
Integrate COBOL and Web-based business processes with a
service-oriented architecture.

Enterprise COBOL for z/OS, Version 4
Release 2

Highlights

	 Delivers enhanced XML parsing

support

	 Exploits system-determined block

size for QSAM files, using the

BLOCK0 compiler option

	 Provides compiler listings that

display CICS ® options in effect	

Facilitates compiler message

severity customization

	 Supports the underscore (_)

character in COBOL user-defined

words

	 Supports Java™ 5 and Java 6

SDKs for Java interoperability

To make your business as agile and

responsive as possible, you need

to be able to connect your business

components end to end with your

suppliers, partners, employees,

and customers, and you need to

position your organization to quickly

take advantage of opportunities by

responding to challenges in real time.

Unfortunately, many IT systems weren’t

designed to address these objectives

or to support Web services and

service-oriented architecture (SOA)

that are essential for transforming

an enterprise into a flexible business

with an open, integrated operating

environment. You could rewrite

your applications in a different

programming language in order to

address these objectives, but rewriting

your applications would be expensive

and risky, and it could potentially

create downtime that you just can’t

afford. To remain competitive, you

need a complete business strategy

to help you modernize, integrate,

and manage existing applications,

data, and skill sets to ease your

organization’s transformation into a

more flexible business.

software

Integrates COBOL applications with
Web services
With Enterprise COBOL, you can take

advantage of more than 40 years of

IBM® experience in application devel-

opment to integrate COBOL with Web

services, XML, and Java. Such interop-

erability enables you to capitalize on

existing IT investments while smoothly

incorporating new, Web-based

applications into your organization’s

infrastructure. One of the hottest new

technologies for Enterprise COBOL is

XML, described below.

Delivers enhanced XML parsing
support
In Enterprise COBOL for z/OS®, Version

4.2, XML parsing using the z/OS XML

System Services parser has

been enhanced:

• You can now parse XML documents

 with validation against an XML

 schema, using the VALIDATING

 phrase of the XML PARSE statement.

• Performance is improved for

 nonvalidating parsing.

• Character reference processing

 is enhanced.

Enterprise COBOL for z/OS, Version 4.2

continues the support for the z/OS XML

System Services parser, which provides:

• Offloading of COBOL XML parsing

 to IBM System z® Application Assist

 Processor (zAAP) specialty

 processors.

• Improved support for parsing XML

 documents that use XML namespaces.

• Direct support for parsing XML

 documents that are encoded in

 UTF-8 Unicode.

• Parsing of very large XML docu-

 ments, one buffer of XML at a time.

Facilitates compiler message severity
customization
Have you ever wanted to change the

severity of a COBOL compiler diag-

nostic message, or even suppress one

completely? In Enterprise COBOL for

z/OS, Version 4.2, you can do both! For

example, you can now get return code

zero from a compilation that used to

get warning messages.

The new MSGEXIT suboption of the

EXIT compiler option lets you specify a

module that is called for each com-

piler diagnostic message and each

FIPS (FLAGSTD) message. Using the

MSGEXIT module, you can change the

severity of messages, suppress mes-

sages, and convert FIPS messages

into diagnostic messages.

Exploits system-determined block
size for QSAM files, using the BLOCK0
compiler option
In Enterprise COBOL for z/OS, Version

4.2, a new compiler option, BLOCK0,

changes the compiler default for

QSAM files from unblocked to blocked

to gain the benefit of system-deter-

mined block size for output files. When

a program is compiled using the

BLOCK0 compiler option, an implicit

BLOCK CONTAINS 0 clause is acti-

vated for all eligible QSAM files in the

program, which can result in enhanced

processing speed and minimized stor-

age requirements for output files.

Supports the underscore (_) character
in COBOL user-defined words
In Enterprise COBOL for z/OS, Version

4.2, COBOL user-defined words such as

data names and program names can

now include underscore characters (_).

Underscores are also supported in the

literal form of program names.

Allowing underscores enables interop-

erability with XML, DB2/SQL, and other

programming languages.

