

GDDM IBM

Base Application Programming Reference
Version 3 Release 2

 SC33-0868-02

GDDM IBM

Base Application Programming Reference
Version 3 Release 2

 SC33-0868-02

 Note!

Before using this information and the products it supports, be sure to read the general information under “Notices” on page xiii.

| Third Edition (December 2001)

This edition applies to the following IBM GDDM series of licensed programs:

Program number Program name Version Release Modification

| 5695-167 GDDM/MVS 3 2 0
| 5684-168 GDDM/VM 3 2 0
| 5686-057 GDDM/VSE 3 2 0

| and to all subsequent versions, releases, and modifications until otherwise indicated in new editions. It also applies to GDDM/MVS as an
| element of OS/390 (program number 5645-001). Consult the latest edition of the applicable IBM system bibliography for current information on

this product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods described
are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development, Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1980, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 contents

Table of contents

Notices . xiii
Programming interface information xiii
Trademarks and service marks xiii

Preface . xv
What this book is about xv
Who this book is for . xv
What you need to know xv
How to use this book xv
Terminology used . xv

Summary of changes xvii
Summary of changes for GDDM 3.1 xvii

More GDDM information xix
GDDM publications . xix
Books from related libraries xx

Chapter 1. GDDM programming interface 1
The nonreentrant interface 1
The reentrant interface 1
The system programmer interface 2
Application programming language considerations 2

APL . 2
Assembler language 3
BASIC (IBM) . 3
C . 3
COBOL . 5
FORTRAN . 5
PL/I . 6
REXX . 6

Chapter 2. A summary of the calls by function 13
Types of functions . 13
Control functions . 14
Copy functions . 15
Device functions . 15
Graphics functions . 15
High-performance alphanumeric functions 17
Image functions . 17
Mapped alphanumeric functions 18
Operator window functions 18
Page functions . 19
Partition functions . 19
Procedural alphanumeric functions 19
Symbol set functions 20
Utility call functions . 20

Chapter 3. The GDDM calls 21
Format of the GDDM call descriptions 21
Syntax of GDDM calls 21
Error messages in GDDM calls 21
Alphabetic list of GDDM calls 21
APDEF . 21
APDEL . 22
APMOD . 22

APQIDS . 23
APQNUM . 24
APQRY . 24
APQSIZ . 25
APQUID . 25
ASCCOL . 25
ASCGET . 26
ASCHLT . 26
ASCPUT . 27
ASCSS . 27
ASDFLD . 28
ASDFLT . 29
ASDFMT . 29
ASDTRN . 30
ASFBDY . 31
ASFCLR . 31
ASFCOL . 32
ASFCUR . 32
ASFEND . 33
ASFHLT . 33
ASFIN . 33
ASFINT . 34
ASFMOD . 34
ASFOUT . 35
ASFPSS . 35
ASFSEN . 36
ASFTRA . 37
ASFTRN . 37
ASFTYP . 38
ASGGET . 38
ASGPUT . 39
ASMODE . 39
ASQCOL . 39
ASQCUR . 40
ASQFLD . 41
ASQHLT . 42
ASQLEN . 42
ASQMAX . 43
ASQMOD . 43
ASQNMF . 44
ASQSS . 44
ASRATT . 45
ASREAD . 45
ASRFMT . 47
ASTYPE . 48
CDPU . 50
CGLOAD . 51
CGSAVE . 54
DSCLS . 55
DSCMF . 56
DSCOPY . 57
DSDROP . 58
DSFRCE . 58
DSOPEN . 59
DSQCMF . 62
DSQDEV . 62

 Copyright IBM Corp. 1980, 1996 iii

 contents

DSQUID . 63
DSQUSE . 63
DSRNIT . 63
DSUSE . 64
ESACRT . 64
ESADEL . 65
ESAQRY . 65
ESASEL . 65
ESEUDS . 66
ESLIB . 67
ESPCB . 68
ESQCPG . 68
ESQEUD . 68
ESQOBJ . 69
ESQUNL . 69
ESQUNS . 69
ESSCPG . 70
ESSUDS . 70
FSALRM . 71
FSCHEK . 71
FSCLS . 72
FSCOPY . 72
FSENAB . 73
FSEXIT . 74
FSFRCE . 74

| FSGET . 75
| FSGETE . 75
| FSGETS . 76

FSINIT . 76
FSLOG . 77
FSLOGC . 77
FSOPEN . 78
FSPCLR . 79
FSPCRT . 79
FSPDEL . 80
FSPQRY . 80
FSPSEL . 81
FSPWIN . 81
FSQCPG . 82
FSQDEV . 82
FSQERR . 83
FSQSYS . 84
FSQUPD . 84
FSQUPG . 84
FSQURY . 85
FSQWIN . 91
FSREST . 91
FSRNIT . 91
FSSAVE . 92
FSSHOR . 92
FSSHOW . 93
FSTERM . 94
FSTRAN . 94
FSTRCE . 95
FSUPDM . 95
GSAM . 96
GSARC . 96
GSARCC . 97
GSAREA . 97
GSBMIX . 98

GSBND . 99
GSCA . 99
GSCALL . 100
GSCB . 102
GSCBS . 103
GSCD . 103
GSCH . 105
GSCHAP . 105
GSCHAR . 106
GSCLP . 107
GSCLR . 108
GSCM . 108
GSCOL . 109
GSCOPY . 109
GSCORR . 110
GSCORS . 111
GSCP . 112
GSCPG . 113
GSCS . 113
GSDEFE . 114
GSDEFS . 114
GSDSS . 117
GSELPS . 117
GSENAB . 118
GSENDA . 119
GSFLD . 120
GSFLSH . 121
GSFLW . 121
GSGET . 121
GSGETE . 122
GSGETS . 122
GSIDVF . 123
GSIDVI . 124
GSILOC . 125
GSIMG . 126
GSIMGS . 127
GSIPIK . 128
GSISTK . 128
GSISTR . 129
GSLINE . 130
GSLOAD . 130
GSLSS . 133
GSLT . 134
GSLW . 134
GSMARK . 135
GSMB . 135
GSMIX . 136
GSMOVE . 137
GSMRKS . 138
GSMS . 138
GSMSC . 138
GSPAT . 139
GSPFLT . 140
GSPLNE . 141
GSPOP . 142
GSPS . 142
GSPUT . 143
GSQAGA . 143
GSQAM . 144
GSQATI . 144

iv GDDM Base Application Programming Reference

 contents

GSQATS . 145
GSQBMX . 145
GSQBND . 146
GSQCA . 146
GSQCB . 146
GSQCBS . 147
GSQCD . 147
GSQCEL . 147
GSQCH . 147
GSQCHO . 148
GSQCLP . 148
GSQCM . 148
GSQCOL . 148
GSQCP . 149
GSQCPG . 149
GSQCS . 149
GSQCUR . 150
GSQFLD . 150
GSQFLW . 150
GSQLID . 151
GSQLOC . 151
GSQLT . 151
GSQLW . 152
GSQMAX . 152
GSQMB . 152
GSQMIX . 153
GSQMS . 153
GSQMSC . 153
GSQNSS . 153
GSQORG . 154
GSQPAT . 154
GSQPIK . 154
GSQPKS . 155
GSQPOS . 155
GSQPRI . 155
GSQPS . 156
GSQSEN . 156
GSQSIM . 157
GSQSS . 157
GSQSSD . 157
GSQSTK . 158
GSQSTR . 159
GSQSVL . 159
GSQTA . 159
GSQTAG . 160
GSQTB . 160
GSQTFM . 161
GSQVIE . 161
GSQWIN . 161
GSREAD . 162
GSRSS . 163
GSSAGA . 164
GSSATI . 165
GSSATS . 166
GSSAVE . 166
GSSCLS . 167
GSSCPY . 168
GSSCT . 168
GSSDEL . 169
GSSEG . 170

GSSEN . 170
GSSINC . 171
GSSORG . 171
GSSPOS . 172
GSSPRI . 172
GSSTFM . 173
GSSVL . 174
GSTA . 175
GSTAG . 176
GSUWIN . 176
GSVECM . 177
GSVIEW . 177
GSWIN . 178
IMACLR . 179
IMACRT . 179
IMADEL . 180
IMAGID . 180
IMAGT . 181
IMAGTE . 182
IMAGTS . 182
IMAPT . 183
IMAPTE . 184
IMAPTS . 184
IMAQRY . 185
IMARES . 186
IMARF . 186
IMARST . 187
IMASAV . 188
IMATRM . 188
IMPCRT . 189
IMPDEL . 189
IMPGID . 189
IMPRST . 190
IMPSAV . 190
IMRBRI . 191
IMRCON . 191
IMRCVB . 192
IMREX . 193
IMREXR . 193
IMRNEG . 194
IMRORN . 194
IMRPL . 195
IMRPLR . 195
IMRRAL . 196
IMRREF . 197
IMRSCL . 197
IMXFER . 198
ISCTL . 199
ISENAB . 200
ISESCA . 201
ISFLD . 201
ISIBOX . 202
ISILOC . 203
ISLDE . 204
ISQBOX . 204
ISQCOM . 205
ISQFLD . 205
ISQFOR . 206
ISQLOC . 206
ISQRES . 207

 Table of contents v

 contents

ISQSCA . 207
ISSE . 208
ISXCTL . 208
MSCPOS . 209
MSDFLD . 210
MSGET . 211
MSPCRT . 211
MSPQRY . 212
MSPUT . 212
MSQADS . 213
MSQFIT . 216
MSQFLD . 216
MSQGRP . 217
MSQMAP . 217
MSQMOD . 218
MSQPOS . 218
MSREAD . 219
PSDSS . 219
PSLSS . 220
PSLSSC . 221
PSQSS . 222
PSRSS . 222
PSRSV . 223
PTNCRT . 223
PTNDEL . 224
PTNMOD . 225
PTNQRY . 225
PTNQUN . 226
PTNSEL . 226
PTSCRT . 227
PTSDEL . 228
PTSQPI . 228
PTSQPN . 228
PTSQPP . 229
PTSQRY . 229
PTSQUN . 230
PTSSEL . 230
PTSSPP . 230
SPINIT . 231
SPMXMP . 231
SSQF . 232
SSREAD . 232
SSWRT . 233
WSCRT . 233
WSDEL . 234
WSIO . 235
WSMOD . 235
WSQRY . 236
WSQUN . 237
WSQWI . 237
WSQWN . 237
WSQWP . 238
WSSEL . 238
WSSWP . 239

Chapter 4. Device variations 241
Operator windows, partitions, primary, alternate, and

dual screens . 241
Operator windows 241
Partitions . 241

Primary and alternate screen sizes 241
Dual screen devices 241
Dual screen size 241

Device-specific saved pictures 242
GDF saved as 2-byte integers 242
ADMSAVE files . 242

Screen redraw . 242
Graphics primitives outside segments 242

Programmed symbol sets (PS) and graphics text . . . 242
Character mode 1 (hardware character sets) 242
Character mode 2 (image symbol sets) 243
PS stores and device cell-size dimensions 243
FSCHEK call . 243

Alphanumerics . 245
Alphanumeric field attributes 245
Double-byte character sets (DBCS) 245
3278–52 . 245
Alphanumeric colors 245

Graphics colors . 245
Color mixing . 246

Foreground color mix mode 246
Combinations of foreground and background mix

modes . 246
Graphics line types and widths 247

Line types (GSLT) 247
Line widths (GSFLW and GSLW) 247

Graphics area shading 247
Graphics image . 247
Graphics logical input devices 247

Choice devices . 247
Locator devices (GSILOC) 247
Pick devices (GSIPIK) 248
Stroke devices (GSISTK) 248
String devices (GSISTR) 249

Image . 249

Chapter 5. APL request codes module 251
The address table . 251
The request code table 251
GDDM Base APL codes, in numeric order 252

Chapter 6. GDDM-REXX programming interface . . 255
GDDM-REXX commands, subcommands, and utilities . 255

Summary . 255
Syntax conventions 255

GDDMREXX command 255
GDDMREXX INIT 255
GDDMREXX TERM 256
GDDMREXX VERSION 256

GXGET subcommand 256
GXGET AAB . 256
GXGET CDT . 256
GXGET LASTMSG 256
GXGET MSG . 257
GXGET NAMES 257
GXGET TRACE 257

GXSET subcommand 257
GXSET AAB . 257
GXSET MSADS 257
GXSET MSG . 257

vi GDDM Base Application Programming Reference

 contents

GXSET MSVARS 258
GXSET TRACE 258

GDDM calls . 258
ERXMSVAR EXEC 258

Chapter 7. Symbol sets 261
How GDDM handles symbol sets 261

Loading programmed symbol stores 261
PS store numbers 261
Symbol-set identification 261
Using preloaded PS sets 262
Selecting symbol sets by device type 262
Using PS with graphics 262
Loading graphics symbol sets 262
PS overflow caused by picture complexity 263
Using symbol sets in printing 263
Using DBCS symbol sets 264

Naming conventions for sample image symbol sets . . 264
Sample image symbol sets 265
Sample vector symbol sets 265
Illustrations of vector typefaces 267

Chapter 8. Symbol set formats 275
Image symbol set component format 276
Vector symbol set component format 277

Chapter 9. GDDM object file formats 279
Record structure . 279

The record identification field 279
The header record information field 279
Data records . 279

Chapter 10. GDF order descriptions 281
Compatibility . 281
Saving GDF orders 281
Format of GDF objects 282
Coordinates and aspect ratio 282

GDF orders: summary 282
General structure . 283

Order formats . 283
Padding . 283
Primitives . 283
Attributes . 285

GDF orders: full descriptions 285
Arc . 286
Arc parameters . 286
Area . 286
Background color mix 286
Call segment . 287
Character angle 287
Character box . 287
Character box spacing 287
Character direction 288
Character precision 288
Character set . 288
Character shear 288
Character string 289
Color . 289
Comment . 290
Current position 290

End area . 291
Fillet . 291
Foreground color mix 291
Fractional line width 292
Full arc . 292
Image – begin . 292
Image – data . 293
Image – end . 293
Line . 293
Line type . 294
Line width . 294
Marker . 294
Marker box . 294
Marker scale . 295
Marker type . 295
Model transform 295
Pattern . 296
Pick (tag) identifier 296
Pop . 296
Process specific control 296
Relative line . 297
Segment attribute 297
Segment attribute modify 297
Segment characteristics 298
Segment end . 298
Segment end prolog 298
Segment position 298
Segment start . 299
Segment viewing window 300
Text alignment . 300

Process specific control orders (PSC) 300
Symbol-set PSC orders 301

Begin symbol-set mapping 301
Map symbol-set identifier 301
End symbol-set mapping 302

Picture prolog . 302
Begin picture prolog 302
End picture prolog 302
Set default arc parameters 302
Set default background mix 302
Set default character angle 302
Set default character box 303
Set default character-box spacing 303
Set default character direction 303
Set default character precision 304
Set default character set 304
Set default character shear 304
Set default coordinate type 304
Set default extended color 305
Set default foreground mix 305
Set default fractional line width 305
Set default line type 306
Set default marker box 306
Set default marker type 306
Set default pattern 306
Set default pick identifier 307
Set default picture scale 307
Set default text alignment 307
Set default viewing window 308
Set picture boundary 308

 Table of contents vii

 contents

Set picture origin 309

Chapter 11. Image file formats 311
Formats and compression types 311

3193 data stream and page printer formats 311
Unformatted data 311

Chapter 12. Picture interchange format files 315
Processing PIF files under TSO 315

The conversion operation 315
The transfer operation 315
Commands to use under TSO 316
The format of a PIF file 317

Processing PIF files under VM/CMS 317
The conversion operation 317
The transfer operation 317
Commands to use under VM/CMS 318
The format of a PIF file 319

Creating PIF data under GDDM 319
Creating PIF data at a workstation 319
How PIF data relates to GDF data 319
Base PIF . 320

Restrictions and considerations 320
The structure of a PIF file 320

Chapter 13. Computer Graphics Metafiles 323
Application program calls 323

CGLOAD . 323
CGSAVE . 324

Utility programs . 324
ADMUCG . 324
ADMUGC . 325
SEND and RECEIVE 327

External defaults . 327
CGM file format . 327
National language code pages 328
Conversion profiles 329

Format of a conversion profile 329
Picture mapping information 329

GDF order processing (CGSAVE call) 339
CGM order processing (CGLOAD call) 340

| Chapter 14. Graphics Interchange Format (GIF) files 343
| GIF file structure . 343
| ADMUGIF . 343
| Keyword parameters 343
| Invoking ADMUGIF under VM/CMS 344
| Invoking ADMUGIF under MVS/TSO 344
| For both VM/CMS and MVS/TSO 345

Chapter 15. Format of a Composite Document
Presentation Data Stream 347

Document structure 347
Structured fields . 348
Summary of structured fields 348
Structured field formats 349
AFPDS structured fields supported by the CDPU . . . 356

Summary of AFPDS structured fields supported by
the CDPU . 356

Chapter 16. Application data structure for mapping 357
Adjunct fields . 357

COBOL example 358
Assembler language example 358
PL/I example . 358
Adjunct field names 358
Adjunct values . 358

Character attributes 363
Setting character attributes from the terminal 364

Designator characters for light-pen or cursor selection . 364
Map-defined input editing 365

AID translation . 365
Folding . 365
Justification and padding 365

Copying the application data structure into the program . 366
Overlaying application data areas 366

Double-byte character string fields 366
Mixed double-byte and single-byte character fields in

maps . 367
GDDM-supplied mapping constants 367

Chapter 17. GDDM high-performance
alphanumerics . 369

HPA data structure 369
The field list . 369
The data buffer . 372
The bundle list . 373
How to use high-performance alphanumerics 375

Chapter 18. External defaults 379
GDDM’s default values 379

Changing GDDM’s default values 379
External defaults: format 379
Alphabetical list of GDDM external defaults 384

Chapter 19. Processing options 395
Processing options 395

Processing options: format 395
Processing options: full descriptions 396

Chapter 20. Name-lists 415
Reserved names “*” and blanks 415
Family-1 name-list . 415
CICS name-list . 415
VSE/Batch name-list 416
IMS name-list . 416
TSO name-list . 416
MVS/Batch name-list 417
VM name-list . 418

Chapter 21. Device characteristics tokens 421
Creating your own device tokens 421
Device tokens for ASCII graphics displays 421
GDDM-supplied device tokens 421

Chapter 22. Special-purpose programming in
GDDM . 431

Using the system programmer interface 431
Initialization . 431
The system programmer interface block 432

viii GDDM Base Application Programming Reference

 figures

Format of the system programmer interface block . . 432
Specifying user exits 432

Exit values . 433
GDDM user-exit conventions 433
The task switch exit 434
The call intercept exit 435
The coordination exit 436
Storage exit routines – interface specifications . . . 437

Call format descriptor module 438
The address table 438
The call descriptor table 438
The parameter descriptor table 440

Glossary . 443

Index . 457

 Figures

1. GDDM default EBCDIC character codes (code
page 00351) 49

2. Katakana character codes (Tables 32772, 32792,
and 32793) (code page 00290) 49

3. Japan (Latin) extended character codes (code
page 01027) 50

4. Character angle and mode-2 text positioning
(GSCA) . 100

5. Character direction (GSCD) 104
6. Character shear (GSCH) 105
7. How an ellipse is drawn (GSELPS) 118
8. Sample geometric shading patterns (GSPAT) . . 140
9. GDDM-defined shading patterns (GSPAT) . . . 141

10. Curved fillets (GSPFLT) 141
11. Text box enclosing rotated characters (GSQTB) 160

12. Example of how a viewport is defined (GSVIEW) 178
13. Structure returned from MSQADS 214
14. GDF file conversion – format 1 to format 2 . . . 281
15. Accepted data streams (3193DSF and PPF) . . 312
16. IMAGT data streams from GDDM 313
17. GDF file conversion procedure under TSO . . . 316
18. GDF file conversion procedure under VM/CMS . 318
19. The structure of a PIF file 321
20. Example of a conversion profile. 328

| 21. CGM color_mapping keyword 334
| 22. Character-height and character-width factors for
| conversion of fonts between ADMGDF and CGM
| formats. . 338

23. Field list array 370
24. The bundle list array 374

 Table of contents ix

 figures

x GDDM Base Application Programming Reference

 tables

 Tables

1. Example color “mix” mode table (GSMIX) 136
2. Results of exclusive-OR mode (GSMIX) 137
3. Device classes for GDDM Interactive Map

Definition (MSPCRT) 212
4. Device cell-size dimensions 243
5. Triggering keys for locator and pick devices . . 248
6. APL request codes module – address table . . . 251
7. APL request codes module – request code table 251
8. GDDM Base APL codes, in numeric order . . . 252
9. PS store number and PS key relationship 261

10. Cell sizes for sample image symbol sets 264
11. Sample image symbol sets 265
12. Sample vector symbol sets 265
13. Symbol-set definition format 275
14. Image symbol set component format 276
15. Vector symbol set component format 277
16. GDDM object types 279
17. GDDM stored object file format 279
18. GDDM stored object — record identification field

format . 279
19. GDDM stored object — header record information

field format . 279
20. Summary of GDF orders in order of code values 282
21. Alphabetic summary of GDF order codes and

usage . 284
22. Numeric list of Symbol-set process specific

control orders. 301
23. Numeric list of Picture prolog process specific

control orders. 301
24. Valid combinations of format and compression . 311

| 25. GDDM-supplied conversion profiles for conversion
| of data between ADMGDF and CGM formats. . 323

26. Picture Mapping Keywords 329
27. Conversion default values 330
28. Color Table created by CGSAVE/ADMUGC . . . 330
29. Keyword Defaults 331

| 30. CGM color_mapping parameter 332
| 31. GDDM colors used for CGM interpretation . . . 332

32. GDF patterns and CGM mapping 335

33. GDDM-supplied conversion profiles 338
34. CGM test patterns for conversion profile creation 338
35. GDF order processing 339
36. CGM order processing 340
37. Structured fields in code order 348
38. Structured fields in alphabetic order 348
39. Format of bar code data 349
40. AFPDS structured fields supported by the CDPU 356
41. Adjunct field naming conventions 358
42. Values used in adjunct fields 359
43. Character attribute types and values 364

| 44. GDDM mapping constants tables 367
45. GDDM external defaults 379
46. Summary of processing options and nickname

keywords . 395
47. GDDM-supplied device tokens 421
48. GDDM-supplied device tokens for Kanji devices,

and 3290 displays (family 1) 425
49. GDDM-supplied device tokens for support of

ASCII devices (family 1) 426
| 50. GDDM-supplied device tokens for nonqueriable
| displays and printers (family 1) 426

51. GDDM-supplied device tokens for GDDM-PCLK
displays, printers, and plotters (family 1) 427

52. GDDM-supplied device tokens for system printers
(family 3) . 428

53. GDDM-supplied device tokens for cell-based
AFPDS page printers (family 4) 428

| 54. GDDM-supplied device tokens for PostScript
| printers (family 4) 429

55. GDDM-supplied device tokens for page printers
(family-4) . 430

56. SPIB format 432
57. GDDM exits — options 433
58. Call format descriptor module – address table . 438
59. Call format descriptor module – call descriptor

table . 439
60. Call format descriptor module – parameter

descriptor table 441

 Copyright IBM Corp. 1980, 1996 xi

 tables

xii GDDM Base Application Programming Reference

 notices

 Notices

The following paragraph does not apply to any country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow dis-
claimer of express or implied warranties in certain trans-
actions, therefore this statement may not apply to you.
References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these avail-
able in all countries in which IBM operates. Any reference to
an IBM product, program, or service is not intended to state
or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent product, program, or
service that does not infringe any of the intellectual property
rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of oper-
ation in conjunction with other products, except those
expressly designated by IBM, is the user’s responsibility.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of infor-
mation between independently created programs and other
programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact Labo-
ratory Counsel, Mail Point 151, IBM United Kingdom Labora-
tories, Hursley Park, Winchester, Hampshire SO21 2JN,
England. Such information may be available, subject to
appropriate terms and conditions, including in some cases,
payment of a fee.

