMS resource adapter is based on Version 1.0 of the J2EE Connector Architecture

(JCA 1.0). This version of IMS Connector for Java runs with WebSphere Application Server Version

5.0.2 and above for distributed and z/OS platforms.

WebSphere Studio Application Developer Integration Edition Version 5.1.1 also contains two versions

of the IMS resource adapter:

v IMS Connector for Java Version 2.2.x

This version of the IMS resource adapter is based on Version 1.0 of the J2EE Connector Architecture

(JCA 1.0). This version of IMS Connector for Java runs with WebSphere Application Server Version

5.0.2 and above for distributed and z/OS platforms.

v IMS Connector for Java Version 9.1.0.1.x

This version of the IMS resource adapter is based on Version 1.0 of the J2EE Connector Architecture

(JCA 1.0), runs with WebSphere Application Server Version 5.0.2 and above for distributed and z/OS

© Copyright IBM Corp. 2000, 2005 5

platforms. IMS Connector for JavaVersion 9.1.0.1.1 is functionally equivalent to IMS Connector for Java

Version 2.2.3; IMS Connector for JavaVersion 9.1.0.1.2 is functionally equivalent to IMS Connector for

Java Version 2.2.4.

The following new function is included in Versions 2.2.3, 9.1.0.1.1, and 9.1.0.2 of the IMS resource

adapter:

v The control of whether undelivered output for commit mode 0 interactions on shareable persistent

socket connections is queued or discarded. This function is controlled by the purgeAsyncOutput

property.

v The option to provide the name of a destination for undelivered output for commit mode 0 interactions

on shareable persistent socket connections. This function is controlled by the reRoute flag and

reRouteName properties.

v Enhanced control of the retrieval of undelivered output with the introduction of two new interaction

verbs: SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT.

v Support for use of RACF keyrings as SSL keystores and truststores.

In addition, IMS Connector for Java Version 9.1.0.2 adds the following JCA 1.5 performance

enhancements:

v Lazy Transaction Enlistment Optimization

v Lazy Connection Association Optimization

Note: IMS Connector for Java Version 9.1.0.2 does not provide the following JCA 1.5 implementations:

v Inbound messaging, transaction, and EJB invocation processing

v Implementation of the Work Management contract

v Kerberos support

IMS Connector for Java supported configurations

IC4J 2.2.x supports:

v IMS Connect V2.2 plus IMS V8 and APARs or IMS V9 and APARs

IC4J 9.1.0.1.x and 9.1.0.2.x supports:

v IMS Connect V2.2 plus IMS V8 and APARs or IMS V9 and APARs

v IMS Connect V9.1 plus IMS V9 and APARs

 For APAR and IFix numbers, please go to the IMS Web site at www.ibm.com/software/data/ims and

link to the IMS Connector for Java web page.

Platform configurations and communication protocol considerations

The communication protocol you use depends on the platform configuration of WebSphere Application

Server and IMS. The IMS resource adapter can be deployed to WebSphere Application Server for

distributed platforms (AIX®, HP_UX, Linux, Linux for z/OS®, Solaris, or Windows®) and to WebSphere

Application Server for z/OS. The IMS resource adapter, deployed in WebSphere Application Server, can

communicate with IMS Connect using either the TCP/IP or Local Option communication protocol. Where

TCP/IP uses sockets, Local Option provides non-socket access (an MVS™ program call) to IMS Connect

from WebSphere Application Server for z/OS.

v If WebSphere Application Server is running on a distributed platform, you must use TCP/IP to connect

to IMS Connect.

– If you use global transaction (two-phase-commit) support with TCP/IP, RRS is required. Also, IMS

Connect, IMS, and RRS must reside in the same MVS image.
v If WebSphere Application Server is running on z/OS, you can use either TCP/IP or Local Option to

connect to IMS Connect depending on your configuration. For example:

6 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

www.ibm.com/software/data/ims

– If WebSphere Application Server and IMS Connect are on the same MVS image, you can use Local

Option or TCP/IP; however Local Option is recommended.

– If WebSphere Application Server and IMS Connect are on different MVS images, you must use

TCP/IP.

– If you want to use global transaction support and your IMS and WebSphere Application Server are

on the same MVS image, the Local Option communication protocol is recommended. If you are

using global transaction support with Local Option protocol, RRS, IMS, IMS Connect, and

WebSphere Application Server must be in the same MVS image.

– If you want to use global transaction support and your IMS and WebSphere Application Server are

on different MVS images, you must use TCP/IP as your communication protocol. If you are using

global transaction support with TCP/IP protocol, RRS, IMS, and IMS Connect must reside in the

same MVS image.

The following table describes the relationship between the different platform configurations,

communication protocols, and global transaction support:

 Platform of WebSphere Application

Server with IMS resource adapter Supported communication protocol

Global transaction

(two-phase-commit) support

AIX TCP/IP Yes*

HP_UX TCP/IP Yes*

Linux TCP/IP Yes*

Linux for zSeries® and S/390® TCP/IP Yes*

Solaris TCP/IP Yes*

Windows TCP/IP Yes*

z/OS, OS/390® TCP/IP

Local Option

Yes*

Yes

* Global transaction support with TCP/IP requires IMS Connect 2.1 or later.

Chapter 2. Preparing to use the IMS resource adapter 7

8 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 3. Developing your application

This topic describes how to develop your application. There are a number of ways to develop a Java

application that accesses a host IMS transaction.

One way to develop a Java application is to write the application yourself, using the J2C Common Client

Interface (CCI) provided by the IMS resource adapter. Another way is to use one of IBM’s integrated

development environments to generate the Java application for you. Examples of these integrated

development environments are WebSphere Studio Application Developer Integration Edition and Rational

Application Developer with the J2EE Connector tools. The code generated by these development

environments also uses the J2C Common Client Interface. Using a development environment has the

following benefits:

v Wizards and guides to lead you step-by-step through the development process and generate wrappers

for most code artifacts.

v Easily develop applications that are compliant with J2EE standards.

v Tools to automate mapping data sources to EJBs, to manage EJB deployment descriptors and EAR file

packaging and deployment, and a built-in test client for EJBs.

If you choose to write the application yourself, you can still take advantage of the functionality of

Rational Application Developer by using the wizards provided by the J2C Connector tools to build data

structures for the transaction input and output messages required by your ″CCI application″.

The process of building a Java application using the J2C Connector tools of Rational Application

Developer can be divided into three steps:

1. Create IMS data bindings for the input and output message of the IMS transaction.

2. Create a J2C Java bean that has a method that communicates with IMS to run the IMS transaction

using the J2EE Connector Architecture. This method uses IMS data bindings created earlier.

3. Create a J2EE resource that wraps the functionality of the J2C Java bean and creates an application

that can be used to run the transaction in IMS.

This process is described in more detail in the sections that follow.

Creating IMS Java data bindings

The J2C dynamic wizard in Rational Application Developer allows you to create specialized Java classes

representing the input and output messages of an IMS transaction from the corresponding COBOL or C

data structures of the IMS application program. These specialized Java classes are called data bindings.

Data bindings provide a Java application with methods for populating the input message with data and

for retrieving data from the output message. In addition, the data bindings perform platform-related

functions such as conversion between the Java (UNICODE) and host (EBCDIC) representations of the

data. To create IMS Java data bindings, complete the following steps:

Note: Ensure that you are in the J2EE perspective.

 1. To start the J2C dynamic wizard, from the menu bar, select File > New > Other > J2C.

 2. Expand J2C.

 3. Select CICS/IMS Java Data Binding and click Next.

 4. On the Data Import page, you need to specify the data import configuration properties.

a. In the Choose mapping drop down list, select COBOL to Java mapping.

© Copyright IBM Corp. 2000, 2005 9

b. Click Browse to select the COBOL file for which you are creating data bindings. For example,

browse to rad_install_dir

/rad/eclipse/plugins/com.ibm.j2c.cheatsheet.content.6.0.0/samples/IMS/Phonebook/Ex01.cbl.

c. Click Next.
 5. In the Importer wizard, complete the following steps:

a. In the Platform drop down list, select the platform on which your IMS transactions will run. For

example, z/OS.

b. In the Code page drop down list, select a different value if the data of your IMS transaction is in

a codepage other than US English (IBM - 037).

c. Click Show Advanced to see the advanced properties. If you choose the z/OS platform, the

values for all the fields are automatically filled.

d. Change the value of TRUNC from STD to BIN. Because most IMS programs are compiled with

the TRUNC(BIN) option, it is recommended that you change the value of TRUNC from STD to

BIN.

e. For this example, accept all the other default values listed in the following table.

 Table 1.

Options Value

Platform z/OS

Codepage IBM-037

Floating point format IBM 390 Hexadecimal

External decimal sign EBCDIC

Endian Big

Remote integer endian Big

Quote DOUBLE

Trunc BIN

Nsymbol DBCS

f. Click Query to select the data structure for which you are creating a data binding. The available

data structures in the COBOL file that you specified previously are displayed in the Data

structures pane.

g. Select INPUT-MSG, the COBOL data structure used by the IMS application program to describe

the input message for the IMS transaction.

h. Click Next.
 6. On the Saving Properties page of the Import wizard, complete the following steps:

a. For the Generation Style, use Default.

b. For the Java Project Name, click New, select Java project as the project type, and then click Next.

c. In the Create a Java project page, type PhoneBookBindings as the Java project name, accept all

other defaults, and then click Finish.

d. In the Saving Properties page, for the Java Package Name, click New and create a new Java

package named, sample.ims, in the project, PhoneBookBindings. Then, click Finish.
 7. Click Finish to save the Import properties.

 8. In the Project Explorer view, expand Other Projects > PhoneBookBindings > sample.ims.

 9. Right-click sample.ims package and select New > Other > J2C > CICS/IMS Java Data Binding, then

Next.

10. Repeat steps 4 through 6 to create a data binding for the output message using OUTPUT-MSG as

the data structure.

10 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

You now have a project, PhoneBookBindings, containing the data bindings for the input and output

messages of your IMS transaction. These data bindings can now be used in one or more J2C Java beans

or by a Java application that directly uses the CCI.

Creating a J2C Java bean

After you create IMS Java data bindings, you need to create a Java bean that communicates with IMS

through the J2EE Connector Architecture.

This Java bean includes a method that submits a request to IMS to run the IMS transaction. This method

uses the Java data bindings to build the input and output messages for the transaction. A J2C Java bean

may include more than one method that runs an IMS transaction, as well as multiple data bindings for

different input and output messages. The code that is generated for the J2C Java bean uses the CCI

provided by the IMS resource adapter to communicate with IMS.

To create a J2C Java bean that runs an IMS transaction, complete the following steps:

 1. To start the J2C dynamic wizard, from the menu bar, select File > New > Other > J2C.

 2. Expand the J2C folder, select J2C Java bean, and click Next.

 3. In the Resource Adapters Selection page, select the version of the IMS resource adapter that you

wish to use. You may select either the JCA 1.0 IMS resource adapter, IMS Connector for Java (IBM:

9.1.0.1.1) or the JCA 1.5 IMS resource adapter, IMS Connector for Java (IBM : 9.1.0.2).

 4. Click Next.

 5. In the Connection Properties page, select the Managed checkbox.

Note: There are two options for the way in which connections are created between the IMS resource

adapter, as used by your Java bean, and IMS Connect. This example is not a two-tiered

application, so only a managed connection is applicable.

v Managed connections are created by a construct of the J2EE Connector Architecture called a

connection factory and are managed by the application server. Your Java bean accesses a

connection factory using JNDI (Java Naming and Directory Interface). Managed connections are

recommended. The IMS resource adapter and the application server’s connection manager work

together to efficiently manage connections by providing connection pooling, reuse, and

persistence.

v Non-managed connections are obtained directly through the IMS resource adapter, without

collaboration with the application server. Non-managed connections are typically used by

two-tiered applications, and are not pooled or reused. In addition, non-managed socket

connections between the IMS resource adapter and IMS Connect are not persistent, incurring the

additional overhead of opening and closing the socket for each use by an application.
 6. On the Connection Properties page, next to the JNDI lookup name field, click New. This defines a

new server instance. To define a new server instance, the resource adapter you selected in Step 3, is

deployed to the server instance. To create a new server instance in your workspace, complete the

following steps:

a. In the JNDI Lookup wizard, on the Server instance selection page, select New.

b. In the Define a New Server page, select the type of server you wish to create; for example,

WebSphere 6.0 Server. Then, click Next.

c. In the WebSphere Server Settings page, accept the defaults.

d. Click Finish. The resource adapter you selected in Step 3 is deployed to your server instance.

e. On the Server instance selection page, click Next.
 7. Create and configure a J2C connection factory for the server instance you just created. The J2C

Connection Factories wizard allows you to select a J2C connection factory from those that have been

defined for the resource adapter you selected in Step 3. You can also provide the JNDI lookup name

Chapter 3. Developing your application 11

of a connection factory that does not yet exist and define it later. To create and configure a J2C

connection factory for your server instance, complete the following steps:

a. In the J2C Connection Factory page, enter a JNDI name for your new connection factory. For

example, imsCFac.

b. Configure your connection factory. For TCP/IP connections to IMS Connect, at minimum,

provide values for the following fields:

v In the Host name: field, enter the TCP/IP hostname of the IMS Connect that your application

will use. For example: MYHOST.MYCOMPANY.COM

v In the Port number: field, enter the port number. For example, 9999.

v In the Data store name: field, enter the target IMS datastore. For example, IMSA.
c. Click Finish. The server instance is started and initialized.

 8. After you have configured your server instance and your server has started, the JNDI name of the

connection factory appears in the JNDI Lookup name field. Click Next.

 9. In the J2C Java Bean Output Properties page, complete the following steps:

a. For the Java Project Name , click New.

b. Select Java project as the project type, and click Next.

c. In the Create a Java project page, type PhoneBookJ2CBean for the new Java project name, accept all

other defaults, and then click Finish.

d. Next to Java Package Name, click New.

e. In the Java Package page, type sample.ims for the new Java package name and click Finish.

f. For the Interface Name, specify PB.

g. For the Binding Name, accept the default of PBImpl.

h. Click Next.
10. To create a method that runs the transaction, use the Java Methods wizard and complete the

following steps:

a. Click Add to add a Java method to your J2C Java bean.

b. In the Add Java Method page, type runPB for the Java method name, the click Next.

c. On the Java Method page, click Browse next to the Input type field.

d. In the Select a data type window, prime the entry field with an asterisk (*) to view the available

data types.

e. In the Matching types field, select INPUTMSG and click OK to use the INPUTMSG data binding

for the method, runPB.

f. Next to the Output type field, click Browse.

g. In the Select a data type window, prime the entry field with an asterisk (*) to view the available

data types.

h. In the Matching types field, select OUTPUTMSG and then click OK to use the OUTPUTMSG

data binding for the method, runPB.

i. Click Finish.
11. The Java Methods wizard displays the new method, runPB (INPUTMSG : OUTPUTMSG) in the list

of methods for the Java bean. Ensure that this method is selected.

12. In the InteractionSpec properties for ’runPB’, specify the IMSInteractionSpec values. For this

example, accept all defaults, then click Finish.

You now have a J2C Java bean in project, PhoneBookJ2CBean, that you can deploy in one or more J2EE

applications using different J2EE resources.

12 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Verifying your server instance configuration

You can verify the proper configuration of your server instance to ensure that it is running with the

correct connection properties.

To verify that you have properly configured the server instance you created, complete the following

steps:

1. Ensure that the server is started. In the Servers view, right-click the server instance and select Run

administrative console. The Welcome page is displayed.

2. Logon to the administrative console.

3. In the left-hand navigation, select Resources > Resource Adapters.

4. On the Resource adapters page, the IMS resource adapter that you selected is displayed.

5. Select the IMS resource adapter, then in the right-hand column under Additional Properties, select J2C

Connection Factories. You should see the J2C connection factory that you created, imsCFac.

6. Select imsCFac, then in the right-hand column under Additional Properties, select Custom properties.

The property values that you provided for the connection factory is displayed.

Exposing InteractionSpec and ConnectionSpec properties for input as

data

You can expose the properties of IMSInteractionSpec and IMSConnectionSpec for input as data so that

your Java application can set or get the property values. For example, you may want to expose the

userName and password properties of IMSConnectionSpec if your Java application is using

component-managed EIS sign-on. Or, you may want to expose the clientID property of

IMSConnectionSpec if your Java application is executing an interaction on a dedicated persistent socket

connection.

To expose the properties of IMSInteractionSpec and IMSConnectionSpec for input, you must modify the

interface and implementation files of your J2C Java bean before using it in an application. Typically, you

expose only the properties that your Java application needs as input. The steps in this topic illustrate how

to expose all the properties of IMSInteractionSpec and IMSConnectionSpec using the J2C Java bean in the

project PhoneBookJ2CBean that was created in the topic, “Creating a J2C Java bean” on page 11.

To expose all the properties of IMSInteractionSpec and IMSConnectionSpec for input, complete the

following steps:

1. Expand the project, PhoneBookJ2CBean, and open the interface file PB.java in the Java editor.

2. In the PB.java file, update the method runPB(). Add the arguments for the input properties of

IMSInteractionSpec and IMSConnectionSpec. These arguments are used to provide input values for

the exposed properties, in the same way the argument INPUTMSGarg is used to provide values for

the input message of the IMS transaction. After you add the arguments in the method runPB(), the

code looks like the following:

package sample.ims;

/**

 * @generated

 */

public interface PB {

 /**

 * @generated

 */

 public OUTPUTMSG runPB(INPUTMSG arg,

 int myCommitMode,

 int myExecutionTimeout,

 int myImsRequestType,

Chapter 3. Developing your application 13

int myInteractionVerb,

 String myLtermName,

 String myMapName,

 boolean myPurgeAsyncOutput,

 boolean myReRoute,

 String myReRouteName,

 int mySocketTimeout,

 String myUserName,

 String myPassword,

 String myGroupName,

 String myClientID) throws javax.resource.ResourceException;

}

3. Save and close the file.

4. Expand the project PhoneBookJ2CBean and open the binding file, PBImpl.java in the Java editor.

5. In the PBImpl.java file, update the javadoc for method runPB() by adding doclet tags for each of the

properties that you wish to expose.

6. Update the signature of method runPB(). Add the arguments for the implementation. The arguments

added to the method are referenced by the corresponding doclet tags. For information about editing

J2C doclet tags, see Editing the J2C Java bean. After you add the doclet tags and update the signature

of the method, the code looks like the following:

/**

 * @j2c.interactionSpec class="com.ibm.connector2.ims.ico.IMSInteractionSpec"

 * @j2c.interactionSpec-property name="commitMode" argumentBinding="myCommitMode"

 * @j2c.interactionSpec-property name="executionTimeout" argumentBinding="myExecutionTimeout"

 * @j2c.interactionSpec-property name="imsRequestType" argumentBinding="myImsRequestType"

 * @j2c.interactionSpec-property name="interactionVerb" argumentBinding="myInteractionVerb"

 * @j2c.interactionSpec-property name="ltermName" argumentBinding="myLtermName"

 * @j2c.interactionSpec-property name="mapName" argumentBinding="myMapName"

 * @j2c.interactionSpec-property name="purgeAsyncOutput" argumentBinding="myPurgeAsyncOutput"

 * @j2c.interactionSpec-property name="reRoute" argumentBinding="myReRoute"

 * @j2c.interactionSpec-property name="reRouteName" argumentBinding="myReRouteName"

 * @j2c.interactionSpec-property name="socketTimeout" argumentBinding="mySocketTimeout"

 *

 * @j2c.connectionSpec class="com.ibm.connector2.ims.ico.IMSConnectionSpec"

 * @j2c.connectionSpec-property name="userName" argumentBinding="myUserName"

 * @j2c.connectionSpec-property name="password" argumentBinding="myPassword"

 * @j2c.connectionSpec-property name="groupName" argumentBinding="myGroupName"

 * @j2c.connectionSpec-property name="clientID" argumentBinding="myClientID"

 *

 * @generated

 */

 public OUTPUTMSG runPB(INPUTMSG arg,

 int myCommitMode,

 int myExecutionTimeout,

 int myImsRequestType,

 int myInteractionVerb,

 String myLtermName,

 String myMapName,

 boolean myPurgeAsyncOutput,

 boolean myReRoute,

 String myReRouteName,

 int mySocketTimeout,

 String myUserName,

 String myPassword,

 String myGroupName,

 String myClientID) throws javax.resource.ResourceException {

7. Save and close the file. The new implementation code is generated for method runPB().

For each exposed property, the doclet tag uses the argumentBinding attribute instead of the value attribute.

The value of the argumentBinding attribute represents the method argument of the corresponding

IMSInteractionSpec or IMSConnectionSpec property. You have now exposed all the IMSConnectionSpec

properties for input.

14 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Exposing InteractionSpec output properties as data

You can expose IMSInteractionSpec properties for output. Currently, the only output properties that can

be exposed are asyncOutputAvailable, convEnded, and mapName. To expose these properties of

IMSInteractionSpec for output, you must create a new output class and modify the interface and

implementation files of your J2C Java bean before using it in an application.

Typically, you expose only the properties that your Java application needs as output. The steps in this

topic illustrate how to expose all the properties of IMSInteractionSpec using the J2C Java bean in the

project PhoneBookJ2CBean that was created in the topic, “Creating a J2C Java bean” on page 11.

To expose all the properties of IMSInteractionSpec for output, complete the following steps:

1. Expand the project PhoneBookJ2CBean and open the interface file, PB.java in the Java editor.

2. In the PB.java file, update the signature of runPB(). Add the arguments for the output properties of

IMSInteractionSpec. These arguments are used to provide output values for the exposed properties, in

the same way the argument OUTPUTMSGarg is used to provide values for the output message of the

IMS transaction. After you add the arguments in the method runPB(), the code looks like the

following:

package sample.ims;

/**

 * @generated

 */

public interface PB {

 /**

 * @generated

 */

 public sample.ims.WrapperBean runPB(sample.ims.INPUTMSG arg,

 int myCommitMode,

 int myExecutionTimeout,

 int myImsRequestType,

 int myInteractionVerb,

 String myLtermName,

 String myMapName,

 boolean myPurgeAsyncOutput,

 boolean myReRoute,

 String myReRouteName,

 int mySocketTimeout,

 String myUserName,

 String myPassword,

 String myGroupName,

 String myClientID

) throws javax.resource.ResourceException;

}

3. Create a new class, WrapperBean, by completing the following steps:

a. Expand the project, PhoneBookBindings, right-click the sample.ims package, and select New >

Class.

b. For the name of the class, type WrapperBean.

c. For the methods to create, select Inherited abstract methods and Constructors from super class.

d. Click Finish.

e. Open the WrapperBean class in an editor and add an import statement for java.io.Serializable.

f. Modify the WrapperBean class so that it implements Serializable. For example:

public class WrapperBean implements Serializable {

g. In the WrapperBean class, add a private variable for the IMS Java Data binding of the output

message of the IMS transaction. For example:

Chapter 3. Developing your application 15

private OUTPUTMSG output;

h. In the WrapperBean class, add private variables for the properties of IMSInteractionSpec that you

wish to expose: For example:

private boolean convEnded;

private boolean asyncOutputAvailable;

private String mapName;

i. Then, add get and set methods for the output message and each of the exposed properties. For

example:

public OUTPUTMSG getOutput(){

 return output;

 }

 public boolean getConvEnded(){

 return convEnded;

 }

 public boolean getAsyncOutputAvailable(){

 return asyncOutputAvailable;

 }

 public String getMapName(){

 return mapName;

 }

 public void setOutput(OUTPUTMSG output){

 this.output = output;

 }

 public void setAsyncOutputAvailable(boolean asyncOutputAvailable){

 this.asyncOutputAvailable = asyncOutputAvailable;

 }

 public void setConvEnded(boolean convEnded){

 this.convEnded = convEnded;

 }

 public void setMapName(String mapName){

 this.mapName = mapName;

 }

j. Save and close the WrapperBean class.
4. Modify the interface file to use the new output class, WrapperBean by expanding PhoneBookJ2CBean

> sample.ims and open the interface file, PB.java, in the Java editor.

5. Change the output of the method runPB(), which runs the IMS transaction, to return WrapperBean

instead of OUTPUTMSG. For example:

public sample.ims.WrapperBean runBP(INPUTMSG arg) throws javax.resource.ResourceException;

6. Modify the implementation file to use the new output class, WrapperBean by expanding

PhoneBookJ2CBean > sample.ims and opening the implementation file, PBImpl.java in the Java

editor.

7. Change the output method runPB(), which runs the IMS transaction, to return WrapperBean instead of

OUTPUTMSG. For example:

public sample.ims.WrapperBean runBP(INPUTMSG arg) throws javax.resource.ResourceException {

8. Update the javadoc for the runPB() method by adding doclet tags for the output properties you wish

to expose. For example, the following javadoce for runPB() shows tags for both input and output

properties:

/**

 * @j2c.interactionSpec class="com.ibm.connector2.ims.ico.IMSInteractionSpec"

 * @j2c.interactionSpec-property name="commitMode" argumentBinding="myCommitMode"

 * @j2c.interactionSpec-property name="executionTimeout" argumentBinding="myExecutionTimeout"

 * @j2c.interactionSpec-property name="imsRequestType" argumentBinding="myImsRequestType"

16 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

* @j2c.interactionSpec-property name="interactionVerb" argumentBinding="myInteractionVerb"

 * @j2c.interactionSpec-property name="ltermName" argumentBinding="myLtermName"

 * @j2c.interactionSpec-property name="mapName" argumentBinding="myMapName"

 * @j2c.interactionSpec-property name="purgeAsyncOutput" argumentBinding="myPurgeAsyncOutput"

 * @j2c.interactionSpec-property name="reRoute" argumentBinding="myReRoute"

 * @j2c.interactionSpec-property name="reRouteName" argumentBinding="myReRouteName"

 * @j2c.interactionSpec-property name="socketTimeout" argumentBinding="mySocketTimeout"

 * @j2c.interactionSpec-returnProperty

 * name="convEnded"

 * outputBinding="convEnded"

 * @j2c.interactionSpec-returnProperty

 * name="asyncOutputAvailable"

 * outputBinding="asyncOutputAvailable"

 * @j2c.interactionSpec-returnProperty

 * name="mapName"

 * outputBinding="mapName"

 *

 * @j2c.connectionSpec class="com.ibm.connector2.ims.ico.IMSConnectionSpec"

 * @j2c.connectionSpec-property name="userName" argumentBinding="myUserName"

 * @j2c.connectionSpec-property name="password" argumentBinding="myPassword"

 * @j2c.connectionSpec-property name="groupName" argumentBinding="myGroupName"

 * @j2c.connectionSpec-property name="clientID" argumentBinding="myClientID"

 *

 * @generated

 */

9. Save and close the file. New implementation code is generated for method runPB().

You have exposed the IMSInteractionSpec properties for output.