Provides compiler listings that display
CICS options in effect
In Enterprise COBOL for z/OS, Version

4.2, if COBOL applications with embed-

ded CICS statements are compiled using

the integrated CICS translator, compiler

listings show the CICS options that are

in effect. This facility provides the same

benefit to CICS users as was previously

made available to DB2® users. You can

now compile a DB2/CICS program in a

single job step and get a single listing

that includes COBOL, DB2, and CICS

options in effect.

Supports Java 5 and Java 6 SDKs for
Java interoperability
In Enterprise COBOL for z/OS, Version

4.2, Enterprise COBOL applications

using object-oriented syntax for Java

interoperability can now run with Java 5

or Java 6. Java SDK 1.4.2 continues to

be supported. Enterprise COBOL sup-

ports object-oriented syntax to facilitate

the interoperation of COBOL and Java.

This support is based on the facilities

of the Java Native Interface (JNI), the

primary means that Java provides for

interoperating with non-Java programs.

Object-oriented COBOL is designed to

enable you to:

• Define classes, with methods and

 data implemented in COBOL.

• Define classes that inherit from Java

 classes or from other COBOL classes.

• Create object instances of Java or

 COBOL classes.

• Invoke methods on Java or

 COBOL objects.

• Define and invoke overloaded

 methods.

2

handling, you do not have to write the

exception-handling routines in assem-

bler—you can write them in COBOL!

Enterprise COBOL for z/OS offers

support for recursive calls, structured

programming, improved interoperability

with other languages, and dynamic link

library (DLL) support. The Enterprise

COBOL for z/OS runtime library, Lan-

guage Environment, also supports PL/I,

C/C++, and Fortran programs.

Ease into migration
Enterprise COBOL for z/OS gives you a

migration path from OS/VS COBOL, VS

COBOL II, IBM COBOL for MVS & VM,

and IBM COBOL for OS/390® & VM.

With the exception of OS/VS COBOL

programs and any programs that were

previously compiled with the CMPR2

compiler option, your current programs

can continue to compile and run with-

out modification, while you selectively

update existing applications to take

advantage of new functions.

You can convert OS/VS COBOL pro-

grams and programs compiled with

the CMPR2 compiler option into 1985

Standard programs, which can then

be compiled using Enterprise COBOL

for z/OS. Use the COBOL conversion

tool (CCCA) included in Debug Tool

Utilities and Advanced Functions for

this purpose. Debug Tool Utilities and

Advanced Functions also includes a

load module analyzer that can help

identify which of your programs were

compiled with the OS/VS compiler.

Special register JNIENVPTR and the

sample copybook JNI.cpy let you

easily call services provided by the JNI,

including services for handling EBCDIC

and Unicode strings and for managing

local and global object references.

Object arrays as method arguments
Enterprise COBOL for z/OS supports

the use of Java object arrays. Object

references of type jobjectArray can be

specified as:

• Arguments in INVOKE...USING

• Values in INVOKE...RETURNING

• Parameters in the PROCEDURE

 DIVISION...USING phrase of method

 definitions

• Values in method definitions in

 PROCEDURE DIVISION...RETURNING

COBOL class definition with main
method
In Enterprise COBOL for z/OS, an appli-

cation that uses object-oriented COBOL

syntax can start with a COBOL class

definition. You can run the application

by using the java command and pass

string values as command-line argu-

ments. You can also use this technique

in other environments (such as Java

regions under IMS™) that require appli-

cations to start with the main method of

a Java class file.

Implementation of object-oriented
COBOL programs from batch JCL
In certain cases, you can bind COBOL

programs that use object-oriented

syntax as modules in library (PDSE)

data sets and run them using batch job

control language (JCL).

Java interoperability and subsystems
Smooth interoperability between Java
and COBOL in IMS
Enterprise COBOL supports interopera-

tion between COBOL and Java under

IMS when applications run in a Java

dependent region. You can use Java to

develop the messaging portion of an

application and call COBOL to access

IMS data resources. You can also

develop object-oriented COBOL appli-

cations that contain a main method

capable of invoking Java.