IBM may have patents or pending patent applications cov-
ering subject matter in this document. The furnishing of this
document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director
of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, U.S.A.

Programming interface information

This book is intended to help you program the IBM Graphical
Data Display Manager (GDDM). This book primarily docu-
ments General-use Programming Interface and Associated
Guidance Information provided by GDDM.

General-use programming interfaces allow the customer to
write programs that obtain the services of GDDM.

However, this book also documents Product-sensitive Pro-
gramming Interface and Associated Guidance Information
provided by GDDM.

Product-sensitive programming interfaces allow the customer
installation to perform tasks such as diagnosing, modifying,
monitoring, repairing, tailoring, or tuning of GDDM. Use of
such interfaces creates dependencies on the detailed design
or implementation of the IBM software product. Product-
sensitive programming interfaces should be used only for
these specialized purposes. Because of their dependencies
on detailed design and implementation, it is expected that
programs written to such interfaces may need to be changed
in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated
Guidance Information is identified where it occurs, either by
an introductory statement to a chapter or section or by the
following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated
Guidance Information...

End of Product-sensitive programming interface

Trademarks and service marks

The following terms, used in this publication, are trademarks
or service marks of IBM Corporation in the United States
and/or other countries:

 APL2
 CICS
 GDDM
 graPHIGS
 IBM

| OS/390
 Personal System/2
 PS/2
 System/370

The following terms, used in this publication are trademarks
of other companies:

Corel Draw Software Publishing Corporation
DEC Digital Equipment Corporation

 Freelance Plus Lotus Corporation
Harvard Graphics Corel Systems Corporation

 HELVETICA Allied Corporation
 Micrografx Designer Micrografx Inc.
 Tektronix Tektronix Inc.
 TIMES Allied Corporation

PC Direct is a trademark of Ziff Communications Company
and is used by IBM Corporation under license.

 Copyright IBM Corp. 1980, 1996 xiii

 notices

UNIX is a registered trademark in the United States and
other countries licensed exclusively through X/Open
Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows and the Windows 95 Logo are trade-
marks or registered trademarks of Microsoft Corporation.

xiv GDDM Base Application Programming Reference

 preface

 Preface

What this book is about

The GDDM Base Application Programming Reference book
provides the reference information that is needed to program

| with the IBM GDDM Version 3 Release 2 series of products,
| and with GDDM/MVS as an element of OS/390.

Who this book is for

This book is for application programmers who use GDDM.

What you need to know

You must have some knowledge of programming and
systems terminology, and some familiarity with this release of
GDDM, to understand what task your application program is
trying to perform.

How to use this book

This book contains introductory and conceptual information
that can be read sequentially. It also contains descriptions of
the calls in alphabetical order. If you know the function of a
call but not its name, refer to Chapter 2, “A summary of the
calls by function” on page 13.

 Terminology used

Throughout this book, these conventions are used:

GDDM
The unqualified term “GDDM” means the GDDM Base
product, unless otherwise stated.

Personal computer (or PC), personal computer system,
or workstation.
These terms refer to any member of the IBM Personal Com-
puter family, including the Personal System/2 (PS/2) family,
unless otherwise stated.

3270-PC/G and 3270-PC/GX
References to these devices also refer to the 3270-PC AT/G
and the 3270-PC AT/GX, unless otherwise stated.

Terminal
This term means any computer terminal or workstation,
unless otherwise stated.

 Copyright IBM Corp. 1980, 1996 xv

 preface

xvi GDDM Base Application Programming Reference

 changes

Summary of changes

The following major changes have been made for GDDM
3.2:

� The DSFRCE, FSGET, FSGETE, and FSGETS calls
have been added. See Chapter 3, “The GDDM calls”
on page 21.

� New symbol sets are supported. See Chapter 7,
“Symbol sets” on page 261.

� The information in Chapter 13, “Computer Graphics
Metafiles” on page 323 has been enhanced.

� Information on graphics interchange format (GIF) files
has been added. See Chapter 14, “Graphics Inter-
change Format (GIF) files” on page 343.

� The FRCETYPE processing option has been added.
See Chapter 19, “Processing options” on page 395.

� New device tokens are supported. See Chapter 21,
“Device characteristics tokens” on page 421.

Summary of changes for GDDM 3.1

The GDDM Base Application Programming Reference book
replaces the former GDDM Base Programming Reference (in
two volumes). The order and contents of chapters have
been rearranged to provide logical groupings of information.
Descriptive material has been moved to other books in the
library, while reference material has been concentrated in
this book. Changes in individual chapters include:

� The “GDDM programming interface” chapter now
includes information on the interface to REXX, which
was formerly contained in the GDDM-REXX Guide,
SC33-0478.

� A new chapter on “Device variations” has been added.
This chapter summarizes, for each broad group of
GDDM functions, the devices or groups of devices that
do not conform to the general description of the function.

� The “APL request codes module” chapter is confined to
a list in numerical order of the GDDM Base APL codes.

� A new chapter on “GDDM-REXX programming interface”
has been added from material formerly contained in the
GDDM-REXX Guide, SC33-0478.

� Illustrations of vector typefaces have been taken from
the former GDDM Typefaces and Shading Patterns,
SC33-0554 and added to the “Symbol-set formats and
files” chapter.

� The tables of external defaults for each sub-system in
the “External defaults” chapter have been consolidated
into a single table.

� Information on the Call format descriptor module has
been merged with Chapter 22, Special-purpose pro-
gramming in GDDM.

� Presentation of devices tokens has been improved.

� Descriptions of the C/370 interface and of two new pro-
gramming calls, DSCOPY and ESQUNS, have been
added.

 Copyright IBM Corp. 1980, 1996 xvii

This softcopy-only edition corrects references to Hong Kong and Taiwan.

 changes

xviii GDDM Base Application Programming Reference

 GDDM latest � bibliography

More GDDM information

| For up-to-date information on GDDM products, check our Home Page on the Internet at the
| following URL:

| http://www.hursley.ibm.com/gddm/

| You might also like to look at the IBM Software Home Page at:

| http://www.software.ibm.com

 GDDM publications

| GDDM/MVS is an element of OS/390. GDDM-REXX/MVS and GDDM-PGF are optional fea-
| tures of OS/390. For a complete list of the publications associated with OS/390, see the
| OS/390 Information Roadmap, GC28-1727.

GDDM
Base

GDDM Base Application Programming Guide, SC33-0867
GDDM Base Application Programming Reference, SC33-0868
GDDM Diagnosis, SC33-0870
GDDM General Information, GC33-0866

| GDDM/MVS Program Directory, GC33-1801
| GDDM/VM Program Directory, GC33-1802
| GDDM/VSE Program Directory, GC33-1803

GDDM Messages, SC33-0869
GDDM Series Licensed Program Specifications, GC33-0876
GDDM System Customization and Administration, SC33-0871
GDDM User's Guide, SC33-0875
GDDM Using the Image Symbol Editor, SC33-0920

GDDM-GKS GDDM-GKS Programming Guide and Reference, SC33-0334

GDDM-IMD GDDM Interactive Map Definition, SC33-0338

GDDM-IVU GDDM Image View Utility, SC33-0479

GDDM-PGF GDDM-PGF Application Programming Guide, SC33-0913

GDDM-PGF Programming Reference, SC33-0333
GDDM-PGF Interactive Chart Utility, SC33-0328
GDDM-PGF Vector Symbol Editor, SC33-0330

| GDDM-PGF OPS User's Guide, SC33-1776

 Copyright IBM Corp. 1980, 1996 xix

 bibliography

Books from related libraries

You might need to refer to some of these books, in addition to those from the GDDM libraries:

AFPDS AFPDS Data Stream Reference, S544-3202

APL2 APL2 Installation and Customization under CMS, SH21-1062
APL2 Installation and Customization under TSO, SH21-1055
APL2 Messages and Codes, SH21-1059
APL2 Diagnosis, LY27-9601

CICS/ESA 4.1 System Definition Guide, SC33-1164
Operations and Utilities Guide, SC33-1167
Resource Definition Guide, SC33-1166

CICS/ESA 3.3 System Definition Guide, SC33-0664
Operations Guide, SC33-0668
Resource Definition (Online), SC33-0666
Resource Definition (Macro), SC33-0667

CICS/VSE 2.1, 2.2, 2.3 System Definition and Operations Guide, SC33-0706
Resource Definition (Online), SC33-0708
Resource Definition (Macro), SC33-0709

Composed Document
Printing Facility (CDPF)

Installation and Operations, SC33-6135

DOS DOS 5.00 User’s Guide and Reference, Z84F-9779

GDDM/graPHIGS Installing GDDM/graPHIGS, SC33-8101
Understanding graPHIGS, SC33-8102
Messages and Error Codes for graPHIGS, SC33-8105
Problem Diagnosis for graPHIGS, SC33-8108

GOCA Graphics Object Content Architecture Reference, SC31-6804

IBM-GL IBM-GL Programming Manual (Graphics Language) for the IBM 6182, 6184, 6185, 6186,
and 6187 Color Plotters, SH23-0092.

IOCA Image Object Content Architecture Reference, SC31-6805

IPDS Intelligent Printer Data Stream Reference, GA34-2082
IBM 3812 and 3816 Page Printers: IPDS Handbook, GA34-2082

| IBM 3112 Page Printer and IBM 3116 Page Printer User’s Guide, G544-5253
| IBM 3912 and 3916 Page Printers Handbook, S544-3901

JES/328X JES/328X Print Facility Program Description and Operations Manual, SH20-7174

MO:DCA Mixed Object Document Content Architecture Reference, SC31-6802

MVS MVS/XA Initialization and Tuning Guide, GC28-1149
MVS/XA Supervisor Services and Macro Instructions, GC28-1154

Networking Network Program Products Samples: VM SNA, SC30-3309

Operating System/2 Use the following generic titles that apply to the level of OS/2 you are using:

OS/2 Information and Planning Guide
OS/2 System Administrator’s Guide for Communications
OS/2 Getting Started
OS/2 User’s Guide
OS/2 EHLLAPI Programming Reference

Print Services Facility System Programmer’s Guide for MVS, SH35-0091
System Programmer’s Guide for VM, S544-3511
System Programmer’s Guide for VSE, S544-3103
Data Stream Reference, PSF/VM, PSF/MVS, PSF/VSE, and OS/400, S544-3202

PTOCA Presentation Text Object Content Architecture Reference, SC31-6803

xx GDDM Base Application Programming Reference

 bibliography

TSO APL2 Installation and Customization under TSO, SH20-9222
MVS/XA TSO Guide to Writing a Terminal Monitor Program or a Command Processor,
GC28-1295

VM/ESA VM/ESA CP Planning and Administration, SC24-5521
VM/ESA CMS Planning and Administration, SC24-5445
VM/ESA Procedures Language VM/REXX Reference, SC24-5466
VM/ESA CP Command and Utilities Reference, SC24-5519
VM/ESA CMS Command Reference, SC24-5461

VSAM Using VSE/VSAM Commands and Macros, SC24-5144
VSE/VSAM Messages and Codes, SC24-5146

 MVS/XA VSAM Catalog Administration Access Method Services Reference, GC26-4136

VSE/ESA VSE/ESA Planning, SC33-6503
VSE/ESA Installation, SC33-6504
VSE/ESA System Control Statements, SC33-6513

3117 scanner IBM 3117 Scanner and IBM 3117 PC Adapter Guide to Operations, GA18-2477
IBM 3117 Scanner and Extension Unit Guide to Operations, GA18-2478
IBM 3117 Scanner Hardware Maintenance and Service, SY18-2159
IBM 3117 Scanner Technical Reference, SC18-2105

3118 scanner Scanner Guide to Operations, GA18-2475
High Speed Adapter Guide to Operations, GA18-2476
IBM 3118 Scanner Hardware Maintenance and Service, SY18-2158
High Speed Adapter Hardware Maintenance and Service, SY18-2167
Scanner Technical Reference, SC18-2104
High Speed Adapter Technical Reference, SC18-2117

3174 establishment con-
troller

Data Stream Programmer’s Reference, GA23-0059
Functional Description, GA23-0218
Terminal User’s Reference for Expanded Functions, GA23-0332
Planning Guide Configuration Support B Release 2, GA27-3862

3179-G, 3192-G 3179-G and 3192-G Color Graphics Display Station Description, GA18-2589

3193 display station Description, GA18-2364
Setup Instructions, GA18-2366
Operator’s Guide, GA18-2365
Problem Solving Quick Check Guide, GA18-2443
Problem Solving Guide, GA18-2444

3270-family devices 3270 Information Display System Configurator, GA27-2849
3270 Information Display System Data Stream Programmer’s Reference, GA23-0059
8775 Display Terminal: Component Description, GA33-3044

3270-PC/G and
3270-PC/GX workstations

IBM 3270 Information Display System: Color and Programmed Symbols, GA33-3056
Introducing the IBM 3270 Personal Computer/G and /GX Ranges of Workstations,
GA33-3157
3270-PC/G Personal Computer/G and /GX Ranges of Workstations; Planning Guide,
GA33-3158
3270-PC/G Guide to Operations, SA33-3155
3270-PC/GX Guide to Operations, SA33-3156

3274 control unit 3274 Control Unit Description and Programmer’s Guide, GA23-0061
3274 Control Unit Planning, Setup and Customization Guide, GA27-2827

3472-G display 3472-G User’s Guide, GA18-7026

3812 printer IPDS NDS Attachment Feature Installation and Programming Instructions, S544-3101
Guide to Operations, S544-3267

3816 page printer IBM 3816 Page Printer Operating Instructions, GA34-2075

3820 page printer IBM 3820 Page Printer Operator’s Guide, S544-3080
IBM 3820 Page Printer Reference Manual, S544-3175

 More GDDM information xxi

 bibliography

3825 page printer 3825 Page Printer Operator’s Guide, G544-3481
3825 Page Printer Product Description, G544-3482

3827 page printer 3827 Page Printer Operator’s Guide, G544-3189
3827 Page Printer Product Description, G544-3194

3828 advanced function
MICR printer

IBM 3828 Advanced Function MICR Printer Operator’s Guide , S544-3360
IBM 3828 Advanced Function MICR Printer Product Description, S544-3361

3835 page printer 3835 Page Printer Product Description, G544-3498
3835 Page Printer Operator’s Guide, G544-3208

3900 advanced function
printer

IBM 3900 Advanced Function Printer Product Description, GA32-0135
IBM 3900 Advanced Function Printer Operator’s Guide, GA37-0210

4028 printer IBM LaserPrinter 4028 Introduction and Planning Guide, S544-4258
IBM LaserPrinter 4028 IPDS Handbook, S544-4260
3270 Programming Guide and Reference Manual for the IBM LaserPrinter 4028 Model
NS1, S544-4262
IBM LaserPrinter 4028 Model NS1 Guide to Operations, S544-4263

4224 printer Printer Product and Programming Description Manual, GC31-2551
Operating Instructions, GC31-2546
Guide to Operations, GC31-3621

4230 printer 4230 Models 102/202 Printer Product and Programming Description, GC40-1701
4230 Models 102/202 User’s Guide, SA40-0564
4230 Models 102/202 Operator’s Panel Instructions, SA40-0565

4234 printer 4234-11,12,13 Product Description and Programming Manual, GC31-3879
4234-11 Operating Instructions, GC31-3736

4250 printer Operator’s Guide, GA33-1551

5550 multistation (available
in Japanese only)

5550 Japanese 3270-PC User’s Guide, N:SC18-2059
How To Use 5550 Japanese 3270-PC, N:SC18-2060
5550 Japanese 3270-PC/G User’s Guide, N:SC18-2071
How To Use 5550 Japanese 3270-PC/G, N:SC18-2072
5550 Small Cluster User’s Guide, N:SC18-2092
How To Use 5550 Small Cluster, N:SC18-2091
5550 Small Cluster/Graphics User’s Guide, N:SC18-2107
How To Use 5550 Small Cluster/Graphics, N:SC18-2108
5550 3270 Kanji Emulation Description, N:SC18-2020
5550 3270 Kanji Emulation Operator’s Guide, N:SC18-2021

| 6180 color plotter| Guide to Operations, GA66-0500

| 6182 color plotter| Guide to Operations, SA37-0100

6186 plotter Guide to Operations, SH23-0093

6187 plotter Guide to Operations, SH52-0279

xxii GDDM Base Application Programming Reference

 programming interface

Chapter 1. GDDM programming interface

This chapter explains:

� The external programming interfaces to GDDM that are
available, and how to use them

� The syntax conventions for coding GDDM calls

� The types of data that are required for parameters in the
calls

 � Programming-language-dependent considerations.

Access to the GDDM functions by the application program is
by GDDM interface modules that are link-edited or loaded
with the program. The interface modules convert call state-
ments in the program to a standard internal interface to
invoke the GDDM functions. This makes GDDM itself inde-
pendent of the subsystem being used, and allows the use of
three different application interfaces:

Nonreentrant interface
This is the standard interface for most application programs
that use GDDM and do not require any special processing.
Quasi-reentrancy (as defined by CICS) can be achieved
using this interface.

Reentrant interface
This allows the programs using GDDM to be made reentrant
with the advantages that reentrancy provides; that is, the
ability of the program to be used by more than one user at
the same time.

System programmer interface
This is provided for programmers who intend to use GDDM
as the basis for a graphics system of their own. It enables
GDDM functions to be written in a coded form, it gives
greater control over the subsystem environment, and it
allows more programming flexibility.

Notes:

1. An application program using the nonreentrant interface
cannot use either of the other interfaces.

2. An application program can use the reentrant and
system programmer interfaces interchangeably.

The nonreentrant interface

The nonreentrant interface applies to application programs
that need not be reentrant; for example, a program written in
FORTRAN.

Each CALL statement takes the form:

CALL ffffff (parameter,...)

where ffffff and the parameters are the appropriate GDDM
call name and parameters as described in Chapter 3, “The
GDDM calls” on page 21.

On return to the program, all registers except Register 15 are
restored to their entry values. The top (high-order) half of
Register 15 is set to one of these error severity codes:

 0 Normal
 4 Warning
 8 Error
12 Severe error
16 Irrecoverable error.

The bottom (low-order) half of Register 15 contains the error
code identifying the particular response.

Additional error feedback information can be obtained by
using the GDDM FSQERR call or by using an error exit
specified in the FSEXIT call. These calls are described in
Chapter 3, “The GDDM calls” on page 21 and in the GDDM
Base Application Programming Guide.

Under CICS, the nonreentrant form of interface is usable only
if specific extra actions are taken to make the program quasi-
reentrant (as defined by CICS). These actions are described
in the GDDM Base Application Programming Guide. Subject
to these considerations, this form of interface actually has
quasi-reentrant characteristics.

The reentrant interface

Application programs requiring reentrancy can use another
form of the CALL statement:

CALL ffffff (aab, parameter,...)

where ffffff and the parameters are as described for the
nonreentrant interface, and aab (application anchor block) is
an application-provided, word-aligned control block of this
format:

Offset Length Name Description

0 8 AAB Application Anchor Block
0 4 AABFC GDDM feedback code
0 2 AABSC GDDM severity code
2 2 AABEC GDDM error code
4 4 AABAP GDDM anchor pointer

When using this interface, the application program must
provide the storage for the application anchor block (at least
8 bytes for the use of GDDM). The program is free to
extend the application anchor block for other uses (typically,
to provide for passing information to an error exit routine).

The GDDM anchor pointer (AABAP) is set by the GDDM
Application Interface Component at initialization, and identi-
fies the GDDM instance being addressed. It is reset to zero
on termination. This pointer helps GDDM’s reentrancy, and
is used by GDDM to retain storage across activations.

The severity code (AABSC) is set to the error severity code
(see above) on return to the application, and the error code

 Copyright IBM Corp. 1980, 1996 1

 programming interface

(AABEC) identifies the particular response. As for the
nonreentrant interface, more error information can be
obtained by using the FSQERR and FSEXIT calls.

Reentrancy of the GDDM invocation is determined by the
reentrant properties of the application anchor block. If the
application anchor block is in reentrant storage, GDDM is
reentrant. If the application anchor block is in quasi-reentrant
storage, GDDM is quasi-reentrant.

If the application program is modular, and reentrant use of
GDDM from several modules is required, each such module
must have access to the application anchor block. For
example, the program can pass the application anchor block
as a parameter across its module calls. Alternatively, under
a subsystem such as CICS, quasi-reentrancy can be
achieved by locating the application anchor block in the
application program’s transaction work area (TWA).

The system programmer interface

The system programmer interface is a special interface avail-
able to “system programming” types of applications. It is
available only in reentrant form, and shares many features
with the reentrant interface.

Each call takes the form:

CALL ADMASP (aab, rcp, parameters,...)

where ADMASP is the defined system programmer interface
entry point, aab is as defined for the reentrant interface, rcp

is the request control parameter (defined below), and
parameters are the parameters for the function specified in
the request control parameter.

The request control parameter (RCP) is a 4-byte, fullword-
aligned function code defining the GDDM function to be
called. For a definition of the format of the RCP address
table, call description table, and parameter description table
for GDDM calls, see Chapter 22, “Special-purpose program-
ming in GDDM” on page 431. The GDDM request control
parameter code is given, in both hexadecimal and decimal
format, for each GDDM call listed and described in
Chapter 3, “The GDDM calls” on page 21.

ADMASP is a single entry point resolved by the GDDM inter-
face modules that are link-edited or loaded with the applica-
tion. The use of the application anchor block is as described
for the reentrant interface. Calls to the system programmer
and reentrant interfaces may be mixed, if the same applica-
tion anchor block is passed on each call.

In the simplest case, the system programmer interface
merely provides a means of accessing a GDDM function by
a function code (the RCP) rather than by selecting an entry
point. Assembler-language macros defining mnemonics for
these function codes are provided.

This interface provides an alternative initialization function
(SPINIT) that allows control of environmental aspects. For

more information on the system programmer interface, see
Chapter 22, “Special-purpose programming in GDDM” on
page 431. A summary list of RCP codes for GDDM (and
GDDM-PGF) is given in the GDDM Diagnosis book.