Creating a web page, web service, or EJB from a J2C Java bean

The final process in creating a Java application that accesses an IMS transaction is to wrap the J2C Java

bean in a web page, web service, or EJB so that it can run on a J2EE application server such as

WebSphere Application Server.

This example illustrates how to wrap the J2C Java bean using a JSP dynamic web application. To create a

JSP dynamic web application from a J2C Java bean, complete the following steps:

 1. To start the J2C dynamic wizard, from the menu bar, select File > New > Other > J2C.

 2. With the J2C folder expanded, select Web Page, Web Service, or EJB from J2C Java Bean.

 3. Click Next.

 4. In the J2EE Resource from J2C Java Bean wizard, complete the following steps:

a. On the J2C Java bean selection page, next to the J2C bean implementation entry field, click

Browse.

b. In the Select entries field, prime the entry field with an asterisk (*) to view the available data

types, select PBImpl.java from the Matching types list and click OK.

c. The J2C bean implementation field should contain /PhoneBookJ2CBean/sample/ims/PBImpl.java.
 5. Click Next.

Note: If you get the message, "Resource nnnnn, referenced by the J2C code, is not found on

servers. Please make sure that resource nnnnn exists," it may be that the resource has

not been saved to the master configuration of the server. If you do not get this error, continue

to Step 6.

Otherwise, to eliminate this error message, select Cancel, then perform the following steps to save

your resource to the master configuration of the server:

a. In the Servers view, ensure that the server is started.

b. Right-click the server and select Run administrative console.

c. Log in to the administrative console.

Chapter 3. Developing your application 17

d. In the left pane, expand Resources and select Resource adapters.

e. At this point a warning message may appear, "The master configuration has been updated.

You currently have workspace conflicts with these modifications. To see these updates

you must Save or discard your current workspace modifications." Save your modifications.

f. If the problem persists, try stopping and starting the server.
 6. In the Deployment Information page, select JSP and then click Next.

 7. In the JSP Creation page, select Create a Faces JSP and add J2C Java bean as available page data.

 8. Next to Web project, click New, to create a new dynamic web project. The New Dynamic Web

Project window opens.

 9. In the Name field, type PhoneBookWeb and click Finish.

10. Select Yes to switch to the web perspective when requested to do so.

11. In the JSP Creation page, leave the JSP Folder name blank.

12. For the name of the Faces file, type PBookF.

Note: The name of the EAR project defaults to PhoneBookWebEAR.

13. Click Show Advanced and type a name for the Resource Reference. For example, myCFacRef. Note: It

is strongly recommended that you provide a resource reference for your J2EE resource. Not only

does this allow you to map your J2EE resource to different J2C connection factories when you install

your EAR on other WebSphere Application Servers, but if you do not use a resource reference you

may receive unpredictable results when running your application.

14. Click Finish. The file, PBookF.jsp opens in the JSP editor.

15. Ensure that the Design tab in the JSP editor is selected.

16. Ensure that the Page Data view is open.

17. In the Page Data view, complete the following steps:

a. Expand java (sample.ims.PBImpl).

b. Drag and drop the method runPB(sample.ims.data.INPUTMSG) onto the Design view of PBookF.jsp

in the JSP editor. The runPB(sample.ims.dat.INPUTMSG) method entry in the Page Data view is

identified with an M icon. If you have exposed properties of IMSInteractionSpec or

IMSConnectionSpec, the signature of the runPB method will contain additional arguments.

c. In the Configure Data Controls page of the Insert Java Bean wizard, select the fields that you

wish to use to input data to the runPB method and optionally the exposed input properties of

IMSInteractionSpec and IMSConnectionSpec. Then, click Next. You can change the order of the

input fields by selecting a checked field and using the up and down arrows to the right of the

Fields to display list to move the input field.

d. Use the next page of the Insert Java Bean wizard to select the fields that you wish to see as

output data from the output message of the runPB method, and optionally the exposed output

properties of IMSInteractionSpec. Select the fields that you wish to see as output data from the

runPB method and then click Finish.

e. Close PBookF.jsp to save your changes.

You have now wrapped the J2C Java bean in a web page so that it can run on a J2EE application server.

Providing initial values for fields of a Faces JSP page

It is recommended that you provide initial values for the fields of a Faces JSP page that is generated by

Rational Application Developer. To provide initial values, you must modify one of the methods of the

generated Faces JSP. The method that returns the parameter bean which is used by the method that runs

the IMS transaction must be updated.

It is recommended that you provide initial values for fields of a Faces JSP page because of the following

reasons:

18 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

v The LL field of an IMS transaction input message must accurately reflect the size of the message buffer

sent to IMS. Rather than leave the calcuation of this value to the user of the JSP page, you should

initialize the field to the correct value using the getSize() method provided by the data binding for the

transaction input message.

v The ZZ field of an IMS transaction input message does not affect the user of the JSP page and should

be initialized to zero.

v The field for the transaction code of the input message should be initialized with the correct value.

Generally, the user are not provided the transaction code for the IMS transaction that your application

is running.

v Other fields may need to be initialized to remove blanks, making the Faces JSP easier to use.

In addition to initializing fields such as LL, ZZ, and the field for transaction code, you should hide these

fields in the Faces JSP page because they do not affect the user. This topic does not discuss how to hide

the fields of a JSP page.

To provide initial values for the field of a JSP page, you must modify a method of the generated Faces

JSP. To modify the method of the generated Faces JSP, complete the following steps:

1. In the J2EE perspective of the Project Explorer view, expand Dynamic Web Projects >

PhoneBookWeb > Java Resources > JavaSource > pagecode > PBookF.java.

2. In the PhoneBookWeb project, right-click PBookF.java and select Open With > Java Editor.

3. Update the method, getJavaRunPBParamBean(), with the following code:

public JavaRunPBParamBean getJavaRunPBParamBean() {

 if (javaRunPBParamBean == null) {

 javaRunPBParamBean = new JavaRunPBParamBean();

 // Initialize fields of input message.

 INPUTMSG input = javaRunPBParamBean.getArg();

 input.setIn__ll((short)input.getSize());

 input.setIn__zz((short)0);

 input.setIn__trcd("IVTNO");

 input.setIn__cmd("DISPLAY");

 input.setIn__name1("LAST1");

 input.setIn__name2("");

 input.setIn__extn("");

 input.setIn__zip("");

 // Initialize input fields for exposed input properties.

 javaRunPBParamBean.setMyImsRequestType(1);

 javaRunPBParamBean.setMyInteractionVerb(1);

 javaRunPBParamBean.setMyCommitMode(1);

 javaRunPBParamBean.setMyExecutionTimeout(0);

 javaRunPBParamBean.setMySocketTimeout(0);

 }

 return javaRunPBParamBean;

}

4. Save your changes and close the file.

The fields of INPUTMSG, which is the input message of the IMS transaction, are now initialized, as well

as some exposed input properties.

Displaying javax.resource.ResourceException on a faces JSP page

Errors from the IMS resource adapter are returned to a Web application as exceptions of the type

javax.resource.ResourceException. For example, if a Web application runs an IMS transaction and the

transaction is stopped, a ResourceException subclass IMSDFSMessageException is thrown containing the

IMS Connector for Java message ICO0079E. This message contains the DFS065: TRAN/LTERM STOPPED

message from IMS.

Chapter 3. Developing your application 19

To display the exceptions that are returned by the IMS resource adapter on the faces JSP generated by

Rational Application Developer, you must modify the code of the Web application. To modify the code of

the Web application, working with the PhoneBookWeb application, complete the following steps:

1. In the Project Explorer view of the J2EE perspective, expand Dynamic Web Projects >

PhoneBookWeb.

2. Open PBookF.java in the Java editor.

3. In the PBookF.java file, locate the doJavaRunPBAction() method and modify the catch block as

follows:

 } catch (Exception e) {

 facesContext.addMessage(null,new FacesMessage(e.getLocalizedMessage()));

 logException(e);

 }

4. An error stating that the ″FacesMessage″ class cannot be resolved appears. You need to add an import

statement in the PBookF.java file.

a. In the Java editor, place your edit cursor on the FacesMessages class that is in error.

b. Right-click and select Source > Add Import. The import statement is added to PBookF.java and

the project automatically rebuilds. The error should disappear.
5. Save your changes and close the files.

You can now display the exceptions that are returned by the IMS resource adapter on the faces JSP

generated by Rational Application Developer.

Using IMS data bindings in a CCI application

If you choose to write your Java application without using Rational Application Developer to generate a

J2C Java bean and J2EE resource, you can still use the J2C option of Rational Application Developer to

create Java data bindings for the input and output messages of your CCI application.

After you create the Java data binding for your IMS input and output messages, you can use those data

bindings in a CCI application. The following steps explain how to use the data bindings in a simple CCI

application:

 1. From the menu bar, select File > New > Project > Java project and click Next.

 2. Create a Java project named SimpleCCIApp.

 3. Accept all other defaults and click Finish.

 4. Click Yes to confirm the perspective switch when asked to switch to the Java Perspective.

 5. Click OK to save the resource (PBookF.jsp).

 6. In the Project Explorer view, expand Other Projects and right-click the Java project named

SimpleCCIApp and then select New > Package.

 7. In the New Java Package wizard, in the Name field enter sample.ims and click Finish.

 8. In the Package view, right-click the project SimpleCCIApp and select Properties > Java Build Path.

a. In the Projects tab, select the project containing the Java data bindings that you want your CCI

application to use. For example, select the project, PhoneBookBindings that was created in the

task, “Creating IMS Java data bindings” on page 9.

b. In the Projects tab, select the project containing the IMS resource adapter that you want to use.

If you do not have a project containing the IMS resource adapter that you want to use, you can

import the RAR file for the IMS resource adapter into your workspace by completing the

following steps:

1) Exit the Java Build path wizard.

2) In the Project Explorer view, right-click on your project and select Import > File System.

3) Click Next.

20 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

4) In the File System wizard, click Browse next to the From directory field and choose your

directory. You can get the RAR files for the IMS resource adapters from the following

directories:

v <RAD_install_dir>/Resource Adapters/ims for the JCA 1.0 IMS resource adapter

v <RAD_install_dir>/Resouce Adapters/ims15 for the JCA 1.5 IMS resource adapter
5) Click on the box next to your directory to select it.

6) Click Finish.
c. In the Libraries tab, add the following JAR files to the build path for project SimpleCCIApp by

clicking the Add External JARs button:

v j2ee.jar

v marshall.jar

These JAR files are used by the Java data bindings generated by Rational Application Developer.

The version of the jar files depends on the version of the IMS resource adapter that you selected.

For example, if you selected the IMS resource adapter 9.1.0.1.1 and you installed the Test

Environment for WebSphere Application Server Version 5, the jar files are located in the following

directory path:

v <RAD_install_dir>/runtimes/base_v5/lib

If you selected the IMS resource adapter 9.1.0.2 and you installed the Test Environment for

WebSphere Application Server Version 6, the jar files are located in the following directory path:

v <RAD_install_dir>/runtimes/base_v6/lib
d. Click OK.

 9. In the Package view, expand Other Projects > SimpleCCIApp, right-click the package sample.ims,

and select New > Class.

10. In the Java Class wizard, complete the following steps:

a. In the name field, enter CCIApp for the name of the new class.

b. In the Which method stubs would you like to create? option, ensure that the public static void

main(String{}args) and Inherited abstract methods check boxes are selected and click Finish.
11. Edit the CCIApp.java source. Copy the following sample code and paste into the file:

/*

 *

 * TODO To change the template for this generated file go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

package sample.ims;

import com.ibm.connector2.ims.ico.*;

import javax.resource.cci.*;

/**

 *

 *

 * TODO To change the template for this generated type comment go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

public class CCIApp {

 public static void main(String[] args) {

 Connection conn = null;

 try{

 IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();

 mcf.setHostName("yourHostName");

 mcf.setPortNumber(new Integer(0));

 mcf.setDataStoreName("yourDataStoreName");

Chapter 3. Developing your application 21

ConnectionFactory cf = (ConnectionFactory) mcf.createConnectionFactory();

 IMSConnectionSpec cSpec = new IMSConnectionSpec();

 conn = cf.getConnection(cSpec);

 Interaction interAction = conn.createInteraction();

 IMSInteractionSpec iSpec = new IMSInteractionSpec();

 iSpec.setInteractionVerb(1); // SEND_RECEIVE

 iSpec.setImsRequestType(1); // TRANSACTION

 iSpec.setCommitMode(1); // SEND_THEN_COMMIT

 sample.ims.INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) input.getSize());

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__cmd("DISPLAY");

 input.setIn__name1("LAST1");

 sample.ims.OUTPUTMSG output = new sample.ims.OUTPUTMSG();

 interAction.execute(iSpec, input, output);

 System.out.println(

 "Output message is... " +

 "\nMSG: " + output.getOut__msg() +

 "\nNAME1: " + output.getOut__name1() +

 "\nNAME2: " + output.getOut__name2() +

 "\nEXTN: " + output.getOut__extn() +

 "\nZIP: " + output.getOut__zip()

);

 }

 catch(Exception e)

 {

 System.out.println("Caught exception is: " + e.getMessage());

 }

 }

}

The CCIApp.java is a simple two-tier, non-managed Java application program. It uses the Java data

bindings, sample.ims.INPUTMSG and sample.ims.OUTPUTMSG, that were created by the CICS/IMS

Java Data Binding wizard in Rational Application Developer. Edit CCIApp.java and modify the

values used by the setHostName(), setPortNumber(), and setDataStoreName() statements for your

environment.

12. Click File > Save.

13. To run your Java application, in the Project Explorer view, expand Other Projects > SimpleCCIApp.

14. Right-click CCIApp.java and select Run > Java Application. The following information is displayed

in the Console view:

Output message is...

MSG: ENTRY WAS DISPLAYED

NAME1: LAST1

NAME2: FIRST1

EXTN: 8-111-1111

ZIP: D01/R01

22 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 4. Running your web application

The topics in this section describe how to run your web application. There are a number of environments

in which you can run your application. You can use the Test Environment in Rational Application

Developer to test your application. Another option is you can export your application to a standalone

instance of WebSphere Application Server. The topics included are:

Running your web application using the Rational Application

Developer test environment

You can test your application using the test environment in Rational Application Developer.

Rational Application Developer includes a number of optional test environments. For example, you can

include test environment for WebSphere Application Server Version 6.0 and test environments for legacy

application servers such as, WebSphere Application Server Version 5.1 and WebSphere Application Server

Version 5.0.

The test environment that you use to run your web application depends on how the application is

generated. For example, if you selected servlet version 2.4 (J2EE Version 1.4) when you defined the

dynamic web project for your application, you must select WebSphere Application Server Version 6.0 as

your target server and you must test your application using the WebSphere Application Server Version

6.0 Test Environment.

To run your application using the Rational Application Developer test environment, complete the

following steps:

1. In the Project Explorer view, expand Dynamic Web Projects > PhoneBookWeb > WebContent.

2. Right-click PBookF.jsp in the Web Content folder and select Run > Run on server.

3. In the Server Selection wizard, select Choose an existing server.

4. Select the server instance you configured. For example, WebSphere 6.0 Server@localhost and then

click Next.

5. In the Add and Remove Projects page, ensure that your new EAR project, PhoneBookWebEAR, is in the

list of Configured projects and then click Finish.

6. The faces JSP, PBookF.jsp, displays in the web browser. Enter values in the input fields; for example:

v In__trcd: IVTNO

v In__zz: 0

v In__name1: LAST1

v In__cmd: DISPLAY

v In__ll: 59
7. For all the remaining input fields, ensure that trailing blanks are removed and then click Submit.

8. The following output is displayed:

Out__ll: 93

Out__zz: 768

Out__msg: ENTRY WAS DISPLAYED

Out__name1: LAST1

Out__name2: FIRST1

Out__extn: 8-111-1111

Out__zip: D01/R01

Note: If you exposed IMSInteractionSpec output properties such as:

v convEnded

© Copyright IBM Corp. 2000, 2005 23

v asyncOutputAvailable

v mapName

as data, they will also display in the output.

You have completed testing your application in the test environment of the Rational Application

Developer.

Running your application in a standalone WebSphere Application

Server

You can test your application using a standalone WebSphere Application Server. To run your application

in a standalone WebSphere Application Server, you must first export your web application from Rational

Application Developer as an Enterprise Application Archive (EAR) file and then install the EAR file on

the server.

If you do not package the IMS resource adapter with your enterprise application, you must ensure that

the IMS resource adapter that your application uses is installed on the standalone WebSphere Application

Server. You also need to ensure that a connection factory has been defined to create connections to the

IMS Connect and IMS that you wish to run the IMS transaction.

The following topics describe how to use a standalone WebSphere Application Server to run your

application:

Exporting your application as an EAR file

Before you install and run your application on a standalone WebSphere Application Server, you must first

export your application from Rational Application Developer as an EAR file.

To export your application as an EAR file, complete the following steps in Rational Application

Developer:

1. From the menu bar, select File > Export.

2. From the Select and export destination list, select EAR file.

3. Click Next.

4. From the EAR project drop down list, select PhoneBookWebEAR.

5. From the Destination field, click Browse to choose the location where you want to save the EAR file.

6. Click Finish.

Installing the IMS resource adapter in WebSphere Application Server

Before you use the EAR file to install your application, you must install the IMS resource adapter in

WebSphere Application Server, if it is not already installed.

Note: You can only have one standalone version of the IMS RAR file installed on WebSphere Application

Server because the different versions of the IMS RAR files share the same classloader. If there are

two versions of the IMS RAR installed, there will be a conflict because they share the same class

names.

To install the IMS RAR file, complete the following steps:

1. Ensure that WebSphere Application Server is started.

2. On the Welcome page, in the left-hand navigation, expand Resources and select Resource Adapters.

The Resource Adapter page opens.

3. On the resource adapter page, scroll to the bottom and click the Install RAR button. This takes you to

the Install RAR File page.

24 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

4. Click Browse to navigate to the path where the RAR file is installed and select Next.

5. In the next page, type in a name for your RAR file, for example, IMSRAR9102, and click OK.

6. Save your changes by clicking Save at the top of the page.

7. Click Save again when prompted to save your workspace to the master configuration.

The IMS RAR file is now installed on your WebSphere Application Server.

Creating a connection factory for the IMS resource adapter

After you have installed the IMS resource adapter on your server, you need to create a connection factory

for the IMS resource adapter, if it does not already exist. The connection factory is used by one or more

application to create connections between IMS and IMS Connect.

To create a connection factory to for the IMS resource adapter, complete the following steps:

 1. On the welcome page of WebSphere Application Server, expand Resources > Resource Adapters.

 2. Scroll to the bottom of the page and click the name of the RAR file for which you want to create a

connection factory. For example, select IMSRAR9102. The General Properties page will appear.

 3. In the General Properties page, in the right-hand column under Additional Properties, select J2C

Connection Factories.

 4. Click the New button and in the Name field type a name for the connection factory. For example,

myIMSA.

 5. In the JNDI name field, accept the default.

 6. Click OK.

 7. Click the name of the connection factory that you just created, myIMSA. The configuration page

opens.

 8. On the configuration page, in the right-hand column under Additional Properties, click Custom

properties.

 9. Click on each of the fields below to fill in the values to configure your connection factory. For

example:

v In the HostName row, click on the existing value. In the configuration page that comes up, type

MYHOST.MYCOMPANYNAME.COM in the Value field and then click OK.

v In the PortNumber row, click on the existing value. In the configuration page that comes up, type

9999 in the Value field and then click OK.

v In the DataStoreName row, click on the existing vaule. In the configuration page that comes up,

type MYDSTOR in the Value field and then click OK.
10. Click Save at the top.

11. Click Save again when prompted to save your workspace to the master configuration.

12. Stop the server and then restart it to see the new connection factory.

You now have created a connection factory for your RAR file.

Installing your EAR file in WebSphere Application Server

After you exported your application as an EAR file, installed an IMS resource adapter and created a

connection factory, you can use the EAR file that you created to install the application in WebSphere

Application Server and then run the application.

To install your EAR file and run your application, complete the following steps:

 1. Ensure that the server is started.

 2. On the welcome page of WebSphere Application Server, expand Applications and select Install New

Application.

 3. Click Browse to navigate to the EAR file that you want to install and then click Next.

Chapter 4. Running your web application 25

4. Click Next again until the page Install New Application, which lists the steps for installation,

appears

 5. Click Step 4: Map resource references to resources.

 6. In the javax.resource.cci.Connection.Factory portion of the page, follow the steps provided on the

page. Ensure that you complete the steps described on the page. For example:

a. Select an existing resource JNDI name in the drop down list.

b. Scroll down the page and select the resource references that you want to map.

c. Then scroll back up the page and click Apply.
 7. Click Step 7: Summary and click Finish.

 8. Click Save when prompted to save your workspace to the master configuration. After you save

installing your EAR file, the welcome page opens.

 9. On the welcome page, expand Applications > Enterprise Application.

10. Select the checkbox of the new application that you just installed and click Start to run your

application.

You have now installed your application on a production WebSphere Application Server.

26 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 5. Configuring your application

The topics in this section describe how to configure your application for your service. The topics included

are:

Execution timeout

The execution timeout value for the IMS resource adapter is defined as the maximum amount of time

allowed for IMS Connect to send a message to IMS and receive a response from IMS. For details about

the execution timeout value, see Setting execution timeout values and Valid execution timeout values.

Before the introduction of the executionTimeout property, you were limited to setting a timeout value on

a global level, which was specified in the IMS Connect configuration file. Every interaction between IMS

Connect had the same timeout value.

With the executionTimeout property, you can set individual timeout values on a per interaction basis

rather than on a global basis. If an interaction isn’t complete before timeout occurs, IMS Connect returns

an error message to the IMS resource adapter. The IMS resource adapter returns an exception indicating

that the duration of time for IMS to respond to IMS Connect has exceeded the execution timeout value.

Note: Because the connection between the IMS resource adapter and IMS Connect is persistent, when

execution timeout occurs, the socket is not closed. Instead, the socket is available for reuse for subsequent

interactions..

Execution timeout in conversational transactions

In a conversational transaction, the execution timeout value applies to each iteration of that conversation.

An iteration consists of one input message sent to IMS and one output message received from IMS. If one

iteration of the conversation times out, the entire conversation ends.

Execution timeout exceptions

If a valid execution timeout value is specified for a particular interaction and execution timeout occurs,

the Java application submitting the interaction receives the exception

javax.resource.spi.EISSystemException. If you specify an invalid execution timeout value, the exception

javax.resource.NotSupportedException is thrown when execution timeout occurs.

Valid execution timeout values

The execution timeout value is represented in milliseconds and must be a decimal integer in the range of

1 to 3600000, inclusively. That is, the executionTimeout value must be greater than zero and less than or

equal to one hour. The execution timeout value can also be -1 if you want an interaction to run without a

time limit. The execution timeout value cannot contain non-numeric characters.

If you do not specify an execution timeout value or if the value that you specify is invalid:

v For SYNC_SEND_RECEIVE interactions, the timeout value in the IMS Connect configuration member

is used and the interaction continues to run.

v For SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions, IMS Connect will set the timeout value

to two seconds and the interaction continues to run.

© Copyright IBM Corp. 2000, 2005 27

Additionally, if you specify an invalid value, the exception javax.resource.NotSupportedException is

thrown when timeout occurs for that interaction.

Tip: The host system administrator determines the global timeout value in the IMS Connect configuration

member. To display this value, issue the VIEWHWS command on the MVS console. See the IMS Connect

User’s Guide and Reference (SC27-0946-03) for more information on the VIEWHWS command.

If a valid execution timeout value is set, this value is converted into a value that IMS Connect can use.

The following table describes how the values you specify are converted to the values that IMS Connect

uses:

 Range of user-specified values Conversion rule

1 - 250 If the user-specified value is not divisible by 10, it is

converted to the next greater increment of 10.

251 - 1000 If the user-specified value is not divisible by 50, it is

converted to the next greater increment of 50.

1001 - 60000 The user-specified value is converted to the nearest

increment of 1000. Values that are exactly between

increments of 1000 are converted to the next greater

increment of 1000.

60001 - 3600000 The user-specified value is converted to the nearest

increment of 60000. Values that are exactly between

increments of 60000 are converted to the next greater

increment of 60000.