IBM WebSphere® Application Server
interoperability
You can use the Java interoperabil-

ity capabilities of COBOL to access

enterprise beans that run on a Java

Platform, Enterprise Edition

(Java EE) technology–compliant Enter-

prise JavaBeans™ (EJB) server, such

as IBM WebSphere Application Server.

To do this, the client environment must

support a Java technology–based

object request broker (ORB). The client

COBOL application can use COBOL

INVOKE statements to access the fol-

lowing programming interfaces:

• Java Naming and Directory Interface

 (JNDI) to locate EJB services and

 components

• Java ORB interface to invoke

 methods on enterprise beans

Improved application development
Enterprise COBOL for z/OS provides

a set of intrinsic functions including

string handling, financial capabilities,

statistical functions, and mathematical

formulas. You can also use the COBOL

CALL statement to take advantage of

Language Environment® services for

everything from storage management

to condition handling. The condition-

handling support enables you to write

programs in which exception handling

is done in a separate routine that is

loaded only when needed. Using

Language Environment condition

3

©	 Copyright IBM Corporation 2009.

	 IBM Corporation Software Group	
Route 100	
Somers, NY 10589	
U.S.A.

	 Produced in the United States of 	
America 08-09	
All Rights Reserved

	 CICS, DB2, IBM, the IBM logo, IMS,
Language Environment, OS/390, Rational,
System z, WebSphere, and z/OS are
trademarks or registered trademarks of
International Business Machines Corporation
in the United States, other countries, or both.

	 Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

	 Other company, product and service names
may be trademarks or service marks of
others.

	 The information contained in this
documentation is provided for informational
purposes only. While efforts were made to
verify the completeness and accuracy of the
information contained in this documentation,
it is provided “as is” without warranty of any
kind, express or implied. In addition, this
information is based on IBM’s current product
plans and strategy, which are subject to
change by IBM without notice. IBM shall not
be responsible for any damages arising out
of the use of, or otherwise related to, this
documentation or any other documentation.

	 Nothing contained in this documentation
is intended to, nor shall have the effect of,
creating any warranties or representations
from IBM (or its suppliers or licensors), or
altering the terms and conditions of the
applicable license agreement governing the
use of IBM software.

listing that indicates errors from a com-

pilation. A simple click on a diagnostic

message takes you to the line of source

code in error.

COBOL across platforms
Enterprise COBOL for z/OS is part of a

family of compatible compilers, appli-

cation development tools, and main-

tenance tools. Along with Enterprise

COBOL for z/OS, IBM offers COBOL

compilers for multiple platforms as well

as IBM File Manager, IBM Fault Ana-

lyzer, and Debug Tool. As mentioned

previously, the recommended worksta-

tion-based development environment is

Rational Developer for System z.

Workstation-based development
Rational® Developer for System z pro-

vides an interactive, workstation-based

environment to help you create, main-

tain, and reuse applications. Rational

Developer for System z includes sup-

port for traditional development using

COBOL, but also has the ability to

generate Web services interfaces from

COBOL constructs to ease creation

of Web services from existing COBOL

applications.

Rational Developer for System z pro-

vides a workstation interface to Debug

Tool, and is also integrated with IBM File

Manager and Fault Analyzer. File Man-

ager integration enables you to access

Keyed Sequence Data Set (KSDS) files

from the Rational Developer for System

z workbench, and gives you the ability

to browse and update data sets. By

integrating with Fault Analyzer, Rational

Developer for System z enables you to

browse Fault Analyzer ABEND reports

on CICS, IMS, batch, Java, WebSphere,

and other run times.

Rational Developer for System z,

shown here, supports Enterprise

COBOL and helps improve the pro-

ductivity of COBOL developers. The

windows displayed show the context-

sensitive editor, as well as a compiler

For more information visit 	
www.ibm.com/software/awdtools/cobol/zos

SC23-8612-00

SC23-8612-00
4

Figure 1: Rational Developer for System z workbench.