Application programming language
considerations

This section provides information about the application pro-
gramming languages supported by GDDM, which are as
follows:

 � APL
 � Assembler
 � BASIC
 � C
 � COBOL
 � FORTRAN
 � PL/I
 � REXX

 APL

GDDM supports APL2. The APL2 Programming: System
Services Reference manual, describes AP 126 (the GDDM
Auxiliary Processor).

In Chapter 3, “The GDDM calls” on page 21, the APL code
that corresponds to the name of a GDDM call is given within
the description of the syntax for that call. Also, the APL
codes with the call names are listed in numerical order in
Chapter 5, “APL request codes module” on page 251.

The GDDM Auxiliary Processor, AP 126, manages requests
from an APL program. To use it, follow this procedure:

1. Offer to share a pair of variables with AP 126 to be used
as control and data variables. The control variable
name must begin with CTL, and the data variable name
must begin with DAT. If names longer than three char-
acters are used for these variables, the names must be
identical after the third character and must be no longer
than 11 characters.

2. Check that the degree of coupling returned is two for
each variable.

3. If the call requires any character data, use an APL spec-
ification statement to assign the data to the data vari-
able.

4. Assign to the control variable the request code for the
GDDM call to be issued, along with any required
numeric parameters.

5. Ensure that the request has completed successfully by
referencing the control variable; 0 is returned as the first
element of the control variable if the request was suc-
cessful. The second and third elements are the severity
level and error codes for the GDDM call. These will also
be 0 if the request was successful. The fourth and fifth
elements are the lengths of the numeric and character

2 GDDM Base Application Programming Reference

 programming interface

data returned, respectively. Any numeric data returned
by the call is given after the fifth element. Any character
data returned is given in the data variable.

For example, to share a pair of variables called CTL126 and
DAT126 with AP 126, then issue the GSCOL call to select
color 4:

If you are using APL2, Version 1 Release 3 or later, you can
use the GDMX function. This function allows the name of
the GDDM call to be used directly, rather than the numeric
code that AP 126 requires. It performs all the necessary
return code checking. Here is the same example using
GDMX:

Note: GDDM is automatically initialized and terminated by
APL2. No explicit FSINIT or FSTERM calls are needed to
start and stop usage of GDDM by AP 126.

 Assembler language
In Assembler language, linkage is performed according to the
usual operating system (OS) conventions:

1. Register 1 points to the address list containing the
parameter addresses. The high-order bit must be set in
the last word. If no parameters are to be passed, Reg-
ister 1 must contain the value 0 or must point to a
fullword of value 0 with the high-order bit set.

2. Register 13 points to a register save area of at least 72
bytes (18 fullwords).

3. Register 14 points to the return point in the application
program.

4. Immediately before a call to GDDM, Register 15 points
to the entry point with the name “callname.” On return
from a call to GDDM, the top half of register 15 contains
the error severity code; the bottom half contains the
error number.

5. A branch to “callname” is performed.

Parameters must be declared as:

Fullword integer F-constant
Halfword integer H-constant
Floating-point E-constant
Character C-constant
Array Contiguous fullwords or halfwords
Structures Use the appropriate storage mapping.

In Assembler language, linkage can be performed using the
OS CALL macro, coded with the VL option. For example:

 CALL ASFCOL,(ID,COLOR),VL

ID DC F'1'

COLOR DC F'3'

Note: Calls with no parameters must be coded in this form
to ensure that register 1 is set correctly:

CALL FSINIT,(ð),VL

 BASIC (IBM)

A call interface to GDDM is provided by IBM BASIC. The
first argument to the CALL GDDM command is the request
control parameter code; for example:

1ðð ASDFLD=2ð1852672

11ð CALL GDDM (ASDFLD,2,3ð,44,1,1,ð)

More information on using IBM BASIC with GDDM is given in
the publications for IBM BASIC.

 C

In C/370 you must declare each GDDM function as using OS
linkage. To do this, use the pragma linkage preprocessor
directive. For example:

 #pragma linkage(fsinit,OS)

Declarations for the functions can also be provided which
detail parameter types. For example, when using the
nonreentrant interface:

 extern int gsline(float x,float y);

When using the reentrant interface:

 extern int gsline(char aab[], float x, float y);

Header files containing linkage directives and function decla-
rations for GDDM functions are provided on the GDDM
installation tape. Files with names of the form ADMUCINx
are for use with the nonreentrant interface. Sets with names
of the form ADMUCIRx are for use with the reentrant inter-
face.

 Chapter 1. GDDM programming interface 3

 programming interface

The functions are grouped in the header files by name, as
follows:

To include these header files in a C/370 program, use
include statements. For example:

 #include <admucina.h>

 #include <admucinf.h>

 #include <admucing.h>

All calls from the system programmer’s interface are made
using the admasp function. This can be made available in
C/370 programs by using the linkage convention. For
example:

 #pragma linkage(admasp,OS)

The header files contain sample declarations for the types
used in GDDM functions. Specifying the types allows for a
check for mismatched types at compilation. If possible, the
types specified are converted to the type required by the
compiler.

Declaring variables: This section describes how to
declare variables to match the function declarations used in
the header files.

Parameters as described for each function should be
declared as follows:

Fullword integer Int

Halfword integer Short

Floating point Float

Character Array of type char

Array of n-byte character tokens
Two-dimensional array of type char

Arrays Use a one-dimensional of the type speci-
fied.

Structures Use appropriate storage mapping.

For example:

Fullword integers, halfword integers, and floating point
values

Specified by user:

 int n=2;

 gscol(n);

Returned by GDDM:

 int n;

 gscol(&n);

or

 int \n;

 gscol(n);

Note: To receive values returned by GDDM, the parameter
should be an address. To ensure this, either use the
address(&) operator, or declare the variable to be used as a
pointer(*).

Array of fullword integers:

 int array[1ð];

 apqids(1,1ð,array);

Note: Because array is a pointer to the first element in the
array of fullword integers, it can be used in the same way for
parameters specified by the user and returned by GDDM.

Character : Parameters described as being of type
'character' should be declared as char xxx[n], where xxx is
the name of the variable, and n is the number of characters it
is to contain. For example:

 char string[7];

 strncpy(string,"EXAMPLE",7);

 gschar(1ð.ð,1ð.ð,7,string);

The strncpy function is used to avoid adding the NULL char-
acter to the variable string. C uses the NULL character to
delimit strings.

Parameters described as 'an array of n byte character
tokens' should be declared as char xxx[a][n], where xxx is
the variable name, n is the number of bytes in each char-
acter token, and a is the number of such tokens required.
For example:

 char nlist[2][8];

 strncpy(nlist[ð],"\ ",8);

 strncpy(nlist[1],"ADMPLOT ",8);

This example initializes a variable nlist. This could be used
for the name list parameter on a dsopen call, to open a
directly attached plotter. The source strings are padded to 8
characters with blanks. This is to avoid the NULL character
being placed anywhere in the target string. Because all the
character variables are arrays, they are passed in the same
way, whether they are values specified by the user or
returned by GDDM.

Structures : Some parameters to GDDM calls can use
structures to split information into separate fields. The appli-

Nonreentrant
use

Reentrant use Calls starting ...

ADMUCINA ADMUCIRA A

ADMUCIND ADMUCIRD D

ADMUCINE ADMUCIRE E

ADMUCINF ADMUCIRF F

ADMUCING ADMUCIRG G

ADMUCINI ADMUCIRI I

ADMUCINK ADMUCIRK CD and CG

ADMUCINM ADMUCIRM M

ADMUCINP ADMUCIRP P

ADMUCINS ADMUCIRS S

ADMUCINW ADMUCIRW W

4 GDDM Base Application Programming Reference

 programming interface

cation anchor block parameter, which is used on all reentrant
calls, is an example of this. It can be declared as a structure
of the following form:

 struct {

 int feedback;

 int \anchor;

 } aab;

The header file ADMTSTRC.H is provided with sample type
definitions for structures used in GDDM calls. These types
are as follows:

Admaab (Application anchor block)
The first parameter passed to all REENTRANT
application calls.

Admccs (Chart control structure)
Used for the chart_control parameter in the
CHART call.

Admers (Error record structure)
The structure returned by GDDM from the
FSQERR call. It is also passed to any user-
specified error exit defined by the FSEXIT call.

Admspib (Spib block)
The structure used in the SPINIT call, to initialize
the System Programmer’s Application Call Inter-
face.

You can declare a variable to be any of these types. The
variable can then be passed directly to the functions using it,
by first ‘casting’ the type to be that expected by the call.
Alternatively, a union operator can be used to map the struc-
ture to the same area of memory as a variable of the type
expected by the function. The following examples show both
ways of using the structures.

In the following example, the variable error is cast to be of
the type expected by the function. The address operator (&)
is used because the parameter (error) is being returned by
GDDM.

 Admers error;

 fsqerr(16ð,(char \)&error);

In the following example, the function is passed a variable of
the type it expects. Use of the union operator has ensured
that the structure begins at the same place in memory as the
variable. Because of this, the elements in the structure will
be set on return from the fsqerr call.

 union {

 Admers error;

 char str[16ð];

 } u;

 fsqerr(16ð,u.str);

The address of the error record structure is also passed by
GDDM to an error exit specified by means of the fsexit func-
tion. The sample Admers type can also be used to declare
the parameters to the error exit function. The following
example shows a possible declaration for such a function:

 void err_exit(Admers \ers);

Casting must be used to specify this function in the fsexit
function. For example:

 fsexit((int)&err_exit,8);

 COBOL

The call format for COBOL is as follows:

CALL 'callname' USING parameter-1,parameter-2,

 ...parameter-n.

For example,

MOVE 1 TO ID.

MOVE 3 TO COLOR.

CALL 'ASFCOL' USING ID,COLOR.

Parameters must be declared as:

Fullword integer PICTURE S9(8) COMPUTATIONAL or
equivalent

Halfword integer PICTURE S9(4) COMPUTATIONAL or
equivalent

Floating-point COMPUTATIONAL-1
Character PICTURE X (n)
Arrays The OCCURS clause.
Structure ð1 structure-name.

COPY mapname.

 FORTRAN

Versions of the VS FORTRAN compiler earlier than Release
3.0 cause extra parameters to be generated for character
items in CALL statements, when the LANGLVL(77) compiler
option is in effect; GDDM does not accept these extra
parameters. Therefore, to prevent these extra parameters
being generated, the SC compiler option must be specified.

The current release of VS FORTRAN does not generate
these extra parameters, and so the SC compiler option is not
required.

Parameters must be declared as:

Fullword integer INTEGERñ4
Halfword integer INTEGERñ2
Floating-point REALñ4
Character String literals or numeric data array initial-

ized with string literals
Arrays A one-dimensional array. (You can use a

multidimensional array if it causes the
correct storage mapping. FORTRAN
arrays are stored in column-major order.)

Structures No FORTRAN application data structure is
generated by GDDM-IMD.

For example:

CALL FSINIT

CALL GSSEG (ð)

 Chapter 1. GDDM programming interface 5

 programming interface

 PL/I

In PL/I, it is necessary to declare each GDDM function used
as an external entry; for example:

when using the nonreentrant interface:

DECLARE FSREST ENTRY (FIXED BINARY (31))

EXTERNAL OPTIONS (ASM,INTER);

when using the reentrant interface:

DECLARE FSREST ENTRY (\,FIXED BINARY (31))

EXTERNAL OPTIONS (ASM,INTER);

when using the system programmer interface:

DECLARE ADMASP EXTERNAL ENTRY OPTIONS (ASM,INTER);

Some data sets of PL/I DECLARE statements for GDDM
functions are provided on the GDDM installation tape. Data
sets with names of the form ADMUPINx are for use with the
nonreentrant interface, and data sets with names of the form
ADMUPIRx are for use with the reentrant interface. These
data sets are provided:

Nonreentrant use Reentrant use Calls starting...

ADMUPINA ADMUPIRA A
ADMUPIND ADMUPIRD D
ADMUPINE ADMUPIRE E
ADMUPINF ADMUPIRF F
ADMUPING ADMUPIRG G
ADMUPINI ADMUPIRI I
ADMUPINK ADMUPIRK CD and CG
ADMUPINM ADMUPIRM M
ADMUPINP ADMUPIRP P
ADMUPINS ADMUPIRS S
ADMUPINW ADMUPIRW W

All these data sets can be incorporated into a PL/I program
by %INCLUDE statements, for example:

%INCLUDE SYSLIB(ADMUPINA);

%INCLUDE SYSLIB(ADMUPING);

%INCLUDE SYSLIB(ADMUPINF);

For compatibility with programs written for GDDM Version 1
Release 1 or Release 2, two other data sets of PL/I declara-
tions are provided. Each of these data sets contains PL/I
declarations for all the GDDM functions that are available in
Release 2. These data sets do not include the new functions
that have been available since Version 1 Release 2. The
data sets are:

ADMUPLNB All Version 1 Release 2 functions (for
nonreentrant use)

ADMUPLRB All Version 1 Release 2 functions (for reen-
trant use).

Note: These data sets contain sample declarations for the
GDDM functions. These declarations have parameter
descriptions that match exactly the parameter specifications
in the descriptions of the call statements. The declarations
allow a check at compilation that parameters have been cor-
rectly declared, and, if necessary, automatic conversion by
dummy parameters.

You can modify the parameter descriptors in these data sets
to allow more flexibility in the declarations, but you must be
aware that checking or conversion may not occur if this is
done.

Where a parameter of a GDDM function is listed as an array,
the sample declarations assume that the array is one-
dimensional. You can change the declaration of the array
parameter while still maintaining the same storage mapping.
For example, the sample declaration of the ASDFMT call for
nonreentrant use is:

DECLARE ASDFMT ENTRY (BIN FIXED(31),

 BIN FIXED(31),

(\) BIN FIXED(31) CONN)

EXTERNAL OPTIONS (ASM,INTER);

The declaration and call for this definition would be:

DECLARE A(15) BIN FIXED(31);

CALL ASDFMT(3,5,A);

If you want, you could redefine the declaration of ASDFMT
as:

DECLARE ASDFMT ENTRY (BIN FIXED(31),

 BIN FIXED(31),

(\,\) BIN FIXED(31) CONN)

EXTERNAL OPTIONS (ASM,INTER);

The declaration and call for this definition would be:

DECLARE A(5,3) BIN FIXED(31);

CALL ASDFMT(3,5,A);

Parameters must be declared as:

Fullword integer FIXED BINARY(31)
Halfword integer FIXED BINARY(15)
Floating point FLOAT DECIMAL (6)
Character CHARACTER(n)

Note: Must not be VARYING.
Arrays A one-dimensional array. (You can use a

multidimensional array if it causes the
correct storage mapping. PL/I arrays are
usually stored in row-major order.)

Structures DECLARE 1 structure-name

%INCLUDE mapname;

 REXX

GDDM Base is available to programs written in REXX. You
can use any of the GDDM calls, except as noted in
“Restrictions” on page 10 and “Differences” on page 10.

GDDM call syntax: In GDDM-REXX, a GDDM call takes
the form of the call name followed by a list of parameters.
Parameters are separated by blanks both from the call name
and from other parameters. Parts of the call can be
enclosed in either single or double quotes to prevent proc-
essing by REXX.

6 GDDM Base Application Programming Reference

 programming interface

Methods of passing parameters: Parameters may be
REXX variable names or literal values. When parameters
are variables, they must be preceded by a period (.).

/\ variables \/

'GSLINE .x .y'

/\ constants \/

'GSLINE 1ð 2ð'

/\ mixture of variables and constants \/

'GSLINE .x 2ð'

/\ variable character string \/

'ASCPUT .id .length .words'

/\ constant character string \/

'ASCPUT 1 5 "Hello"'

The parameters passed can be any type of REXX variable;
the correct conversion will be made to the type required by
GDDM-REXX.

Note that you cannot pass a variable that contains a string of
parameters. For example, you cannot use

parmstring='1ð 2ð'; 'GSLINE .parmstring'

Values that can be passed: The values passed can
either be integer, floating point, or string. Strings may be of
variable length or of fixed length. Fixed-length strings are
sometimes called tokens. Values allowed are shown below.

Integer
Range from –2**31 to 2**31–1. Floating point and a
decimal point are allowed provided any fractional digits are
zero. Take care with negative values. Include quotes
'GSCOL -1' or parentheses if outside quotes 'GSCOL' (-1).
Note that the REXX NUMERIC DIGITS instruction has no
effect on the range.
Examples: 1 21 1234 -1

Float
Floating point or decimal notation. Maximum and
minimum restricted to System/370 short floating point form.
However, GDDM graphics calls limit values to a smaller
range (absolute values of nonzero parameters in the range
1.0E–18 to 1.0E18).
Examples: 1.3 1e+3 1E-3 1.ðe3

Strings (fixed length)
Most are names of GDDM objects and should be coded in
uppercase. GDDM does not recognize the lowercase ver-
sions.
Example: ADMUUKSF

Strings (variable length)
Enclosed in double quotes or single quotes. If GDDM
calls are in single quotes (as advised), double quotes
should be used. If you want a quote displayed or printed,
use it twice if it is already used as a string delimiter.
Examples: "String" 'string' 'don''t'

"He said, ""Don't"""

Types of parameters: Parameters must be either
scalars (a single value) or arrays (a list of values with defined
dimensions).

Strings: GDDM-REXX lets you pass a character string
that contains DBCS (double-byte character set) characters.
They must be between Shift-out and Shift-in (SO/SI)
brackets. (SO = X'0E' and SI = X'0F'.) It is an error if an
unmatched SO occurs in a string.

Under certain circumstances, strings or token parameters
may be entered without quotes. However, you are recom-
mended to enclose strings and token parameters in quotes in
all cases. Parsing can be interrupted if you omit required
quotes.

The following example shows strings containing special char-
acters enclosed in matching quotes.

/\ string containing blanks \/

s = 'a b c'

'GSCHAR 3ð 5ð 5' s

/\ "s" is evaluated - the command \/

/\ passed to GDDM after evaluation\/

/\ is 'GSCHAR 3ð 5ð 5 a b c' \/

/\ which has too many parameters \/

Character strings that contain blanks or DBCS characters
can be passed in variables without the need for any special
GDDM-REXX string delimiters. However, the system inter-
preter requires an OPTIONS ETMODE statement before the
SO/SI characters in literal strings or comment statements.

Passing array parameters: Array parameters can be
passed in the following ways:

1. Using a REXX stemmed variable. The array will be
taken from the member .1 or .1.1 (and so on).

xarray.1=1ð; xarray.2=2ð /\ and so on \/

yarray.1=1ð /\ and so on \/

/\ Note dot after stemmed name \/

'GSPLNE 3 .xarray. .yarray.'

2. Using a prefix. REXX variables of the form prefix1 ,
prefix2 , for one dimension and prefix1.1 , prefix1.2 for
two dimensions will be looked for and their values used.
The variables with these new names are formed into a
list and passed as an array to GDDM. For example:

vx1=1ð; vx2=8; vx3=5 /\ and so on \/

'GSPLNE 3 .vx .vy'

is passed to GDDM as

'GSPLNE 3 (.vx1 .vx2 .vx3) (.vy1 .vy2 .vy3)'

3. Enumerated between parentheses. For example:

bot=5; mid=25

/\ each member \/

/\ enumerated in parentheses \/

'GSPLNE 3 (1ð 2ð .bot)(2ð .mid 3ð)'

or, for a two-dimensional array:

'CHBAR 3 2 ((1ð 4ð) (2ð 5ð) (3ð 6ð))'

 Chapter 1. GDDM programming interface 7

 programming interface

4. By stem or prefix names in parentheses; these represent
columns in a two-dimensional array. For example:

b.1=1ð; c.1=4ð

b.2=2ð; c.2=5ð

b.3=3ð; c.3=6ð

/\ dimensioned values placed in \/

/\ parentheses when required \/

/\ array needs more dimensions \/

'CHBAR 3 2 (.b. .c.)'

Note that this works only for columns, not for rows. The
listed values to achieve the same results would be either
of these forms:

'CHBAR 3 2 ((.b.1 .c.1) (.b.2 .c.2) (.b.3 .c .3))'

'CHBAR 3 2 ((1ð 4ð) (2ð 5ð) (3ð 6ð))'

The method of handling parameters that do not exactly
match the specifications varies according to the type of
parameters. All mismatches not described below are treated
as errors.

Parameters that are too short: The method of han-
dling parameters that are too short varies according to the
type of parameters. All mismatches not described below are
treated as errors.

Strings
Padded with blanks to the required length. This may be the
length specified in the call or, for tokens, the length specified
by GDDM.
Too few array elements
Extra members are generated. If the array is a stemmed
variable, the REXX variables are searched for, and it is an
error if they do not exist. If the array is an enumerated list,
extra values are added as necessary. They are zero for
floating point and integer parameters, and blanks for strings
and tokens.
Too few array dimensions
The item is rescanned to produce the correct number of
dimensions. If the array is a stemmed variable, the neces-
sary suffixed names are generated, and it is an error if they
do not exist. If the array is an enumerated list, additional
values are generated using the following rules:

1. If the size of the missing dimension is explicitly given,
the list will be scanned this number of times. If an indi-
vidual list entry is a value, that value will be reused. For
example:

/\ vector used twice \/

'ASDFMT 2 . (1 2 3 4 5 6)'

becomes

'ASDFMT 2 6 ((1 2 3 4 5 6) (1 2 3 4 5 6))'

If it is a variable, it is suffixed:

/\ extra dimension with suffixes \/

'ASDFMT 1 6 (.f .r 3 4 5 6)'

is processed as

'ASDFMT 1 6 ((.f1 .r1 3 4 5 6))'

2. If the size of the missing dimension is not explicitly
given, that dimension is defaulted to 1, and the result is
a 1-by-n array. For example:

/\ 1-by-6 array generated \/

'ASDFMT . . (1 2 3 4 5 6)'

becomes

'ASDFMT 1 6 ((1 2 3 4 5 6))'

3. If the list is of two dimensions less than required, the list
is scanned the required number of times to produce, for
each of the required number of rows, the values in the
columns. If the entry is a literal value it is reused. For
example:

/\ rescanning gives 2-by-6 array \/

'ASDFMT 2 6 1'

becomes

'ASDFMT 2 6 ((1 1 1 1 1 1) (1 1 1 1 1 1))'

Omission of either size parameter defaults to the value
1.

Parameters that are too long: The method of handling
parameters that are too long varies according to the type of
parameters. All mismatches not described below are treated
as errors.

Strings
Truncated to the required length, with an error message.
Too many array elements
Extra members are ignored.
Too many array dimensions
This is treated as an error and a message is given.

Omitting parameters: Parameters can be replaced by
dots if they are:

1. Returned values not required by the program.

/\ omit returned values \/

'ASREAD . . .'

2. Lengths that GDDM-REXX can discover from your input.

/\ omit length you are passing \/

'ASCPUT 1 . "Hello"'

3. Array dimensions that GDDM-REXX can discover from
your input.

/\ omit array defining counts \/

'CHBAR . . ((1 2) (3 4) (5 6))'

If two or more parameters depend on an omitted length or
count value, the first one from which the value can be deter-
mined is used, and subsequent parameters are processed
with this “discovered” value.