For example, if you specify a value of 1, this value is converted to 10 (because 1 is not divisible by 10 and

10 is the next increment that is greater than 1). The following examples illustrate how the conversion

works for each range of values:

 User-specified value (milliseconds) Converted value (milliseconds)

1 10

11 20

251 300

401 450

1499 1000

1500 2000

60000 60000

89999 60000

3600000 3600000

3750000 3600000

Setting execution timeout values

executionTimeout is a property of the IMSInteractionSpec class. The execution timeout value that you set

is converted to a value that IMS Connect uses. This conversion occurs to meet the requirements of IMS

Connect. Important: Other timeout values can affect your interactions. If other timeout values are less

than the execution timeout value you set for your IMS interaction, these other timeout values can cause

the interaction to expire. Other timeout values include:

v Connection timeout property of J2C connection factories

28 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

v EJB transaction timeout value

v Browser timeout value

v Servlet HTTP session or EJB session timeout values

For example, when WebSphere Application Server is running on the z/OS platform, the server consists of

two parts, a controller and a set of one or more servants. Application work is dispatched into servant

regions. Application work is, by default, timed. In general, when an application in dispatch reaches its

timeout, the servant region where it is dispatched is abended and restarted. The server stays up and

continues taking work. For this reason, you should use care when choosing execution timeout values

that are greater than WebSphere Application Server timeout values, or when choosing the execution

timeout value of -1 (wait forever). In addition, if you are planning on disabling WebSphere Application

Server timeouts, you should check the server documentation in order to better understand the

implications of doing this.

Another example is if you configure the execution timeout value to be greater than the timeout value

specified for a browser response, then the execution timeout value is never used because the browser

timeout value is exceeded first.

You can provide a value for the executionTimeout property of an IMSInteractionSpec class in one of two

ways:

v Using Rational Application Developer

v Using the setExecutionTimeout method

With the first method, using Rational Application Developer, you can set the execution timeout value

when you initially define the IMS binding properties for a new J2C Java Bean.

To edit the IMS binding properties that are already defined for a new J2C Java Bean, complete the

following steps:

1. Open the appropriate IMS binding Java file using the Java Editor.

2. Locate the doclet tag for the IMSInteractionSpec class.

3. Modify the doclet tag to add executionTimeout property, if it is not listed and specify a value for it. If

it is listed, modify the value.

4. Close the editor and click Yes to save your changes.

Note: You can also code individual timeout values for different interactions using the method described

below in Exposing the executionTimeout property of the IMSInteractionSpec and Using the

setExecutionTimeout method. If you code an execution timeout value in your Java client

application code, that value overrides any execution timeout value that you set in Rational

Application Developer.

With the second method, you can use the setExecutionTimeout method to set an execution timeout value.

If you are creating a CCI application, you will have access to the setExecutionTimeout method of the

IMSInteractionSpec. To use the setExecutionTimeout method, you need to instantiate a new

IMSInteractionSpec or obtain the IMSInteractionSpec from your specific interaction. Then, set the

executionTimeout value for the IMSInteractionSpec by using the setExecutionTimeout method provided

by the IMSInteractionSpec class. For example:

interactionSpec.setExecutionTimeout(timeoutValue);

After you set the executionTimeout value for the IMSInteractionSpec, assign this interactionSpec to the

specific interaction.

Chapter 5. Configuring your application 29

Socket timeout

Socket timeout is the maximum amount of time IMS Connector for Java will wait for a response from

IMS Connect before disconnecting the socket and returning an exception to the client application.

If there are network problems or routing failures, the socketTimeout property prevents a hang in the

system where the client using the IMS resource adapter is waiting indefinitely for a response from IMS

Connect. Because the socketTimeout property is based on the TCP/IP sockets with which IMS Connect

and the IMS resource adapter use to communicate, the socketTimeout property is not applicable with

Local Option.

With the socketTimeout property, you can set individual timeout values for a particular interaction using

a socket. The value, in milliseconds, can be set on the socketTimeout property in IMSInteractionSpec. If

the socketTimeout property is not specified for an interaction or it is set to zero milliseconds, this means

there is no socket timeout and the connection will wait indefinitely. The default socket timeout value is

zero.

When determining the Socket Timeout value, other existing timeout values should be taken into account.

For example, browser session timeout value, Execution Timeout, EJB transaction timeout value,

WebSphere Application Server connection timeout value, and HTTP session timeout value used by

servlets and stateful session beans.

If a valid socket timeout value is specified for a particular interaction and socket timeout occurs, a

java.io.IOInterruptedException is thrown and the J2EE JCA exception, javax.resource.spi.CommException is

raised. The J2EE JCA exception message indicates that the client has spent more time than was allocated

by the socketTimeout value to communicate with IMS Connect.

Setting the Socket Timeout Value

When setting the socketTimeout value, you need to consider the executionTimeout value. The

executionTimeout property is the maximum amount of time allowed for IMS Connect to send a message

to IMS and receive a response from IMS. The socketTimeout value encapsulates the executionTimeout

value. Therefore, the socketTimeout value should be greater than the executionTimeout property because

the socket may time out unnecessarily if its value is set to less than the executionTimeout value. The

following table lists suggested values for socketTimeout based on executionTimeout values.

 Execution Timeout Value

(milliseconds)

Execution Timeout Behavior Suggested Socket Timeout Value

0 (or no value) The default value from the IMS

Connect configuration file is used.

The socket timeout value should be

greater than the execution timeout

default value specified in the IMS

Connect configuration file.

1 - 3,6000,000 The wait response times out after the

specified millisecond value.

The socket timeout value should be

greater than the execution timeout

value.

-1 The wait response is indefinite. Set the socket timeout value to 0 so

that the connection waits indefinitely.

There are two ways to set the socket timeout value. You can either write an application using the JCA

Common Client Interface (CCI) to access the getter and setter methods provided with the

IMSInteractionSpec or use the tooling provided by WebSphere Studio Application Developer Integration

Edition.

Using the CCI application to set a socket timeout value

30 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

If you are creating a CCI application, you will have access to the setSocketTimeout method of the

IMSInteractionSpec. To use the setSocketTimeout method, you need to instantiate a new

IMSInteractionSpec or obtain the IMSInteractionSpec from your specific interaction. Then set the

socketTimeout value for the IMSInteractionSpec by using the setSocketTimeout method provided by the

IMSInteractionSpec class. For example:

interactionSpec.setSocketTimeout(timeoutValue1);

interaction.execute(interactionSpec,input,output);

interactionSpec.setSocketTimeout(timeoutValue2);

interaction.execute(interactionSpec,input,output);

Using WebSphere Studio Application Developer Integrated Edition to set a socket timeout value

You can use WebSphere Studio Application Developer Integrated Edition to set the socket timeout value

when you initially define the operation binding properties for an IMS service. To edit the operation

binding properties that are already defined for an IMS service, complete the following steps:

1. Open the appropriate IMS binding WSDL file using the WSDL Editor.

2. In the Bindings container of the Graph view, expand the IMS binding WSDL file and expand the

appropriate binding operation file.

3. Select the operation extensibility element (for example, ims:operation) and edit the values of the

properties in the property table.

4. Select the operation extensibility element again to indicate that changes have been made.

5. Close the editor and click Yes to save your changes.

Connection properties

When you create an IMS service definition or define an IMS connection factory to WebSphere Application

Server, you must provide values for certain properties of the connection between IMS Connector for Java

and IMS Connect. The following list describes these connection properties:

Host name

Mandatory for TCP/ IP connections: The IP address or host name of the machine running the

target IMS Connect. You must replace the value ″myHostNm ″ with a value that is valid for your

IMS environment.

Port number

Mandatory for TCP/IP connections: The number of a port used by the target IMS Connect for

TCP/IP connections. Multiple sockets can be open on a single TCP/ IP port. See ″Configuring

IMS Connect″ in the IMS Connect Guide and Reference (SC27-0946-03) for additional information

about the PortNumber property. You must replace the value of ″0″ with a value that is valid for

your IMS environment.

CM0Dedicated

The default is false. A value of FALSE indicates the connection factory will generate shareable

persistent socket connections and IMS Connector for Java will generate a clientID to identify the

socket connection. These connections can be used by commit mode 0 and commit mode 1

interactions. A value of TRUE indicates the connection factory will generate dedicated persistent

socket connections, which require user-specified clientIDs to identify the socket connections. A

dedicated persistent socket connection is reserved for a particular clientID and only commit mode

0 interactions are allowed. This property applies to TCP/IP connections only.

SSL Enabled

The default is false. This property is only valid for TCP/IP connections. A value of true indicates

that IMS Connector for Java will create an SSL socket connection to IMS Connect using the

HostName and PortNumber specified in these connection properties. This port must be

configured as an SSL port by IMS Connect. A value of false indicates that SSL sockets will not be

used for connecting to the port specified in the Port Number property.

Chapter 5. Configuring your application 31

KeyStore Name

For non-z/OS platforms, specify the fully-qualified path name of your JKS keystore file. For

z/OS, specify the name of your JKS keystore file as above, or a special string that provides the

information needed to access your RACF keyring.

 Private keys and their associated public key certificates are stored in password-protected

databases called keystores. For convenience, trusted certificates can also be stored in the keystore

and then the Truststore Name property can either be empty or could point to the keystore file. If

the TrustStore Name/TrustStore Password property is left empty, an informational message is

generated in the server log.

 The keystore name can be used to specify either a JKS keystore or a RACF keyring when running

on z/OS. An example of a fully-qualified path name of your JKS keystore file is

c:\keystore\MyKeystore.ks. A RACF keyring is specified as: keystore_type:keyring_name:racfid. The

keystore_type must be either JCERACFKS when software encryption is used for SSL or

JCE4758RACFKS if hardware encryption is used. Replace keyring_name with the name of the

RACF keyring that you are using as your keystore and racfid with a RACF ID that is authorized

to access the specified keyring. Examples of RACF keyring specifications are

″JCERACFKS:myKeyring:kruser01″ or JCE4758RACFKS:myKeyring:kruser01″. When running in z/OS,

if the keystore name matches the above RACF keyring format, IMS Connector for Java will use

the specified RACF keyring as its keystore. If the keystore type specified is anything other than

JCERACFKS or JCE4758RACFKS, IMS Connector for Java attempts to interpret the keystore

name specified as the name of a JKS keystore file.

 Note: The JKS file can have other file extensions; it does not have to have to be .ks.

KeyStore Password

Specify the password for the keystore. Private keys and their associated public key certificates are

stored in password-protected databases called keystores.

TrustStore Name

For non-z/OS platforms, specify the fully-qualified path name of your JKS truststore file. For

z/OS, specify the JKS name or the RACF keyring of the truststore. The same format is used for

the values of the Keystore Name and Truststore Name properties. See the description of the

Keystore Name property for a discussion of this format.

 A truststore file is a key database file (keystore) intended to contain public keys or certificates.

For convenience, private keys can also be stored in the Truststore and then the Keystore Name

property can either be empty or could point to the truststore file. If the KeyStore Name/KeyStore

Password property is left empty, an informational message will be generated in the server log.

 Note: The JKS file can have other file extensions; it does not have to have to be .ks.

TrustStore Password

Specify the password for the truststore. A truststore file is a key database file that contains public

keys.

Encryption Type

Select the encryption type. Strong and weak are related to the strength of the ciphers, that is, the

key length. All those ciphers that can be used for export come under the weak category and the

rest go into the strong category. By default, the encryption type is set to weak.

IMS Connect name

Mandatory for Local Option connections: The job name of the target IMS Connect. If the IMS

Connect name is specified, it overrides the Host name, Port number, and SSL-related properties.

Default user name

Optional: The default security authorization facility (SAF) user name that will be used for

connections created by this connection factory if no UserName property is provided by the

application component.

32 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Default password

Optional: The password that will be used for connections created by this connection factory if the

default user name is used.

Default group name

Optional: The IMS group name that will be used for all connections created by this connection

factory if the default user name is used.

Note: The GroupName property can only be provided in a component-managed environment.

Data store name

Mandatory: The name of the target IMS datastore. It must match the ID parameter of the

Datastore statement that is specified in the IMS Connect configuration member. It also serves as

the XCF member name for IMS during internal XCF communications between IMS Connect and

IMS OTMA. You must replace the default value ″myDStrNm″ with a value that is valid for your

IMS environment.

Trace level

Optional: The level of information to be traced. For additional information on trace level, see

Logging and tracing with the IMS resource adapter.

TransactionResourceRegistration

Optional: The type of transaction resource registration (enlistment). Valid values are either ″static″

(immediate) or ″dynamic″ (deferred). If this property is set to ″dynamic″, the enlistment of the

resource to the transaction scope will be deferred until the resource is used for an interaction for

the first time.

MFS XMI Repository ID

A resource property of a defined J2C Connection Factory, which is accessible on the J2C options

page of the server configuration. This field contains a unique name for identifying the repository

location. This ID must match the repository field defined in the generated format handler of your

application. The default for this field is ″default″.

MFS XMI Repository URI

A resource property of a defined J2C Connection Factory, which is accessible on the J2C options

page of the server configuration. This field specifies the physical location of the XMI repository.

Valid formats for this field include:

v file://path_to_xmi, where path_to_xmi is a directory on the local file system containing the

xmi files, for example file://c:/xmi.

v http://url_to_xmi, where url_to_xmi is a valid url that resolves to a directory containing the

xmi files, for example http://sampleserver.com/xmi.

v hfs://path_to_xmi where path_to_xmi is the HFS directory on the host z/OS. This format is

only supported for WebSphere Application Server for z/OS.

IMSInteractionSpec properties

When you define a Java method for a J2C Java Bean, you must provide values for the properties that

describe the interaction with IMS that will be performed by the Java method. These are values of the

input properties of IMSInteractionSpec. The following list describes all output properties as well as input

properties of IMSInteractionSpec, including those that are not set by the application component:

asyncOutputAvailable

This is an output only property. It can be used by a Java application to determine if there is

queued output for the TPIPE associated with the connection used for a commitMode 0

interaction. For dedicated persistent socket connections, this is the value in the clientID property

of IMSConnectionSpec. For shareable persistent socket connections, this is value generated by

IMS Connector for Java. The value of asyncOutputAvailable is true if there are messages in the

queue. The asyncOutputAvailable property is not set on input by the application component.

Chapter 5. Configuring your application 33

Note: If your Java application uses this property, it must be exposed as an output property of

IMSInteractionSpec. See Creating an application to run a Commit mode 0 transaction for

information on exposing the properties of IMSInteractionSpec.

convEnded

This is an output only property. It can be used by a Java application to determine if a

conversation has ended (true). The convEnded property is not set on input by the application

component. Note: If your Java application uses this property, it must be exposed as an output

property of IMSInteractionSpec. See Creating an application to run a commit mode 0 transaction

for information on exposing the properties of IMSInteractionSpec.

commitMode

Used by the IMS resource adapter to indicate the type of commit mode processing to be

performed for an IMS transaction. See Overview of commit mode processing for more

information. The commitMode property can be set to 0 or 1 when interactionVerb is set to

SYNC_SEND_RECEIVE. When interactionVerb is set to SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, or SYNC_SEND, IMS Connector for Java uses

commitMode 0. commitMode 1 is required when interactionVerb is set to

SYNC_END_CONVERSATION.

 If commitMode is 0 and a shareable persistent socket is used for the interaction, the clientID must

not be specified. If commitMode 0 is specified for an interaction on a shareable persistent socket,

the output message from a transaction can be purged or rerouted. The undelivered secondary

output from a program to program switch can also be purged or rerouted.

 If a dedicated persistent socket connection is used for an interaction, the commitMode must be 0

and the clientID property of the IMSConnectionSpec used for the connection must be provided. If

a dedicated persistent socket is used for a commitMode 0 interaction, undelivered output

messages are always recoverable and cannot be purged or rerouted.

socketTimeout

The maximum amount of time IMS Connector for Java will wait for a response from IMS Connect

before disconnecting the socket and returning an exception to the client application. The

socketTimeout value is represented in milliseconds. To use socket timeout, the value must be

greater than zero. If a socket timeout is not specified for an interaction or it is supplied with a

socket timeout value of zero milliseconds, this will result in no socket timeout or an infinite wait.

For more information see Socket timeout and Setting socket timeout values.

executionTimeout

The maximum amount of time allowed for IMS Connect to send a message to IMS and receive a

response. The executionTimeout value is represented in milliseconds and must be a decimal

integer that is either -1 or between 1 and 3,600,000, inclusively. That is, the executionTimeout

value must be greater than zero and less than or equal to one hour. If a -1 value is set for this

property, the interaction will run without a time limit. For more information, see Execution

timeout, Setting execution timeout values, and Valid execution timeout values.

imsRequestType

Indicates the type of IMS request and determines how output from the request is handled by the

IMS resource adapter. Integer values are:

34 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Value Named constant in IMSInteractionSpecProperties Description

1 IMS_REQUEST_TYPE_IMS_

TRANSACTION

The request is an IMS transaction. Normal

transaction output returned by IMS is used

to populate the application’s output message.

If IMS returns a ″DFS″ message, the IMS

resource adapter throws an

IMSDFSMessageException containing the

“DFS” message.

This value for imsRequestType is used for

applications that are not generated using

WebSphere Studio MFS support.

2 IMS_REQUEST_TYPE_IMS_COMMAND The request is an IMS command. Command

output returned by IMS, including ″DFS″

messages, is used to populate the

application’s output message. The

IMSDFSMessageException is not thrown.

This value for imsRequestType is used for

applications that submit IMS commands.

3 IMS_REQUEST_TYPE_MFS_

TRANSACTION

This value for imsRequestType is reserved

for applications that are generated using

WebSphere Studio MFS support.

Normal transaction output returned by IMS,

as well as ″DFS″ messages, are used to

populate the application’s output message.

The IMSDFSMessageException is not thrown.

interactionVerb

The mode of interaction between the Java application and IMS. The values currently supported

by the IMS resource adapter are:

 Value Named constant in IMSInteractionSpecProperties Description

0 SYNC_SEND The IMS resource adapter sends the client request to

IMS through IMS Connect and does not expect a

response from IMS. With a SYNC_SEND interaction,

the client does not need to synchronously receive a

response from IMS. SYNC_SEND is supported on

both shareable and dedicated persistent socket

connections and is only allowed with commitMode 0

interactions. If the interactionVerb is set to

SYNC_SEND, execution timeout and socket timeout

values are ignored. Note: imsRequest type 2 is not

allowed with SYNC_SEND and will generate an

exception.

Chapter 5. Configuring your application 35

Value Named constant in IMSInteractionSpecProperties Description

1 SYNC_SEND_RECEIVE The execution of an IMS Interaction sends a request

to IMS and receives a response synchronously. A

typical SYNC_SEND_RECEIVE interaction is the

running of a non-conversational IMS transaction in

which an input record (the IMS transaction input

message) is sent to IMS and an output record (the

IMS transaction output message) is returned by IMS.

SYNC_SEND_RECEIVE interactions are also used for

the iterations of a conversational IMS transaction. A

conversational transaction requires commitMode 1. A

non-conversational transaction can run using either

commitMode 1 or commitMode 0. If commitMode 0

is used on a dedicated persistent socket, a value for

the clientID property of IMSConnectionSpec must be

provided. If commitMode 0 is used on a shareable

persistent socket, a value for the clientID property of

IMSConnectionSpec must not be provided.

3 SYNC_END_CONVERSATION If the application executes an interaction with

interactionVerb set to SYNC_END_CONVERSATION,

the IMS resource adapter sends a message to force

the end of an IMS conversational transaction.

The IMSInteractionSpec property, commitMode, and

the IMSConnectionSpec property, clientID, do not

apply when SYNC_END_CONVERSATION is

provided for interactionVerb.

4 SYNC_RECEIVE_ASYNCOUTPUT interactionVerb SYNC_RECEIVE_ASYNCOUTPUT is

valid on both shareable persistent and dedicated

persistent socket connections.

SYNC_RECEIVE_ASYNCOUTPUT is used to retrieve

asynchronous output that was not delivered. When

SYNC_RECEIVE_ASYNCOUTPUT is used on a

dedicated persistent socket, a value must be

provided for the clientID property of

IMSConnectionSpec.

A SYNC_RECEIVE_ASYNCOUTPUT interaction on a

shareable persistent socket connection must be in the

same application as the original SYNC_SEND or

SYNC_SEND_RECEIVE interaction and must use the

same shareable persistent connection. This primarily

occurs following execution timeout.

With this type of interaction, the Java client can only

receive a single message. If there are no messages in

the IMS OTMA Asynchronous Queue for the clientID

when the request is made, no further attempts are

made to retreive the message. No message is

returned and a timeout will occur after the length of

time specified in the executionTimeout property of

the SYNC_RECEIVE_ASYNCOUTPUT interaction.

36 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Value Named constant in IMSInteractionSpecProperties Description

5 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

interactionVerb

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

is valid on both shareable and dedicated persistent

socket connections. It is used to retrieve

asynchronous output.

A

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

interaction on a shareable persistent socket

connection must be in the same application as the

original SYNC_SEND or SYNC_SEND_RECEIVE

interaction and must use the same shareable

persistent connection. This primarily occurs

following execution timeout.

With this type of interaction, the Java client can only

receive one single message. If there are no messages

in the IMS OTMA Asynchronous Queue for the

clientID when the request is made, no further

attempts will be made to retrieve the message. No

message will be returned and a timeout will occur

after the length of time specified in the

executionTimeout property of the

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

interaction.

Note: The interactionVerbs,

SYNC_RECEIVE_ASYNCOUTPUT and

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

, perform the same function. However, it is

recommended to use

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

Chapter 5. Configuring your application 37

Value Named constant in IMSInteractionSpecProperties Description

6 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

interactionVerb

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

is used to retrieve asynchronous output. It is valid on

both shareable and dedicated persistent socket

connections.

A

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

interaction on a shareable persistent socket

connection must be in the same application as the

original SYNC_SEND or SYNC_SEND_RECEIVE

interaction and must use the same shareable

persistent connection. This primarily occurs

following execution timeout.

With this type of interaction, the Java client can only

receive one single message. If there are no messages

in the IMS OTMA Asynchronous Queue for the

clientID when the request is made, IMS Connect

waits for OTMA to return a message. IMS Connect

waits the length of time specified in the

executionTimeout property of the

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

interaction before returning an exception.

The J2EE Connection Architecture (JCA) values SYNC_RECEIVE (2) is not currently supported.

ltermName

The LTERM name used to override the value in the LTERM field of the IMS application

program’s I/O PCB. See the IMS Connect User’s Guide and Reference (SC27-0946-23) for a

description of how to use the LTERM override.

 The value of this property can be set if the client application wants to provide an LTERM

override name. This name will be in the IMS application program’s I/O PCB, with the intent that

the IMS application will make logic decisions based on this override value.

mapName

The mapName field typically contains the name of a Message Format Service (MFS) control

block. MFS is the component of IMS that performs online formatting of transaction input and

output messages. Since IMS Connect uses IMS OTMA to access IMS, MFS online formatting is

bypassed. However, the mapName field can still be used by a Java application to input the name

of an MFS control block to an IMS application program or to retrieve the name of an MFS control

block provided by an IMS application program.

 On input, typically the value of the mapName property is the name of an MFS Message Output

Descriptor, or ″MOD″. The MOD name will be provided to the IMS application program in the

I/O PCB.

 On output, the value of the mapName property is the name of an MFS Message Output

Descriptor, or ″MOD″. This is the MOD name that the IMS application program specified when

inserting the transaction output message to the I/O PCB.

38 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Note: The mapName field should not be used by Java applications that use an enterprise service

whose input and output messages are generated by WebSphere Studio MFS support.

purgeAsyncOutput

This is an input property. This property determines whether or not IMS Connect purges

undelivered output.

 This property is only valid for interactions on shareable persistent socket connections that use

IMS interaction verb SYNC_SEND_RECEIVE. It is not valid for any interactions on dedicated

persistent socket connections. It applies to commit mode 0 interactions. It does not apply to

commit mode 1 interactions. However, if a commit mode 1 interaction executes a

program-to-program switch, the spawned program will run commit mode 0 and therefore the

property will apply.

 If the purgeAsyncOutput property is not specified on a SYNC_SEND_RECEIVE interaction on a

shareable persistent socket connection, the default is TRUE and the following output messages

are purged:

v Undelivered output message inserted to the I/O PCB by the primary IMS application program.

v Output messages inserted to the I/O PCB by secondary IMS application programs invoked by

a program to program switch.

reRoute

This is an input property.

 This property is only valid for interactions on shareable persistent socket connections that use

IMS interaction verb SYNC_SEND_RECEIVE. It is not valid for any interactions on dedicated

persistent socket connections. It applies to commit mode 0 interactions. It does not apply to

commit mode 1 interactions. However, if a commit mode 1 interaction executes a

program-to-program switch, the spawned program will run commit mode 0 and therefore the

property will apply. This property determines if undelivered output is to be rerouted to a named

destination specified in the reRouteName field. If reRoute is TRUE, the asynchronous output is

not queued to the TPIPE of the generated clientID. Instead, the asynchronous output is queued to

the destination specified in the reRouteName field. The default value for reRoute is FALSE.

 If both reRoute and purgeAsyncOutput are set to TRUE, an exception is thrown.

reRouteName

This property provides the name of the destination to which asynchronous output is queued. If

reRoute is TRUE, this property provides the named destination. If reRoute is FALSE, the

reRouteName property is ignored.

 If the reRoute property is set to TRUE, and no reRouteName is provided, the value for the

reRouteName property is:

1. The value specified in the IMS Connect configuration file.

2. If no value is specified in the IMS Connect configuration file, the value ″HWS$DEF″ is used.

Valid values for the reRouteName property:

v Must be a string of 1 to 8 alphanumeric (A-Z, 0-9) or special (@,#,$) characters.

v Must not start with the character string, “HWS”.

v Must not be an IMS Connect port number.

v If lowercase letters are provided, the letters will be changed to uppercase.

The property, reRouteName, is only valid for SYNC_SEND_RECEIVE interactions on shareable

persistent socket connections. It is not valid for any interactions on dedicated persistent socket

connections.

required

Leave this field empty.