Finding syntax from reference sources: The param-
eter syntax of GDDM calls can be found by use of the
sample program ERXPROTO or in the GDDM programming
reference manuals or summaries.

8 GDDM Base Application Programming Reference

 programming interface

Interdependent parameters, array dimensions,
string lengths: Many GDDM calls have interdependent
parameters where earlier lengths and counts describe the
lengths of strings and count of elements in arrays. These
calls are described in Chapter 3, “The GDDM calls” on
page 21

GSCHAR(x,y,length,string)

where length is the length of the string; and

GSPLNE(count,xarray,yarray)

where count is the number of elements in each of the two
arrays.

Where there is one such dependency, the length is the
length of the string, or the count is the number of elements in
the array.

Where there are two dependencies, strings are given in a
one-dimensional array of strings of the given length; numbers
are given in a two-dimensional array, with the first count
specifying the number of groups and the second specifying
the number of elements in each group.

CHXLAB(count,length,text)

text is an array of count strings each of the number of char-
acters in length.

CHBAR(components,count,y-values)

y-values is a two-dimensional array with components rows
and count columns.

This is shown explicitly for GDDM Base, for GDDM-PGF, and
for GDDM-GKS in the relevant reference manuals. The
same information is available from the ERXPROTO EXEC.

/\ ERXPROTO forms for the two \/

/\ calls described above \/

'CHXLAB cnt1 len2 char.cnt1.len2'

'CHBAR cnt1 cnt2 float.cnt1.cnt2'

Parameter syntax in ERXPROTO: ERXPROTO
produces output as a string consisting of the callname and
the types of parameters in this form:

'callname type type'

Examples of the form that the type parameter may take are:

cnt x
Counts used as array dimensions. The number x is the posi-
tion of the parameter within the string. For example, cnt2 is
the second parameter in the string.

lenx
Lengths of character strings. The number x is the position of
the parameter within the string. For example, char3 is the
third parameter in the string.

float
Floating point parameter.

.float
The dot that precedes it means that this floating point param-
eter is returned by GDDM.

intg
Integer parameter.

intg.cnt1.cnt2
An integer array of dimensions given by the cnt1 and cnt2
parameters – see below for rules to deduce dimensions and
sizes.

float. x
A floating point array of constant dimension x.

char.len x
Character string parameter of length given by the lenx
parameter.

char. x
Character string parameter of constant length x.

For some examples of output of the ERXPROTO program,
see below.

Here is a set of rules that let you produce valid calls from the
ERXPROTO syntax.

1. Look for cnt values that are array dimensions, and cal-
culate the values you will need for them.

/\ two sets so two dimensions \/

/\ in example cnt1=2,cnt2=3 \/

'CHBAR cnt1 cnt2 float.cnt1.cnt2'

/\ none .len3 is a length \/

'GSCHAR float float len3 char.len3'

'ASREAD .intg .intg .intg' /\ none \/

For a by-name array you would enter values
array.1.1=1ð to array.2.3=6ð (using the values you
needed) and use the parameter .array. (with a closing
dot).

2. Look for any array parameters and work out the correct
dimensions. Array parameters are followed by .cnt x, for
example float.cnt1 . There is one dimension for each
following .cnt x. That means one set of brackets for
each following dot if you are listing the array elements in
the call.

/\ cnt1 and cnt2, two dimensions \/

/\ three (cnt2) elements in each \/

/\ inner parenthesis, two (cnt1) \/

/\ sets of inner parentheses. Two \/

/\ levels of nested parentheses, \/

/\ one for each count \/

'CHBAR 2 3 ((n n n) (n n n))'

/\ no arrays no action \/

'GSCHAR float float len3 char.len3'

'ASREAD .intg .intg .intg' /\ none \/

3. Look for the character strings and fill in the length
values.

/\ Characters are ABCD so length is four \/

'GSCHAR float float 4 "ABCD"'

4. Fill in the float or integer values or variable names.
These are integers where the parameter says intg , any
form of number where it says float , and character
strings where it says char .

 Chapter 1. GDDM programming interface 9

 programming interface

/\ put in array values \/

'CHBAR 2 3 ((3 4 5) (5 6 7)) '

/\ fill in values \/

'GSCHAR 1ð.5 5ð 4 "ABCD"'

/\ fill in all values \/

'ASREAD .type .val .count'

Parameter syntax in the reference manuals: The
reference manuals present GDDM calls using a syntax that
has parentheses around the parameters and commas
between them, for example:

The parameters, name , count1 , opt_array , and count2 are
all defined as specified by the user. Create REXX assign-
ment statements for all these variables and place them
before the GDDM call; for example (using abbreviated vari-
able names):

/\ name of the ADMGDF file to be loaded \/

name='MYGDF'

/\ number of elements in opt_array. \/

cnt1=2

/\ starting segment number to be assigned \/

opta.1=22

/\ accommodate to current window size \/

opta.2=2

/\ return up to 11ð bytes of descriptor \/

cnt2=11ð

The call to a GDDM function can be made in any one of four
ways:

1. Omit the parentheses around the parameters and
replace the commas with blanks:

GSLOAD name cnt1 opta segc cnt2 des

2. Use a valid REXX variable name for each parameter,
optionally using stemmed variable names for array
parameters:

GSLOAD name cnt1 opta. segc cnt2 des

3. Place a period ‘.’ before each parameter name. This
indicates that the parameter is to be passed “by name”:

GSLOAD .name .cnt1 .opta. .segc .cnt2 .des

4. Surround the entire statement with single or double
quotes (this is to ensure that the interpreter passes the
complete call to GDDM-REXX without attempting substi-
tution):

'GSLOAD .name .cnt1 .opta. .segc .cnt2 .des'

After the GSLOAD call is performed, the REXX variables
segc and des will contain the returned by GDDM values.

Dependency between parameters: Rules for deducing
the dependency between string and array parameters are as
follows:

1. Look for any dependencies between parameters – the
parameter names length and count always show
dependencies but they are not the only ones. You must
read the parameter descriptions to be sure.

2. When you have found a dependency, check whether the
item it describes is numerical or a character string.

3. If there is one dependency, it is the number of elements
in a one-dimensional array for numbers, or the length for
a character string.

4. If there is more than one dependency:

For numerical parameters: The number of dependen-
cies specifies the number of dimensions; the first item in
the list becomes the number of elements in the first
dimension, the second item becomes the number of ele-
ments in the second dimension, and so on.
For string parameters: The number of dependencies is
one more than the number of dimensions of the array.
The last dependency is the length of each of the strings
in the array. Prior dependencies specify the number of
elements in each dimension.

Restrictions: The following restrictions apply to the use of
GDDM calls in GDDM-REXX:

CHART: There is no CHART call. Use the CS... calls that
give an improved programming interface to the Interactive
Chart Utility (ICU). (See also the sample ERXCHART
EXEC.)

SPINIT: There is no SPINIT call. GDDM-REXX does not
support programs that explicitly use the GDDM system pro-
grammer interface.

Differences: The following paragraphs describe how
GDDM calls from GDDM-REXX are implemented differently
from calls from other programming languages.

Array parameters: Array parameters are treated more
strictly in GDDM-REXX than they are in other high-level lan-
guages – in particular, arrays must be multi-dimensional
when they describe lists of lists of values. You should be
careful with calls where GDDM-REXX requires an array of
strings, for example, GSPLNE. Other languages may accept
all values concatenated in one string.

FSINIT: This call is not usually required in GDDM-REXX
programs. If you do use it, it initializes a new instance of
GDDM within the instance of GDDM-REXX, thereby making
the program reentrant.

FSTERM: In GDDM-REXX programs, FSTERM is required
only if the program is reentrant. It is used to terminate an
instance of GDDM within the instance of GDDM-REXX.

GSLOAD (name,count1,opt_array,seg_count,count2,
descriptor)

APL code 593
GDDM RCP code X'0C0C1201' (202117633)

10 GDDM Base Application Programming Reference

 programming interface

If you use the GXGET AAB to open multiple instances of
GDDM under the reentrant interface, FSTERM ends an
instance.

Reentrant support: Reentrant support is provided by
means of subcommands that extract and set the anchor
block, rather than by a separate set of reentrant calls. These
subcommands are GXGET AAB and GXSET AAB. They are
described in Chapter 6, “GDDM-REXX programming
interface” on page 255.

Mapping: The ERXMSVAR EXEC, and two subcommands
GXSET MSVARS and GXSET MSADS, are provided so that
maps created with GDDM-IMD can be used in REXX EXECs
through GDDM mapping calls.

Mapping with GDDM-REXX is further described in
“ERXMSVAR EXEC” on page 258.

PA2 as escape to subset: By default in GDDM/VM, PA2
acts as an escape into subset mode. If CMS subset is
entered in this way from a GDDM-REXX EXEC, it is not pos-
sible to use further EXECs that use GDDM-REXX.

PA2 is set by means of the CMSINTRP procopt. Processing
options are discussed in Chapter 19, “Processing options” on
page 395.

Note: Under MVS, PA2 causes a reshow.

GDDM-REXX EXECs in subset mode or invoked from
other programs: If you plan to use GDDM-REXX EXECs
from CMS subset mode, or if your GDDM-REXX EXECs are
likely to be invoked from other programs,

the GDDM-REXX command module should be loaded in the
nucleus with the following command:

 NUCXLOAD GDDMREXX

When the GDDM-REXX exec has run, you can use the
NUCXDROP command to free nucleus storage.

Termination on MVS: On MVS, GDDM-REXX is not auto-
matically terminated when a EXEC ends. The programmer
must ensure that a GDDMREXX TERM command is always
executed before exiting from an EXEC. This includes exits
cause by errors and by attention interrupts by the terminal
user.

 Chapter 1. GDDM programming interface 11

 programming interface

12 GDDM Base Application Programming Reference

 calls by function

Chapter 2. A summary of the calls by function

This chapter provides a summary of the GDDM calls by func-
tion.

For an understanding of the background to programming with
GDDM, and examples of the use of the GDDM calls, see the
GDDM Base Application Programming Guide.

For detailed descriptions of the GDDM Base calls and their
parameters, see Chapter 3, “The GDDM calls” on page 21.

Types of functions

The GDDM functions are described under the following
headings in this chapter:

� Control functions : used for starting (initializing) and
stopping (terminating) GDDM processing, for controlling
device input/output, and for providing some general ser-
vices.

� Copy functions : used for copying (or sending) the con-
tents of the current page, a graphics field, or an image
field to a device other than the primary device.

� Device functions : used for describing a device to
GDDM, and for querying the device characteristics.

� Graphics functions : used for creating, displaying and
modifying pictures. The pictures are built up from
graphics primitives such as lines, arcs, and symbols
from previously defined symbol sets. In addition to
general graphics functions, two distinct sub-groups of
functions can be identified:

– Graphics segment functions : used for defining
segments and handling their attributes.

– Interactive graphics functions : used for obtaining
input from the operator by means of a logical input
device.

� High-performance alphanumeric functions : used for
defining, modifying, and deleting alphanumeric fields by
means of field-lists. They are intended for use by appli-
cations that require minimal instruction path length within
GDDM.

� Image functions : used for controlling the capture,
transformation, and display of image data. These
include two sub-groups of functions:

– Image management functions
– Image presentation functions

� Mapped alphanumeric functions : used for controlling
the input and output of data, using maps that have been
created with GDDM Interactive Map Definition.

� Operator window functions : used for controlling oper-
ator windows, which are rectangular subdivisions of a
display device screen that have a different virtual
device appearing in each. Operator windows allow
more than one GDDM application to be run on the
screen while under the control of a task manager, or one
application to run a number of virtual devices sharing the
same screen.

� Page functions : used for creating and deleting pages.
A page is a rectangular area displayed on a device. The
page functions determine how much of the page is dis-
played.

� Partition functions : used for creating and controlling
real and emulated partitions. Several alternative logical
screens, called partition sets , can be created on a
device, but only one partition set may be shown at one
time. Belonging to each partition set are one or more
partitions that are rectangular subdivisions of the
display area.

Partitions are logical subdivisions of the screen. They
can be used by applications for ‘pop up’ windows and
similar constructs.

� Procedural alphanumeric functions : used for defining,
modifying, and deleting alphanumeric fields and their
attributes.

� Symbol set functions : used for passing symbol sets to
and from files, the application program, GDDM storage,
and the display device.

� Utility functions : used for calling GDDM utility pro-
grams from within application programs.

In this chapter, each functional group includes a list of the
calls, in alphabetic order, that are available for each group.
Each list comprises the call name, and a brief description of
that call. The calls used to specify or define parameter
values are listed first, followed by the calls used to query
parameter values.

The syntax of the calls is described in Chapter 3, “The
GDDM calls” on page 21.

Notes:

1. Groups of related calls may usually be identified by the
first two or three characters in the call name.

2. Obsolete calls are omitted from the summary table and
detailed description. A few calls appear more than once
under different headings.

 Copyright IBM Corp. 1980, 1996 13

 calls by function

 Control functions

Initialization and termination

FSINIT (Or one of its aliases) initializes GDDM proc-
essing.

FSRNIT Terminates and reinitializes GDDM processing.
FSTERM Terminates GDDM processing and releases

resources (such as storage).
SPINIT Initializes GDDM using the system programmer

interface. The system programmer interface is
described in detail in Chapter 22, “Special-
purpose programming in GDDM” on page 431.

Specifying device input and output

ASREAD Makes all outstanding changes to the device and
waits for new keyboard input.

| DSFRCE Outputs the current page as a page segment or
| overlay as a member of a partitioned data set.

FSCHEK Checks the complexity of a picture to find out
whether the complexity will cause PS overflow at
the next FSFRCE, ASREAD, GSREAD, or
MSREAD call.

FSENAB Enables or disables input to be entered into the
primary device.

FSFRCE Updates the device to include all changes that
have occurred since the last transmission to the
device.

| FSGETS Initiates retrieval of family-4 output by the appli-
| cation program.
| FSGET Retrieves family-4 output for the application
| program
| FSGETE Ends the retrieval of family-4 output by the appli-
| cation program.

FSREST Causes retransmission of all device data on the
next transmission to the device.

FSSAVE Saves a device-dependent form of the contents
of the current page on auxiliary storage for later
retrieval and display by FSSHOR or FSSHOW.

FSSHOR Gets a specified picture from storage, displays it
and returns the identity of the key used to termi-
nate the display.

FSSHOW Gets a specified picture from storage and dis-
plays it.

FSUPDM Controls the way in which graphics data is
updated on a particular device.

GSREAD Returns the next graphics event. If necessary, it
performs all output outstanding, and waits for
input from a graphics logical input device.

MSREAD Displays a map definition created by GDDM-IMD,
waits for an interrupt from the terminal, and
returns data from the map.

Querying device input and output

FSQUPD Queries the way in which graphics data is
updated on a particular device.

 Error handling

FSEXIT Specifies an application program routine to
receive control at the end of a call whose error
return code equals or exceeds a prescribed
value.

FSQERR Returns information about the last GDDM call
whose error severity return code was nonzero.

FSTRCE Controls internal trace functions. It is intended
for diagnosing possible internal errors in GDDM.

Environment control functions

ESACRT Creates an application group.
ESADEL Deletes an application group.
ESAQRY Queries an application group.
ESASEL Selects an application group.
ESEUDS Specifies encoded or source-format user default

specifications that can be used to change
GDDM-provided defaults information for the
application program.

ESLIB Identifies the subsystem libraries to be used to
access or store various types of GDDM data,
such as symbol sets.

ESPCB Identifies the program communication blocks that
can be used by GDDM when the application
program is running under IMS/VS.

ESQCPG Queries the code page of a GDDM object.
ESQEUD Queries the encoded user default specification.
ESQOBJ Queries the existence of a GDDM object on aux-

iliary storage.
ESQUNL Queries the length of nickname information for

the specified family.
ESQUNS Queries the nickname information for the speci-

fied family.
ESSCPG Sets the code page of a GDDM object.
ESSUDS Specifies a single encoded or source-format user

default specification that can be used to change
GDDM-provided defaults information for the
application program.

Querying the GDDM environment

FSQSYS Returns information on the release of GDDM that
has been link-edited with the application
program, the release of GDDM that has been
loaded dynamically, the current GDDM sub-
system environment (indicating CICS, IMS, MVS,
TSO, or CMS), and (in some cases) the sub-
system qualifier.

FSQURY Returns information about the primary device,
including its partition characteristics.

Other control functions

FSALRM Sounds the terminal alarm on the next trans-
mission to the device for the page selected when
FSALRM was called.

FSTRAN Performs code-page conversions on strings in
the user’s storage.

14 GDDM Base Application Programming Reference

 calls by function

 Copy functions
DSCOPY Sends a transformed picture to the alternate

device.
FSCOPY Sends the page to the alternate device.
FSLOG Sends a character string to the alternate device.
FSLOGC Sends a character string with carriage-control

character to the alternate device.
GSARCC Controls whether the aspect ratio is to be pre-

served when a picture is copied to another
device.

GSCOPY Sends graphics to the alternate device.

 Device functions

Specifying device characteristics

DSCLS Closes a device so that it can no longer be used.
DSCMF Sets the User Control function.
DSDROP Stops a device being either primary or alternate.
DSOPEN Opens a device and makes its details known to

GDDM.
DSRNIT Closes and reinitializes a device.
DSUSE Specifies a device as either primary or alternate.

Querying device characteristics

DSQCMF Queries the User Control function.
DSQDEV Returns the characteristics of the device. The

returned data reflects that specified on DSOPEN
together with additional information concerning
the device properties.

DSQUID Returns an unused identifier that may be used on
DSOPEN.

DSQUSE Returns the identifier of the primary or alternate
device.

FSQURY Returns information on the device, partition,
graphics, image, image cursor, and scanner
characteristics of the primary device.

 Graphics functions

Defining the elements in the hierarchy of graphics
objects

GSBND Defines a data boundary.
GSCLP Enables or disables clipping.
GSCLR Deletes all graphics from the graphics field.
GSFLD Defines the graphics field. The default is the

entire page.
GSPS Defines the picture space. The default is the

entire graphics field.
GSUWIN Defines a uniform graphics window such that the

aspect ratio of the current viewport is preserved.
GSVIEW Defines the current viewport. The default is the

entire picture space.
GSWIN Defines the current graphics window. The defi-

nition is used for all later graphics operations
until it is redefined.

Querying the elements in the hierarchy of graphics
objects

GSQBND Returns the current data boundary definition.
GSQCEL Returns the default graphics cell size in current

window units.
GSQCLP Returns the current clipping state.
GSQCUR Returns the cursor position within the current

window.
GSQFLD Returns the position and size of the graphics

field.
GSQPS Returns the current picture space definition.
GSQVIE Returns the current viewport definition.
GSQWIN Returns the current window definition.

Specifying attributes of graphics primitives

GSAM Sets the attribute mode. If attributes are pre-
served, they may be restored by a call to
GSPOP.

GSBMIX Controls the way that the background color of a
primitive is combined with the color of any primi-
tive that it overlaps (background color-mix mode).

GSCA Specifies a direction angle for the baseline of
character strings. Ignored for mode-1 characters.

GSCB Specifies the character-box size. Ignored for
mode 1; controls spacing for mode 2; controls
character size and spacing for mode 3.

GSCBS Specifies the character-box spacing.
GSCD Specifies the direction at which characters in a

string are to be drawn, relative to the baseline
direction specified by GSCA.

GSCH Specifies the current character shear angle.
Ignored for mode 1. Only affects positioning for
mode 2.

GSCM Specifies the character mode (mode-1, -2, or -3)
to be used for graphics text.

GSCOL Specifies the current color.
GSCS Specifies the identifier of the symbol set to be

used for graphics text.
GSDEFE Ends the definition of drawing defaults.
GSDEFS Starts the definition of drawing defaults.
GSFLW Sets the current line width as a fractional value.
GSLT Sets the current line type.
GSLW Sets the current line width.
GSMB Sets the size of the marker box.
GSMIX Controls the way that the color of a primitive is

combined with any underlying color (foreground
color-mix mode).

GSMS Specifies the current marker symbol to be used.
GSPAT Specifies the current shading pattern.
GSPOP Restores attributes to their previous values if pre-

served by a prior call to GSAM.
GSSCT Specifies the current transform for scaling, shear,

rotation, and displacement of graphics primitives.
GSSEN Sets the mixed string attribute to enable double-

byte (DBCS) and single-byte (SBCS) character
sets to be mixed in the same string in graphics
text.

GSSVL Specifies the segment viewing limits.

 Chapter 2. A summary of the calls by function 15

 calls by function

GSTA Specifies the graphics text alignment. This deter-
mines the positioning of the character box rela-
tive to the character baseline and start point.

Querying graphics primitives attributes and character-
istics

GSQAM Returns the current attribute mode.
GSQBMX Returns the current background color-mixing

mode.
GSQCA Returns the direction angle for the baseline of

character strings.
GSQCB Returns the character-box size.
GSQCBS Returns the character-box spacing.
GSQCD Returns the direction at which characters in a

string are drawn, relative to the baseline.
GSQCH Returns the current character shear angle.
GSQCM Returns the current character mode.
GSQCOL Returns the current color.
GSQCP Returns the current position.
GSQCS Returns the identifier of the symbol set used for

graphics text.
GSQFLW Returns the current fractional line width.
GSQLT Returns the current line type.
GSQLW Returns the current line width.
GSQMB Returns the size of the marker box.
GSQMIX Returns the foreground color-mix mode.
GSQMS Returns the current marker symbol.
GSQPAT Returns the current shading pattern.
GSQSEN Returns the graphics text mixed string attribute.
GSQSVL Returns the segment viewing limits.
GSQTA Returns the current graphics text alignment.
GSQTB Queries details of the graphics text box occupied

by a specified character string.

Drawing graphics primitives

GSARC Draws a circular arc about a specified point,
starting at the current position and subtending a
specified angle.

GSAREA Starts the construction of a shaded area defined
by subsequent line-drawing calls.

GSCHAP Draws a specified character string starting at the
current position.

GSCHAR Draws a specified character string starting at a
specified point. It is equivalent to a call to
GSMOVE followed by a call to GSCHAP.

GSCP Sets the current position to the specified point.
GSELPS Draws an elliptical arc from the current position

to a specified point.
GSENDA Ends the construction of a shaded area.
GSLINE Draws a straight line from the current position to

a specified point.
GSMARK Draws a single marker symbol at a specified

point.
GSMRKS Draws a series of marker symbols at specified

points.
GSMOVE Moves the current position to a specified point,

without drawing.
GSPFLT Draws a curved fillet defined by lines joining

several points.

GSPLNE Draws a sequence of lines, starting at the current
position and passing through a specified set of
points.

GSVECM Combines moves and lines in any order, for a
specified set of points. It is equivalent to a series
of GSMOVE and GSLINE calls.

 Drawing images

GSIMG Draws an image at the current position. An
image is a dot pattern stored as ones and zeros.

GSIMGS Draws a scaled image.

Note: Do not confuse these calls with the image calls (see
page 17), whose names begin with the letter “I.”

Saving and loading the picture

CGSAVE Saves segments or all the graphics data in the
current GDDM page, into a Computer Graphics
Metafile (CGM) on auxiliary storage.

CGLOAD Retrieves a copy of a Computer Graphics
Metafile (CGM) from auxiliary storage and loads
it into the graphics field on the current GDDM
page.

GSGET Gets one record of graphics data from the
current page.

GSGETE Ends the retrieval of graphics data.
GSGETS Starts the retrieval of graphics data.
GSLOAD Retrieves a copy of a graphics data format (GDF)

object from the segment library on auxiliary
storage and loads it into the current GDDM page.

GSPUT Puts graphics data into the current graphics
viewport.

GSSAVE Saves segments or all the graphics data from the
current GDDM page and puts them into the
segment library, as a GDF object, on auxiliary
storage.

Graphics segment functions

Defining graphics segments and handling attributes

GSCALL Calls a segment from within another segment.
GSCLR Deletes all graphics from the graphics field.
GSSAGA Sets or modifies the transform for scaling, shear,

rotation, and displacement of the specified
segment.

GSSATI Sets the initial segment attributes that are used
when subsequent segments are created.

GSSATS Modifies the attributes of the specified segment.
GSSCLS Closes the current segment. No more primitives

may be added to it.
GSSCPY Copies the specified segment into the current

stream of primitives.
GSSCT Specifies the current transform for scaling, shear,

rotation, and displacement of graphics primitives.
GSSDEL Deletes a specified segment.
GSSEG Creates a segment.
GSSINC Copies the primitives of the specified segment

into the current stream of primitives.
GSSORG Sets the position of the origin of the specified

segment.

16 GDDM Base Application Programming Reference

 calls by function

GSSPOS Sets the position of the specified segment.
GSSPRI Changes the order of priority by which segments

are drawn and detected.
GSSTFM Sets or modifies the transformation matrix of a

specified segment.
GSSVL Specifies the segment viewing limits.

Querying graphics segment information

GSQAGA Returns the transform (geometric attributes) of
the specified segment.

GSQATI Returns the initial attributes that are assigned to
segments when they are created.

GSQATS Returns the value of the specified attribute in the
specified segment.

GSQMAX Returns the number of currently defined seg-
ments and the highest segment identification
number.

GSQORG Returns the position of the segment origin of the
specified segment.

GSQPOS Returns the position of the specified segment.
GSQPRI Returns the identity of the segment next in pri-

ority to the specified segment.
GSQTFM Queries the transformation matrix of the specified

segment.

Interactive graphics functions

Picking tagged primitives

GSTAG Sets a tag value for following primitives.

Initializing logical devices

GSENAB Enables and disables a logical input device.
GSILOC Initializes a locator input device and defines the

echo that is seen on the screen.
GSIPIK Initializes a pick input device and defines the

echo that is seen on the screen.
GSISTK Initializes a stroke input device and defines the

echo that is seen on the screen.
GSISTR Initializes a string input device and defines the

echo that is seen on the screen.
GSIDVF Sets an initial floating-point data value. For a

locator device, this value is a coordinate for the
initial positioning of the locator echo. For a pick
device, this value is the pick aperture.

GSIDVI Sets an initial integer data value. For a locator
device, this value is the segment identifier to
used for the locator echo. For a string device,
this value is the initial cursor position.

Input and output functions

GSREAD Updates the graphics screen, waits for, and
returns graphics input.

GSFLSH Clears all items from the graphics input queue.

Interactive graphics query functions

GSCORS Queries (correlates) segment and tag information
for the structure of each tagged primitive in the
current graphics field that intersects a defined
aperture.

GSQCHO Returns choice data from the current input record
presented by the GSREAD call.

GSQLID Returns information about a specified logical
input device.

GSQLOC Returns locator data from the current input record
presented by the GSREAD call.

GSQPIK Returns pick data from the current input record
presented by the GSREAD call.

GSQPKS Returns the pick structure data from the current
input record presented by the GSREAD call.

GSQSIM Returns whether the next record to be returned
by the GSREAD call from the graphics input
queue was produced by the same terminal oper-
ator action as the current record.

GSQSTK Returns stroke data from the current input record.
GSQSTR Returns string data from the current input record.
GSQTAG Returns the current tag value as set by the most

recent GSTAG call.

High-performance alphanumeric functions
APDEF Defines a field list.
APDEL Deletes a field list.
APMOD Modifies a field list.
APQIDS Returns the identifiers of field lists.
APQNUM Returns the number of field lists.
APQRY Returns a field list.
APQSIZ Returns the size of a field list.
APQUID Returns a unique field-list identifier.

 Image functions

 Image management

Specifying image definition

IMACLR Clears a rectangle within an image.
IMACRT Creates an image.
IMADEL Deletes a specified image.
IMAGID Requests and reserves a unique image identifier.
IMARES Sets the resolution attributes of an image.
IMARF Sets the resolution of an image to defined or

undefined.
IMATRM Trims an image down to the size of a specified

rectangle.

Querying image definition

IMAQRY Returns the attributes of an image.

 Transfer operation

IMAGT Retrieves data from an image.
IMAGTE Ends the retrieval of data from an image.
IMAGTS Starts the retrieval of data from an image.
IMAPT Enters data into an image.
IMAPTE Ends data entry into an image.
IMAPTS Starts data entry into an image.
IMARST Restores a completed image from auxiliary

storage.

 Chapter 2. A summary of the calls by function 17

 calls by function

IMASAV Saves an image on auxiliary storage.
IMXFER Transfers data between two images, applying a

projection.

 Projection management

IMPCRT Creates an empty projection.
IMPDEL Deletes a projection.
IMPGID Requests a projection identifier.
IMPRST Restores a projection from auxiliary storage.
IMPSAV Saves a projection on auxiliary storage.

 Transform element

IMREX Defines a rectangular sub-image from a source
image – pixel coordinates.

IMREXR Defines a rectangular sub-image from a source
image – real coordinates.

IMRNEG Negates the pixels of an extracted image.
IMRORN Rotates an extracted image.
IMRPL Places a transformed image into a target image –

pixel coordinates.
IMRPLR Places a transformed image into a target image –

real coordinates.
IMRRAL Sets the current resolution/scaling algorithm.
IMRREF Reflects an extracted image.
IMRSCL Scales an extracted image.

Scanner-related transform element

IMRBRI Defines the brightness of a gray-scale image.
IMRCON Defines the contrast of a gray-scale image.
IMRCVB Converts a gray-scale image to binary.

 Image presentation

Specifying image field and control

ISCTL Sets the image control parameters.
ISFLD Defines the image field.
ISXCTL Sets the image control parameters (extended).

Querying image field

ISQFLD Queries the image field.

 Device input

ISENAB Enables or disables an image cursor.
ISESCA Controls the echoing of a scanner image.
ISIBOX Initializes an image box cursor.
ISILOC Initializes an image locator cursor.
ISLDE Loads paper into a scanner.

Query device characteristics

ISQBOX Queries the image box cursor.
ISQCOM Returns the image compressions supported by

the device.
ISQFOR Returns the image formats supported by the

device.
ISQLOC Returns the image locator cursor.
ISQRES Returns the image resolutions supported by the

device.

ISQSCA Queries the image scanner device.

Mapped alphanumeric functions

 High-level function

MSREAD Displays a map definition created by GDDM-IMD,
waits for an interrupt from the terminal, and
returns data from the map.

Create a page for mapping

MSPCRT Creates a page with specified identification, size,
and associated mapgroup.

Creating and manipulating the data associated with a
mapped field

MSDFLD Creates a mapped field with specified identifica-
tion, position on the page, and associated map.

MSPUT Updates the data in the specified map by passing
the ADS for the map.

MSCPOS Positions the cursor in a field contained within
the map at the next MSPUT call.

MSGET Retrieves data from the specified map by
returning the ADS for the map.

Querying mapping functions

MSPQRY Returns the size of the specified page and the
mapgroup associated with it.

MSQADS Returns a descriptor of the fields that make up
the ADS for a specified map.

MSQFIT Returns the number of times that the specified
map fits into the floating area of the mapgroup
associated with the page.

MSQFLD Returns the size and position of the specified
mapped field.

MSQGRP Returns the size of the page that would be
created by the specified mapgroup and the size
and position of the floating area.

MSQMAP Returns the size and position of the specified
map and the size of the associated ADS.

MSQMOD Returns the identities and ADS lengths of
mapped fields that have been changed after an
ASREAD or GSREAD call.

MSQPOS Returns the position of the cursor in a map.

Operator window functions

 Window processing

WSCRT Creates an operator window.
WSDEL Deletes an operator window.
WSIO Performs windowed device input/output.
WSMOD Modifies the attributes of the current operator

window.
WSSEL Selects an operator window as the current oper-

ator window.
WSSWP Sets or resets the operator window viewing priori-

ties.

18 GDDM Base Application Programming Reference

 calls by function

Querying window characteristics

WSQRY Returns the identity and attributes of the current
operator window.

WSQUN Returns an unused operator window identifier.
WSQWI Returns the operator window identifiers.
WSQWN Returns the number of operator windows.
WSQWP Returns the operator window viewing priorities.

 Page functions

 Page manipulation

FSPCLR Clears all objects and fields from the current
page.

FSPCRT Creates a new page, with specified identifier and
size. The page is empty.

FSPDEL Deletes a specified page.
FSPSEL Selects a specified page, which becomes the

current one, for display or updating.
FSPWIN Sets the origin and size of a page window, or

alters the origin of a page window.

Querying page attributes

FSPQRY Returns the size of a specified page.
FSQCPG Returns the identifier of the current page.
FSQUPG Returns an unused page identifier.
FSQWIN Returns origin and size of the current page

window.

 Partition functions

 Partition sets

PTSCRT Creates a partition set with specified grid and
selection of real or emulated partitions.

PTSDEL Deletes the specified partition set and any parti-
tions within it.

PTSSEL Selects a partition set as the current partition set.

 Partitions

PTNCRT Creates a partition with specified size and posi-
tion.

PTNDEL Deletes the specified partition.
PTNMOD Modifies the attributes of the specified partition.
PTNSEL Selects the specified partition as the current par-

tition.
PTSSPP Sets the partition viewing priorities.

Querying partition and partition sets

PTNQRY Returns the attributes of the current partition.
PTNQUN Returns an unused partition identifier.
PTSQPI Returns the partition identifiers.
PTSQPN Returns the number of partitions.
PTSQPP Returns the partition viewing priorities.
PTSQRY Returns the attributes of the current partition set.
PTSQUN Returns an unused partition-set identifier.

Procedural alphanumeric functions

 Alphanumeric fields

ASDFLD Defines a field with specified identifier, position,
size, and type. Any existing field with the same
identifier is deleted.

ASDFMT Defines a group of alphanumeric fields for the
current page; all existing fields are deleted.

ASFCLR Clears all unprotected fields, all protected fields,
or both, and resets their character attributes to
defaults.

ASRFMT Defines a group of alphanumeric fields for the
current page; existing fields that are not rede-
fined are not deleted.

Specifying or changing field attributes

ASDFLT Sets the default attributes to be used for new
field definitions on the current page.

ASFBDY Defines the outlining (or boundary) for a field.
ASFCOL Sets the field color.
ASFEND Specifies the action to be taken after terminal

input to of each row of a field.
ASFHLT Sets the field highlighting.
ASFIN Specifies the type of null-to-blank conversion to

occur on input to a field.
ASFINT Sets the field intensity.
ASFMOD Defines an alphanumeric field (or fields) as modi-

fied or unmodified.
ASFPSS Sets the symbol set to be used as the primary

symbol set for a field.
ASFOUT Specifies the type of blank-to-null conversion to

occur on output from the field to the device.
ASFSEN Sets the field mixed-string attribute.
ASFTRA Sets the field transparency attribute.
ASFTRN Specifies the set of symbol code translation

tables to be used for a field.
ASFTYP Sets the field type.
ASRATT Sets field attributes for designated existing fields.

Querying field attributes

ASQFLD Returns the attributes of one or more fields.
ASQMAX Returns the number of alphanumeric fields on the

current page, and the maximum field identifier
currently defined.

ASQMOD Returns the identifiers and lengths of modified
fields for the current page.

ASQNMF Returns the number of modified fields for the
current page.

Specifying field contents and character attributes

ASCCOL Sets the colors to be used for individual char-
acter positions in a field.

ASCHLT Sets the highlighting for each character position
in a field.

ASCPUT Fills a specified field with a character string.
ASCSS Sets the symbol-set identifiers to be used for

individual characters in a field.

 Chapter 2. A summary of the calls by function 19

 calls by function

ASMODE Determines whether the terminal operator may
modify character attributes.

Querying field contents and character attributes

ASCGET Returns the character contents of a specified
field.

ASQCOL Returns the current character color attributes of a
field.

ASQHLT Returns the current highlighting for characters in
a field.

ASQLEN Returns the real and effective lengths of the con-
tents of a field.

ASQSS Queries the current symbol-set attributes for
characters in a field.

 Cursor operations

ASFCUR Positions the cursor within the current page or a
specified field.

ASQCUR Queries the current cursor position. This is
returned either in page coordinates or as a posi-
tion within a field.

Defining input/output translation tables

ASDTRN Defines or redefines a set of I/O translation
tables for the current page.

Symbol set functions

Loading symbol sets

GSCPG Specifies a 4250 code page as the current one.
GSDSS Loads a set of symbol set definitions from data

passed by the application program.
GSLSS Loads a symbol set from auxiliary storage.
PSDSS Loads a symbol set into a device programmed

symbol (PS) store from data passed by the appli-
cation program.

PSLSS Loads a symbol set into a device PS store from
auxiliary storage.

PSLSSC Loads a symbol set into a device PS store from
auxiliary storage, the PS store does not already
contain a set with the specified identifier.

Releasing symbol sets

GSRSS Releases a symbol set from GDDM storage.
PSRSS Releases a symbol set from a device PS store.

Reserving or releasing a PS store

PSRSV Reserves or releases a PS store for explicit
control and use by an application program.

Reading or writing a symbol set from or to auxiliary
storage

SSREAD Reads a symbol set from auxiliary storage and
returns it to the application program.

SSWRT Writes a symbol set from application-program
storage to auxiliary storage.

Querying symbol sets

GSQCPG Returns either the name of the current code page
or the name of the code page associated with
the specified symbol set identifier.

GSQCS Returns the current symbol set.
GSQNSS Returns the number of graphics symbol sets cur-

rently loaded.
GSQSS Returns information about all currently loaded

graphics symbol sets.
GSQSSD Returns information about a specific symbol set

that has been loaded by GSDSS or GSLSS.
PSQSS Returns information about the status of device

PS stores.
SSQF Returns information about a specified symbol set

on auxiliary storage.

Utility call functions

CDPU Calls the Composite Document Print Utility from
a user application program.

ISSE Calls the Image Symbol Editor from a user appli-
cation program.

20 GDDM Base Application Programming Reference

 calls � APDEF

Chapter 3. The GDDM calls

This chapter contains descriptions of all GDDM Base calls
and their parameters, in alphabetic order of call name.

Format of the GDDM call descriptions
� The call mnemonic, of up to six characters, shown as a

heading.

� A brief description of the call function.

� The call syntax, with parameters if there are any. For
more information, see the text in “Syntax of GDDM
calls.”

� The APL code, defined in decimal.

� The RCP code, defined in hexadecimal and decimal.

� A description of each parameter. Each parameter is
defined as being specified by the user or returned by
GDDM. Parameters that must be assigned a value by
the user when a call is made are indicated by the phrase
(specified by user). Parameters that receive information
from GDDM are indicated by the phrase (returned by
GDDM).

The data type of each parameter is defined.

Extra information is provided where necessary.

� A more detailed description of the call with references,
for example, to such items as programming techniques,
related GDDM calls, and other documentation.

� A list of the principal errors associated with the call. For
more information, see “Error messages in GDDM calls.”

Syntax of GDDM calls

The syntax shown for the call statements is for the
nonreentrant interface using PL/I or FORTRAN, omitting the
CALL verb, and in the case of PL/I, the line-terminating semi-
colon (;).

The conventions used in presenting the syntax for calls are:

� The call name, one through six characters, is shown in
uppercase.

� The parameter list, if present, is delimited by paren-
theses, and the parameter separator, if there is more
than one parameter, is a comma(,).

� Uppercase words, parentheses, and commas must be
coded exactly as shown.

� Lowercase words should be replaced by arguments
appropriate to the programming language being used.

� The parameters of the call statements are shown sepa-
rated by spaces; these are for purposes of clarity, and
are not required during coding.

Error messages in GDDM calls

All functions produce an error message if the parameter
count is wrong. Also, all functions other than FSINIT and
SPINIT generate an error message if GDDM has not been
initialized. To avoid repetition, these error messages are
listed below, and are not included in the call statement
descriptions.

ADMððð1 U GDDM STORAGE ANCHOR IS INVALID OR HAS NOT

BEEN INITIALIZED

ADMððð3 E INCORRECT NUMBER OF ARGUMENTS (=ð) ON

REENTRANT GDDM CALL

ADMððð4 E INCORRECT NUMBER OF ARGUMENTS (=ð) ON SPI

GDDM CALL

ADMððð5 E INCORRECT NUMBER OF ARGUMENTS (=1) ON SPI

GDDM CALL

ADMððð6 E INCORRECT NUMBER OF ARGUMENTS (=2) ON SPINIT

GDDM CALL

Functions that involve device input/output may produce a
range of error messages, some of them subsystem-
dependent. These error messages are also not included in
the call statement descriptions.

All error messages are explained in detail in the GDDM Mes-
sages manual.

The remainder of this chapter lists and describes the GDDM
Base calls.

Alphabetic list of GDDM calls

 APDEF

 Function

To define a field list.

 Parameters

field-list-id (specified by user) (fullword integer)
The identifier of the new field list. It must be greater than
0, and unique for the current page.

depth-1 (specified by user) (fullword integer)
The number of rows in the new field list array (stored in row
major order). It must be greater than or equal to 1.

APDEF (field-list-id, depth-1, width-1, field-list, length,
data-buffer, depth-2, width-2, bundle-list, mode)

APL code 280
GDDM RCP code X'0C380000' (204996608)

 Copyright IBM Corp. 1980, 1996 21

 APDEL

width-1 (specified by user) (fullword integer)
The number of columns in the new field list array. It must
be greater than or equal to 6.

field-list (specified by user) (an array of halfword integers)
The new field list.

length (specified by user) (fullword integer)
The length of the data buffer. It must be greater than or
equal to 0.

data-buffer (specified by user) (character)
The data buffer to be associated with the field list.

depth-2 (specified by user) (fullword integer)
The number of rows in the new bundle list array (stored in
row major order). It must be greater than or equal to 0.

width-2 (specified by user) (fullword integer)
The number of columns in the new bundle list array. It
must be greater than or equal to 4.

bundle-list (specified by user) (an array of halfword integers)
The bundle list to be associated with the field list.

mode (specified by user) (fullword integer)
The mode of operation. This consists of a set of indicators,
which have these values:

1 Validate
There is to be validation of the parameters, field list, data
buffer, and bundle list.

2 Locate
The field list, data buffer, and bundle list are not copied by
GDDM. The storage they occupy must not be released
until the field list has been deleted, and it must not be
altered except according to the rules described in
Chapter 17, “GDDM high-performance alphanumerics” on
page 369. If this indicator is not set, move mode is
implied.

Note: Locate mode must not be used with interpreted pro-
gramming languages such as REXX.

4 Cursor
The cursor row and cursor column fields in the field list
header are to contain the alphanumeric cursor position.
Only one field list per page may be used for this purpose at
any one time.

If more than one indicator is required, the mode should be
set to the sum of the numbers corresponding to the indica-
tors required.

 Description

Defines a new field list to GDDM. The field list describes a
set of alphanumeric fields on the current page. The new
fields must not overlap each other, or any existing fields in
other field lists on the same page.

Field lists may not be defined on mapped pages or pages
containing procedural alphanumerics. Similarly, procedural
or mapped alphanumeric fields may not be defined on pages
containing field lists.

The format of field list, data buffer, and bundle list are
described in Chapter 17, “GDDM high-performance
alphanumerics” on page 369.

Note: When used under non-XA subsystems of CICS, the
total storage occupied by the field list, data buffer, and
bundle list must not be greater than 64KB.

 Principal errors

ADMð222 E MODE n IS INVALID

ADM3ððð E CURRENT PAGE IS MAPPED OR HAS PROCEDURAL

ALPHANUMERICS

ADM3ðð1 E FIELD LIST n ALREADY EXISTS

ADM3ðð2 E FIELD LIST IDENTIFIER n IS INVALID

ADM3ðð3 E LENGTH (n) IS INVALID

ADM3ðð6 E CURSOR POSITION ALREADY DEFINED IN ANOTHER

FIELD LIST

ADM3ðð9 E DEPTH (n1) OR WIDTH (n2) IS INVALID

ADM3ð13 E FIELD LIST n TOTAL STORAGE EXCEEDS SUBSYSTEM

MAXIMUM

 APDEL

 Function

To delete a field list.

 Parameters

field-list-id (specified by user) (fullword integer)
The identifier of the field list to be deleted.

 Description

Deletes a field list.

 Principal errors

ADM3ðð2 E FIELD LIST IDENTIFIER n IS INVALID

ADM3ðð8 E FIELD LIST n DOES NOT EXIST

 APMOD

 Function

To modify a field list.

APDEL (field-list-id)

APL code 281
GDDM RCP code X'0C380100' (204996864)

22 GDDM Base Application Programming Reference

 APQIDS

 Parameters

field-list-id (specified by user) (fullword integer)
The identifier of the field list to be modified.

depth-1 (specified by user) (fullword integer)
The number of rows in the modified field list array (stored in
row major order). If zero is specified, the field list is not
modified.

width-1 (specified by user) (fullword integer)
The number of columns in the modified field list array. It
must be greater than or equal to 6.

field-list (specified by user) (an array of halfword integers)
The modified field list.

length (specified by user) (fullword integer)
The length of the modified data buffer. If zero is specified,
the data buffer is not modified.

data-buffer (specified by user) (character)
The modified data buffer.

depth-2 (specified by user) (fullword integer)
The number of rows in the modified bundle list array (stored
in row major order). If zero is specified, the bundle list is
not modified.

width-2 (specified by user) (fullword integer)
The number of columns in the modified bundle list array. It
must be greater than or equal to 4.

bundle-list (specified by user) (an array of halfword integers)
The modified bundle list.

mode (specified by user) (fullword integer)
The mode of operation as specified by the APDEF call. If
–1 is specified, the mode is unchanged.

 Description

Modifies the specified field list. With this call it is possible to
change any of:

� The size and contents of the field list, and also its
location if operating in locate mode.

� The size and contents of the data buffer, and also its
location if operating in locate mode.

� The size and contents of the bundle list, and also its
location if operating in locate mode.

� The mode of operation.

Modifications to field list, data buffer, and bundle list must
conform to the rules defined in the GDDM Base Application
Programming Guide.