Chapter 5. Configuring your application 39

40 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 6. Security

The topics in this section describe security issues for the IMS resource adapter. The topics included are:

IMS resource adapter security

Information in an Enterprise Information System (EIS) such as IMS must be protected from unauthorized

access. The J2EE Connector Architecture (J2C) specifies that the application server and the EIS must

collaborate to ensure that only authenticated users are able to access an EIS. The J2C security architecture

extends the end-to-end security model for J2EE-based applications to include integration with EISs.

EIS sign-on

The J2C security architecture supports a user ID and password authentication mechanism specific to an

EIS. For more information, see Java 2 Connector security in the WebSphere Application Server

documentation.

The user ID and password for the target EIS is supplied either by the application component

(component-managed sign-on) or by the application server (container-managed sign-on).

For IMS Connector for Java, IMS is the target EIS. The security information is passed to the IMS resource

adapter, which then passes it to IMS Connect. IMS Connect uses this information to perform user

authentication and passes it on to IMS OTMA which also uses this information to verify authorization to

access IMS.

In a typical environment, the IMS resource adapter passes on the security information (user ID,

password, and optional group name) that it receives to IMS Connect in an IMS OTMA message.

Depending on its security configuration, IMS Connect may then call the host’s Security Authorization

Facility (SAF).

v For WebSphere Application Server on distributed platforms or z/OS with TCP/IP, using either

component-managed or container-managed sign-on:

– If RACF=Y is set in the IMS Connect configuration member or if the IMS Connect command

SETRACF ON has been issued, IMS Connect calls the SAF to perform authentication using the user ID

and password passed by IMS Connector for Java in the OTMA message. If authentication succeeds,

the user ID, groupname, and UTOKEN returned from the IMS Connect call to the SAF are passed to

IMS OTMA for use in verifying authorization to access IMS.

– IF RACF=N is set in the IMS Connect configuration member or if the IMS Connect command

SETRACF OFF has been issued, IMS Connect does not call the SAF. However, the user ID and

groupname are still passed to IMS OTMA for use in verifying authorization to access IMS.
v For WebSphere Application Server on z/OS with Local Option, using either component-managed or

container-managed sign-on:

– Regardless of the RACF® setting in the IMS Connect configuration member or in the SETRACF

command, IMS Connect does not call the SAF, because authentication has already been performed

by WebSphere Application Server for z/OS. The UTOKEN generated when WebSphere Application

Server for z/OS calls RACF is passed to IMS for use in verifying authorization to access IMS.

– WebSphere Application Server for z/OS can be configured to use the user identity associated with

the thread of execution to authenticate a user. The application server creates and passes the

UTOKEN representing the user identity to the IMS resource adapter. The IMS resource adapter then

passes the token to IMS Connect for sign-on to IMS. For information about the RunAs Identity

support in WAS, consult the security documentation for WebSphere Application Server z/OS.

© Copyright IBM Corp. 2000, 2005 41

The level of authorization checking performed by IMS is controlled by the IMS command, /SECURE OTMA.

See the IMS OTMA Guide and Reference for more information about this command.

Java2 Security Manager

The IMS resource adapter works with the WebSphere Application Server Java2 Security Manager.

Components such as resource adapters must be authorized to perform protected tasks, such as making

socket calls. The IMS resource adapter is already authorized to perform these tasks. No action is required

by the application component.

See the Managing secured applications in the WebSphere Application Server documentation for more

information about the Java2 Security Manager.

Component-managed EIS sign-on

When you specify <res-auth>Application</res-auth> in the deployment descriptor of your application,

component-managed EIS sign-on is used.

Your application (the component) should provide the security information (user ID, password, and

optional group name) used for EIS sign-on:

v If your application uses the J2EE Connector Architecture Common Client Interface (CCI), it performs

component-managed sign-on by first populating an IMSConnectionSpec object with the security

information. Then, when the application establishes a connection to IMS, it passes the

IMSConnectionSpec object as a parameter of the IMSConnectionFactory.getConnection method. The

IMS resource adapter uses this security information for the sign-on to IMS.

v If your application is an application built by Rational Application Developer, the security information

is passed as application input data. To pass the security information as input data you must expose the

properties, userName, password, and groupName of IMSConnectionSpec. For specific information

about how to expose the IMSConnectionSpec properties user ID, password, and group name as

application input data for the IMS resource adapter, see “Exposing InteractionSpec and ConnectionSpec

properties for input as data” on page 13.

If your application does not use one of the above methods to provide security information, WebSphere

Application Server will obtain the security information from the J2C connection factory’s custom

properties. Note: If you specified a component-managed JAAS Authentication alias while setting up your

connection factory, the user ID and password in the alias will override the userName and password

values in the connection factory custom properties during the start-up of the WebSphere Application

Server.

Configuring component-managed EIS sign-on

In most cases, when you create a J2EE application using the wizards of Rational Application Developer,

the default EIS sign-on is component-managed. The component-managed configuration setting is reflected

by the <res-auth>Application</res-auth> directive of the resource reference used by your application.

The following steps explain how to verify or change this setting for a Dynamic Web Project.

1. Set the <res-auth> directive to Application

a. In the J2EE perspective, of the Project Explorer view, expand Dynamic Web Project >

PhoneBookWeb.

b. Right-click Deployment Descriptor: PhoneBookWeb and select Open With > Deployment

Descriptor Editor.

c. In the Web Deployment Descriptor view, click the References tab and select the J2C Connection

factory reference for your Web application. For example, imsCFacRef.

42 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

d. Select Application, if it is not already selected, in the Authentication field, which maps to the

<res-auth> directive.

e. When you close the Web Deployment Descriptor Editor and click Yes to save your changes; the

following code is added to the deployment descriptor of your Web application:

<res-auth>Application</res-auth>

2. Typically, component-managed sign-on does not require further configuration because the security

information is provided by the application in the IMSConnectionSpec object. However, if your

application does not provide an IMSConnectionSpec object, or the user ID is not specified in the

IMSConnectionSpec object that is provided, the IMS resource adapter will obtain default security

values from the connection factory used by your application.

The default security values for a connection factory can be provided in two ways:

a. When you use a component-managed authentication alias.

v To use a component-managed authentication alias, you must define a JAAS authentication alias.

1) In the Servers view, right-click the server and select Run administrative console.

2) Expand Resources and select Resource Adapters.

3) Click the resource adapter you want to modify.

4) Under Additional Properties, click J2C Connection factories.

5) Under Related Items, click J2EE Connector Architecture (J2C) authentication data entries.

6) Above the list of aliases, click New.

7) Enter an alias name, your user ID, password, and optional description. Select OK.
v Select the JAAS authentication alias for the Component-managed authentication alias property

of the J2C Connection Factory used by your application. You can do this when you first create

the connection factory or later by editing the connection factory. To edit the connection factory:

1) In the Administrative Console for the server, navigate to the connection factory that you

wish to modify by selecting Resource Adapters > server_name > J2C connection factories >

connection_factory_name.

2) In the Component-managed authentication alias drop down list, select the JAAS

authentication alias to be used for component-managed authentication by applications using

that connection factory.

3) Select OK.

The user ID and password associated with the component-managed authentication alias will be

used to set (over override if applicable) the default values in the custom properties of the

associated connection factory during application server startup.
b. When you create a connection factory.

v If you do not assign a valid JAAS authentication alias to the component-managed

authentication alias field of your J2C connection factory, you can assign values for the

userName, password, and groupName fields on the J2C options page of your J2C connection

factory.

v For instructions on creating a connection factory, see Connection Properties. Using a

component-managed authentication alias is preferred over specifying values in the custom

properties of your J2C connection factory because the component-managed authentication alias

provides greater security for the user ID and password.

Note: The process for configuring component-managed sign-on in a standalone WebSphere Application

Server is the same as the process for a WebSphere Application Server in a unit test environment.

Chapter 6. Security 43

Container-managed EIS sign-on

When <res-auth>Container</res-auth> is specified in the deployment descriptor of the application,

container-managed EIS sign-on will be used. When container-managed sign-on is used, your application

does not programmatically provide the security information. Instead, the application server (the

container) provides the security information (user ID and password). One way to accomplish this when

using DefaultPrincipalMapping, is to provide values for the user ID and password to be used by the

application server as follows:

v Define a JAAS Authentication alias, associating the user ID and password you wish to use for EIS

sign-on with the alias

v Associate this alias with the J2C connection factory used by your application

For TCP/ IP, the application server passes the security information in the alias to the IMS resource

adapter. The IMS resource adapter passes the security information to IMS Connect for authentication. IMS

Connect authenticates the user and passes the security information for sign-on to IMS. If IMS Connect

cannot authenticate the user, a security failure is returned to the IMS resource adapter which, in turn,

passes an exception back to the application.

For Local Option, a z/OS-only feature in which both the server and WebSphere Application Server are

running in the same MVS image, the application server authenticates the user based on the security

information defined in the container-managed alias. The application server creates and passes a UTOKEN

representing the authenticated user to the IMS resource adapter. The IMS resource adapter then passes

the UTOKEN to IMS Connect which in turn passes it on to IMS OTMA for use in signing on to IMS.

Alternatively, when using Local Option communications, you can specify in the application server

configuration that the user identity associated with the current thread of execution is to be used by the

application server when performing user authentication. In this case, you do not specify a JAAS

container-managed authentication alias in the J2C connection factory used by your application. This

option is only available if you are using Local Option communications.

Note: When using container-managed sign-on, if your application does pass security information to the

IMS resource adapter using the userName, password or groupName properties of IMSConnectionSpec, it

is ignored. However, if you pass other information in the IMSConnectionSpec object, such as clientID

used with commit mode 0 interactions, this information will be used by the IMS resource adapter.

Configuring container-managed EIS sign-on

Although the method for configuring container-managed EIS sign-on is deprecated in WebSphere

Application Server Version 6, this topic uses a Dynamic Web Project to illustrate how to configure a

component for container-managed EIS sign-on.

This configuration setting is reflected by the <res-auth>Container</res-auth> directive of the resource

reference used by your application.

1. Set the <res-auth> directive to Container.

a. In the J2EE perspective of the Project Explorer view, expand Dynamic Web Projects >

PhoneBookWeb.

b. Right-click Deployment Descriptor: PhoneBookWeb and select Open With > Deployment

Descriptor Editor.

c. In the Web Deployment Desccriptor view, click the References tab and select the J2C Connection

factory reference for your Web application. For example, select imsCFacRef..

d. In the Authentication field, select Container from the drop-down list, if it is not already selected.

e. When you close the Web Deployment Descriptor Editor and click Yes to save your changes. The

following code is added to the deployment descriptor of your Web application:

44 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

<res-auth>Container</res-auth>

2. Specify a method of providing the user ID and password that you want the application server. To use

a JAAS authentication alias to provide the user ID and password that you can use for EIS sign-on,

complete the following steps:

a. In the Servers view, right-click the server and select Run administrative console.

b. Expand Resources and select Resource Adapters.

c. Select the resource adapter you want to modify.

d. Under Additional Properties, click J2C connection factories.

e. Under Related Items, click J2EE Connector Architecture (J2C) authentication data entries.

f. Above the list of aliases, click New.

g. Enter an alias name, your user ID, password, and optional description. Select OK.
3. Select the JAAS authentication alias for the Container-managed authentication alias property of the

J2C connection factory used by your application. You can do this when you first create the connection

factory or later by editing the connection factory. To edit the connection factory:

a. In the Administrative Console for the server you selected, navigate to the connection factory that

you wish to modify. For example, Resource adapters > server_name > J2C connection factories

>connection_factory_name.

b. In the Container-managed authentication alias drop down list, select the JAAS authentication alias

to be used for the container-managed authentication by applications using that connection factory.

c. Select OK.

For information about the properties of a connection factory, see Connection Properties.

Note: The process for configuring container-managed sign-on in a standalone WebSphere Application

Server is the same as the process for a WebSphere Application Server in a unit test environment.

Overview of secure socket layer (SSL)

With the evolution of e-business, data security has become very important for Internet users. The Secure

Socket Layer (SSL) protocol ensures that the transfer of sensitive information over the Internet is secure.

SSL protects information from:

v Internet eavesdropping

v Data theft

v Traffic analysis

v Data modification

v Trojan horse browser /server

One way IMS Connector for Java communicates with IMS Connect is through TCP/ IP sockets. If IMS

Connector for Java uses TCP/ IP, SSL can be used to secure the TCP/ IP communication between the two

entities. The SSL support provided by IMS Connector for Java, along with the support provided by IMS

Connect, uses a combination of public and private keys along with symmetric key encryption schemes to

achieve client and server authentication, data confidentiality, and integrity. SSL rests on top of TCP/ IP

communication protocol and allows an SSL-enabled server to authenticate itself to an SSL-enabled client

and vice versa. For an SSL connection between IMS Connector for Java and IMS Connect, IMS Connector

for Java is considered to be the client and IMS Connect is considered to be the server. Once

authentication is complete, the server and client can establish an encrypted connection that also preserves

the integrity of the data.

For SSL support when running in a WebSphere environment, IMS Connector for Java uses the IBM®

implementation of Java Secure Socket Extension (IBM JSSE). The SSL library is included in WebSphere

Studio Application Developer Integration Edition and in WebSphere Application Server.

Chapter 6. Security 45

SSL concepts

Certificate

A digital certificate is a digital document that validates the identity of the certificate’s owner. A digital

certificate contains information about the individual, such as their name, company, and public key. The

certificate is signed with a digital signature by the Certificate Authority (CA), which is a trustworthy

authority.

Certificate authority

A Certificate Authority (CA) is a trusted party that creates and issues digital certificates to users and

systems. The CA, as a valid credential, establishes the foundation of trust in the certificates.

Certificate management

Certificates and private keys are stored in files called keystores. A keystore is a database of key material.

Keystore information can be grouped into two categories: key entries and trusted certificate entries. The

two entries can be stored in the same keystore or separately in a keystore and trustore for security

purposes. Keystores and truststores are used by both the SSL client, IMS Connector for Java, and the SSL

server, IMS Connect.

Keystore

A keystore holds key entries, such as the private key of the user. For example, the client IMS

Connector for Java.

Truststore

A truststore is a keystore that holds only certificates that the user trusts. An entry should be

added to a truststore only if the user makes a decision to trust that entity. An example of an IMS

Connector for Java (client) truststore entry would be the certificate of the target server, IMS

Connect.

For convenience, IMS Connector for Java allows the user to store key entries and trusted certificate

entries in either the keystore or the truststore. The user may still choose to store them separately. IMS

Connector for Java supports only X.509 certificates and the “JKS” keystore type on distributed platforms

(which include zLinux) and the “JKS” keystore type or RACF keyrings on OS/390 and z/OS.

SSL process

The SSL protocol consists of server authentication, client authentication (optional but strongly

recommended) followed by an encrypted conversation. The following scenario steps through the SSL

process.

Server authentication

SSL server authentication allows a client to confirm a server’s identity. SSL-enabled client software uses

standard techniques of public-key cryptography to ensure that a server’s certificate and public ID is valid

and that the certificate and ID was issued from one of the client’s list of trusted certificate authorities

(CA).

Client authentication

SSL client authentication allows a server to confirm a client’s identity. Using the same techniques used for

server authentication, SSL-enabled server software verifies that a client’s certificate and public ID is valid

and that the certificate and ID was issued by one of the server’s list of trusted certificate authorities (CA).

SSL handshake

46 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Both the client, IMS Connector for Java, and the server, IMS Connect, store their certificates and private

keys in keystores. The actual SSL session between IMS Connector for Java and IMS Connect is established

by following a handshake sequence between client and server. The sequence will vary depending on

whether the server is configured to provide a server certificate or to request a client certificate, and which

cipher suites are being used. A cipher is an encryption algorithm. The SSL protocol determines how the

client and server negotiate the cipher suites to authenticate one another, to transmit certificates, and to

establish session keys. Some of the algorithms used in cipher suites include:

v DES - Data Encryption Standard

v DSA - Digital Signature Algorithm

v KEA - Key Exchange Algorithm

v MD5 - Message Digest algorithm

v RC2 and RC4 - Rivest encryption ciphers

v RSA - A public key algorithm for both encryption and authentication

v RSA key exchange - A key-exchange for SSL based on the RSA algorithm

v SHA-1 - Secure Hash Algorithm

v SKIPJACK - A classified symmetric-key algorithm implemented in FORTEZZA-compliant hardware

v Triple-DES - DES applied three times.

SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites. Administrators can enable or

disable any of the supported cipher suites for both clients and servers. When a particular client and

server exchange information during the SSL handshake, the client and server identify the strongest

enabled cipher suites that they have in common and use one of them for the SSL session.

Transport Layer Security, Version 1 (TLS V1) is the successor to SSL 3.0 protocol. IMS Connector for Java

only supports TLS V1. There are no backward compatibility issues.

Using secure socket layer (SSL) support

The following table provides a high level description of how IMS Connector for Java and IMS Connect

SSL support is set up and configured. Follow the steps in the order outlined below:

 SSL Client (IMS Connector for Java) SSL Server (IMS Connect)

1. Decide if client authentication is required.

Note: It is strongly recommended that you do use client

authentication to protect against unauthorized access to

your IMS Connect. If client authentication is not

required, skip to Step 5.

2. If client authentication is required, obtain signed

certificates and private key.

3. If client authentication is required, create a keystore

and insert the client’s private key and certificate. For

more detail, see the description below.

4. If client authentication is required, insert the client’s

public key certificate into the keyring. See IMS Connect

User’s Guide (SC27-0946-03) for more information.

5. Create a truststore (another optional keystore) and

insert the Server’s public key certificate. Alternatively,

you would insert the Server’s public key certificate into

the client’s keystore if trusted and non-trusted certificates

are stored in the same keystore.

Chapter 6. Security 47

SSL Client (IMS Connector for Java) SSL Server (IMS Connect)

6. Decide which IMS Connect SSL port to use. Set up the

IMS Connect and SSL Configuration members with the

appropriate values. For more information about setting

up these configuration members, see IMS Connect User’s

Guide (SC27-0946).

7. Set up the connection factory with the appropriate SSL

parameters, including the port number from step 6.For

more detail, see the description below.

8. Bind the application to the SSL connection factory.

Creating the keystore or truststore for the client

For the client and server to authenticate one another, you must provide a JKS keystore or RACF keyring

with valid X.509 certificates at both the client and server ends. If client authentication by the server is not

required, it is not necessary to create the client certificate and add it to the server’s keyring. There are

several tools available for managing the keystore. To provide a JKS keystore at both the client and server

ends, you must perform the following steps:

v To set up the client, IMS Connector for Java, create a certificate and have it signed by a Certificate

Authority (for example, VeriSign), or create your own Certificate Authority (CA) using software such

as OpenSSL to sign your own (self-signed) certificate.

v To create a keystore, use a key management tool such as Ikeyman or Keytool. After the keystore is

created, import the client certificate (if one is available) into the keystore.

v To create a truststore, create another keystore and import the server’s (IMS Connect’s) certificate. Note:

If you want to create only one keystore, import the server’s certificate into the same keystore used to

store the client’s certificates.

SSL configuration

A secure SSL connection between a Java client application and IMS Connect is created by ensuring that

the connection factory used by the Java client application has the appropriate values for its SSL

properties. See Connection properties for a description of the SSL property values.

There are two ways to set up SSL properties:

1. If you are running your Java client application in the Unit Test Environment of WebSphere Studio

Application Developer Integration Edition, you use the tooling in WebSphere Studio Application

Developer Integration Edition. WebSphere Studio Application Developer Integration Edition maps or

binds the connection factory resource reference in the Java client application, which is installed on

WebSphere Application Server, to the SSL-configured connection factory by providing the JNDI name

of the connection factory.

2. If you are running your Java application in WebSphere Application Server, you can configure a

connection factory so that it will create SSL connections by setting appropriate values for the

SSL-related properties in the Custom Properties of a of a J2C Connection Factory in WebSphere

Application Server. To set a connection factory’s Custom Properties, navigate to Resources ->

Resource Adapters -> myIMSResourceAdapter -> J2C Connection Factories ->

myJ2CConnectionFactory -> Custom Properties in the WebSphere Application Server administrative

console.

The following figure displays a J2C Connection Factory Custom Properties property sheet:

48 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Note: Informational messages and warnings can be found in the trace.log file generated by WebSphere

Application Server.

At runtime, when the Java client application executes an interaction with IMS, the interaction flows on a

secure (SSL) connection IMS Connector for Java to IMS Connect. The following steps are transparent to

the Java client application. The IMS resource adapter interacts with IMS Connect using the SSL protocol

as follows:

v The SSL client, IMS Connector for Java initiates a connection by sending a client hello. The server, IMS

Connect, replies with a server hello and its certificate containing its public key.

v If the server does not require client authentication, the client authenticates the server’s certificate using

the server’s public key from its certificate. If authentication is successful, the SSL handshake is

completed. A session key has been established at both ends.

v If the server does require client authentication, the client authenticates the server’s certificate using the

server’s public key from its certificate. If this authentication is successful, a client certificate is sent from

the client’s keystore. If this certificate is authenticated successfully by the server, the SSL handshake is

completed. A session key has been established at both ends.

v The client and server are then ready to send and receive encrypted data.

It is important to note that, when running applications in a managed environment (as is strongly

recommended when using SSL connections,) IMS Connector for Java uses only persistent socket

connections to communicate with IMS Connect. When the WebSphere Application Server Connection

Manager is used, connections can be serially reused by other client applications. The connection manager

creates connections if necessary, and provides them to the applications as needed. When an application is

finished using a connection, the connection manager returns that connection to the free pool making it

available for reuse by any other application requiring that type of connection. However, client and server

authentication only occurs once for each socket during the handshake that takes place when that socket is

Chapter 6. Security 49

first created and initialized as an SSL socket. When a socket is reused, the SSL client, IMS Connector for

Java, and server, IMS Connect, do not change. Consequently, there is no reason to re-authenticate the

client and server (go through the handshake process again) when a socket is reused. Note that this is

consistent with the fact that the clientID which identifies a socket remains the same each time a socket is

reused.

50 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 7. Commit mode processing

The topics in this section describe some of the different processing models that a Java client can use with

the IMS resource adapter. The topics included are:

Overview of commit mode processing

Commit mode refers to the type of commit processing performed by IMS. The Java client specifies the

commit mode protocol to be used when it submits a transaction request to IMS. There are two types of

commit mode processing supported by IMS Connect and IMS: commit mode 0 (commit-then-send) where

IMS commits the IMS database changes and then sends the output to the client and commit mode 1

(send-then-commit) where IMS sends the output to the client and then commits the database changes.

Associated with the commit mode protocols, IMS Connect and IMS also support three synchronization

levels (synch levels): NONE, CONFIRM, and SYNCPT. All three synch levels can be used with commit

mode 1. Only CONFIRM can be used with commit mode 0. However, IMS Connector for Java does not

currently support commit mode 1, synch level CONFIRM.

Currently, the synchronization level is not set by the Java client. IMS Connector for Java automatically

provides the synchronization level when communicating with IMS Connect.

IMS Connector for Java supports the following combinations:

v Commit mode 1 with synch level NONE

This combination is used for non-transactional interactions. For non-conversational applications, use

the SYNC_SEND_RECEIVE interaction. For conversational applications, use SYNC_SEND_RECEIVE or

optionally, SYNC_END_CONVERSATION interaction.

v Commit mode 1 with synch level SYNCPT

This combination is used by IMS Connector for Java when participating in two-phase commit

processing with IMS. For more information, see Global transaction support with two-phase commit.

v Commit mode 0 with synch level CONFIRM

This combination is used by IMS Connector for Java for non-transactional SYNC_SEND_RECEIVE,

SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

Note: Commit mode 0 is only supported for non-conversational applications running on TCP/IP

connections.

The synchronization level is not set by the Java client. IMS Connector for Java automatically provides the

synchronization level when communicating with IMS Connect.

If the Java client submits a transaction request with commit mode 1 synch level NONE, IMS Connector

for Java passes the request through IMS Connect to IMS. IMS processes this transaction and attempts to

send the output message to the Java client. The Java client may receive the output message from the

transaction or may receive an exception. In either case, IMS will have already committed the changes to

the database and discarded the output message of the IMS transaction.

Similarly, if the Java client sends a transaction with commit mode 0 synch level CONFIRM, the Java client

may receive the output message from the transaction or may receive an exception. However, if the Java

client receives an exception when commit mode 0 is used, the output may or may not be queued for later

retrieval. Whether or not the output message that was not delivered to a Java client will be queued

depends on the type of socket connection the Java client uses for the commit mode 0 interaction.

© Copyright IBM Corp. 2000, 2005 51

The type of exception also determines whether or not an output message is available for retrieval. For

example, if the Java client receives an IMSDFSMessageException indicating that the transaction is

stopped, the application was not run; therefore, there is no output message available for retrieval.

However, if the transaction runs but the executionTimeout value expires before the output message is

returned to IMS Connect, the Java client will receive an EISSystemException that an execution timeout

has occurred. In this case, the output message will be queued to the appropriate IMS OTMA

Asynchronous Output Queue or TPIPE for later retrieval.

Note: In IMS/OTMA terminology, a transaction pipe (TPIPE) is a logical connection between a client

(IMS Connect) and the server (IMS/OTMA). For commit mode 0 interactions, the TPIPE is identified by

the clientID used for the interaction. Each clientID used for a commit mode 0 transaction will have its

own TPIPE. For commit mode 1 interactions, the TPIPE is identified by the IMS Connect port number

used for the interaction. Therefore, each port will have a TPIPE which will be used for all clients running

commit mode 1 interactions on that port.