Note: When used under non-XA subsystems of CICS, the
total storage occupied by the field list, data buffer, and
bundle list must not be greater than 64KB.

 Principal errors
ADMð222 E MODE n IS INVALID

ADM3ðð2 E FIELD LIST IDENTIFIER n IS INVALID

ADM3ðð3 E LENGTH (n) IS INVALID

ADM3ðð6 E CURSOR POSITION ALREADY DEFINED IN ANOTHER

FIELD LIST

ADM3ðð7 E CANNOT SWITCH BETWEEN LOCATE MODE AND MOVE

MODE

ADM3ðð8 E FIELD LIST n DOES NOT EXIST

ADM3ðð9 E DEPTH (n1) OR WIDTH (n2) IS INVALID

ADM3ð13 E FIELD LIST n TOTAL STORAGE EXCEEDS SUBSYSTEM

MAXIMUM

 APQIDS

 Function

To query field list identifiers.

 Parameters

type (specified by user) (fullword integer)
The category of field list. The categories are:
1 All field lists.

The identifiers of all the field lists on the current page
are returned in order of creation.

2 All modified field lists.
The identifiers of all the field lists on the current page
with input flags set are returned in order of creation.

no-of-elements (specified by user) (fullword integer)
The number of field list identifiers to be queried. This is the
number of elements in array .

array (returned by GDDM) (an array of fullword integers)
An array of field list identifiers. If there are more elements
in array than field lists in the specified category, the
remaining elements are set to −1.

 Description

Returns the identifiers of the field lists that fall into the cate-
gory defined by the type parameter.

 Principal errors

ADM3117 E TYPE (n) IS INVALID

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

APMOD (field-list-id, depth-1, width-1, field-list, length,
data-buffer, depth-2, width-2, bundle-list, mode)

APL code 282
GDDM RCP code X'0C380200' (204997120)

APQIDS (type, no-of-elements, array)

APL code 283
GDDM RCP code X'0C380300' (204997376)

 Chapter 3. The GDDM calls 23

 APQNUM

 APQNUM

 Function

To query field list numbers.

 Parameters

element-number (specified by user) (fullword integer)
The number of the first element in array . It must be in the
range 1 through 2.

number-of-elements (specified by user) (fullword integer)
The number of numbers to be returned. It is also the
number of elements in array . It must be in the range 0
through 2.

array (returned by GDDM) (an array of fullword integers)
An array of numbers of field lists, by category. The array
elements are:

1. The number of field lists on the current page.
2. The number of field lists on the current page with input

flags set.

 Description

Returns the number of field lists as an array, by category, on
the current page.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

 APQRY

 Function

To query a field list.

 Parameters

field-list-id (specified by user) (fullword integer)
The identifier of the field list to be queried.

depth-1 (specified by user) (fullword integer)
The number of rows in the field list array (stored in row
major order). It must be either zero or the same as the
current depth of the field list, which is the depth specified
on the most recent call to APDEF or APMOD that affected
the field list. If zero is specified, the field list is not
returned.

width-1 (specified by user) (fullword integer)
The number of columns in the field list array. It must be
either zero or the same as the current width of the field list,
which is the width specified on the most recent call to
APDEF or APMOD that affected the field list. If zero is
specified, the field list is not returned.

field-list (returned by GDDM) (an array of halfword integers)
The queried field list.

length (specified by user) (fullword integer)
The length of the data buffer. It must be either zero or the
same as the current length of the data buffer, which is the
length specified on the most recent call to APDEF or
APMOD that affected the data buffer. If zero is specified,
the data buffer is not returned.

data-buffer (returned by GDDM) (character)
The data buffer associated with the field list.

depth-2 (specified by user) (fullword integer)
The number of rows in the bundle list array (stored in row
major order). It must be either zero or the same as the
current depth of the bundle list, which is the depth specified
on the most recent call to APDEF or APMOD that affected
the bundle list. If zero is specified, the bundle list is not
returned.

width-2 (specified by user) (fullword integer)
The number of columns in the bundle list array. It must be
either zero or the same as the current width of the bundle
list, which is the width specified on the most recent call to
APDEF or APMOD which affected the bundle list. If zero is
specified, the bundle list is not returned.

bundle-list (returned by GDDM) (an array of halfword inte-
gers)
The queried bundle list.

mode (returned by GDDM) (fullword integer)
The mode of operation as specified by the APDEF call.

 Description

Returns the contents of the specified field list, data buffer,
bundle list, and the mode of operation.

 Principal errors

ADM3ðð2 E FIELD LIST IDENTIFIER n IS INVALID

ADM3ðð3 E LENGTH (n) IS INVALID

ADM3ðð8 E FIELD LIST n DOES NOT EXIST

ADM3ðð9 E DEPTH (n1) OR WIDTH (n2) IS INVALID

APQNUM (element-number, number-of-elements, array)

APL code 284
GDDM RCP code X'0C380400' (204997632)

APQRY (field-list-id, depth-1, width-1, field-list, length,
data-buffer, depth-2, width-2, bundle-list, mode)

APL code 285
GDDM RCP code X'0C380500' (204997888)

24 GDDM Base Application Programming Reference

 APQSIZ

 APQSIZ

 Function

To query the size of a field list

 Parameters

field-list-id (specified by user) (fullword integer)
The identifier of the field list to be queried.

depth-1 (returned by GDDM) (fullword integer)
The number of rows in the field list array (stored in row
major order).

width-1 (returned by GDDM) (fullword integer)
The number of columns in the field list array.

length (returned by GDDM) (fullword integer)
The length of the associated data buffer.

depth-2 (returned by GDDM) (fullword integer)
The number of rows in the bundle list array (stored in row
major order).

width-2 (returned by GDDM) (fullword integer)
The number of columns in the bundle list array.

 Description

Returns the size of the specified field list, data buffer, and
bundle list.

 Principal errors

ADM3ðð2 E FIELD LIST IDENTIFIER n IS INVALID

ADM3ðð8 E FIELD LIST n DOES NOT EXIST

 APQUID

 Function

To query unique field list identifier.

 Parameters

field-list-id (returned by GDDM) (fullword integer)
A value that is not currently in use for a field list identifier.

 Description

Returns a value that is not currently in use for a field list
identifier.

 Principal errors

None.

 ASCCOL

 Function

To specify character colors within a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

length (specified by user) (fullword integer)
The length of color-string . This is padded with default
values to the length (width by depth) of the field.

color-string (specified by user) (character)
The new colors for each character position within the field
(starting at the top left-hand corner and working from left to
right for each row of the field). Each character must be one
of the following (characters are first given in the EBCDIC
form, then in hexadecimal):

If the field is defined as “mixed without position” (see
ASFSEN), the attributes for SO/SI positions in the string
(that can be obtained by a call to ASCGET) have no effect
and are ignored.

 Description

Defines the color attributes to be used for individual charac-
ters in the specified field.

Note: The default color for each character is governed by
the current value set by ASFCOL (or defaulted) for the whole
field.

APQSIZ (field-list-id, depth-1, width-1, length, depth-2,
width-2)

APL code 286
GDDM RCP code X'0C380600' (204998144)

ASCCOL (field-id, length, color-string)

APL code 421
GDDM RCP code X'0C080601' (201852417)

Blank X'40' Inherit the color set by ASFCOL (the default).
1 X'F1' Blue.
2 X'F2' Red.
3 X'F3' Pink (magenta).
4 X'F4' Green.
5 X'F5' Cyan (turquoise).
6 X'F6' Yellow.
7 X'F7' Neutral (white on displays, black on printers).

APQUID (field-list-id)

APL code 287
GDDM RCP code X'0C380700' (204998400)

 Chapter 3. The GDDM calls 25

 ASCGET

Because ASCPUT sets character attributes to their default
values, ASCCOL is effective only when it follows a call to
ASCPUT.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð215 W FIELD n1 CHARACTER n2 OF ATTRIBUTE STRING IS

INVALID

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASCGET

 Function

To get field contents.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field containing the required characters.

length (specified by user) (fullword integer)
The number of bytes to be returned. This number of bytes
is returned, regardless of the size of the field.

string (returned by GDDM) (character)
The character codes, having been through any input trans-
lation; see ASFTRN.

 Description

Returns the contents of the specified field. The field can
contain EBCDIC, DBCS (used for Kanji and Hangeul), or
mixed (EBCDIC and DBCS) characters.

EBCDIC character codes are translated if any input table has
been assigned to the field; see ASFTRN. The EBCDIC parts
of mixed fields are also translated; however, the DBCS parts
of fields are not translated.

If the returned length is greater than the field length, the
string is padded with the pad character. The pad character
(null by default), depends on the setting of input processing
for the field as determined by ASFIN.

For values 0 and 1, the pad character is a null (X'00').

For value 2, the pad character is a blank (X'40').

If the field is defined as “mixed without position” (see
ASFSEN), SO (shift-out) and SI (shift-in) control codes are
inserted to delimit the DBCS portion of the returned string.
Therefore, the length of the returned string is greater (by the
number of inserted control codes) than the length of the
string as displayed. The length necessary to retrieve the
field contents is obtained by means of the i/p length param-
eter of the ASQLEN call or the ASQMOD calls.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASCHLT

 Function

To specify character highlights within a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

length (specified by user) (fullword integer)
The length of highlight-string . This is padded with default
values to the length (width by depth) of the field.

highlight-string (specified by user) (character)
The new highlighting for each character position within the
field (starting at the top left-hand corner and working from
left to right for each row of the field). Each byte must be
one of the following:

If the field is defined as “mixed without position” (see
ASFSEN), the attributes for SO/SI control code positions in
the string (that can be obtained by a call to ASCGET) have
no effect and are ignored.

ASCGET (field-id, length, string)

APL code 422
GDDM RCP code X'0C080903' (201853187) ASCHLT (field-id, length, highlight-string)

APL code 423
GDDM RCP code X'0C080600' (201852416)

EBCDIC Hex.
Blank X'40' Inherit the highlighting set by ASFHLT
1 X'F1' Blink
2 X'F2' Reverse video
4 X'F4' Underscore

26 GDDM Base Application Programming Reference

 ASCPUT

 Description

Defines the highlight attributes to be used for individual char-
acters in the specified field.

Note: The default attribute for each character is governed
by the current value set by ASFHLT (or defaulted) for the
whole field.

Because ASCPUT sets character attributes to their default
values, ASCHLT is effective only when it follows a call to
ASCPUT.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð215 W FIELD n1 CHARACTER n2 OF ATTRIBUTE STRING IS

INVALID

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASCPUT

 Function

To specify field contents.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be filled.

length (specified by user) (fullword integer)
The exact length of the string in bytes. If the number of
bytes in string is less than the total number of characters
that can be accommodated in the field, the field is padded
with nulls after the specified characters. If the number of
bytes specified exceeds the number that can be accommo-
dated, characters on the right of the string are lost.

string (specified by user) (character)
The new character codes for each position within the field
(starting at the top left-hand corner and working left to right
for each row of the field). Each EBCDIC character is
encoded as one byte. Each EBCDIC character may pass
through an output translation; see ASFTRN. The string
may contain DBCS characters; see ASFPSS and ASFSEN.

If the depth of the specified field is greater than 1, and its
width is less than either the page width or the screen-width
of the device, a mixed string of 1-byte (SBCS) and 2-byte
characters (DBCS) cannot be specified.

Each DBCS character is encoded as two bytes. These
DBCS characters are valid:
X'0000' (null)
X'4040' (blank)
X'xxyy ' Where xx is in the range X'41' through X'FE',

and yy is in the range X'41' through X'FE'.

 Description

Fills the specified field with the given character string. All
character attributes for the field are set to their default
values. The string may pass through output translation; see
ASFTRN.

If the field is defined as “mixed without position” (see
ASFSEN), the length of the string as displayed is less than
the value of the length parameter by the number of SO/SI
(shift-out/shift-in) control codes.

Validity checking is performed on any DBCS characters
(used for Kanji and Hangeul) contained in the string.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

ADMð223 W FIELD n DBCS CHARACTER X'xxxx' IS INVALID

AND REPLACED BY BLANK

ADMð228 W FIELD n CHARACTER X'xx' REPLACED BY SHIFT-IN

CHARACTER

ADMð229 W FIELD n LAST CHARACTER WAS SHIFT-OUT AND HAS

BEEN IGNORED

 ASCSS

 Function

To specify character symbol sets within a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

ASCPUT (field-id, length, string)

APL code 424
GDDM RCP code X'0C080603' (201852419)

ASCSS (field-id, length, symbol-set-id-string)

APL code 425
GDDM RCP code X'0C080602' (201852418)

 Chapter 3. The GDDM calls 27

 ASDFLD

length (specified by user) (fullword integer)
The length of symbol-set-id-string . This is padded with
default values to the length (width by depth) of the field.

symbol-set-id-string (specified by user) (character)
The new symbol-set identifiers for each character position
within the field (starting at the top left-hand corner and
working left to right for each row of the field). Each char-
acter must be one of:

X'00' or X'40' Inherit the symbol-set identifier
set by ASFPSS (the default)

X'01' through X '03' Loadable symbol sets
(3800-system printer)

X'41' through X 'DF' Loadable symbol sets
(3270-family devices)

X'F1' Alternative nonloadable symbol
set (3270-family devices).

If the field is defined as “mixed without position” (see
ASFSEN), the attributes for SO/SI control code positions in
the string that can be obtained by ASCGET have no effect
and are ignored.

 Description

Defines the symbol-set identifiers to be used for individual
characters in the specified field.

Note: The default symbol-set identifier for each character is
governed by that specified by ASFPSS (or defaulted) for the
whole field.

Because ASCPUT sets character attributes to their default
values, ASCSS is effective only when it follows a call to
ASCPUT.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð215 W FIELD n1 CHARACTER n2 OF ATTRIBUTE STRING IS

INVALID

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASDFLD

 Function

To define or delete a single field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field. This must be a positive integer.

row (specified by user) (fullword integer)
The row for the top left-hand corner of the field. Rows are
numbered from top to bottom down the page, starting with
1. Zero indicates that the field is to be deleted.

column (specified by user) (fullword integer)
The column for the top left-hand corner of the field.
Columns are numbered from left to right across the page,
starting with 1. Zero indicates that the field is to be
deleted.

depth (specified by user) (fullword integer)
The number of rows that the field occupies. This must be
such that the field does not extend beyond the bottom of
the page. Zero indicates that the field is to be deleted. For
a mixed field, the depth of the field cannot be greater than
1 unless the width of the field is equal to the width of the
device; see ASFSEN.

width (specified by user) (fullword integer)
The number of columns that the field occupies. For a field
the depth of which is greater than 1, the width must not
extend beyond the right-hand side of the page. If the field
is intended for use with a dual-character primary symbol
set, the width must be even; see ASFPSS. Zero indicates
that the field is to be deleted.

type (specified by user) (fullword integer)
These field types are valid:
−1 Default (Same as 0, unless othewise defined by a prior

call to ASDFLT)
0 Unprotected alphanumeric.
1 Alphanumeric output, numeric input.
2 Protected alphanumeric.
3 Protected alphanumeric, immediate pen-selectable.
4 Protected alphanumeric, deferred pen-selectable.
5 Protected alphanumeric, pen-enterable.
6 Protected alphanumeric, general light-pen.

 Description

Defines or deletes a single field. Any existing field of the
same field-identifier is deleted. If the cursor was positioned
within the deleted field, and there are no mapped fields, the
cursor position is reset to the top left-hand corner of the page
window – no error is returned if the field does not exist. If
there are mapped fields, the cursor is placed at the static
cursor position; see MSDFLD.

Attributes of the field assume their default values (which may
have been modified by a call to ASDFLT) except for type ,
which is specified by the type parameter above.

ASDFLD (field-id, row, column, depth, width, type)

APL code 401
GDDM RCP code X'0C080700' (201852672)

28 GDDM Base Application Programming Reference

 ASDFLT

If any of the position or size parameters are zero, the field is
deleted. If there are no mapped fields, the cursor position is
reset to the top left-hand corner of the page window. If there
are mapped fields, the cursor is placed at the static cursor
position; see MSDFLD.

For the best performance, alphanumeric fields should be
defined in numeric identifier order from left to right, top to
bottom.

A field is usually contained within the rectangle described by
the row, column, depth, and width parameters. The rec-
tangle must be within the top, bottom, and left-hand bounda-
ries of the current page, and except when the depth is 1, the
right-hand boundary as well.

When the depth is 1, the rectangle can extend beyond the
right-hand boundary of the page. The field contents are
wrapped around to the start of the next row and subsequent
rows until the total desired field width is achieved, provided
that the field does not overlap any existing field. This type of
field is treated in all other respects as a field with a single
row.

A page that is to be used for mapping (that is, one created
using an MSPCRT call) can have alphanumeric fields defined
in it by using this call but they must not overlap any mapped
fields created by using the MSDFLD call. Furthermore, care
should be taken when placing alphanumeric and mapped
fields next to each other, because of the attribute bytes that
enclose the alphanumeric fields. Undesirable results can
occur if attributes intrude into a mapped field.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð2ð3 W FIELD n LIGHT-PEN ATTRIBUTE MAY BE

INEFFECTIVE

ADMð2ð4 W FIELD n IS TOO SMALL TO BE A LIGHT PEN FIELD

ADMð2ð5 E FIELD n POSITION IS INVALID

ADMð2ð6 E ALPHANUMERIC FIELD a1 OVERLAPS ALPHANUMERIC

FIELD a2

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð224 W FIELD n1 WIDTH n2 MUST BE EVEN FOR A DBCS

FIELD

ADMð226 W FIELD n CANNOT BE BOTH DBCS AND MIXED

ADMð227 W FIELD n CANNOT BE SET TO MIXED STATUS

ADMð968 E ALPHANUMERIC FIELD a1 AND MAPPED FIELD a2

OVERLAP

ADM3ð12 E CURRENT PAGE HAS HIGH PERFORMANCE

ALPHANUMERICS

 ASDFLT

 Function

To set default field attributes.

 Parameters

count (specified by user) (fullword integer)
The number of elements in array . This must be in the
range 1 through 12.

array (specified by user) (an array of fullword integers)
This contains count values, the following representing the
maximum set:
1 Type See ASFTYP.
2 Intensity See ASFINT.
3 Color See ASFCOL.
4 Primary symbol set See ASFPSS.
5 Highlight See ASFHLT.
6 End See ASFEND.
7 Nulls See ASFOUT.
8 Blanks See ASFIN.
9 Table number See ASFTRN.
10 Transparency See ASFTRA.
11 Enable/disable shift-control codes See ASFSEN.
12 Field outlining See ASFBDY.

Note: Specifying a value of −1 leaves the default
unchanged. Otherwise, any default values defined for the
current page by a previous call to ASDFLT are replaced.

 Description

Sets the default attributes to be assumed for new field defi-
nitions. These defaults, where specified, are used in prefer-
ence to the standard defaults on the GDDM page. The
standard defaults are listed under the appropriate call
descriptions.

 Principal errors

ADMð2ð8 E COUNT n IS INVALID

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

 ASDFMT

 Function

To define alphanumeric fields, deleting all existing fields.

ASDFLT (count, array)

APL code 406
GDDM RCP code X'0C080200' (201851392)

ASDFMT (n-fields, count, array)

APL code 402
GDDM RCP code X'0C080801' (201852929)

 Chapter 3. The GDDM calls 29

 ASDTRN

 Parameters

n-fields (specified by user) (fullword integer)
The number of fields to be defined. This may be zero.

count (specified by user) (fullword integer)
The number of attributes provided for each field; it must be
in the range 5 through 17.

array (specified by user) (an array of fullword integers)
An array of field definitions, each of which may contain the
following elements. The number of elements actually
present is limited by count ; thus, the array contains
n-fields definitions, each consisting of count elements. All
of the elements for definition i precede those for definition
i+1.

1 Field-id
The number of the field. Zero indicates no field definition.
2 Row
The row for the top left-hand corner of the field. Rows are
numbered from top to bottom of the page, starting with 1.
Zero indicates no field definition.
3 Column
The column for the top left-hand corner of the field.
Columns are numbered from left to right across the page,
starting with 1. Zero indicates no field definition.
4 Depth
The number of rows that the field occupies. This must be
such that the field does not extend beyond the bottom of
the page. Zero indicates no field definition. For a mixed
field (see ASFSEN), the depth of the field cannot be greater
than 1 unless the width of the field is equal to the width of
the device.
5 Width
The number of columns that the field occupies. For a field
the depth of which is greater than 1, the width must not
extend beyond the right-hand side of the page. If the field
is intended for use with a dual-character primary symbol set
(see ASFPSS), the width must be even. Zero indicates no
field definition.

6 Type See ASFTYP.
7 Intensity See ASFINT.
8 Color See ASFCOL.
9 Primary symbol set See ASFPSS.
10 Highlight See ASFHLT.
11 End See ASFEND.
12 Nulls See ASFOUT.
13 Blanks See ASFIN.
14 Table number See ASFTRN.
15 Transparency See ASFTRA.
16 Enable/disable shift-control codes See ASFSEN.
17 Field outlining See ASFBDY.

 Description

Defines alphanumeric fields for the current page. All existing
alphanumeric fields are deleted. To define multiple fields
without deleting existing fields, use ASRFMT. The cursor
position is reset to the top left-hand corner of the page
window if it was previously in an alphanumeric field.

The number of attributes specified for each field is deter-
mined by count . Any attributes that are not specified are
chosen according to their default values; see ASDFLT.

For the best performance, alphanumeric fields should be
defined in numeric identifier order, from left to right, from top
to bottom.

 Principal errors

ADMð2ð3 W FIELD n LIGHT-PEN ATTRIBUTE MAY BE

INEFFECTIVE

ADMð2ð4 W FIELD n IS TOO SMALL TO BE A LIGHT PEN FIELD

ADMð2ð5 E FIELD n POSITION IS INVALID

ADMð2ð6 E ALPHANUMERIC FIELD a1 OVERLAPS ALPHANUMERIC

FIELD a2

ADMð2ð7 E NUMBER OF FIELDS n IS NEGATIVE

ADMð2ð8 E COUNT n IS INVALID

ADMð2ð9 E FIELD IDENTIFIER n IS NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð224 W FIELD n1 WIDTH n2 MUST BE EVEN FOR A DBCS

FIELD

ADMð225 E FIELD n ALREADY EXISTS

ADMð226 W FIELD n CANNOT BE BOTH DBCS AND MIXED

ADMð227 W FIELD n CANNOT BE SET TO MIXED STATUS

ADM3ð12 E CURRENT PAGE HAS HIGH PERFORMANCE

ALPHANUMERICS

 ASDTRN

 Function

To define I/O translation tables.

 Parameters

table-no (specified by user) (fullword integer)
The number to be assigned for this translation table set.
This must be in the range 2 through 7. Table set number 1
is reserved for uppercase input translation; see ASFTRN.
Zero means that no translation is to be done.

o/p-table (specified by user) (256-byte character string)
The output translation table.

ASDTRN (table-no, o/p-table, i/p-table)

APL code 403
GDDM RCP code X'0C080300' (201851648)

30 GDDM Base Application Programming Reference

 ASFBDY

i/p-table (specified by user) (256-byte character string)
The input translation table.