Regardless of whether your Java client is running an IMS transaction with commit mode 1 or commit

mode 0, the Java client specifies a value for the interactionVerb property of IMSInteractionSpec. If a

commit mode 0 interaction is specified, the Java client may also have to provide a value for the clientID

property of IMSConnectionSpec. clientID is a property of IMSConnectionSpec and identifies the IMS

OTMA Asynchronous Output Queue or TPIPE where the recoverable output messages are placed.

Whether or not a Java client provides a clientID for a commit mode 0 interaction depends on the type of

socket connection being used by the Java client.

To retrieve output messages from a TPIPE, the Java client submits a request in which it specifies one of

the values SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT for the interactionVerb property of IMSInteractionSpec

and a value for the clientID property of IMSConnectionSpec. For more information about asynchronous

output support, see Chapter 9: Protocols in IMS Connect Guide and Reference.

In general, the SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,

or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions can be used to retrieve output

messages queued for any clientID, regardless of how those messages were queued to the associated

clientID - either as a result of a failed commit mode 0 transaction or from an IMS application that issued

an insert to an ALTPCB (Alternate Program Communication Block). In the case of retrieving an output

message from a failed commit mode 0 transaction, the clientID provided in the IMSConnectionSpec for

retrieval request must match the clientID that was specified on the failed commit mode 0 transaction.

If there is nothing in the OTMA Asynchronous Output Queue for that particular clientID, you will receive

an execution timeout exception. The timeout exception can mean either that there are no messages in the

queue or that the timeout value did not provide enough time for IMS Connect to retrieve the message

from the queue. For both SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, as well as SYNC_SEND_RECEIVE interactions,

executionTimeout is the length of time IMS Connect will wait for a response from IMS. If you do not

specify an execution timeout value for a retrieval request, the default execution timeout value will be

used. The default timeout value is the IMS Connect configuration member TIMEOUT value. The user

may need to experiment with the execution timeout value, to ensure that output messages are returned

for all types of interactions.

Commit mode processing and socket connections

All socket connections created by the IMS resource adapter are persistent. In other words, the same

socket connection between IMS Connector for Java and IMS Connect can be serially reused for multiple

interactions with IMS Connect. The socket connection will not be closed and reopened between

interactions. There are two types of persistent sockets; shareable and dedicated.

52 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Shareable Persistent Socket

The shareable persistent socket can be shared (serially reused) by multiple applications executing either

commit mode 1 or commit mode 0 interactions. For an application executing a commit mode 0 interaction

on a shareable persistent socket, the IMS resource adapter automatically generates a clientID with the

prefix ″HWS″. This clientID represents and identifies the socket connection as well as the associated

OTMA TPIPE. For this type of socket, only clientIDs generated by the IMS resource adapter are allowed.

A user-specified clientID is not allowed with shareable persistent socket support.

Note: IMS application programs that insert messages to an alternate PCB must not use names beginning

with ″HWS″ for the alternate PCBs.

Any output message that cannot be delivered to a Java client executing a commit mode 0 interaction on a

shareable persistent socket can be queued for later retrieval. Also, any commit mode 1 or commit mode 0

interaction on a shareable persistent socket that spawns a program-to-program switch which invokes

another commit mode 0 interaction resulting in secondary output, can be requeued for later retrieval.

SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are supported on shareable persistent

sockets. To retrieve undelivered output messages that are queued in the IMS OTMA Asynchronous Hold

Queue or TPIPE, the interaction verbs must be invoked within the same client application, because the

same generated client ID that identifies the shareable socket connection and the associated OTMA TPIPE

must be used.

On shareable persistent sockets, the undelivered output messages can be handled in more than one way.

One way is to purge the undelivered output. To purge undelivered output messages, you must ensure

the IMSInteractionSpec property purgeAsyncOutput is TRUE. This input property determines if IMS

Connect purges the undelivered I/O PCB output. The purgeAsyncOutput property is only valid with the

SYNC_SEND_RECEIVE interaction verb. If the property is not specified on SYNC_SEND_RECEIVE, the

default is TRUE.

Another option of handling undelivered output messages on shareable persistent sockets is rerouting the

messages to another destination. You can reroute the undelivered output message to a different

destination by setting the IMSInteractionSpec property, reRoute, to TRUE. This property is only valid for

the SYNC_SEND_RECEIVE interaction verb. If reRoute is set to TRUE, the undelivered output message is

queued to a named destination provided by the client application, which is specified on the

reRouteName IMSInteractionSpec property. If the reRoute property is set to TRUE and no reRouteName

is provided, the value of the reRouteName property is the value specified in the IMS Connect

configuration file. If no value is specified in the IMS Connect configuration file, the default value

HWS$DEF is used.

Shareable persistent socket connections are created by an IMS Connection Factory with values for at least

the following custom properties:

v Host name = TCP/IP host name of machine running IMS Connect

v Port number = associated port number

v Datastore name = name of target IMS

v CM0Dedicated = FALSE

FALSE is the default value for the endCM0Dedicated property and ensures that the connection factory

will create shareable persistent socket connections.

Dedicated persistent socket

A dedicated persistent socket is used for Java applications executing commit mode 0 interactions only. It

can be shared (serially reused) by multiple applications with the same user-specified clientID. For this

type of socket, only interactions with user-specified clientIDs are allowed. A valid user-specified clientID:

Chapter 7. Commit mode processing 53

v Must be a string of 1 to 8 alphanumeric (A-Z, 0-9) or special (@,#,$) characters.

v Must not start with the character string, ″HWS″.

v Must not be an IMS Connect port number.

v If lowercase letters are provided, the letters will be changed to uppercase

A dedicated persistent socket means the socket connection is assigned to a specific clientID and will

remain dedicated to that particular clientID until it is disconnected. SYNC_SEND_RECEIVE,

SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,

and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are supported on dedicated persistent

sockets.

SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions on dedicated persistent sockets enable

client applications to retrieve messages that were placed on an IMS OTMA Asynchronous Output Queue

as a result of a failed commit mode 0 interaction, from an IMS application that issued an insert to an

ALTPCB (Alternate Program Communication Block), or from the reroute of the output from a transaction

that was executed on a shareable connection factory. To retrieve the messages, the client application must

provide the clientID, which represents the TPIPE that has asynchronous output messages queued.

Interactions on dedicated persistent sockets that have undelivered output messages cannot be rerouted or

purged.

Dedicated persistent socket connections are created by an IMS Connection Factory with values for at least

the following custom properties:

v Host name = TCP/IP host name of machine running IMS Connect

v Port number = associated port number

v Datastore name = name of target IMS

v CM0Dedicated = TRUE

A value of TRUE for the endCM0Dedicated property ensures that the connection factory will create

dedicated persistent socket connections.

Note: If you have more than one connection factory configured to create dedicated persistent sockets to

the same IMS Connect instance, only one connection factory can dedicate a socket to a particular clientID

at one time. For example, if the first connection factory successfully creates a socket connection dedicated

to clientID, CLIENT01; the second connection factory will receive the following exception if it tries to

create a socket connection dedicated to CLIENT01 while the socket connection created by the first

connection factory is still connected to IMS Connect:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@23766050.processOutputOTMAMsg

(byte [], InteractionSpec,Record) error. IMS Connect returned error: RETCODE=[8],

REASONCODE=[DUPECLNT].

Duplicate client ID was used; the client ID is currently in use.

Releasing Persistent Sockets

A TCP/IP connection between IMS Connector for Java and IMS Connect is persistent; in other words it

remains open as long as IMS Connector for Java or IMS Connect does not disconnect it due to an error.

This is the case for both a shareable persistent socket connection and a dedicated persistent socket

connection. However, in the case of a dedicated persistent socket connection, the socket connection can

only be used by interactions that have the same clientID that was used to establish the connection. The

number of socket connections will increase as new clientIDs are used for interactions on dedicated

persistent socket connections.

If you have the Max connections property set to a non-zero value and you also have a non-zero value for

the Connection timeout property, when the MaxConnections is reached and all the connections are in use,

54 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

the application will get a ConnectionWaitTimeoutException after the seconds specified in Connection

timeout have elapsed. This is standard behavior for WebSphere Application Server. The

ConnectionWaitTimeoutException applies to both dedicated persistent sockets and shareable persistent

sockets.

However, if MaxConnections has been reached and one of the persistent socket connections is currently

not in use, then WebSphere Application Server will disconnect that socket in order to respond to the

request to create a new persistent socket connection. This also is standard behavior for the WebSphere

Application Server and applies to both dedicated and shareable persistent sockets.

SYNC_SEND programming model

If your Java client application issues a SYNC_SEND interaction, the IMS resource adapter sends the

request to IMS through IMS Connect and does not expect a response from IMS. Because the IMS resource

adapter performs a ″send only″ interaction with IMS, a SYNC_SEND interaction is typically used with a

non-response mode transaction.

To use a SYNC_SEND interation to run a transaction, your application must provide a value of

SYNC_SEND for the interactionVerb property and a value of 0 for the commitMode property of the

IMSInteractionSpec object used by the execute method. SYNC_SEND interaction processing varies

depending on the type of pesistent socket used (shareable or dedicated) and the type of IMS transaction

that is run.

Note: IMSInteractionSpec properties purgeAsycOutput, reRoute and reRouteName do not apply to

SYNC_SEND interactions and are ignored by IMS Connector for Java.

Shareable persistent socket processing model

The following scenarios describe a SYNC_SEND interaction on a shareable persistent socket connection

for different type of transactions.

v Non-response mode transaction

An IMS application program associated with a transaction defined to IMS as non-response mode

typically does not require an output message to the I/O PCB, therefore no output message is created

and nothing is queued on the TPIPE.

v Response mode transaction

The IMS application program associated with a transaction defined to IMS as non-response mode

typically will insert an output message to the I/O PCB. Because the IMS resource adapter does not

expect a response from a SYNC_SEND interaction, the output message, if inserted, is queued on the

TPIPE with the name of the generated clientID. However, interactions

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT can be used to retrieve the response, if performed

following the SYNC_SEND interaction and in the same application and on the same connection.

v Non-response mode or response mode transactions that invoke an IMS application program that inserts

to an alternate PCB

A message inserted to an alternate PCB can be retrieved by executing an interaction on a dedicated

persistent socket connection. This can be done by the following ways:

1. Ensuring that the connectionFactory used by the interaction is configured with a value of TRUE for

the CM0Dedicated property.

2. Providing the following values for the interaction:

– IMSInteractionSpec property

interactionVerb=SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

– IMSInteractionSpec property commitMode=0

Chapter 7. Commit mode processing 55

– IMSConnectionSpec property clientID= the name of the alternate PCB

Dedicated persistent socket processing model

The following scenarios describe a SYNC_SEND interaction on a dedicated persistent socket connection

for different types of transactions. SYNC_SEND interactions use commitMode0 and dedicated persistent

socket connections can only be used for commitMode 0 interactions.

v Non-response mode transaction

The IMS application program associated with a transaction defined to IMS as non-response mode

typically does not insert an output message to the I/O PCB, therefore no output message is created

and nothing is queued on a TPIPE.

v Response mode transaction

The IMS application program associated with a transaction defined to IMS as non-response mode

typically will insert an output message to the I/O PCB. Because the IMS resource adapter does not

expect a response from a SYNC_SEND interaction, the output message, if inserted, is queued on the

TPIPE with the name provided for the clientID of the interaction. Messages queued to this type of

TPIPE can be retrieved by issuing a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions. The TPIPE name is the clientID

specified for the SYNC_SEND interaction. clientID is required for interactions that use a dedicated

persistent socket connection.

v Non-response mode or response mode transactions that invoke an IMS application that inserts to an

alternate PCB

A message inserted to an alternate PCB can be retrieved by executing an interaction on a dedicated

persistent socket connection. This can be done by the following ways:

1. Ensuring that the connectionFactory used by the interaction is configured with a value of TRUE for

the CM0Dedicated property.

2. Providing the following values for the interaction:

– IMSInteractionSpec property

interactionVerb=SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

– IMSInteractionSpec property commitMode=0

– IMSConnectionSpec property clientID= the name of the alternate PCB

SYNC_SEND_RECEIVE programming model

To run a transaction in IMS, your Java application executes a SYNC_SEND_RECEIVE interaction. Your

application provides a value of SYNC_SEND_RECEIVE for the interactionVerb property and a value of 0

or 1 for the commitMode property of the IMSInteractionSpec object used by the execute method.

However, the SYNC_SEND_RECEIVE interaction processing is different for shareable and dedicated

persistent socket connections.

Shareable persistent socket processing model

The following scenarios describe the SYNC_SEND_RECEIVE interaction on a shareable persistent socket

during normal processing, error processing, and execution timeout. These steps apply for both commit

mode 1 and commit mode 0.

v Normal processing scenario

The IMS resource adapter, with the application server, obtains either an available connection from the

connection pool or creates a new connection. The IMS resource adapter, as part of initalizing a new

connection generates a clientID for the connection. The generated clientID identifies the socket

connection, and in the case of commit mode 0 interactions, the TPIPE and associated OTMA

Asynchronous Hold Queue.

56 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

The IMS resource adapter ensures that a socket is associated with the connection and sends the request

with input data to IMS Connect using that socket. IMS Connect then sends the message to IMS, where

IMS runs the transaction and returns the output message.

For commit mode 0 interactions, on receiving the output message, the IMS resource adapter internally

sends an ACK message to IMS which signals IMS to discard the output from the IMS queue. When the

client application closes the connection or terminates, the connection is returned to the connection pool

for reuse by other commit mode 0 or commit mode 1 interactions.

v Error processing scenario

All errors result in a resource exception being thrown to the client application. In addition, some errors

result in the socket being disconnected by IMS Connect. In the case of commit mode 0 interactions, an

exception means the output message cannot be delivered to the client application. However, following

exceptions undelivered output messages for commit mode 0 interactions on shareable persistent socket

connections can be retrieved if the SYNC_SEND_RECEIVE interaction specified that undelivered

output should be rerouted to a specific destination. To have an undelivered output message rerouted to

a specific destination, the following additional properties must be specified in the IMSInteractionSpec

object passed on the SYNC_SEND_RECEIVE interaction:

– The purgeAsyncOutput property must be set to FALSE so that undelivered output is not purged

– The reRoute property must be set to TRUE and a reroute destination specified in the RouteName

property

To retrieve undelivered output from a reroute destination, a separate client application issues a

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction on a dedicated persistent socket

connection, providing the reroute destination as the clientID of the interaction.

Note: The default value of the purgeAsyncOutput property is TRUE.

When purgeAsyncOutput is TRUE, the following output messages are purged:

– Undelivered output message inserted to the I/O PCB by the primary IMS application program.

– Output messages inserted to the I/O PBC by secondary IMS application programs invoked by

program to program switch.

A value of FALSE for the PurgeAsyncOutput property should only be used if the reroute destination is

specified.

v ExecutionTimeout scenario

If an execution timeout occurs, the socket connection remains open but the output message is not

delivered to the client application. However, following an execution timeout exception, undelivered

output messages for commit mode 0 interactions on shareable persistent socket connections can be

retrieved in either of the following two ways:

– The same client application that issued the SYNC_SEND_RECEIVE interaction can issue a

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction.

– The undelivered output message can be rerouted to a specific destination as described in the error

processing scenario above.

When the client application closes the connection or terminates, the connection is returned to the

connection pool so it can be reused by other commit mode 0 or commit mode 1 interactions.

Dedicated persistent socket processing model

Dedicated persistent socket connections can only be used for commit mode 0 interactions. The following

scenarios describe the commit mode 0 SYNC_SEND_RECEIVE interaction on a dedicated persistent

socket during normal processing, error processing, and execution timeout.

v Normal processing scenario

Under normal circumstances, when a commit mode 0 SYNC_SEND_RECEIVE interaction is executed

by a client application, the application server returns an existing connection with the user-specified

Chapter 7. Commit mode processing 57

clientID, or creates a new connection with the user-specified clientID. The user-specified clientID

identifies the socket connection and the TPIPE and associated OTMA Asynchronous Hold Queue.

The IMS resource adapter ensures that a socket is associated with the connection and sends the request

with input data to IMS Connect using that socket. IMS Connect then sends the message to IMS, where

IMS runs the transaction and returns the output message. On receiving the output message, the IMS

resource adapter internally sends an ACK to IMS which signals to discard the output from the IMS

queue. When the connection is closed or the application terminated, the connection is returned to the

connection pool for reuse by another application that is running a commit mode 0 interaction with the

same user-specified clientID.

v Error processing scenario

All errors result in a resource exception being thrown to the client application. In addition, some errors

result in the socket being disconnected by IMS Connect. In the case of commit mode 0 interactions, this

means the output message cannot be delivered to the client application. The undelivered output is

queued to the TPIPE associated with the user-specified clientID.

The properties, purgeAsyncOutput and reRoute are not applicable to dedicated persistent sockets. You

can not purge or reroute undelivered output messages on a dedicated persistent socket.

v ExecutionTimeout scenario

If an execution timeout occurs, the socket remains open and the output of the commit mode 0

interaction is queued to the TPIPE associated with the user-specified clientID for later retrieval. When

the connection is closed or the application terminated, the IMSManagedConnection object is returned

to the connection pool for reuse by another application that is running a commit mode 0 interaction

with the same user-specified clientID.

Retrieving asynchronous output

There are two types of socket connections, shareable persistent socket and dedicated persistent socket,

that can be used to retrieve asynchronous output. The way to retrieve asynchronous output messages is

different depending on the type of socket connection used. The interactionVerb property values that can

be used to retrieve asynchronous output are: SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT (along with the older

SYNC_RECEIVE_ASYNCOUTPUT).

Note: There is no difference in function between SYNC_RECEIVE_ASYNCOUTPUT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT. However, it is recommended that you use

the new name SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT with V9.1.0.1 and later

deliverables of the IMS resource adapter. Only the new name,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, will be used in the rest of this document.

The difference between SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT determines how IMS Connect checks for output on

the IMS OTMA Asynchronous Hold Queue. For SYNC_RECEIVE_ASYNCOUTPUT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions, if there is no asynchronous output in

the IMS OTMA Asynchronous Hold Queue when the retrieve request is made, IMS Connect will return

an execution timeout notification as soon as the execution timeout value specified by the client

application has passed. For this reason, the shortest possible execution timeout value, 10, is recommended

for SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions.

For a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction, if there is no asynchronous output

in the IMS OTMA Asynchronous Hold Queue when the retrieve request is made, IMS Connect will wait

up to the length of time specified in the executionTimeout property of the interaction for OTMA to return

a message. If there is still no asynchronous output in the hold queue when the execution timeout has

passed, IMS Connect will return an execution timeout error. For a

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction, you should select an appropriate

execution timeout value, rather than the shortest possible value.

58 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

All three interactionVerb property values require commit mode 0 and can be used on both shareable

persistent socket and dedicated persistent socket connections. In addition, IMSInteractionSpec properties

purgeAsycOutput, reRoute and reRouteName do not apply to interactions which use these three

interactionVerbs and are ignored by IMS Connector for Java. The way that interactionVerb properties are

invoked on dedicated and shareable persistent socket connections is different.

Retrieving asynchronous output on dedicated persistent socket connections

To retrieve the queued output message on a dedicated persistent socket, the client application must

execute a commit mode 0 interaction with the interactionVerb property of IMSInteractionSpec set to

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

In addition to executing a commit mode 0 interaction on a dedicated persistent socket connection with

the appropriate interactionVerb property of IMSInteractionSpec, the client application must also provide a

value for the clientID property of IMSConnectionSpec. The clientID is required because it determines the

TPIPE from which the asynchronous output will be retrieved. To retrieve output messages from a commit

mode 0 interaction on a dedicated persistent socket, the clientID specified on the

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT/NOWAIT interaction must match the value specified

for the original commit mode 0 interaction. To retrieve output messages sent to an alternate PCB, the

clientID specified on the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT/NOWAIT interaction must

match the name of the alternate PCB. To retrieve output messages which were rerouted to a

reRouteName destination, the clientID on the

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT/NOWAIT interaction must be set to that

reRouteName property destination.

Retrieving asynchronous output on shareable persistent socket connection

To retrieve an undelivered output message resulting from an interaction on a shareable persistent for

which the reRoute flag has not been set to TRUE, the client application must execute a

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction on the same shareable persistent socket

connection in the same application that invoked the interaction that led to the asynchronous output being

queued. The reason that the two interactions must be invoked within the same client application is that

the IMS resource adapter automatically generates a client-ID for shareable persistent socket connections.

This generated clientID identifies the socket connection as well as the associated OTMA TPIPE to which

the asynchronous output is queued. A new client-ID is generated when a new connection is established.

On shareable persistent socket connections, the clientID is generated by IMS Connector for Java and is

unique for each connection. Therefore, to retrieve asynchronous output for a specific generated clientID, a

connection with the same clientID must be used. This means that, for shareable persistent socket

connections (which always have unique generated clientIDs) the same connection must be used. The only

way to guarantee that the same connection will be used is to execute both interactions (the original

interaction as well as the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions) within the same client application.

The following situations can result in an output message being queued on an IMS OTMA Asynchronous

Hold Queue:

1. An IMS application program inserts an output message to an alternate PCB.

2. The output from a commit mode 0 interaction on a shareable or dedicated persistent socket cannot be

delivered to the client application.

3. An interaction spawns a program-to-program switch for which the secondary output is not delivered

to the client application. Secondary output is always commit mode 0 output.

Chapter 7. Commit mode processing 59

Do not specify a value for the clientID property of IMSConnectionSpec for interactions on shareable

persistent socket connections. On shareable persistent socket connections a user specified clientID is not

allowed since IMS Connector for Java automatically generates the clientID.

Displaying output message counts

Using IMS Connect commands, you can choose to display output message counts. This topic describes

how to display those message counts.

In IMS and OTMA terminology, a transaction pipe (TPIPE) is a logical connection between a client, such

as IMS Connect, and the server, such as IMS OTMA. For commit mode 0 interactions, the TPIPE name is

the clientID used for the interaction. For commit mode 0 interactions the IMS OTMA Asynchronous Hold

Queue associated with the TPIPE has the same name as the clientID.

For commit mode 1 interactions, the TPIPE name is the IMS Connect port number used for the

interaction, or in the case of Local Option the TPIPE name is the word, LOCAL. Therefore, each port will

have a TPIPE which will be used for all clients running commit mode 1 interactions on that port.

You can use the IMS Connect command /DISPLAY TMEMBER IMSConnect_Name TPIPE ALL to view counts of

the output messages sent to IMS Connector for Java, as well as messages inserted to ALTPCBS (Alternate

Program Communication Blocks). The following sample output is from a /DISPLAY TMEMBER HWS1 TPIPE

ALL command. A brief description of the types of TPIPEs and counts for the command output is also

provided.

DFS000I MEMBER/TPIPE ENQCT DEQCT QCT STATUS IMS1

DFS000I HWS1 IMS1

DFS000I -9999 0 0 0 IMS1

DFS000I -HWSMIJRC 2 2 0 IMS1

DFS000I -CLIENT01 3 2 1 IMS1

DFS000I -ALTPCB1 2 1 1 IMS1

DFS000I -HWS$DEF 1 0 1 IMS1

DFS000I -RRNAME 1 0 1 IMS1

Commit Mode 1 interactions on a shareable persistent socket

v The TPIPE name is the port number used for the interaction. For example, 9999.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the queue count (QCT)

will be 0, because undelivered output messages are not recoverable for commit mode 1 transactions.

Commit Mode 0 interactions on a shareable persistent socket

v The TPIPE name is generated by IMS Connector for Java and will have a prefix of ″HWS″. For

example, HWSMIJRC.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the queue count (QCT)

will be 0 if all messages are delivered to IMS Connector for Java.

v If output messages are not delivered to IMS Connector for Java on SYNC_SEND_RECEIVE interactions

and the default values of reRoute FALSE and purgeAsyncOutput TRUE are used, the enqueue count

(ENQCT) and dequeue count (DEQCT) will be equal and the queue count (QCT) will be 0. All

undelivered output messages are discarded.

v If output messages are not delivered to IMS Connector for Java on SYNC_SEND_RECEIVE interactions

and reRoute is set to TRUE and purgeAsyncOutput is set to FALSE, then the enqueue count (ENQCT)

will be greater than the dequeue count (DEQCT) and the queue count (QCT) will be the number of

messages that were not delivered to IMS Connector for Java. The TPIPE name is the value specified for

the reRouteName property; for example, RRNAME, or a default value; for example, HWS$DEF.

v For SYNC_SEND interactions, output is not expected, so undelivered output does not apply. If

SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are unsuccessful, the queue count does

not change.

60 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Commit Mode 0 interactions on a dedicated persistent socket

v Typically, the TPIPE name is provided by the Java application and will not have a prefix of ″HWS″. For

example, CLIENT01. However, you may occasionally see a TPIPE name of ″HWS$DEF″. This is the

default value for the reRouteName property.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the queue count (QCT)

will be 0 if all messages are delivered to IMS Connector for Java, and no undelivered messages were

rerouted from interactions on shareable persistent socket connections.

v If output messages are not delivered to IMS Connector for Java or rerouted from interactions on

shareable persistent socket connections, the enqueue count (ENQCT) will be greater than the dequeue

count (DEQCT) and the queue count (QCT) will be the number of messages that were not delivered.

The TPIPE name is the user specified clientID name, for example, CLIENT01.

Output messages inserted to ALTPCBs (Alternate Program Communication Blocks)

v The TPIPE name is the name of the Alternate PCB. For example, ALTPCB1.

Chapter 7. Commit mode processing 61

62 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 8. Transaction processing

The topics in this section describe how the IMS resource adapter supports global transaction management

and two-phase commit processing so that your application can run in a J2EE-compliant application server

to access IMS transactions. The topics included are:

Global transaction support with two-phase commit

To protect and maintain the integrity of your critical business resources, IMS Connector for Java, as a

J2EE Connector Architecture resource adapter, supports global transaction management and

two-phase-commit processing. Using this support, you can build a J2EE application to group a set of

changes into one transaction, or a single unit of work, so that all changes within a transaction are either

fully completed or fully rolled back. This enables your application to run in a J2EE-compliant application

server (for example, WebSphere Application Server) to access IMS transactions and data in a coordinated

manner. Global transaction management ensures the integrity of the data in IMS.

Example of global transaction support

When you make changes to your protected resources, you want to guarantee that the changes are made

correctly. For example, as a bank customer you want to transfer money from your savings account to

your checking account. You want to be sure that when the money is deducted from your savings account

it is added to your checking account simultaneously. You would not want this transaction to be

completed only partially with the money deducted from your savings account but not added to your

checking account.

In another example, you need to buy a ticket from San Francisco to Paris but a direct flight is not

available. Unless you can successfully reserve a ticket from San Francisco to Chicago and another ticket

from Chicago to Paris, you will not commit to your trip to Paris. That is, you will ″roll back″ your

decision to go to Paris because having a confirmed seat for only one part of your trip is not useful to

you.

In both of these examples, several smaller transactions are required in order to complete one overall

transaction. If there is a problem with one of these smaller transactions, you would not want to commit

the overall transaction (such as transferring money or going to Paris). Instead, you would want to roll

back every step of the transaction so that none of the smaller transactions are committed. To transfer your

money or to go on your trip to Paris successfully, you want the smaller transactions to be managed and

coordinated together to complete the overall transaction.

To ensure a coordinated transaction process, the J2EE platform (which consists of a J2EE application

server, J2EE application components, and a J2EE connector architecture resource adapter) provides a

distributed transaction processing environment where transactions are managed transparently and

resources are updated and recovered across multiple platforms in a coordinated manner.

Global transaction and two-phase commit support process

A J2EE-compliant application server (such as WebSphere Application Server) uses a Java transaction

manager, also known as an external coordinator, to communicate with the application components (for

example, Java servlets or Enterprise Java Beans) and the resource managers (for example, IMS or DB2®)

through the resource adapters (for example, IMS Connector for Java) to coordinate a transaction.

If a transaction manager coordinates a transaction, that transaction is considered a global transaction. If a

transaction manager coordinates a transaction with more than one resource manager, the external

coordinator uses two-phase commit protocol.

© Copyright IBM Corp. 2000, 2005 63

In the previous bank example, you want to transfer money from your savings account to your checking

account. If your savings account information resides on a separate resource manager from your checking

account information (for example, your saving account resides on IMS and your checking account resides

on DB2), the transaction manager in the application server (WebSphere Application Server) helps the

application to coordinate the changes between IMS and DB2 transparently using two-phase commit

processing. Specifically, the transaction manager works with the IMS resource adapter to coordinate the

changes in IMS.

IMS Connector for Java is designed to work together with the Java transaction manager in the J2EE

platform, the Resource Recovery Services (RRS) of z/OS, and IMS Connect to make consistent changes to

IMS and other protected resources.

To participate in two-phase commit processing with IMS, IMS Connector for Java uses the IMS OTMA

Synchronization level sync-point protocol. To participate in global transaction and two-phase commit

processing when the changes are requested from a remote application, IMS uses RRS on z/OS.

RRS, from the point of view of IMS, acts as the ″external coordinator″ or sync-point manager to

coordinate the update and recovery of resources. IMS Connector for Java and IMS Connect, interact with

the Java transaction manager running in the application server and RRS on z/OS to allow a global

transaction running on a J2EE platform to participate in a coordinated update with IMS running on the

host.

When setting up a J2EE application to participate in a global transaction, you must select one of the two

available communication protocols to be used between IMS Connector for Java and IMS Connect. The

two communication protocols supported by IMS Connector for Java and IMS Connect are TCP/IP and

Local Option.

Global transaction with TCP/IP

In a global transaction scope, your J2EE application component can access an IMS transaction by

establishing a TCP/IP connection with IMS Connect. Underlying, IMS Connector for Java interacts with

the Java transaction manager using the X/Open (XA) protocol to manage the global transaction and two

phase commit processing. The XA protocol defines a set of interfaces and interactions describing how the

Java transaction manager and the resource managers interact in a distributed transaction processing

environment. IMS Connector for Java, together with IMS Connect, uses the XA protocol and works with

IMS and Resource Recovery Services (RRS) on z/OS to make consistent changes.

Restrictions: You are required to have RRS running on the same MVS system with IMS Connect.

To set up RRS on IMS Connect, refer to IMS Connect Guide and Reference (SC27-0946). For more

information about TCP/IP communication protocol for global transaction and two-phase commit

processing, see Platform considerations and communication protocol considerations and Two-phase

commit environment considerations.

Global transaction with Local Option

If your J2EE application component is running on WebSphere Application Server for z/OS, you can

submit IMS transaction messages using Local Option and participate in global transaction processing.

This transaction processing is coordinated by Resource Recovery Services (RRS) on z/OS and WebSphere

Application Server for z/OS. IMS Connector for Java is RRS-compliant and is designed specifically to

work with RRS so that the Java transaction manager in WebSphere and IMS, as the resource manager, can

work together to make consistent changes to multiple protected resources. The XA protocol is not used by

IMS Connector for Java when running global transaction with Local Option.

Restriction:

64 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

v To run a global transaction with Local Option, WebSphere Application Server for z/OS, IMS Connect,

and IMS must run in the same MVS system.

Recommendation:

v Use Local Option for optimal performance.

v If WebSphere Application Server for z/OS is running on a different MVS than IMS and IMS Connect,

you must use TCP/IP for global transaction.

For information about Local Option communication protocol for global transaction and two-phase

commit processing, see Platform considerations and communication protocol considerations, Two-phase

commit prerequisites, and Two-phase commit environment considerations.

Additional information on transaction support

Local Transaction

The J2EE Connection Architecture defines the javax.resource.cci.LocalTransaction interface to allow a

resource manager, rather than a transaction manager, to coordinate a transaction locally. However, IMS

Connector for Java only supports transaction coordination with a transaction manager. Thus, IMS

Connector for Java does not support the javax.resource.cci.LocalTransaction interface. If you call the

IMSConnection.getLocalTransaction() method you will get a NotSupportedException. To use transaction

support with IMS Connector for Java, you need to either use the JTA transaction interface, or set an

appropriate transaction attribute in the deployment descriptor in your application. See Using global

transaction support in your application for more information.

One-phase commit processing

IMS Connector for Java supports one-phase commit optimization with the transaction manager. As a

result, if all changes inside a transaction scope belong to the same IMS resource, the transaction manager

might perform one-phase-commit optimization such that the transaction manager sends the phase two

commit request directly to the resource manager for committing the changes without sending the phase

one prepare request.

Non-global transaction processing

If no global transaction processing is used in the application (for example, when the transaction attribute

is set to TX_NOTSUPPORTED), all non-global transaction processing uses ″Sync-On-Return″ (OTMA

SyncLevel=None). By the time the IMS transaction is committed, the output has been returned to the

client.

Conversational transaction processing in global transaction scope

IMS uses a conversational program to divide processing into a connected series of client-to-program-to-
client interactions (also called iterations). Each iteration is a type of IMS conversational transaction.

Conversational processing is used when one transaction contains several parts. Each part that comprises

one large transaction is separately committed or rolled back.

You can run a conversational transaction in the global transaction scope if:

v Each iteration is run under the same transaction level. For example, if the first iteration is processed

with a global transaction scope, then all the subsequent iterations in that IMS conversational

transaction must be processed at a global transaction level. If you issue the second iteration with no

transaction scope, IMS OTMA reports an error.

v Each iteration must be completed with a commit or rollback call before issuing the next iteration in the

IMS conversation. You cannot group multiple iterations in a single global transaction scope.

Chapter 8. Transaction processing 65

For more information about using global transaction support, see the IMS Connector for Java web page at

www.ibm.com/ims and go to Hints and Tips on the Support page.

Two-phase commit prerequisites

The prerequisites for two-phase commit processing with TCP/IP are:

v IMS Connector for Java 2.1.0 or later

v IMS Connect 2.1 or later

v RRS on z/OS 1.2 or later

v IMS Version 8 or later

v WebSphere Application Server Version for z/OS or distributed platforms 5.0 or later

The prerequisites for two-phase commit processing with Local Option are:

v IMS Connector for Java 1.2.2 or later

v IMS Connect 1.2 or later

v The RRS level associated with z/OS Version 2 Release 10 or later

v IMS Version 7 or later

v WebSphere Application Server 4.0.1, PTF 4 or later

Note: RRS must be installed and running for two-phase commit processing to occur. IMS and IMS

Connect must also be enabled for RRS processing. (If you are using two-phase commit processing with

Local Option, IMS Connect does not need to be enabled for RRS processing.) You can enable RRS

processing on IMS Connect by either issuing the IMS Connect command, SETRRS ON or set RRS=Y in the

IMS Connect configuration file. To ensure IMS is enabled with RRS, check that the RRS value in the

startup parameter within your IMS environment is set to Y. This will appear in the job logs generated

when IMS is brought up.

Additionally, to run two-phase commit IMS, IMS Connect, and RRS must all be in the same MVS image.

For more information about two-phase commit, see Two-phase commit environment considerations.

Using global transaction support in your application

The J2EE platform allows you to use either a programmatic or a declarative transaction demarcation

approach to manage transactions in your application. The programmatic approach is the

component-managed transaction and the declarative transaction demarcation approach is the

container-managed transaction.

Component-managed (or Bean-managed) transaction

The J2EE application uses the JTA javax.transaction.UserTransaction interface to demarcate a transaction

boundary to a set of changes to the protected resource programmatically. Component-managed

transactions can be used in both the servlet and the EJB environment. In the case of an EJB, you set the

transaction attribute in its deployment descriptor as TX_BEAN_MANAGED.

A transaction normally begins with a UserTransaction.begin() call. When the application component is

ready to commit the changes, it invokes a UserTransaction.commit() call to coordinate and commit the

changes. If the application component must roll back the transaction, it invokes UserTransaction.rollback()

and all changes are backed out. For example:

 // Get User Transaction

 javax.transaction.UserTransaction transaction =

 ejbcontext.getUserTransaction();

 // Start transaction

66 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

http://www-306.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

transaction.begin();

 // Make changes to the protected resources.

 // For example, use the J2EE/CA’s CCI Interaction interface

 // to submit changes to an EIS system(s)

 interaction.execute(interactionSpec, input, output);

 if (/* decide to commit */) {

 // commit the transaction

 transaction.commit();

 } else { /* decide to roll back */

 // rollback the transaction

 transaction.rollback();

 }

Container-managed transaction

Container-managed transactions can be used only in the EJB environment. The EJB specifies a

container-managed transaction declaratively through the transaction attribute in the deployment

descriptor (such as TX_REQUIRED). A container-managed transaction is managed by the EJB container.

The container calls the appropriate methods (such as begin, commit, or rollback) on behalf of the EJB

component. This declarative approach simplifies the programming calls in the EJB.

Related Reading: For more information about the J2EE architecture and JTA specifications, see

http://java.sun.com/j2ee/docs.html.

Two-phase commit environment considerations

To run a two-phase commit application, consider the following suggestions:

v It is best to have as many MPP regions as possible running to ensure that two-phase commit

applications do not contend for a region; because a transaction that is within a two-phase commit

application uses an MPP region for the duration of the entire two-phase commit transaction.

v If a number of IMS transactions are performed within a two-phase commit transaction, at least that

many MPP regions must be available to avoid hanging the two-phase commit application.

v To safeguard against a transaction that may be waiting for an extensive amount of time for resources, it

is recommended to set an appropriate timeout value for each interaction taking place within the global

transaction.

v Avoid having an excessive number of database interactions performed in one two-phase commit

transaction. If multiple IMS transactions are used within a two-phase commit transaction, they could

possibly contend or lock in an attempt to update or modify the same data. To avoid this, it’s best to

write an application that will prevent a user from accessing duplicate entries within the same

two-phase commit operation.

v Consider configuring your IRLM or PI locking manager to use a block size that is as small as the

smallest entry to that database. Larger block sizes might have two transactions contending for entries

that may not even be the same and yet reside close to one another on the hard disk.

v If multiple interactions are performed using the same IMS transaction on the same IMS database

within a global transaction (unit of work), each interaction with that IMS transaction must run on a

separate MPP region. The IMS transaction must have a SCHDTYP=PARALLEL and a PARLIM=0 value,

to indicate that the IMS transaction can run on multiple MPP regions and that it will always meet the

scheduling requirements (the number of messages will be greater than zero) to process every

interaction on a new MPP region.

v If a region is hung, waiting for RRS-OTMA and no execution timeout value has been set, you can end

the attempt to run a transaction that is hanging the MPP region. This can be done by issuing a stop

region IMS command with the abend transaction parameter. For example, /STOP REGION reg#ABDUMP

tranname. This will rollback the transaction for that particular interaction and free the MPP region.

Chapter 8. Transaction processing 67

http://java.sun.com/j2ee/docs.html

For more information about two-phase commit, including sample applications, see the IMS Connector for

Java Guide and Reference.

68 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Chapter 9. Diagnosing problems

The topics in this section provide information on how to log and trace component information and

diagnose problems, as well as list the messages and exceptions of the IMS resource adapter and MFS

plugin. The topics included are:

Diagnosing problems when using the IMS resource adapter

If you are unable to access IMS from your Java application, consider performing the following actions to

diagnose the problem:

v Verify that you have the correct prerequisites for using the IMS resource adapter. See Prerequisites for

using the IMS resource adapter.

v Verify that IMS Connect is active by ensuring that the outstanding IMS Connect reply ″HWSC0000I

IMS CONNECT READY ims_connect_name″ appears on the system console of the target machine.

v Verify that the PORT and DATASTORE are ACTIVE by entering the IMS Connect command

VIEWHWS at the IMS Connect outstanding reply.

v Verify that IMS is active by ensuring that the outstanding IMS reply ″DFS996I *IMS READY*″ appears

on the system console of the target machine.

v Verify that the XCF status of both the IMS and IMS Connect members is ACTIVE by entering the IMS

command /DISPLAY OTMA at the outstanding IMS reply. The display output should be similar to the

following:

DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS

SECURITY IMS1

DFS000I XCFGRPNM

 IMS1

DFS000I -IMSNAME ACTIVE SERVER FULL

 IMS1

DFS000I -ICONNAME ACTIVE ACCEPT TRAFFIC

 IMS1

DFS000I *02033/143629* IMS1

v If you’re using TCP/IP to communicate between the Java application and IMS Connect, verify that you

can successfully ″ping″ the target host machine. If you cannot ping the host machine and you are using

a host name rather than an IP address, ensure that the host name is sufficiently qualified.

If your IMS service is not providing the expected output from the IMS transaction, ensure that the output

message returned by the IMS application program matches the output COBOL definition used by the

service. For a J2EE application, you can view the IMS OTMA message containing the message returned

by the IMS application program by setting the traceLevel property to 3. See Logging and tracing with the

IMS resource adapter for instructions on how to turn on the IMS resource adapter trace. For more

information on the IMS OTMA message, go to the IMS web site, http://www.ibm.com/ims and select

IMS Connect.

© Copyright IBM Corp. 2000, 2005 69

http://www.ibm.com/ims

Logging and tracing with the IMS resource adapter

The IMS resource adapter, in addition to other J2EE components, provides controls for logging and

tracing component information. When these controls are set for logging and tracing and you run your

Java application using the WebSphere Unit Test Environment, a trace file is created.

Note: Ensure that only one client is running when the trace is on.

To set controls for logging and tracing, complete the following steps:

 1. In the Server Configuration view, double-click your server configuration to open the WebSphere

Server Configuration editor.

 2. Select the J2C tab in the editor.

 3. On the J2C Options page, select an IMS resource adapter in the J2C Resource Adapters table.

 4. Scroll down to the J2C Connection Factories table and select the connection factory for which you

want to turn the trace on.

 5. Scroll down to the Resource Properties table and select the TraceLevel resource property. Specify a

non-zero value to enable logging and tracing. TraceLevel values correspond to constants in the

interface com.ibm.connector2.ims.ico.IMSTraceLevelProperties.

 TraceLevel

Value IMSTraceLevelProperties Description

0 RAS_TRACE_OFF No tracing or logging occurs.

1 RAS_TRACE_ERROR_EXCEPTION Only errors and exceptions are logged.

2 RAS_TRACE_ENTRY_EXIT Errors and exceptions plus the entry and exit of

important methods are logged.

3 RAS_TRACE_INTERNAL Errors and exceptions, the entry and exit of

important methods, and the contents of buffers

sent to and received from IMS Connect are

logged.

 6. After entering the TraceLevel value on the page for the J2C tab, select the Trace tab.

 7. Ensure that the Enable trace check box is selected. To enable logging and tracing in the IMS

Resource adapter, enter the following in the Trace string field:

com.ibm.connector2.ims.*=all=enabled

com.ibm.ims.ico.*=all=enabled

Other combinations of trace strings will enable tracing in other components. For example, with the

following trace string:

com.ibm.ejs.j2c.*=all=enabled:com.ibm.connector2.*=all=enabled

the string com.ibm.ejs.j2c.* provides you with logging and tracing of WebSphere’s implementation

of the J2EE Connector Architecture and the string com.ibm.connector2.* provides you with logging

and tracing of all of the resource adapters, including IMS.

 8. You can accept the default name and location of the trace output file or you can modify it. For

example, depending on how you set your substitution variables, the default name and location

might be:

your_workspace\.metadata\.plugins\com.ibm.etools.server.core

\tmp0\logs\server1\trace.log

To modify the default name and location, enter a different name and location of the file in the Trace

output file field on the Trace Options page of the server configuration.

 9. When you are finished making changes, close the editor and select Yes to save your changes.

10. Check the Status column of the Servers view and restart the server instance, if necessary. You will

most likely have to restart the server instance if you are using the WebSphere Test Environment.

70 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

11. Run your Java application and then examine the trace file.

J2CA0056I, WLTC0017E, HWSP1445E, and HWSSL00E Error Messages

J2CA0056I

When IMS resource adapter throws an exception, it can be caught by a component other than your Java

application. For example, when you run a deployed application, IMS Connector for Java exceptions are

often caught by the WebSphere Application Server. WebSphere Application Server may then issue its own

message, including in it the message from the IMS resource adapter exception. For example, when

execution timeout occurs, you see the following on the Console:

v J2CA0056I: The Connection Manager received a fatal connection error

from the

Resource Adaptor for resource myConnFactry. The exception which

was received is

ICO0080E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@e59583c.

processOutputOTMAMsg(byte[],IMSInteractionSpec, int) error.

Execution timeout has occurred for this interaction.

The executionTimeout was [0] milliseconds. The IMS Connect TIMEOUT

was used.

J2CA0056I is an informational message from WebSphere Application Server. The fatal connection error

refers to the fact that IMS Connect closes the socket in the case of an execution timeout, which results in

WebSphere Application Server’s Connection Manager removing the connection object for the socket from

the connection pool.

Another example occurs when a transaction (non-persistent) socket is used for a commit mode 0

interaction. In this case, you see the following on the Console:

v J2CA0056I: The Connection Manager received a fatal connection error

from the

Resource Adaptor for resource myConnFactry. The exception which

was received is

ICO0089I:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@6db5d83a.call(Connection,

InteractionSpec, Record, Record). Non-persistent socket closed for

Commit Mode 0 IMS transaction.

J2CA0056I is an informational message from WebSphere Application Server. The fatal connection error

refers to the fact that IMS Connect closes the transaction socket and the IMS resource adapter causes

WebSphere Application Server’s Connection Manager to remove the connection object for the socket from

the connection pool.

WLTC0017E

A local transaction containment (LTC) is used to define the application server behavior in an unspecified

transaction context. For example, if a single method within a container managed EJB that has a

transaction attribute of NotSupported is called outside of any transaction scope, WebSphere will create a

local transaction to handle resources used during the execution of that method. The message above is

produced by the WebSphere Transaction Monitor to indicate that the resources enlisted with the LTC

were rolled back instead of committed due to setRollbackOnly() being called on the LTC. This message

does not require any action by the user and is for your information only.

v WLTC0017E: Resources rolled back due to setRollbackOnly() being

called.

Note: The prefix of a WebSphere Application Server message indicates the component that issued the

message. You can find documentation of these messages, by component, in Integration Edition’s Help

using WebSphere Application Server Enterprise > Quick reference > Messages. All messages are

documented with user/system action and explanation. These messages are also documented in the

Chapter 9. Diagnosing problems 71

WebSphere Application Server Version 5 Information Center.

HWSP1445E

When you provide Connection Properties to the New IMS Service wizard in Integration Edition or when

you configure a Connection Factory for use by your Java application, you choose whether or not you are

using SSL with the SSLEnabled property. If you are using SSL (SSLEnabled=TRUE), then the port

number you provide must be configured as an SSL port in IMS Connect. If you accidentally provide a

non-SSL port for your Java application, unexpected results will occur when you run your application.

v IMS Connector for Java will throw an exception indicating a communication error:

javax.resource.spi.CommException:

ICO0003E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@56503fc6.connect()

error.

Failed to connect to host [CSDMEC13], port [9999].

[java.net.SocketException:

Connection reset by peer: socket closed]

v The following IMS Connect message will be displayed on the MVS console:

HWSP1445E UNKNOWN EXIT NAME SPECIFIED IN MESSAGE PREFIX; MSGID=

 /9 * !hR, M=SDRC

The first step in establishing an SSL connection involves the SSL handshake protocol, in which the client

(IMS Connector for Java) sends the server (IMS Connect) an SSL ″Hello″ message. In the scenario

described above, IMS Connect is waiting for an incoming message on a non-SSL port. When IMS Connect

receives the handshake message it interprets it as an OTMA message with a valid Exit name in the prefix

and issues message HWSP1445E.

HWSSSL00E

The opposite scenario to the one above occurs when you are not using SSL (SSLEnabled=FALSE), but

the port number you provide for your Java application is configured as an SSL port in IMS Connect. In

this case:

v IMS Connector for Java will throw an exception indicating a communication error:

javax.resource.spi.CommException: ICO0005E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@5bcdcdd4.receive()

error. A communication error occurred while sending or receiving

the IMS message.

[java.net.SocketException: Connection reset by peer: socket closed]

v The following IMS Connect message will be displayed on the MVS console:

HWSSSL00E Unable to initialize the SSL socket:Error while reading

or writing data

IMS Connect’s attempt to initialize the SSL socket fail, since it does not receive the initial client ″Hello″

message that is part of the SSL handshake protocol.

IMS resource adapter messages and exceptions

While you develop Java programs that use IMS Connector for Java, you might encounter situations in

which your program throws exceptions. Some of these exceptions are thrown by IMS Connector for Java,

while others are thrown by class libraries used by IMS Connector for Java (such as the Java class

libraries). This topic provides information on exceptions generated by IMS Connector for Java J2C

applications.

The following terms, in italics in the message descriptions that follow, are replaced by specific values at

runtime.

72 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

hostname

The TCP/IP host name of the machine that is running IMS Connect.

innermethodname

The name of the method that originally throws this exception. This exception has been caught by

IMS Connector for Java and is being re-thrown to another exception, according to the Common

Connector Framework specification.

length The length of the data.

libraryFileName

The Local Option native library file name.

llvalue

The value of LL.

maxlength

The maximum valid length of the data.

methodname

The name of the method that is throwing this exception.

mode The type of interaction between IMS Connector for Java and the IMS Connect component on the

host (as defined in the interactionspec).

nativeMethodName

The Local Option native method name.

portnumber

The port number that is assigned to IMS Connect.

propertyname

The name of the property.

propertyvalue

The value of the property.

reasoncode

The reason code that is returned by IMS Connect.

rectype

The type of the record.

returncode

The return code, formatted in decimal, that is returned by IMS Connect.

sensecode

The sense code, formatted in decimal, that is returned from IMS OTMA

socketexception

The socket exception.

source_exception

The exception thrown when the error first occurred in an internal method.

source_methodname

The internal method in which the error first occurred.

state The internal state of IMS Connector for Java.

Related Reading

v For information on exceptions that are thrown from other class libraries, see the Javadoc information

for the specific class library.

v For information on exceptions related to Local Option support, see IBM IMS Connect User’s Guide and

Reference. Some exceptions are thrown based on IMS, IMS OTMA or IMS Connect errors returned by

Chapter 9. Diagnosing problems 73

IMS Connect. For information on IMS OTMA and IMS Connect errors, see IBM IMS Open Transaction

Manager Access Guide and IBM IMS Connect User’s Guide and Reference, respectively. For information on

IMS errors, see IBM IMS Messages and Codes.

Exceptions generated by IMS Connector for Java J2C applications

The following exception messages are produced by applications built with the Java 2 Platform, Enterprise

Edition (J2EE) Connector Architecture (J2C) class libraries when an error condition is detected.

ICO0001E

javax.resource.spi.EISSystemException:

ICO0001E: methodname error.

IMS Connect returned error:

RETCODE=[returncode], REASONCODE=[reasoncode].

reasoncode_string.

Explanation: IMS Connect returned an error. The connection in error will not be reused. reasoncode_string

provides a brief description of the reasoncode , if available.

User Action: Check the MVS console for associated IMS Connect error messages. IMS Connect error

messages begin with the characters ″ HWS″. For diagnostic information on the return code (returncode)

and reason code (reasoncode) values, as well as IMS Connect error messages, see the IMS Connect Guide

and Reference.

ICO0002E

javax.resource.spi.EISSystemException:

ICO0002E:methodname error.

IMS OTMA returned error:

SENSECODE=[sensecode], REASONCODE=[otmareasoncode].

[source_methodname:source_exception]

Explanation: IMS OTMA returned a NAK error.