 Description

Defines or redefines to GDDM a translation-table set for the
current page according to the definitions below. The tables
are not copied from user storage, and so the user copy
should not be released while in use. It is recommended that
the tables, once defined, are not modified without subse-
quent redefinition (again using ASDTRN). These tables
should be available to all alphanumeric fields on the appro-
priate pages while those pages exist.

Both output and input translation tables consist of 256 one-
byte entries. The offset of each entry represents the char-
acter code before translation. The contents of the table at
that offset represent the character code after translation.

A translation-table set that replaces an existing one does not
affect any characters already written (see ASCPUT) using
the previous definitions. It does immediately affect input
using ASCGET.

The output translation is applied when characters are
inserted into the field, and the input translation is applied
when characters are extracted.

 Principal errors

ADMð2ðð E TABLE NUMBER n IS INVALID

 ASFBDY

 Function

To define a field outline.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

outlining (specified by user) (fullword integer)
The new outlining attribute for the field. Possible values
are:
−1 Leave the outlining as it is.

0 None (the default).
 1 Underline.
2 Vertical line on the right.

 4 Overline.
8 Vertical line on the left.

For an outlining attribute that is composed of more than
one of these lines, specify (as an integer) the sum of the
numbers corresponding to the lines required. For example,
a value of 11 causes the field to be outlined on three sides
(omitting the line at the top) and a value of 15 causes the
field to be outlined on all four sides.

 Description

Defines the outlining attribute for the specified field.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFCLR

 Function

To clear fields.

 Parameters

code (specified by user) (fullword integer)
The operation required. Possible values are:
0 Erase all unprotected fields within the page (fill with

null characters and default character attributes).
1 Erase all protected fields within the page (fill with null

characters and default character attributes).
2 Both of the above.

 Description

Fills alphanumeric fields with their default character codes
and attributes.

 Principal errors

ADMð218 E CODE n IS INVALID

ASFCLR (code)

APL code 404
GDDM RCP code X'0C080400' (201851904)

ASFBDY (field-id, outlining)

APL code 436
GDDM RCP code X'0C08050B' (201852171)

 Chapter 3. The GDDM calls 31

 ASFCOL

 ASFCOL

 Function

To define a field color.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

color (specified by user) (fullword integer)
The new color for the field. Possible values are:
−1 Leave the color as it is.
 0 Default.
 1 Blue.
 2 Red.
 3 Pink (magenta).
 4 Green.
 5 Turquoise (cyan).
 6 Yellow.
7 Neutral (white on color displays, black on printers).

 Description

Defines the color of all character positions in the specified
alphanumeric field.

For information about specifying the color of individual char-
acters within the field, see ASCCOL.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFCUR

 Function

To position the cursor.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field in which the cursor is to be posi-
tioned. If this is zero, the cursor is to be positioned on the
current page.

row (specified by user) (fullword integer)
The new position of the cursor within either the field or the
current page, depending on the value of field-id .

The value –1 and a valid field-id applies the string coordi-
nate to the column value.

column (specified by user) (fullword integer)
The new position of the cursor within the field, the field con-
tents, or the current page, depending on the value of
field-id .

If the string coordinate is specified by the row value of –1,
the column represents the character position in the field
contents, that is, the position in the string that can be
retrieved by ASCGET.

For a cursor position within a dual-character field, the
column represents the dual character on which the cursor is
to be positioned (for example, for column=2, the cursor is
positioned in the third or third and fourth physical columns
within the field, depending upon the device).

For a cursor position within a mixed field, the column indi-
cates the byte position. If this is at a DBCS character posi-
tion on a device which supports DBCS characters, the
cursor is positioned at the start of the DBCS character.

If the cursor position in the string coordinates coincides with
the position of the SO/SI (shift-out/shift-in) control codes in
the “mixed without position” field, the cursor is displayed in
the next character position.

 Description

Positions the cursor by either field, string, or page coordi-
nates.

The default position for the cursor is the top left-hand corner
of the page. This applies even when there are no alphanu-
meric fields on the page.

If the cursor is moved outside the page window, the window
is altered to accommodate it; this function is called
“scrolling.”

Note: ASFCUR allows both vertical and horizontal scrolling
(Screen Up and Screen Down, and Screen Left and Screen
Right).

ASFCUR (field-id, row, column)

APL code 430
GDDM RCP code X'0C080100' (201851136)

ASFCOL (field-id, color)

APL code 407
GDDM RCP code X'0C080502' (201852162)

32 GDDM Base Application Programming Reference

 ASFEND

If horizontal scrolling is required, horizontal movement of the
window places the left-hand edge as close as possible to the
cursor, in a similar manner to vertical scrolling.

If the page is mapped, either cursor adjuncts and the
MSCPOS call or the ASFCUR call can be used to position
the cursor.

 Principal errors

ADMð2ð9 E FIELD IDENTIFIER n IS NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð221 E CURSOR POSITION OF FIELD n1, ROW n2, COLUMN

n3 IS INVALID

ADM3156 I PAGE n1 WINDOW ROW ALTERED TO n2 AND COLUMN

TO n3

 ASFEND

 Function

To define field end action.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

end (specified by user) (fullword integer)
The new setting of the field end attribute. Possible values
are:
−1 Leave the field end setting as it is.

0 Autoskip at end of input field (the default).
1 Do not autoskip at end of input field.

Note: This value has a hardware-dependent effect.
If there are fewer than three spaces before the next
unprotected field, the cursor will move to the next
field regardless of the value of this parameter.

 Description

Defines the kind of action that is taken after terminal input to
each row of the specified field. The setting controls the
cursor action when completing input to the field. Use of
autoskip causes the cursor to jump to the next unprotected
field.

All fields have their width controlled; however, this setting
only has relevance to unprotected fields.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFHLT

 Function

To define field highlighting.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

highlight (specified by user) (fullword integer)
The new highlighting for the field. Possible values are:
−1 Leave the highlighting as it is.

0 Normal (the default).
 1 Blink.
 2 Reverse video.
 4 Underscore.

 Description

Defines the highlighting for all character positions in the
specified field. For information on specifying highlighting of
individual characters within the field, see ASCHLT.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFIN

 Function

To define input null-to-blank conversion.

ASFHLT (field-id, highlight)

APL code 409
GDDM RCP code X'0C080504' (201852164)

ASFEND (field-id, end)

APL code 408
GDDM RCP code X'0C080505' (201852165)

 Chapter 3. The GDDM calls 33

 ASFINT

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

blanks (specified by user) (fullword integer)
The new setting of the blanks attribute. Possible values
are:
−1 Leave the blanks setting as it is.

0 No input conversion (the default).
1 Convert nulls to blanks on input (ASREAD) for all

nulls that precede the last nonnull character (viewing
the field as one long string, from top left to bottom
right).

2 Convert all nulls to blanks on input (ASREAD) for
each row of the field.

 Description

Defines the kind of nulls-to-blanks conversion to occur on
device input for a specified field.

Note: Conversion is effective only for non-light-pen fields.
Nulls imbedded between non-null characters are not con-
verted to blanks. Blanks will only be inserted into the field
where the presence of nulls can be assumed by GDDM (to
complete a field, or a row within a field).

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFINT

 Function

To define field intensity.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

intensity (specified by user) (fullword integer)
The new intensity for the field. Possible values are:
−1 Leave the intensity as it is.
 0 Invisible.
1 Normal (the default).

 2 Bright.

Notes:

1. A bright field may be light-pen selectable, regardless of
the setting of ASFTYP. See also the IBM 3270 Informa-
tion Display System: Component Description.

2. An “invisible” field is displayed if it is light-pen detect-
able.

 Description

Defines the intensity of the specified field. The contents of
an invisible field are not sent to anything other than the
currently-attached device, or a printer, unless it is light-pen
detectable.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFMOD

 Function

To change field status.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be affected. If this parameter is
zero, all of the unprotected fields (type 0) on the current
page are affected.

mod (specified by user) (fullword integer)
The new setting of the modify attribute. Possible values
are:
0 Make the field (or fields) unmodified.
1 Make the field (or fields) modified.

ASFIN (field-id, blanks)

APL code 410
GDDM RCP code X'0C080507' (201852167)

ASFMOD (field-id, mod)

APL code 412
GDDM RCP code X'0C081100' (201855232)

ASFINT (field-id, intensity)

APL code 411
GDDM RCP code X'0C080501' (201852161)

34 GDDM Base Application Programming Reference

 ASFOUT

 Description

Designates an alphanumeric field (or fields) as modified or
unmodified. A modified field is added to the list of modified
fields. The field is then available to ASQMOD as a modified
field. The other way in which a field can become modified is
by operator changes. Modified fields become unmodified
when they are returned by ASQMOD. An unmodified field
(the initial status) is not returned by a call to ASQMOD.

Under CICS/VS and IMS/VS, GDDM causes the physical
modified data tag (MDT) bits to be set for fields that are des-
ignated as modified so that the fields can be returned as
input to a subsequent application program after GDDM termi-
nates.

Under OS/TSO and VM/CMS, GDDM does not generally
cause the physical MDT bits to be set for fields that are des-
ignated as modified.

 Principal errors

ADMð2ð9 E FIELD IDENTIFIER n IS NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFOUT

 Function

To define output blank-to-null conversion.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

nulls (specified by user) (fullword integer)
The new setting of the nulls attribute. Possible values are:
−1 Leave the nulls setting as it is.
0 No output conversion (the default).
1 Convert trailing blanks to nulls on each row of the field

on output.

 Description

Defines the kind of blanks-to-nulls conversion to occur on
field output to the device for the specified field.

Note: This does not affect what is returned to the applica-
tion program with the ASCGET call; only device input to this
field can achieve that.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFPSS

 Function

To define primary symbol set for a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

symbol-set-id (specified by user) (fullword integer)
The new primary symbol set alias for the field. Possible
values are:

−1
Leave the primary symbol set as it is.

0
For a 3270-family device, the base nonloadable symbol
set (the default). For a 3800-system printer, the first
loadable symbol set (the default); use the CHARS
parameter of the subsystem-dependent family-3 system
print destination definition (for example, CP SPOOL or
MVS DD statement) to specify the loaded symbol sets
when printing.

1 through 3
For a 3800-system printer, the second, third, and fourth
loadable symbol sets (respectively). Use the CHARS
parameter described above to specify the loaded symbol
sets when printing.

65 through 223
For a 3270-family device, loadable symbol sets corre-
sponding to X'41' through X'DF'; see ASCSS. The
alias must have been made known to GDDM with a call
to PSDSS, PSLSS, or PSLSSC to load the symbol set.

ASFPSS (field-id, symbol-set-id)

APL code 414
GDDM RCP code X'0C080503' (201852163)

ASFOUT (field-id, nulls)

APL code 413
GDDM RCP code X'0C080506' (201852166)

 Chapter 3. The GDDM calls 35

 ASFSEN

248 (X'F8')
For DBCS devices, the DBCS (used for Kanji and
Hangeul) nonloadable symbol set. This is a double-
character symbol set. Each code point consists of two
bytes instead of one. This selection is rejected if the
field has been set to mixed status; see ASFSEN.

Note: For a 3270-family device, the alternative
nonloadable symbol set (APL/TEXT) cannot be selected as
the primary symbol set. If they are available, these charac-
ters are accessible as part of the base nonloadable symbol
set but they may also be referenced using character attri-
butes; see ASCSS.

 Description

Defines the primary symbol set for all character positions in
the specified field. For information about specifying the
symbol set identifiers for individual characters within the field,
see ASCSS – these may not be used when the symbol set
chosen is a double-character symbol set.

If the primary symbol set for a field is changed from single
character to double character, or the converse, the field con-
tents are cleared.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

ADMð224 W FIELD n1 WIDTH n2 MUST BE EVEN FOR A DBCS

FIELD

ADMð226 W FIELD n CANNOT BE BOTH DBCS AND MIXED

 ASFSEN

 Function

To define field mixed-string attribute.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

mixed (specified by user) (fullword integer)
The mixed-string attribute for the field. Possible values are:

−1 Leave the mixed status of the field as it is.
0 Non-mixed (the default).
1 Mixed with position.
2 Mixed without position.

 Description

Defines the mixed-string attribute for the specified field.

Usually, the strings presented to GDDM by ASCPUT are
either all single-byte characters (where each character is
represented by one byte in the string) or all double-byte char-
acters (where each character is represented by two bytes in
the string) according to the primary symbol set as defined by
the ASFPSS call. This is called a normal, or nonmixed,
string.

An application program can, using the ASCPUT call, present
a mixed string of single-byte and double-byte (DBCS) char-
acters. If it does so, GDDM searches such a string for the
shift-out (X'0E') and shift-in (X'0F') control codes, which
indicate the start and end of double-byte portions of the
string.

Shift-out (SO) and shift-in (SI) control codes are treated in
one of two ways, according to the mixed-string attribute
defined by ASFSEN:

� If the attribute is 0 (nonmixed), or 1 (mixed-with-
position), the SO/SI control codes each take one byte
character position.

� If the attribute is 2 (mixed-without-position), the SO/SI
control codes take no position.

On devices that support mixed alphanumeric fields (such as
the IBM 5550-family Multistations, the application can
present mixed strings to GDDM using ASCPUT in any alpha-
numeric field. However, if it is necessary to allow the input
of mixed strings, the field must be defined explicitly as
“mixed” using the ASFSEN call.

If the field is defined as “mixed with position,” mixed strings
can be input by delimiting one-byte and double-byte charac-
ters with SO/SI control codes. If the field is defined as
“mixed without position,” mixed strings can be input without
using the SO/SI control codes. When the input string is
returned by ASCGET, the SO/SI control codes are inserted
by GDDM.

On display devices that do not support mixed alphanumeric
fields, and if MIXSOSI=YES has been specified as an
external default, GDDM emulates the SO/SI control codes
using a substitution character defined by the SOSIEMC
external default. However, for these devices, the application
can present mixed strings to GDDM using ASCPUT, but only
in alphanumeric fields that have been defined as “mixed”
using the ASFSEN call. DBCS characters are presented and
input in the hexadecimal code point. For these devices, the
mixed-string attribute values 1 and 2 do not change the
support of the SO/SI emulation.

ASFSEN (field-id, mixed)

APL code 437
GDDM RCP code X'0C08050A' (201852170)

36 GDDM Base Application Programming Reference

 ASFTRA

If the mixed-string attribute is changed, the field contents are
cleared. When emulating, changing from 1 to 2 and from 2
to 1 is not treated as a change and, therefore, the contents
will not be cleared.

If a field has a PSS attribute of DBCS, it cannot be set to
mixed status. Also, if a field has a depth of greater than 1, it
cannot be set to mixed status unless its width is the same as
the width of the device.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

ADMð226 W FIELD n CANNOT BE BOTH DBCS AND MIXED

ADMð227 W FIELD n CANNOT BE SET TO MIXED STATUS

 ASFTRA

 Function

To define field transparency attribute.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

transparency (specified by user) (fullword integer)
The transparency attribute for the field. Possible values
are:
−1 Leave the transparency as it is
0 Opaque (the default)

 1 Transparent.

 Description

Defines the transparency attribute for the specified field. A
transparent field allows graphics and image data to be seen
“through” an alphanumerics field where the two fields cross
one another.

For information about which devices support this attribute,
see “Alphanumeric field attributes” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASFTRN

 Function

To assign translation table set to a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

table-no (specified by user) (fullword integer)
The new translation table number for the field. Possible
values are:

−1 Leave the translation table number as it is.

0 No translation (the default).

 1 Uppercase translation. Lowercase characters
are translated to uppercase on input only.
This action is suppressed when the primary
symbol set is the base nonloadable symbol
set and the device does not support lower-
case characters (for example, a Katakana ter-
minal).

2 through 7 Translation-table set number; see ASDTRN.

 Description

Assigns a translation-table set to be used for the specified
field. The translation tables are defined using ASDTRN.

Translation has no effect for dual-character fields; see
ASFPSS.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

ASFTRN (field-id, table-no)

APL code 415
GDDM RCP code X'0C080508' (201852168)

ASFTRA (field-id, transparency)

APL code 434
GDDM RCP code X'0C080509' (201852169)

 Chapter 3. The GDDM calls 37

 ASFTYP

 ASFTYP

 Function

To define field type.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be modified.

type (specified by user) (fullword integer)
The new type for the field. Possible values are:
−1 Leave the field type as it is.

0 Unprotected alphanumeric (the default).
1 Alphanumeric output, numeric input.

 2 Protected alphanumeric.
3 Protected alphanumeric, immediate pen-selectable.
4 Protected alphanumeric, deferred pen-selectable.
5 Protected alphanumeric, pen-enterable.
6 Protected alphanumeric, general light-pen.

 Description

Defines the type of the specified field. This type groups
together various physical field attributes.

The width of light-pen fields (types 3, 4, 5, and 6) must be at
least 3. A designator character is always placed (by GDDM)
in the first character position of each field row for types 3, 4,
and 5. This designator character is a blank for an immediate
pen-selectable field, an ampersand “&” for an enterable field,
and either a greater-than sign “>” or a question mark “?” for a
deferred pen-selectable field. The “?” is displayed when the
field is unmodified (the default), and the “>” when the field
has been modified by the operator.

For the general light-pen field (type 6), it is the programmer’s
responsibility to provide designator characters at the start of
each row of the field.

Because of the nature of the 3270 field attributes, it is pos-
sible to create a pen-selectable field on a display without
having defined it as such in the ASFTYP call. This situation
occurs with any high-intensity field that has a valid light-pen
designator character as the first character after the attribute
byte (that is, in the first character position in each row). If
such a field is selected, GDDM does not recognize it as a
modified field (in the same way as changes to non-light-pen
fields are not recognized when a GDDM-defined light-pen
field is selected).

For information about which devices support this attribute,
see “Alphanumeric field attributes” on page 245.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð2ð3 W FIELD n LIGHT-PEN ATTRIBUTE MAY BE

INEFFECTIVE

ADMð2ð4 W FIELD n IS TOO SMALL TO BE A LIGHT PEN FIELD

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

 ASGGET

 Function

To get double-character field contents.

Note: This call is not recommended for new programs. It is
obsolete and has been superseded by ASCGET.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field containing the required double
characters.

length (specified by user) (fullword integer)
The number of double characters to be returned. Twice
length bytes (two for each double character) are returned,
regardless of the size of the field.

string (returned by GDDM) (array of 2-byte character tokens)
The double-character codes, without translation.
Remember to allocate twice as many bytes as there are
double characters.

 Description

Returns the double-character contents of the specified
double-byte character string (DBCS, used for Kanji or
Hangeul). The double-character codes are not translated in
any way.

If the returned length is greater than the field length, the
string is padded with the double-character padding code.
The double-character padding code (default X'0000')
depends on the setting of input processing for the field as
determined by ASFIN.

For values 0 and 1, the pad double-character is a null
(X'0000').

For value 2, the pad double-character is a blank (X'4040').

ASFTYP (field-id, type)

APL code 416
GDDM RCP code X'0C080500' (201852160)

ASGGET (field-id, length, string)

APL code 433
GDDM RCP code X'0C081603' (201856515)

38 GDDM Base Application Programming Reference

 ASGPUT

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASGPUT

 Function

To specify double-character field contents.

Note: This call is not recommended for new programs. It is
obsolete and has been superseded by ASCPUT.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field to be filled.

length (specified by user) (fullword integer)
The exact length of the string in double characters (the
number of bytes divided by two). If the number of double
characters in the string is less than the total number of
double characters that can be accommodated in the field,
the field is padded with nulls after the specified double
characters. If the number of double characters specified
exceeds the number that can be accommodated, double
characters on the right of the string are lost.

string (specified by user) (array of 2-byte character tokens)
The new double-character codes for each position within
the field (starting at the top left-hand corner and working left
to right for each row of the field). Each double character is
coded as two bytes. Each double-character code-point is
checked for validity. The following DBCS characters are
valid:
X'0000' (null)
X'4040' (blank)
X'xxyy ' Where xx is in the range X'41' through X'FE',

and yy is in the range X'41' through X'FE'.

 Description

Fills the specified double-byte character string field (DBCS,
used for Kanji and Hangeul) with the given double-character
string. The string is not translated in any way.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

ADMð223 W FIELD n DBCS CHARACTER X'xxxx' IS INVALID

AND REPLACED BY BLANK

 ASMODE

 Function

To define the operator reply mode.

 Parameters

mode (specified by user) (fullword integer)
The mode of interaction available to the operator. Possible
values are:

1 Field mode (the default). The operator may not modify
character attributes (color, highlighting, or symbol sets).
Any character attributes changed implicitly by operator
typing (that is, resetting of character attributes to their
default values) are not reflected back to GDDM.

2 Character mode. The operator may modify character
attributes (color, highlighting, or symbol sets). Any char-
acter attributes changed implicitly or explicitly by operator
typing are reflected back to GDDM.

 Description

Defines the reply mode to be used for the current page.

For information about which devices support this attribute,
see “Alphanumeric field attributes” on page 245.

 Principal errors

ADMð222 E MODE n IS INVALID

 ASQCOL

 Function

To query character colors for a field.

ASMODE (mode)

APL code 426
GDDM RCP code X'0C080D00' (201854208)

ASGPUT (field-id, length, string)

APL code 432
GDDM RCP code X'0C081503' (201856259)

ASQCOL (field-id, length, color-string)

APL code 427
GDDM RCP code X'0C080901' (201853185)

 Chapter 3. The GDDM calls 39

 ASQCUR

 Parameters

field-id (specified by user) (fullword integer)
The number of the field containing the required character
attributes.

length (specified by user) (fullword integer)
The number of character attributes to be returned (may be
zero). This number of bytes is returned, regardless of the
size of the field.

color-string (returned by GDDM) (character)
See ASCCOL.

 Description

Returns the character color attributes for a given length of
the specified field.

If the field is defined as “mixed-without-position,” (see
ASFSEN), default color attributes are inserted, corresponding
to the positions where SO/SI (shift-out/shift-in) control codes
are inserted in the string returned by ASCGET. Therefore,
the length of the returned string is greater than that displayed
on the device by the number of inserted control codes. The
length necessary to retrieve the field contents is obtained by
means of the i/p length parameter of the ASQLEN call or
the ASQMOD call.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASQCUR

 Function

To query cursor position.

 Parameters

code (specified by user) (fullword integer)
Indicates whether the cursor position is to be returned in
page or field coordinates. Possible values are:

0 Return page coordinates.

1 Return field coordinates.
If this is not possible, page coordinates are returned.
Field coordinates may be received under the following
conditions:

� The last cursor operation was a call to ASFCUR
specifying field coordinates, and the field is still
defined.

� The last cursor operation was a call to ASREAD,
which sets the cursor position to field coordinates
whenever possible.

2 Return string coordinates.
If this is not possible, page coordinates are returned.
String coordinates may be received under the same
condition as the field coordinates; see above.