User Action: For diagnostic information on the sense code (sensecode) and OTMA reason code

(otmareasoncode) values of the NAK error, see the IMS OTMA Guide and Reference. Note that IMS

Connector for Java displays sensecode and otmareasoncode in decimal. If the application is running with

two-phase commit, you may receive the following sense code values with the NAK error:

v Sense code = 17 (decimal, 23 Hex)

Your IMS is not enabled with RRS processing. Ensure your IMS has Protected Conversation processing

with RRS enabled. See Two-phase commit prerequisites for more information.

v Sense code = 46 (decimal, 2E Hex)

RRS and two-phase commit processing is not supported by IMS Connect and IMS Connector for Java.

Make sure that both your IMS Connect and IMS Connector for Java is at least version 2.1.0 or above.

ICO0003E

javax.resource.spi.CommException:

ICO0003E:methodname error.

Failed to connect to host [hostname],

port [portnumber].

[java_exception]

Explanation: IMS Connector for Java was unable to connect to the host and port combination.

java_exception indicates the reason for the failure to connect. For additional information see the User

Action section below.

74 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

User Action: Examine java_exception to determine the reason for the failure to connect to the host. Some

values for java_exception are:

v java.net.UnknownHostException: hostname

The host name you specified when configuring the Connection Factory used by your application is

invalid or your application specified an invalid host name. Check the spelling of the host name. You

may have to use the fully qualified path for host name or the IP address.

v java.net.ConnectException: Connection refused

Some possible reasons for the exception are:

– The port number is invalid. Ensure that you are using a valid port number for the IMS Connect

indicated by hostname.

– The specified port is stopped. This can be determined using the IMS Connect command VIEWHWS.

If the port is stopped its status will be NOT ACTIVE. Use the IMS Connect command, OPENPORT

dddd, where dddd is the specified port number, to start the port.

– IMS Connect on the specified host is not running. Start IMS Connect on the host machine.

– TCP/IP was restarted without canceling and restarting IMS Connect or issuing STOPPORT

followed by OPENPORT on the host.
v java.net.SocketException: connect (code=10051)

Some possible reasons for the exception are:

– The machine with the specified host name is unreachable on the TCP/IP network. Ensure that the

host machine is accessible from the TCP/IP network. Verify by issuing the ping command to the

specified host machine. Enter the ping command on the machine on which IMS Connector for Java

is running. Start TCPIP on the host, if it is not started.

– TCP/IP was restarted but the status of the port used by the application was NOT ACTIVE. To

correct this situation you can do one of the following:

–

- Use the IMS Connect command OPENPORT dddd, where dddd is the port number, to activate the

port

- Restart IMS Connect

ICO0005E

javax.resource.spi.CommException:

ICO0005E:methodname error.

A communication error occurred while sending or receiving the IMS message.

[java_exception]

Explanation: IMS Connector for Java was unable to successfully complete a send and receive interaction

with the target IMS Connect. java_exception indicates the reason for the failure to complete the interaction.

For additional information see the User Action section below.

User Action: Examine java_exception to determine the reason for the failure. Some values for java_exception

are:

v java.io.EOFException

Some possible reasons for the exception are:

– The timeout value specified in the IMS Connect configuration file is exceeded before IMS Connect

receives a response from IMS. Exceeding a timeout value typically occurs when there is no region

available in IMS to run the IMS transaction that processes the client’s request. If this is the case,

ensure that an appropriate region is started and available to process the request. Exceeding a

timeout value can also occur if the IMS application program associated with the transaction is

stopped. If this is the case, use the IMS command /START PROGRAM to start the IMS application

program.

– Note: This is the expected behavior for the following configurations:

Chapter 9. Diagnosing problems 75

- Releases of IMS Connector for Java prior to 1.2.6, running with IMS Connect 1.2

- IMS Connector for Java 1.2.6 or 2.1.0, running with IMS Connect 1.2 plus APAR PQ71355
– A Java client tries to use a previously active client (for example, a connection from the pool) for

which an IMS Connect STOPCLNT command has been issued.
v java.net.SocketException: Connection reset by peer: socket write error

Some possible reasons for the exception are:

– A Java client attempts to use a connection for which the underlying socket is no longer connected to

IMS Connect. This can happen if IMS Connect is recycled, but the application server is not. After

IMS Connect is restarted, the connection pool will contain connections that formerly were

successfully connected to IMS Connect. As clients attempt to reuse each of these connections, the

exception java.net.SocketException is thrown and the connection object removed from the

connection pool. Eventually all these connections will be removed from the pool and new

connections will successfully be created.

– Note: This behavior can be changed in WebSphere Application Server by setting the Purge Policy of

the connection factory used by the Java application to Entire Pool.

– TCP/IP on the host is coming down.

ICO0006E

javax.resource.ResourceException:

ICO0006E:methodname error.

The value provided for DataStoreName is null or an empty string.

Explanation: The method indicated in methodname was invoked using an empty DatastoreName

parameter. This error message will appear in the trace log when a connection factory with an empty

DatastoreName parameter is started. This message will be followed by a J2EE Connector warning,

J2CA0007W: An exception occurred while invoking method setDataStoreName on

com.ibm.connector2.ims.ico.IMSManagedConnectionFactory used by resource

Connection_Factory_JNDI_name.

Processing will then continue leading to other error messages after IMS Connect sends a response

indicating that a datastore with a null name cannot be found. The underlying message which triggers the

other messages is:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@.processOutputOTMAMsg(byte[],

InteractionSpec, Record) error. IMS Connect returned error: RETCODE=[4],

REASONCODE=[NFNDDST]. Datastore not found.

When this error occurs, a corresponding HWSS0742W warning message is displayed on the MVS console

of the host machine where IMS Connect is running. This HWSS0742W message will include a field

showing the datastore name that it attempted to find, in this case all blanks:

DESTID= ;

User Action: Provide a valid name for the DatastoreName parameter. In a managed environment, the

DatastoreName is specified when you are configuring a Connection Factory to be used by WebSphere

Application Server. In a non-managed environment, the DatastoreName is specified in your Java

application.

ICO0007E

javax.resource.NotSupportedException:

ICO0007E:methodname error.

The [propertyName] property value [propertyValue] is not supported.

Explanation: The value propertyValue specified for the property propertyName is not supported.

76 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

User Action: Provide a supported value for the named property. For example, certain values of the

InteractionVerb property of the InteractionSpec class that are defined in the J2C architecture are not

supported by the IMSInteractionSpec class in this release of IMS Connector for Java. Also the ReRoute

value TRUE is not supported on dedicated persistent socket connections.

ICO0008E

javax.resource.ResourceException:

ICO0008E:methodname error. The value [propertyValue] of the [propertyName]

property exceeds the maximum allowable length

of [maxPropertyLength].

Explanation: The length of the value propertyValue supplied for property propertyName exceeds

maxPropertyLength, the maximum length allowed for values of property propertyName.

User Action: Provide a value for the named property which does not exceed maxPropertyLength.

ICO0009E

javax.resource.ResourceException:

ICO0009E:methodname error.

The [propertyName] property value [propertyValue] is invalid.

Explanation: The value propertyValue specified for the property propertyName is not valid.

User Action: Provide a value which is valid for the named property. For example, valid values for the

InteractionVerb property of the InteractionSpec class of IMS Connector for Java are listed in the Javadoc

for the IMSInteractionSpec class.

ICO0010E

javax.resource.spi.IllegalStateException:

ICO0010E:methodname error.

Method invoked on invalid IMSConnection instance.

Explanation: The method indicated in methodname was invoked on an invalid IMSConnection instance. If

the methodname is lazyEnlist, an attempt was made to enlist a connection in the current transaction that

could not be enlisted.

User Action: The named method was most likely issued on an IMSConnection instance that was already

closed.

v If the methodname is not lazyEnlist, ensure that the IMSConnection instance is not already closed

before you attempt to use it or close it.

v If the methodname is lazyEnlist, ensure that your application is not using non-managed connections in

a managed environment, as only managed connections are eligible for Lazy Transaction Enlistment

Optimization. For more information please refer to the Deferred Enlistment topic found in the

WebSphere Application Server 6.0 online information center.

ICO0011E

javax.resource.spi.IllegalStateException:

ICO0011E:methodname error.

Method invoked on invalid IMSInteraction instance.

Explanation: The method indicated in methodname was invoked on an invalid IMSInteraction instance.

User Action: The named method was most likely issued on an IMSInteraction instance that was already

closed. Ensure that the IMSInteraction instance is not already closed before you attempt to use it or close

it.

Chapter 9. Diagnosing problems 77

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/cdat_laztranen.html

ICO0012E

javax.resource.ResourceException:

ICO0012E:methodname error.

The value provided for HostName is null or an empty string.

Explanation: The method indicated in methodname was invoked using a null or empty HostName

parameter.

User Action: Provide a valid HostName parameter. In a managed environment, the property value is

specified when you are configuring a Connection Factory to be used by WebSphere Application Server. In

a non-managed environment, the property value is specified in your Java application.

ICO0013E

javax.resource.ResourceException:

ICO0013E:methodname error.

ConnectionManager is null.

Explanation: The method indicated in methodname was invoked. The application server invoked the

createConnectionFactory method of the IMSManagedConnectionFactory class with a null

ConnectionManager object.

User Action: Provide a valid HostName parameter. This form of the createConnectionFactory method is

used in a managed environment. It is not typically invoked by a client program. Contact the service

personnel for your application server.

ICO0014E

javax.resource.ResourceException:

ICO0014E:methodname error.

Input record contains no data.

Explanation: The method indicated in methodname was invoked with an input record that contained no

data.

User Action: Verify that the input record that you provide is not empty.

ICO0015E

ResourceAdapterInternalException

ICO0015E:methodname error.

Unexpected error encountered while processing the OTMA message.

[java_exception]

Explanation: An unexpected internal error was encountered while processing the OTMA message.

User Action: Contact your IBM service representative.

ICO0016E

javax.resource.ResourceException:

ICO0016E:methodname error.

The value provided for DataStoreName is null or an empty string.

Explanation: The method indicated in methodname was invoked using an empty DatastoreName

parameter. This error message will appear in the trace log when a connection factory with an empty

DatastoreName parameter is started. This message will be followed by a J2EE Connector warning,

J2CA0007W: An exception occurred while invoking method setDataStoreName on

com.ibm.connector2.ims.ico.IMSManagedConnectionFactory used by resource

Connection_Factory_JNDI_name.

78 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Processing will then continue leading to other error messages after IMS Connect sends a response

indicating that a datastore with a null name cannot be found. The underlying message which triggers the

other messages is:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@.processOutputOTMAMsg(byte [],

 InteractionSpec, Record) error. IMS Connect returned error: RETCODE=[4],

REASONCODE=[NFNDDST]. Datastore not found.

When this error occurs, a corresponding HWSS0742W warning message is displayed on the MVS console

of the host machine where IMS Connect is running. This HWSS0742W message will include a field

showing the datastore name that it attempted to find, in this case all blanks:

DESTID= ;

User Action: Provide a valid name for the DatastoreName parameter. In a managed environment, the

DatastoreName is specified when you are configuring a Connection Factory to be used by WebSphere

Application Server. In a non-managed environment, the DatastoreName is specified in your Java

application.

ICO0017E

ResourceAdapterInternalException

ICO0017E:methodname error.

Invalid value provided for TraceLevel.

Explanation: An invalid trace level was specified.

User Action: Specify a valid trace level. Optionally, this exception can be ignored due to the fact that the

default trace level will be used for this connection factory. In this case, the connection factory is still

usable but the trace level will be the default trace level.

ICO0018E

javax.resource.ResourceException:

ICO0018E:methodname error.

The value provided for PortNumber is null.

Explanation: The method indicated in methodname was invoked using a null PortNumber.

User Action: Provide a valid PortNumber parameter. In a managed environment, the property value is

specified when you are configuring a Connection Factory to be used by WebSphere Application Server. In

a non-managed environment, the property value is specified in your Java application.

ICO0024E

javax.resource.ResourceException:

ICO0024E:methodname error.

Invalid segment length (LL) of [llvalue] in input object.[java_exception]

Explanation: The input message provided by the Java program for the IMS application program contains

a value for its segment length which is either negative, 0, or greater than the number of bytes of data in

the message segment.

User Action: Provide the correct value for the segment length of the input message.

ICO0025E

javax.resource.IllegalArgumentException:

ICO0025E:methodname error.

Invalid segment length (LL) of [llvalue] in OTMA message.

Chapter 9. Diagnosing problems 79

Explanation: The output message provided by the IMS application program contains a value for its

segment length which is either negative, 0, or greater than the number of bytes of data in the message

segment. The output message provided by the IMS application program is contained in the OTMA

message.

User Action: Ensure that your IMS application program provides valid lengths for the segments of its

output message.

ICO0026E

javax.resource.ResourceException:

ICO0026E:methodname error.

An error was encountered while processing the IMS message.

[source_methodname:source_exception]

Explanation: An error occurred while processing the IMS transaction input or output message.

source_exception provides additional information regarding the cause of the error.

User Action: Examine source_exception for additional information regarding the cause of the error. Some

suggested actions to take, based on the value of source_exception are:

v java.io.IOException

Error preparing input or output record. Ensure that the objects you are providing to IMS Connector for

Java for use as the IMS transaction input and output are defined properly for the J2C architecture. For

example, ensure that they implement the interfaces javax.resource.cci.Record and

javax.resource.cci.Streamable.

v com.ibm.ims.ico.IMSConnResourceException

The OTMA message containing the IMS transaction output message contained an invalid length field

(i.e., LLLL was <= 0). If this error continues to occur after verifying that your IMS application program

is returning a valid output message, contact your IBM service representative.

v java.lang.IllegalArgumentException

The output message returned from IMS Connect is invalid. Ensure that the release levels of IMS

Connector for Java and IMS Connect are compatible. For example, if you built a transactional required

EJB application to perform a two phase commit transaction via TCP/IP by using IMS Connector for

Java version 2.1, but at runtime, you are using IMS Connect version 1.2 instead of version 2.1, you will

receive this error message. Hereby, either you update to IMS Connect version 2.1 or create a none

global transactional EJB application.

ICO0030E

javax.resource.spi.ApplicationServerInternalException:

ICO0030E:methodname error.

[source_methodname:source_exception]

Explanation:A runtime error or exception was detected in methodname during the interaction.

source_methodname:source_exception indicates where the error or exception that was detected in methodname

originally occurred and may provide additional information regarding the cause of the error.

User Action: Examine source_exception for additional information regarding the cause of the error. The

action(s) to be taken depend on the value of source_methodname:source_exception. Some suggested actions

to take, based on the value of source_methodname:source_exception are:

v java.lang.OutOfMemoryError

This error is thrown when the Java Virtual Machine cannot allocate an object because it is out of

memory, and no more memory could be made available by the garbage collector. Increase the amount

of memory available to the virtual machine used by WAS.

v java.io.InterruptedIOException

80 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

An InterruptedIOException is thrown to indicate that an input or output transfer has been terminated

because the thread performing it was terminated. Investigate reasons why the thread may have been

terminated.

ICO0031E

javax.resource.spi.IllegalStateException:

ICO0031E:methodname error.

Protocol violation. The Interaction Verb [interactionverb] is not allowed for

the current state [state].

[java_exception]

Explanation: The interaction attempted by the application resulted in a protocol violation. [interactionverb]

is the value of the interactionVerb property of the IMSInteractionSpec object that was used for the

interaction. [state] is the current state of the protocol used for the interactions between IMS Connector for

Java and IMS Connect.

For example, a protocol violation would occur if your Java program is not in conversation with IMS, but

attempted an interaction with IMS using the SYNC_END_CONVERSATION value for the interactionVerb

property.

User Action: Ensure that you are using an appropriate value for the interactionVerb property of

IMSInteractionSpec. Check the IMS Connector for Java documentation for values of the interactionVerb

property that are supported by IMS Connector for Java. A particular release of IMS Connector for Java

may not support all the values defined by the J2EE Connector Architecture.

ICO0034E

javax.resource.NotSupportedException:

ICO0034E:methodname error.

Auto-commit not supported.

Explanation: Auto-commit is currently not supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are appropriate for the

level of support currently provided by IMS Connector for Java.

ICO0035E

javax.resource.NotSupportedException:

ICO0035E:methodname error.

Local Transaction not supported.

Explanation: Local Transactions are not currently supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are appropriate for the

level of support currently provided by IMS Connector for Java.

ICO0037E

javax.resource.NotSupportedException:

ICO0037E:methodname error.

ResultSet not supported.

Explanation: ResultSets are currently not supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are appropriate for the

level of support currently provided by IMS Connector for Java.

ICO0039E

Chapter 9. Diagnosing problems 81

javax.resource.spi.IllegalStateException:

ICO0039E:methodname error.

Not in CONNECT state.

Explanation: The sequence of interactions between IMS Connector for Java and IMS Connect is invalid.

The current state of the protocol used for the interactions between IMS Connector for Java and IMS

Connect is not CONNECT as it needs to be at this point in the interactions.

User Action:This is most likely an error in IMS Connector for Java or IMS Connect. Contact your IBM

service representative.

ICO0040E

javax.resource.NotSupportedException:

ICO0040E:methodname error.

IMSConnector does not support this version of execute method.

Explanation: IMS Connector for Java does not support the form of the execute method that takes two

input parameters and returns an object of type javax.resource.cci.Record.

User Action: Use the supported form of the execute method in class IMSInteraction. The supported form

of the execute method has the following signature:

boolean execute(InteractionSpec, Record input, Record output)

ICO0041E

javax.resource.ResourceException:

ICO0041E:methodname error.

Invalid interactionSpec specified [interactionSpec].

Explanation: An invalid InteractionSpec object was passed to the execute method of class

com.ibm.connector2.ims.ico.IMSInteraction.

User Action: Ensure that the InteractionSpec object that you pass to the execute method of class

com.ibm.connector2.ims.ico.IMSInteraction is of type com.ibm.connector2.ims.ico.IMSInteractionSpec.

ICO0042E

javax.resource.ResourceException:

ICO0042E: methodname error.

Input is not of type Streamable.

Explanation: The input object provided to the execute method of

com.ibm.connector2.ims.ico.IMSInteraction for the ″input″ parameter was either null or did not

implement the interface javax.resource.cci.Streamable. This exception most likely occurs when an

application is written to use the J2EE Connector Architecture Common Client Interface (CCI). This

exception should not occur if WebSphere Studio Application Developer Integration Edition is used to

build the input message.

The execute method allows null input objects for some types of interactions. For example, interactions

with interactionVerb values of SYNC_END_CONVERSATION and SYNC_RECEIVE_ASYNCOUTPUT

allow null input objects.

User Action: Ensure that you are providing a valid javax.resource.cci.Record object for the ″input″

parameter to the execute method. For example, ensure that this object implements the interfaces

javax.resource.cci.Record and javax.resource.cci.Streamable.

ICO0043E

82 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

javax.resource.ResourceException:

ICO0043E: methodname error.

Output is not of type Streamable.

Explanation: The output object provided to the execute method of

com.ibm.connector2.ims.ico.IMSInteraction was either null or did not implement the interface

javax.resource.cci.Streamable. This exception most likely occurs when an application is written to use the

J2EE Connector Architecture Common Client Interface (CCI). This exception should not occur if

WebSphere Studio Application Developer Integration Edition is used to build the output message.

User Action: Ensure that you are providing a valid output object to the execute method.

ICO0044E

javax.resource.NotSupportedException:

ICO0044E:methodname error.

RecordFactory is not supported by IMS Connector for Java.

Explanation: RecordFactory is currently not supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are appropriate for the

level of support currently provided by IMS Connector for Java.

ICO0045E

javax.resource.NotSupportedException:

ICO0045E: methodname error.

Invalid type of ConnectionRequestInfo.

Explanation: An invalid ConnectionRequestInfo object was passed to an IMS Connector for Java method.

User Action: This is most likely an error in IMS Connector for Java. Contact your IBM service

representative.

ICO0049E

javax.resource.NotSupportedException:

ICO0049E:methodname error.

The security credentials passed to getConnection do not match existing

security credentials.

Explanation: The security credentials in the request do not match the security credentials of the

IMSManagedConnection instance that was being used to process the request.

User Action: Contact your IBM service representative.

ICO0053E

javax.resource.ResourceException:

ICO0053E: methodname error.

Invalid clientID value. Prefix HWS is reserved by IMS Connector for Java.

Explanation: The value specified for the property clientID is invalid. The prefix ’HWS’ is reserved by IMS

Connector for Java.

User Action: Provide a valid value for clientID property. A valid value should follow the following rules:

v is not a null string;

v does not start with a blank field;

v does not start with IMS Connector for Java reserved prefix ’HWS’;

v is 8 characters long;

Chapter 9. Diagnosing problems 83

v uses valid characters A - Z, 0 - 9, and @, #, $.

ICO0054E

javax.resource.ResourceException:

ICO0054E:methodname error.

Invalid ConnectionSpec.

Explanation: IMS Connector for Java was unable to cast the connectionSpec provided for this connection

to type IMSConnectionSpec. While the Common Client Interface will accept a connectionSpec object for

any supported connector, IMS Connector for Java will only work with an IMSConnectionSpec or a

derivative of IMSConnectionSpec as its connectionSpec.

User Action: Ensure that the connectionSpec used by your application is an IMSConnectionSpec or

inherits from IMSConnectionSpec.

ICO0055E

javax.resource.ResourceException:

ICO0055E:methodname error.

Failed to cast the connection object to IMSConnection.

Explanation: IMS Connector for Java was unable to cast the connection object allocated by the

ConnectionManager for this connection to type IMSConnection. IMS Connector for Java will only work

with an IMSConnection or a derivative of IMSConnection as its connection object. This error might be the

result of a problem with the ConnectionManager.

User Action: Please contact your IBM service representative.

ICO0056E

javax.resource.ResourceException:

ICO0056E:methodname error.

IMSConnectName is only valid for Local Option connections

which can only be used in z/OS or OS/390.

Explanation: Setting the IMSConnectName property of an IMSManagedConnectionFactory instance is

mandatory for managed connection factory to be used for Local Option connections. Furthermore, you

can only use Local Option to communicate with IMS Connect if your application using IMS Connector

for Java is running on the z/OS or OS/390 platform. This exception indicates that you have a specified a

value for the IMSConnectName property but your application is not running on neither the z/OS nor

OS/390 platforms.

User Action: Ensure that your application using IMS Connector for Java is running on the z/OS or

OS/390. Note that it is also required that your application (or more precisely, the Web server where your

application is running) must be running in the same MVS image as IMS Connect. If this is not the case,

for example, if you plan to run your application on a workstation platform or if the Web server where

you plan to run your application is on z/OS but in a different MVS image than IMS Connect, ensure that

the connection factory used by your application is set up to use TCP/IP communication.

ICO0057E

javax.resource.spi.IllegalStateException:

ICO0057E:methodname error.

Invoked with invalid connection handle.

Explanation: The application is in an illegal state: the connection handle (IMSConnection instance) used

for this interaction is not valid. This could occur if the application attempted to use a connection handle

for a previously used connection or the handle for the wrong connection if the application has more than

one connection open.

84 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

User Action: Ensure that the application is using the currently valid IMSConnection instance for that

connection.

ICO0058E

javax.resource.ResourceException:

ICO0058E:methodname error.

Interactions SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions with Commit Mode 0

are not supported with Local Option.

Explanation: You can use Local Option to communicate with IMS Connect only if your application using

IMS Connector for Java with the selection of Commit Mode 1.

User Action: Ensure that your application using IMS Connector for Java is selected with Commit Mode 1.

If you plan to run your application with Commit Mode 0, correct your application to use TCP/IP

communication.

ICO0059E

javax.resource.ResourceException:

ICO0059E: methodname error.

SYNC_END_CONVERSATION interation with Commit Mode 0 is not supported.

Explanation: Interaction SYNC_END_CONVERSATION with Commit Mode0 is not supported.

User Action: IMS Connector for Java supports the interaction combination

SYNC_END_CONVERSATION with Commit Mode 1, SYNC_SEND_RECEIVE with Commit Mode 0, and

SYNC_RECEIVE_ASYNCOUTPUT with Commit Mode 0.

ICO0060E

java.lang.UnsatisfiedLinkError:

ICO0060E:methodname error.

Error loading Local Option native library: libname=libraryFileName.

[source_exception].

Explanation: The Local Option native library cannot be found in any of the directories listed in the

libpath.

User Action: Ensure that the Local Option native library exists in one of the directories in the LIBPATH

environment variable. If you are running IMS Connector for Java in WebSphere Application Server for

z/OS and OS/390, ensure that the full name of the directory that contains the Local Option native library

file is defined in the LIBPATH environment variable for your J2EE server. For more information, see

“Preparing the base operating system” in the WebSphere Application Server Version 6.0 Information

Center .

ICO0061E

javax.resource.ResourceException:

ICO0061E:methodname error.

Local Option runs only in z/OS and OS/390.

Explanation: You can use Local Option to communicate with IMS Connect only if your application using

IMS Connector for Java is running on the z/OS or OS/390 platform.

User Action: Ensure that your application using IMS Connector for Java is running on the z/OS or

OS/390. Note that it is also required that your application (or more precisely, the Web server where your

application is running) must be running in the same MVS image as IMS Connect. If this is not the case,

for example, if you plan to run your application on a workstation platform or if the Web server where

Chapter 9. Diagnosing problems 85

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

you plan to run your application is on z/OS but in a different MVS image than IMS Connect, ensure that

the connection factory used by your application is set up to use TCP/IP communication.

ICO0062E

javax.resource.ResourceException:

ICO0062E:methodname error.

Error loading Local Option native method: libfilename=libraryFileName,

methodname=nativeMethodName. [source_exception].

Explanation: The Local Option native method cannot be found.

User Action: Verify that you have the correct level of IMS Connector for Java resource adapter and Local

Option native library installed on your system. Always use the version of the Local Option native library

that shipped with the IMS resource adapter that you installed in your WebSphere Application Server for

z/OS and OS/390 system. See ″Prerequisites for using IMS Connector for Java″ for more information.

ICO0063E

javax.resource.spi.ResourceAdapterInternalException:

ICO0063E:methodname error.

Exception thrown in native method. [source_exception].

Explanation: An internal error occurred in the Local Option native method.

User Action: Contact your IBM service representative.

ICO0064E

javax.resource.spi.SecurityException:

ICO0064E:methodname error.

Invalid security credential.

Explanation: The subject provided by WebSphere Application Server did not contain a security credential

available that is supported by IMS Connector for Java.

User Action: Ensure that you have the correct level of WebSphere Application Server for z/OS and

OS/390 installed. See the ″ Prerequisites for using IMS Connector for Java″ section for details. Configure

WebSphere Application Server for z/OS and OS/390 to provide a security credential that is supported by

IMS Connector for Java. IMS Connector for Java supports the PasswordCredential for TCP/IP connections

and the UToken GenericCredential for Local Option connections.

ICO0065E

javax.resource.spi.SecurityException:

ICO0065E:methodname error.

Error obtaining credential data from the security credential.[source_exception].

Explanation: There was a security related error in obtaining the credential data from the security

credential provided by the application server.

User Action: Ensure that you have correctly set up security for your application server so that the user

associated with the calling program is authorized to extract the data from a security credential.

ICO0066E

javax.resource.ResourceException:

ICO0066E:methodname error. Error loading WebSphere Application Server

Transaction Manager. [source_exception].

Explanation: An error occurred when accessing the Transaction Manager of the WebSphere Application

Server for processing the transaction request.

86 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

User Action: Ensure that you have the correct level of WebSphere Application Server for z/OS and

OS/390 installed. See the ″ Prerequisites for using IMS Connector for Java″ section for details.

ICO0068E

javax.resource.ResourceException:

ICO0068E:methodname error.

Error obtaining the transaction object. [java_exception]

Explanation: An error occurred while attempting to determine if a transaction has been started using the

WebSphere Application Server Transaction Manager.

User Action: Ensure that you have the correct level of WebSphere Application Server for z/OS and

OS/390 installed. See the ″Prerequisites for using IMS Connector for Java″ section for details.

ICO0069E

javax.resource.spi.ResourceAllocationException

ICO0069E:methodname error.

Error obtaining RRS transaction context token.

IMSConnResourceException: RRS retcode=[rrs_routinecode].

Explanation: An unexpected internal error occurred while obtaining an RRS transaction context token for

processing the global transaction.

User Action: Check the RRS job log for associated RRS error messages. For diagnostic information on the

RRS return code (rrs_routinecode) see the MVS Programming: Resource Recovery manual for your release of

z/OS or OS/390.

ICO0070E

javax.resource.spi.EISSystemException

ICO0070E:methodname error.

IMS Connect reported an RRS error: IMS Connect Return Code=[returncode],

RRS Routine name=[rrs_routine], RRS Return code=[rrs_routinecode]."

Explanation: IMS Connect returned an error resulting from an RRS failure.

User Action: Check the MVS console for associated IMS Connect and RRS error messages. For diagnostic

information on the return code (returncode) value, as well as IMS Connect error messages, see the IMS

Connect Guide and Reference. For diagnostic information on the RRS return code (rrs_routinecode) locate the

RRS routine name (rrs_routine) within the MVS Programming: Resource Recovery manual for your release of

z/OS or OS/390.

ICO0071E

javax.transaction.xa.xAException

ICO0071E:methodname error.

A communication error occurred when processing the XA

commandtype operation. [java_exception]

Explanation: There are numerous reasons why a communication failure could have occurred during the

processing of a global transaction. A TCP/IP or socket failure could have taken place or IMS Connect

could have been brought down. The connection in error will not be reused.

User Action: Examine the java_exception to determine the reason for the failure to connect to the host.

Also check the MVS console for associated IMS Connect or TCP/IP error messages. Validate that machine

can be reached through TCP/IP and that IMS Connect has not been brought down. The command type

(commandtype_string) displayed in the error message refers to the stage at which this communication

failure occurred during the global transaction: prepare, commit, rollback, recover, or forget.

Chapter 9. Diagnosing problems 87

ICO0072E

javax.transaction.xa.xAException:

ICO0072E:methodname error.

The associated UR for the Xid is not found.

Explanation: During transaction processing a UR that was tied to a specific Xid was eliminated by

manual intervention or an error in IMS Connect or RRS.

User Action: Refer to the WebSphere Application Server InfoCenter Reference Library for steps on how to

acquire transaction information and Xids within the WebSphere Application Server logs. Refer to the IMS

Connect Guide and Reference for IMS Connect commands that will list out the Xid and their associated UR.

Verify that a UR is listed for that Xid. Verify that the global transaction was not left in a heuristic state.

ICO0073E

javax.transaction.xa.xAException:

ICO0073E:methodname error.

RRS is not available.

Explanation: RRS has been brought down or communication between RRS and IMS Connect has ended.

User Action: Check the MVS console for associated IMS Connect and RRS error messages. Ensure that

RRS has not been brought down on your z/OS or OS/390 system. Refer to the IMS Connect Guide and

Reference for IMS Connect commands that can be used to verify that it is RRS enabled.

ICO0074E

javax.transaction.xa.xAException:

ICO0074E: The RRS rrs_routine call returns with a return code [rrs_routinecode].

Explanation: During the processing of your global transaction the following RRS error message was

passed in by IMS Connect.

User Action: Check the MVS console for associated IMS Connect and RRS error messages. For diagnostic

information on the RRS return code (rrs_routinecode) locate the RRS routine name (rrs_routine) within the

MVS Programming: Resource Recovery manual for your release of z/OS or OS/390.

ICO0075E

javax.transaction.xa.xAException:

ICO0075E:methodname error.

The transaction branch may have been heuristically completed. [rrs_exception]

Explanation: An RRS error has been passed in by IMS Connect that indicates that the processing of your

transaction may have been affected in such a way as to leave it in a heuristic situation. It reveals a

possibility that part of the transaction committed and part of it encountered an error during the commit

phase which may have prevented it from committing. The rrs_exception is an ICO0074E error message

indicating the RRS routine and return code associated with this issue.

User Action: Refer to the documentation of the ICO0074E error for more information regarding the RRS

error message. Refer to the WebSphere Application Server InfoCenter Reference Library for steps on how to

acquire transaction information and Xids within the WebSphere Application Server logs. Refer to the IMS

Connect Guide and Reference for IMS Connect commands that will list out the Xid and their associated UR.

Determine the Xid and URs involved and the result that should have been committed to IMS. Verify

values within IMS to ensure that a heuristic state has occurred. A decision must then be made to take

actions to rectify the data within IMS so that it matches the result that would have been committed or to

rectify the other databases involved to return to a state prior to the execution of that transaction.

ICO0076E

88 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

javax.resource.ResourceException:

ICO0076E:methodname error. An internal error occurred. [rrs_exception]

Explanation: An internal error occurred while trying to extract information about an RRS error message

passed in by IMS Connect. The rrs_exception is an ICO0074E error message indicating the RRS routine and

return code associated with the error.

User Action: Refer to the documentation of the ICO0074E error for more information regarding the RRS

failure that has taken place. Please contact your IBM service representative.

ICO0077E

javax.resource.ResourceException:

ICO0077E:methodname error. The transaction has already rolled back. [rrs_exception]

Explanation: An RRS error has been passed in by IMS Connect that indicates the attempt to rollback a

transaction has been made a second time upon the same UR. RRS will prevent the second rollback from

taking place and throw an error indicating that such an action is being attempted. The rrs_exception is an

ICO0074E error message indicating the RRS routine and return code associated with the error.

User Action: No action is needed as the transaction should be rolled back. Refer to the documentation of

the ICO0074E error for more information regarding the RRS failure that has taken place. As a precaution,

verify that data prior to the execution of the transaction has not been lost or modified.

ICO0078E

javax.resource.ResourceException:

ICO0078E: methodname error.

A valid user-specified clientID is required for interactions on a dedicated persistent connection.

Explanation: A valid, user-specified value is required for the clientID property when a value of 0 is

specified for the commitMode property, and the interaction is using a dedicated persistent socket

connection. This applies to SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

User Action: Provide a valid value for the clientID property. A valid value should follow the following

rules:

v is not a null string

v does not start with a blank field

v does not start with IMS Connector for Java reserved prefix ’HWS’

v is 8 characters long

v has valid characters A - Z, 0 - 9, and @, #, $

ICO0079E

com.ibm.connector2.ims.ico.IMSDFSMessageException:

ICO0079E:methodname error.

IMS returned DFS message:DFS_message

Explanation: IMS returned the message indicated by DFS_message instead of the output of the IMS

transaction. This exception is thrown if the interaction uses the value

IMS_REQUEST_TYPE_IMS_TRANSACTION for the imsRequestType property of IMSInteractionSpec.

For example, if the Java application attempts to run an IMS transaction that is stopped, this exception is

thrown and the value of DFS_message is

DFS065 hh:mm:ss TRAN/LTERM STOPPED

Chapter 9. Diagnosing problems 89

User Action: Find the explanation and response that corresponds to DFS_message in the IMS Messages and

Codes documentation, then address the problem in IMS.

ICO0080E

javax.resource.spi.EISSystemException:

ICO0080E:methodname error.

Execution timeout has occurred for this interaction. The executionTimeout

was [executionTimeout_value] milliseconds. The IMS Connect

TIMEOUT was used.

Explanation: The time it took for IMS Connect to send a message to IMS and receive the response was

greater than the IMS Connect TIMEOUT value. The IMS Connect TIMEOUT value is:

v Specified in the IMS Connect configuration member for SYNC_SEND_RECEIVE interactions

v Two seconds for SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions

The reason of IMS Connect TIMEOUT value has been used is the executionTimeout property for this

interaction was not specified or has been set to zero.

User Action: Ensure your application has set a valid executionTimeout value. To set the executionTimeout

values, you can either use WebSphere Studio or use the setExecutionTimeout method. For detail

instruction, please refer to the topic of Setting execution timeout values in WebSphere Studio Application

Developer Integration Edition 5.0.1 Help.

ICO0081E

javax.resource.spi.EISSystemException:

ICO0081E:methodname error.

Execution timeout has occurred for this interaction. The executionTimeout

value specified was [executionTimeout_value] milliseconds.

The value used by IMS Connect was

[rounded_executionTimeout_value] milliseconds.

Explanation: The time it took for IMS Connect to send a message to IMS and receive the response was

greater than the executionTimeout value that was rounded to an appropriate execution timeout interval.

Once a valid execution timeout value is set, this value is converted into a value that IMS Connect can

use.

User Action: If the rounded execution timeout value is not what you expected, please verify with the

follow table of conversion rules:

 Range of user-specified values Conversion rule

1 - 250 If the user-specified value is not divisible by 10, it is

converted to the next greater increment of 10.

251 - 1000 If the user-specified value is not divisible by 50, it is

converted to the next greater increment of 50.

1001 - 60000 The user-specified value is converted to the nearest

increment of 1000. Values that are exactly between

increments of 1000 are converted to the next greater

increment of 1000.

60001 - 3600000 The user-specified value is converted to the nearest

increment of 60000. Values that are exactly between

increments of 60000 are converted to the next greater

increment of 60000.

90 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

For more examples, please refer to the topic of Valid execution timeout values in WebSphere Studio

Application Developer Integration Edition 5.0.1 Help.

ICO0082E

javax.resource.NotSupportedException:

ICO0082E:methodname error.

Execution timeout has occurred for this interaction. The executionTimeout

value of [{executionTimeout_value}] milliseconds is not supported.

The valid range is [{executionTimeout_waitforever_flag}, 0 to

{maximum_executionTimeout_value}] milliseconds.

The IMS Connect TIMEOUT was used.

Explanation: The execution timeout value specified for the executionTimeout property was above or

below the minimum or maximum timeout values respectively.

User Action: Ensure that your application has set a valid value for executionTimeout property. The

execution timeout value is represented in milliseconds and must be a decimal integer in the range of 1 to

3600000, inclusively. Also it could be -1 if you want an interaction to run without a time limit.

ICO0083E

javax.resource.ResourceException::

ICO0083E:methodname error.

SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions with Commit Mode 0

are not valid within the scope of a global transaction.

Explanation: SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions with Commit Mode 0 are not valid within

the scope of a global transaction. Because currently the global transaction requires

SYNC_LEVEL_SYNCPOINT and SYNC_LEVEL_SYNCPOINT only valid with Commit Mode 1.

User Action:

v If you want to use Commit Mode 0, ensure that your application is configured as a ″non-transactional″

application.

v If you want to run your interactions within the scope of a global transaction, then the commitMode

property value must be 1.

ICO0084E

javax.resource.ResourceException:

ICO0084E:methodname error.

An unexpected internal IMS Connector for Java error occurred.

[source_method] [source_exception]

Explanation: A PrivelegedActionException occurred while executing a [source_method] call in methodname.

This exception will occur if Java 2 security is enabled and the user associated with the calling program,

methodname, or any program in the current call stack is not authorized to execute [source_method].

User Action: Ensure that you have correctly set up security for your application server so that the user

associated with the calling program plus any programs in the current call stack at the time of the

exception is/are authorized to execute [source_method]. Alternatively, you could turn off Java 2 security

checking in the application server.

ICO0085E

Chapter 9. Diagnosing problems 91

javax.resource.ResourceException:

ICO0085E: methodname error.

Protocol violation. A user-specified clientID is not allowed for interactions

on a shareable persistent socket.

Explanation: The value specified for clientID property is not allowed. Because the connection factory is

configured for shareable persistent socket, a user-specified clientID is not allowed within this kind of

connection factory.

User Action: For shareable persistent socket connection factory, IMS Connector for Java provides

generated clientID. User-specified clientID is not allowed. To determine if you are using a shareable

persistent socket, check for a value of FALSE for the CM0Dedicated property of the connection factory

used by the interaction.

ICO0086E

javax.resource.ResourceException::

ICO0086E:methodname error.

Invalid value was specified for CommitMode property.

Explanation: The CommitMode value you have specified in the commitMode property field is invalid.

User Action: Ensure that your application has set a valid value for commitMode property. Values

supported are:

v Value 1 (SEND_THEN_COMMIT), indicates that IMS processes the transaction and sends a response

back before committing the data.

v Value 0 (COMMIT_THEN_SEND), indicates that IMS processes the transaction and commits the data

before sending a response.

ICO0087E

javax.resource.ResourceException:

ICO0087E: methodname error.

Protocol violation. Commit Mode 1 is not allowed for interactions on a

dedicated persistent socket.

Explanation: The value 1 specified for Commit Mode property is invalid. Because the connection factory

is configured for dedicated persistent socket, Commit Mode 1 is not allowed within this kind of

connection factory.

User Action: For dedicated persistent socket connection factory, Commit Mode 0 interactions are valid. To

determine if you are using a dedicated persistent socket check for a value of TRUE for the CM0Dedicated

property of the connection factory used by the interaction.

ICO0088E

javax.resource.ResourceException:

ICO0088E: methodname error.

Protocol violation. SYNC_RECEIVE_ASYNCOUTPUT interactions are not allowed

on a shareable persistent sockets.

Explanation: The value SYNC_RECEIVE_ASYNCOUTPUT specified for interactionVerb property is

invalid. Because the connection factory is configured for shareable persistent socket,

SYNC_RECEIVE_ASYNCOUTPUT is not allowed within this kind of connection factory.

User Action: SYNC_SEND_RECEIVE, SYNC_SEND, and SYNC_END_CONVERSATION are the valid

values for the interactionVerb property for interactions on a shareable persistent connection. To determine

if you are using a shareable persistent connection, check for a value of FALSE for the CM0Dedicated

property of the connection factory used by the interaction.

92 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

ICO0089I

javax.resource.ResourceException::

ICO0089I: methodname.

 Non-persistent socket closed for Commit Mode 0 IMS transaction.

Explanation: Running CommitMode 0 with non-persistent socket (transaction socket), IMS Connector for

Java will force removal of managed connection object from Connection Pool.

User Action: This is not an error message, no action required.

ICO0091E

javax.resource.ResourceException:

ICO0091E: methodname

error.SSL client context could not be created. [{1}]

Explanation: An SSL Context could not be created due to one of the following reasons:

v The algorithm used to check the integrity of the keystore cannot be found

v The certificates in the keystore could not be loaded

v The key cannot be recovered (e.g. the given password is wrong).

User Action: Ensure the following:

v The algorithm used to create certificates must be one that is supported by IBMJSSE.

v The passwords for the keystore and truststore are correct.

ICO0096I

javax.resource.ResourceException:

ICO0096I: methodname

Warning. Invalid value provided for SSL parameter.

Explanation:The method indicated in methodname was invoked using a null or empty SSLKeystoreName,

SSLKeystorePassword, SSLTruststoreName or SSLTruststorePassword parameter. This is an informational

message to let the user know that one of the above-mentioned parameters is a null or an empty string.

This will not terminate the program execution.

User Action: Provide valid values for SSLKeystoreName, SSLKeystorePassword, SSLTruststoreName and

SSLTruststorePassword parameters. For convenience, private keys and certificates can be stored either in a

keystore or a truststore. Therefore only one set of valid values (either SSLKeystoreName and

SSLKeystorePassword or SSLTruststoreName and SSLTruststorePassword) are required for proper

execution.

ICO0097E

javax.resource.ResourceException:

ICO0097E:methodname error.

{0} error. The given value is invalid for ’SSLEncryptionType’.

The value must be ’STRONG’ for strong encryption or ’WEAK’

for weak encryption.

Explanation: A value other than strong or weak was provided for the SSLEncryptionType parameter.

User Action: Provide either strong or weak for the SSLEncryptionType parameter. The value is not

case-sensitive.

ICO0111E

javax.resource.ResourceException:

ICO0111E:methodname error.

 SSLEnabled must be set to FALSE when using Local Option.

Chapter 9. Diagnosing problems 93

Explanation: The property IMSConnectName is set to a non-null value and the property SSLEnabled is

set to true. However, SSL is not supported on local option connections (which is indicated by providing a

value for IMSConnectName parameter).

User Action: Set SSLEnabled to false.

ICO0113E

javax.resource.spi.CommException:

ICO0113E: methodname error.

Socket Timeout has occurred for this interaction. The Socket Timeout value

specified was [socket timeout value] milliseconds.

[source_exception:exception_reason]

Explanation: The time for IMS Connector for Java to receive a response from IMS Connect is greater than

the time specified for Socket Timeout.

User Action: Ensure that the time value of Socket Timeout is sufficient for IMS Connector for Java to

receive a response from IMS Connect. If it is not, increase the value. If the value of Socket Timeout given

is sufficient, it is possible that network problems are causing delays. Contact your network administrator.

ICO0114E

javax.resource.ResourceException:

ICO0114E: methodname error.

The Socket Timeout Property value of [socket timeout value] is invalid.

[source_exception:exception_reason]

Explanation: The value [socket timeout value] specified for the Socket Timeout property is not valid.

User Action: Review the exception_reason provided. Ensure a positive numerical value was given for

Socket Timeout.

ICO0115E

javax.resource.spi.CommException:

ICO0115E: methodname error.

A TCP Error occurred.

Explanation: This is an error in the underlying protocol.

User Action: Contact your network administrator.

ICO0117E

javax.resource.ResourceException:

ICO0117E: methodname error.

Protocol violation: Commit Mode 1 is not allowed for SYNC_SEND,

SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT

and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

Explanation: The IMS resource adapter currently only supports Commit Mode 0 for SYNC_SEND

interactions.

User Action: Commit Mode 0 is required for SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT , SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions. Commit Mode 1 is valid with

SYNC_SEND_RECEIVE and SYNC_END_CONVERSATION interactions.

94 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

ICO0118E

javax.resource.ResourceException:

ICO0118E: methodname error.

Protocol violation. IMS request type 2(IMS_REQUEST_TYPE_IMS_COMMAND)

is not allowed for SYNC_SEND, SYNC_END_CONVERSATION, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

interactions.

Explanation: The value 2(IMS_REQUEST_TYPE_IMS_COMMAND) specified for imsRequestType

property is invalid.

User Action: ImsRequestType 2(IMS_REQUEST_TYPE_IMS_COMMAND) only valid with

SYNC_SEND_RECEIVE interaction. ImsRequestType 1(IMS_REQUEST_TYPE_IMS_TRANSACTION) is

required for SYNC_SEND, SYNC_END_CONVERSATION, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

ICO0119E

javax.resource.ResourceException:

ICO0119E: methodname error.

A supported SSL provider was not found. [caught_exception]

Explanation: When attempting to initialize a Secure Sockets Layer TCP/IP connection with IMS Connect,

IMS Connector for Java needs to use one of the two supported providers, com.ibm.jsse.JSSEProvider or

sun.security.provider.Sun. This error indicates that neither of these providers is available.

User Action: com.ibm.jsse.JSSEProvider should be added by default in an IBM JVM and

sun.security.provider.Sun should be added by default in a Sun JVM. Ensure that you are running IMS

Connector for Java in a supported IBM JVM if running in WebSphere Application Server or a Sun JVM in

other application servers.

ICO0121E

javax.resource.ResourceException:

ICO0121E: methodname error.

Invalid reRoute name value. Prefix HWS is reserved for use by

IMS Connector for Java.

Explanation: The value specified for reRouteName property is invalid. The prefix ’HWS’ is reserved for

use by IMS Connector for Java.

User Action: Provide a valid value for reRouteName property. A valid value should adhere to the

following rules:

v Is not a null string

v Does not start with a blank field

v Does not start with the IMS Connector for Java reserved prefix ’HWS’

v Is 8 characters long

v Uses the valid characters A - Z, 0 - 9, @, #, and $

ICO0122E

javax.resource.ResourceException:

ICO0122E: methodname error.

Invalid reRoute value. When purgeAsyncOutput value is true, reRoute

value cannot be true.

Chapter 9. Diagnosing problems 95

Explanation: The value specified for reRoute property is invalid. Because the value specified for

purgeAsyncOutput property is TRUE, or the default value (TRUE) is used for purgeAsyncOutput

property.

User Action: Ensure to set purgeAsyncOutput property to FALSE, if you want to set reRoute to TRUE.

96 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

Notices

The XDoclet Documentation included in this IBM product is used with permission and is covered under

the following copyright attribution statement: Copyright (c) 2000-2004, XDoclet Team. All rights reserved.

Portions based on Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides, Copyright (c) 1995 by Addison-Wesley Publishing Company,

Inc. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the

products, services, or features discussed in this documentation in other countries. Consult your local IBM

representative for information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this

documentation. The furnishing of this documentation does not give you any license to these patents. You

can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2005 97

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software

IBM Corporation

20 Maguire Road

Lexington, Massachusetts 02421-3112

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this documentation and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples may include the names of individuals, companies, brands,

and products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. You may copy, modify, and distribute these sample programs in any form

without payment to IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

98 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. 2000, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application software using this

program.

General-use programming interfaces allow you to write application software that obtain the services of

this program’s tools.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,

modification and tuning information is provided to help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a programming interface

because it is subject to change.

Trademarks and service marks

See http://www.ibm.com/legal/copytrade.shtml.

Notices 99

http://www.ibm.com/legal/copytrade.shtml

100 IMS: IMS Connector for Java 9.1.0.1 and 9.1.0.2 Online Documentation for Rational Application Developer 6.0

����

Printed in USA

SC18-9593-01

	Contents
	Chapter 1. What is the IMS resource adapter?
	Chapter 2. Preparing to use the IMS resource adapter
	Prerequisites for using the IMS resource adapter
	Platform configurations and communication protocol considerations

	Chapter 3. Developing your application
	Creating IMS Java data bindings
	Creating a J2C Java bean
	Verifying your server instance configuration

	Exposing InteractionSpec and ConnectionSpec properties for input as data
	Exposing InteractionSpec output properties as data
	Creating a web page, web service, or EJB from a J2C Java bean
	Providing initial values for fields of a Faces JSP page
	Displaying javax.resource.ResourceException on a faces JSP page

	Using IMS data bindings in a CCI application

	Chapter 4. Running your web application
	Running your web application using the Rational Application Developer test environment
	Running your application in a standalone WebSphere Application Server
	Exporting your application as an EAR file
	Installing the IMS resource adapter in WebSphere Application Server
	Creating a connection factory for the IMS resource adapter
	Installing your EAR file in WebSphere Application Server

	Chapter 5. Configuring your application
	Execution timeout
	Valid execution timeout values
	Setting execution timeout values
	Socket timeout
	Setting the Socket Timeout Value
	Connection properties
	IMSInteractionSpec properties

	Chapter 6. Security
	IMS resource adapter security
	Component-managed EIS sign-on
	Configuring component-managed EIS sign-on
	Container-managed EIS sign-on
	Configuring container-managed EIS sign-on
	Overview of secure socket layer (SSL)
	Using secure socket layer (SSL) support

	Chapter 7. Commit mode processing
	Overview of commit mode processing
	SYNC_SEND programming model
	SYNC_SEND_RECEIVE programming model
	Retrieving asynchronous output
	Displaying output message counts

	Chapter 8. Transaction processing
	Global transaction support with two-phase commit
	Two-phase commit prerequisites
	Using global transaction support in your application
	Two-phase commit environment considerations

	Chapter 9. Diagnosing problems
	Diagnosing problems when using the IMS resource adapter
	Logging and tracing with the IMS resource adapter
	J2CA0056I, WLTC0017E, HWSP1445E, and HWSSL00E Error Messages
	IMS resource adapter messages and exceptions

	Notices