The cursor may not be set in page coordinates and then
read in field or string coordinates without an intervening call
to ASREAD.

field-id (returned by GDDM) (fullword integer)
Returns information on the coordinates of the cursor posi-
tion. Possible values are:

0 Page coordinates have been returned.

>0 The number of the field containing the cursor. Field
coordinates have been returned.

row (returned by GDDM) (fullword integer)
The position of the cursor within either the field or the
current page, depending on the value of field-id .

The value –1 is returned if the string coordinate is specified
by the code parameter.

column (returned by GDDM) (fullword integer)
The position of the cursor within either the field or the
current page, depending on the value of field-id . For a
cursor positioned within a dual-character field, the column
represents the dual character on which the cursor is posi-
tioned. For example, if column=2 , the cursor is positioned
in the third or third and fourth physical columns within the
field, depending upon the device.

For a cursor position within a mixed field, the column indi-
cates the byte position. If this is at a DBCS character posi-
tion on a DBCS device, the cursor is double width; the
column indicates the byte position at which the cursor
begins and coincides with the start of the DBCS character.

If the string coordinate is specified by code , the column
value represents the character position in the field contents,
that is, the position in the string that can be returned by
ASCGET.

 Description

Returns the position of the alphanumeric cursor; that is, the
cursor position as set by ASFCUR, ASREAD, or default. If
ASQCUR is used for devices on which the alphanumeric
cursor is also used as the graphics cursor (for example, a
3279), it does not return the position of the cursor as set by
a GSREAD call, but retains the last setting for the cursor as
set by ASFCUR or ASREAD.

ASQCUR (code, field-id, row, column)

APL code 431
GDDM RCP code X'0C080F00' (201854720)

40 GDDM Base Application Programming Reference

 ASQFLD

 Principal errors

ADMð218 E CODE n IS INVALID

 ASQFLD

 Function

To query field attributes.

 Parameters

code (specified by user) (fullword integer)
Specifies how the fields to be queried are identified. Pos-
sible values are:

0 single field (number n).
A single field is to be queried; the field number is given by
n.

1 n user-specified field numbers.
n fields are to be queried; their identification numbers must
already be in the field identifier elements of the array
parameter.

If a specified field is undefined, a warning message is
issued and some of the attribute elements are undefined;
see the field identifier element description in the array
parameter, below.

2 n sequential field numbers (1 through n).
n fields are to be queried; the field numbers are 1 through
n, sequentially.

Definitions are returned in that order in array . (The
maximum field number can be obtained from ASQMAX).

Field identifiers for existing fields are set; if a definition for
field i does not exist, the field identifier for the ith definition
in the array is set to zero.

3 n defined field numbers.
n fields are to be queried; the field numbers are those of
the first n defined fields.

Definitions for the first n defined fields are returned consec-
utively in field number order in array . (The number of
defined fields can be obtained from ASQMAX.)

If the number of defined fields is less than n, the field iden-
tifiers for the remaining definitions in array are set to zero.

n (specified by user) (fullword integer)
For code = 0, n specifies the field number for the single
definition to be returned.

For other values of code , n specifies the number of field
definitions to be returned. In this case, n = 0 indicates that
no field definitions are to be returned.

count (specified by user) (fullword integer)
The number of attributes listed for each field. This must be
between 1 and the maximum element number defined in
array .

array (returned by GDDM) (an array of fullword integers)
An array of field definitions, each of which may contain the
following elements. The number of elements actually
present is limited by count ; thus, the array contains n defi-
nitions (or 1 if code = 0), each consisting of count ele-
ments. All of the elements for definition i precede those for
definition i+1.

1 Field identifier
The number of the field. Zero indicates no field definition.
If the field number is undefined or zero: the row, column,
depth, and width elements, where present, are set to zero;
all other elements are undefined.
2 Row
The row for the top left-hand corner of the field. Rows are
numbered from top to bottom of the page, starting from 1.
Zero is returned for a field that does not exist.
3 Column
The column for the top left-hand corner of the field.
Columns are numbered from left to right across the page,
starting from 1. Zero is returned for a field that does not
exist.
4 Depth
The number of rows that the field occupies. Zero is
returned for a field that does not exist.
5 Width
The number of columns that the field occupies. Zero is
returned for a field that does not exist.

6 Type
See ASFTYP.

7 Intensity
See ASFINT.

8 Color
See ASFCOL.

9 Primary symbol set
See ASFPSS.

10 Highlight
See ASFHLT.

11 End
See ASFEND.

12 Nulls
See ASFOUT.

13 Blanks
See ASFIN.

14 Table number
See ASFTRN.

ASQFLD (code, n, count, array)

APL code 418
GDDM RCP code X'0C080A00' (201853440)

 Chapter 3. The GDDM calls 41

 ASQHLT

15 Transparency
See ASFTRA.

16 Enable/disable shift-control codes
See ASFSEN.

17 Field outlining
See ASFBDY.

 Description

Returns the general attributes of one or more fields. The
values of code and n together determine which and how
many field definitions are returned. The count parameter
specifies how many attributes are to be returned for each
definition.

A field number of zero, whether specified by the user or
determined by GDDM, indicates no field definition. In this
case, some of the attribute elements are undefined; see the
description of the field-id parameter.

 Principal errors

ADMð2ð7 E NUMBER OF FIELDS n IS NEGATIVE

ADMð2ð8 E COUNT n IS INVALID

ADMð2ð9 E FIELD IDENTIFIER n IS NEGATIVE

ADMð213 W FIELD n DOES NOT EXIST

ADMð218 E CODE n IS INVALID

 ASQHLT

 Function

To query character highlights for a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field containing the required character
attributes.

length (specified by user) (fullword integer)
The number of character attributes to be returned. This
number of bytes is returned, regardless of the size of the
field.

highlight-string (returned by GDDM) (character)
The new highlighting for each character position within the
field (starting at the top left-hand corner and working from
left to right for each row of the field). Each byte is one of
the following (characters are first given in the EBCDIC form,
then in hexadecimal):

 Description

Returns the highlighting attributes for a given length of the
specified field.

If the field is defined as “mixed-without-position,” (see
ASFSEN), default highlight attributes are inserted, corre-
sponding to the positions where SO/SI (shift-out/shift-in)
control codes are inserted in the string returned by ASCGET.
Therefore, the length of the returned string is greater than
that displayed on the device by the number of inserted
control codes. The length necessary to retrieve the field con-
tents is obtained by means of the i/p length parameter of the
ASQLEN call or the ASQMOD call.

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASQLEN

 Function

To query length of field contents.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field whose lengths are queried.

length (returned by GDDM) (fullword integer)
The length (in bytes for mixed or not-mixed alphanumeric
field or in double characters for DBCS field) of the corre-
sponding field in field-id ; the length value is zero for a
field-id of zero.

i/p-length (returned by GDDM) (fullword integer)
The not-null length (in bytes for mixed or not-mixed alpha-
numeric field or in double characters for DBCS field) of the
corresponding field in field-id ; the length value is zero for a
field-id of zero. The not-null length is the length up to and
including the last not-null character or double character in
the field.

Blank X'40' Inherit the highlighting set by ASFHLT (the
default).

1 X'F1' Blink.
2 X'F2' Reverse video.
4 X'F4' Underscore.

ASQLEN (field-id, length, i/p-length, scr-length)
ASQHLT (field-id, length, highlight-string)
 APL code 443
APL code 428 GDDM RCP code X'0C081800' (201857024)
GDDM RCP code X'0C080900' (201853184)

42 GDDM Base Application Programming Reference

 ASQMAX

If the field is defined as “mixed without position,” this
returned length includes SO/SI (shift-out/shift-in) control
codes, which are inserted to delimit the DBCS portions of
the string returned by ASCGET. Therefore, it indicates the
amount of storage that the application must provide to
retrieve the field contents.

scr-length (returned by GDDM) (fullword integer)
Indicates the same length as i/p-length with the following
exception:

If the field is defined as “mixed without position,” this
returned length excludes the SO/SI (shift-out/shift-in) control
codes, that are returned to delimit the DBCS portions of the
string returned by ASCGET. Therefore, it indicates the not-
null length displayed on the screen.

 Description

Returns the real and effective lengths of the specified field.

The effective lengths (i/p-length and scr-length) include the
field contents up to the last not-null character.

The i/p length is the length of the string returned by
ASCGET. The scr-length is the length of the field contents
displayed on the screen.

If the field is defined as “mixed without position,” the i/p
length may be larger than the real field length and the scr-
length because of the insertion of SO/SI (shift-out/shift-in)
control codes in fields containing both EBCDIC and DBCS
(used for Kanji and Hangeul) characters.

Note: This call should be issued before issuing ASCGET,
ASQCOL, ASQHLT, and ASQSS calls to ensure that the
length of the field contents is correct if the field is defined as
“mixed without position.”

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

 ASQMAX

 Function

To query the number of fields.

 Parameters

n-fields (returned by GDDM) (full word integer)
The number of fields currently defined.

max-field (returned by GDDM) (full word integer)
The maximum field number currently defined. If there are
no fields currently defined, this value is zero.

 Description

Returns the number and range of field numbers on the
current page.

 Principal errors

None.

 ASQMOD

 Function

To query modified fields.

 Parameters

count (specified by user) (fullword integer)
The number of fields to be queried.

field-ids (returned by GDDM) (an array of fullword integers)
An array of field numbers. The numbers of modified fields
are returned in this order:

1. Any modified light-pen fields
2. Any other modified fields
3. Zero for all other entries.

Within these categories, fields are returned in order of field
identifier.

lengths (returned by GDDM) (an array of fullword integers)
An array of length values. Each value indicates the length
(in characters or dual characters as appropriate) of the cor-
responding field in field-ids ; the lengths value is zero for a
field-id of zero.

i/p-lengths (returned by GDDM) (an array of fullword inte-
gers)
An array of length values. Each value indicates the not-null
length (in single bytes for mixed or not-mixed alphanumeric
fields or in double bytes for DBCS fields) of the corre-
sponding field in field-ids ; the length value is zero for a
field-id of zero. The not-null length is the length up to and
including the last not-null character or dual character in the

ASQMOD (count, field-ids, lengths, i/p-lengths)

APL code 420
GDDM RCP code X'0C080B00' (201853696)

ASQMAX (n-fields, max-field)

APL code 419
GDDM RCP code X'0C080E00' (201854464)

 Chapter 3. The GDDM calls 43

 ASQNMF

field (that is, nulls that precede not-nulls are treated as not-
nulls for this operation).

If the field is defined as “mixed without position,” this
returned length includes SO/SI (shift-out/shift-in) control
codes that are inserted to delimit DBCS portions of the
string returned by ASCGET. Therefore, it indicates the
amount of storage that the application must provide to
retrieve the field contents.

 Description

Returns the real and effective lengths of modified fields for
the current page. The effective length includes the last not-
null character.

When modified fields are returned, they become unmodified.
For example, if ASREAD indicates that there are ten modi-
fied fields, and subsequently two calls are made to
ASQMOD, each requesting seven fields, the first returns
seven, and the second returns the remaining three (and four
zero entries), after which there are no modified fields on the
current page.

Notes:

1. Calls to ASREAD, ASFMOD, ASQMOD, and GSREAD
affect the list of modified fields.

2. Calls to ASQNMF do not affect the list of modified fields.

 Principal errors

ADMð22ð E COUNT n IS NEGATIVE

 ASQNMF

 Function

To query the number of modified fields.

 Parameters

n-fields (returned by GDDM) (fullword integer)
The number of modified alphanumeric fields.

 Description

Returns the number of modified alphanumeric fields on the
current page.

This call does not affect the number of modified alphanu-
meric fields.

 Principal errors

None.

 ASQSS

 Function

To query character symbol sets for a field.

 Parameters

field-id (specified by user) (fullword integer)
The number of the field containing the required character
identifiers.

length (specified by user) (fullword integer)
The number of character identifiers to be returned. This
number of bytes is returned, regardless of the size of the
field.

symbol-set-id-string (returned by GDDM) (character)
The new symbol-set identifiers for each character position
within the field (starting at the top left-hand corner and
working left to right for each row of the field). Each char-
acter must be one of these:

X'00' or X'40' Inherit the symbol-set identifier set
by ASFPSS (the default)

X'01' through X '03' Loadable symbol sets
(3800-system printer)

X'41' through X 'DF' Loadable symbol sets (3270-family
devices)

X'F1' Alternative nonloadable symbol set
(3270-family devices).

 Description

Returns the symbol-set identifiers for a given length of the
specified field.

If the field is defined as “mixed-without-position” (see
ASFSEN), default symbol-set attributes are inserted, corre-
sponding to the positions where SO/SI (shift-out/shift-in)
control codes are inserted in the string returned by ASCGET.
Therefore, the length of the returned string is greater than
that displayed on the device by the number of inserted
control codes. The length necessary to retrieve the field con-
tents is obtained by means of the i/p length parameter of the
ASQLEN call or the ASQMOD call.

ASQSS (field-id, length, symbol-set-id-string)

APL code 429
GDDM RCP code X'0C080902' (201853186)

ASQNMF (n-fields)

APL code 435
GDDM RCP code X'0C080E01' (201854465)

44 GDDM Base Application Programming Reference

 ASRATT

 Principal errors

ADMð2ð1 E FIELD IDENTIFIER n IS ZERO OR NEGATIVE

ADMð212 E FIELD n DOES NOT EXIST

ADMð214 E FIELD n1 STRING LENGTH n2 IS NEGATIVE

ADMð217 E FIELD n CONTAINS A

{CHARACTER|DUAL-CHARACTER} STRING

ADMð226 W FIELD n CANNOT BE BOTH DBCS AND MIXED

ADMð227 W FIELD n CANNOT BE SET TO MIXED STATUS

 ASRATT

 Function

To define field attributes.

 Parameters

n-fields (specified by user) (fullword integer)
The number of fields to be redefined. This may be zero.

count (specified by user) (fullword integer)
The number of attributes provided for each field; it must be
in the range 5 through 17.

array (specified by user) (an array of fullword integers)
An array of field definitions, each of which may contain the
following elements. The number of elements actually
present is limited by count ; thus, the array contains
n-fields definitions, each consisting of count elements. All
of the elements for definition i precede those for definition
i+1.
1 Field-id The number of the field. Zero

indicates no field definition.
2 Row Ignored.
3 Column Ignored.
4 Depth Ignored.
5 Width Ignored.
6 Type See ASFTYP.
7 Intensity See ASFINT.
8 Color See ASFCOL.
9 Primary symbol set See ASFPSS.
10 Highlight See ASFHLT.
11 End See ASFEND.
12 Nulls See ASFOUT.
13 Blanks See ASFIN.
14 Table number See ASFTRN.
15 Transparency See ASFTRA.
16 Enable/disable shift-control codes

See ASFSEN.
17 Field outlining See ASFBDY.

 Description

Defines field attributes for the current page. Existing fields
that are not referred to by this call remain unchanged.
Existing fields that are referred to by this call have their attri-
butes redefined.

The number of attributes specified for each field is deter-
mined by count .

 Principal errors

ADMð2ð3 W FIELD n LIGHT-PEN ATTRIBUTE MAY BE

INEFFECTIVE

ADMð2ð4 W FIELD n IS TOO SMALL TO BE A LIGHT PEN FIELD

ADMð2ð7 E NUMBER OF FIELDS n IS NEGATIVE

ADMð2ð8 E COUNT n IS INVALID

ADMð2ð9 E FIELD IDENTIFIER n IS NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð212 E FIELD n DOES NOT EXIST

ADMð224 W FIELD n1 WIDTH n2 MUST BE EVEN FOR A DBCS

FIELD

ADMð225 E FIELD n ALREADY EXISTS

 ASREAD

 Function

To perform device output and input.

 Parameters

attype (returned by GDDM) (fullword integer)
The type of attention interrupt received. Possible values
are:

0 ENTER key

1 PF key

2 Light pen
Changes to all other types of field are lost.

3 Magnetic stripe (badge) reader
The magnetic stripe record field (the one containing the
cursor) has special characters from the magnetic stripe
reader replaced by blanks if the operation was a success.
This operation causes a refreshment of the display at the
next interaction with the display.

4 PA key
Changes to all fields are lost.

ASRATT (n-fields, count, array)

APL code 417
GDDM RCP code X'0C080802' (201852930)

ASREAD (attype, attval, count)

APL code 101
GDDM RCP code X'0C100000' (202375168)

 Chapter 3. The GDDM calls 45

 ASREAD

5 CLEAR key
This operation causes a refreshment of the display at the
next interaction with it. Changes to all fields are lost. If
mapping, the mapgroup option may say “Refresh Screen”
and repeat the ASREAD call automatically instead of
returning attype=5 .

6 Other
The interrupt received from the device does not belong to
any of the defined categories; attval and count values are
undefined.

7 Output-only device
The primary device only accepts output, and does not
return input; attval and count values are undefined. A
warning message is issued to emphasize this situation.

10 The buttons on a mouse, tablet or four-button
cursor device
This is only returned if the mouse or tablet is enabled for
use with interactive graphics functions. An FSENAB call to
enable graphics input must have been issued for graphics
input to be available with ASREAD.

attval (returned by GDDM) (fullword integer)
The value, if any, associated with attype , as follows:

1 PF key number
3 0 = success, 1 = failure
4 PA key number
10 Button number.

count (returned by GDDM) (fullword integer)
The number of modified fields after execution of the func-
tion.

If the GDDM page is a mapped page, count returns the
number of modified mapped fields in that page, even if
there are modified procedural alphanumeric fields in that
page. If the GDDM page is not a mapped page, count
returns the number of modified procedural alphanumeric
fields in that page.

If the GDDM page contains high-performance alphanu-
merics, count is always 0.

If attype =2, count contains the number of modified
light-pen fields.

If multiple partitions (real or emulated) are in use, the oper-
ator can move the cursor from one partition into another
during the ASREAD call. If this happens, ASREAD returns
the number of modified fields in the new current partition;
that is, the partition that now contains the cursor. If real
partitions are in use, only data from the active partition is
input. The terminal user’s changes in other partitions are
not available.

 Description

Performs all outstanding output, and for an interactive device,
requests input from the device. The ASREAD call is com-
pleted when an attention interrupt from the device is received
and the attention information is returned to the caller.

Restrictions exist on the use of some keys, depending on the
operating environment. For further information, see the
GDDM Base Application Programming Guide.

In a windowing environment, it is possible for an attention
interrupt to be pending, in which case the call is completed
immediately.

A pending attention interrupt is created as follows; the device
for which the ASREAD call is to be performed must be asso-
ciated with an operator window of a windowed device, and
the operator window must have a zero coordination exit; for
more information on coordination exits, refer to Chapter 22,
“Special-purpose programming in GDDM” on page 431.

When the WSIO call is issued for the windowed device, and
the end user interacts with the operator window, a pending
attention interrupt is created. If an attention interrupt is
already pending, it is replaced by the new pending attention
interrupt. The pending attention interrupt is removed by the
ASREAD call, or by any other input/output function.

If the primary device is a queued printer (family-2), a system
printer (family-3), or a page printer (family-4), the action of
ASREAD is as described under FSCOPY. In this case, the
function is not allowed if graphics retrieval is in progress; see
GSGET.

By default, only procedural, mapped, and high-performance
alphanumeric input is available with an ASREAD call.
However, an FSENAB call can be used to enable graphics or
image input to be entered in response to the ASREAD call.

For a plotter, pressing the Clear key on the attached work-
station while ASREAD is executing cancels the output.

When running in CICS transaction-independent pseudo-
conversational mode, the ASREAD call only receives input
from the device. It never sends output to the device.

For CICS transaction-dependent pseudoconversational appli-
cations, when the pseudoconversational mode is in use, the
first ASREAD call in a sequence only performs its input func-
tion; it does not perform output. Subsequent calls to
ASREAD work in the usual way.

However, there are two exceptions to this rule:

1. The mapgroup requests automatic processing of the
CLEAR key. In this case, the ASREAD call performs in
the usual way, that is, output is bypassed and the input
data is processed, after which Mapping signals a screen
refresh.

46 GDDM Base Application Programming Reference

 ASRFMT

The result of this will be as if a second ASREAD call
had occurred, that is, the screen contents are output
again, and the transaction waits for input.

2. A GDDM line output error message occurs before an
ASREAD call. In this case, the screen contents have
been destroyed and therefore, for GDDM to continue,
the screen contents have to be recreated.

Therefore, the ASREAD call performs in the usual way,
that is, output is performed, a “wait for input” state is
entered, and the transaction becomes Conversational for
this invocation.

 Principal errors

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð233 W SYMBOL SET IS NOT LOADED

ADMð27ð E SCREEN FORMAT ERROR

ADMð273 W PS OVERFLOW

ADMð275 W GRAPHICS {(IMAGE) }CANNOT BE SHOWN. REASON

CODE n

ADMð276 W DEVICE IS OUTPUT ONLY

ADMð498 E PRINT TERMINATED. RETURN CODE X'xxxxxx' FROM

DEVICE

ADMð9ð9 W NO GRAPHICS FIELD

ADMð911 W COMPOSED TEXT BLOCK OVERLAPS PAGE BOUNDARY.

TEXT IGNORED

ADMð92ð E CLEAR KEY PRESSED. PLOTTING IS TERMINATED

ADM285ð W DBCS CHARACTERS IN AN SBCS FIELD ARE

CONVERTED TO BLANKS

ADM2864 W PICTURE IS TOO LARGE FOR 5ð8ð DISPLAY LIST

BUFFER

ADM3ðð4 E FIELD LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3ðð5 E DATA BUFFER n1, ERROR n2 AT INDEX n3

ADM3ð1ð E BUNDLE LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3173 W GRAPHICS CANNOT BE SHOWN. CELL WIDTH OR

DEPTH EXCEEDS LOADABLE LIMIT

ADM3178 W PATTERNS CANNOT BE SENT TO DEVICE. AREA

SHADING MAY BE INCORRECT

ADM3179 W IMAGE CANNOT BE SHOWN. REASON CODE n

ADM3281 W GRAPHICS MAY BE VISIBLE WITHIN OPAQUE

ALPHANUMERIC FIELDS

ADM3282 W AMOUNT OF DATA EXCEEDS THE STORAGE CAPACITY

OF THE DEVICE

 ASRFMT

 Function

To define multiple fields without deleting existing fields.

 Parameters

n-fields (specified by user) (fullword integer)
The number of fields to be defined or redefined. This can
be zero.

count (specified by user) (fullword integer)
The number of attributes provided for each field; it must be
in the range 5 through 17.

array (specified by user) (an array of fullword integers)
An array of field definitions, each of which may contain the
following elements. The number of elements actually
present is limited by count ; therefore, the array contains
n-fields definitions, each consisting of count elements. All
of the elements for definition i precede those for definition
i+1.

1 Field-id
The number of the field. Zero indicates no field definition.
2 Row
The row for the top left-hand corner of the field. Rows are
numbered from top to bottom of the page, starting with 1.
Zero indicates that the field is to be deleted.
3 Column
The column for the top left-hand corner of the field.
Columns are numbered from left-to-right across the page,
starting with 1. Zero indicates that the field is to be
deleted.
4 Depth
The number of rows that the field occupies. This must be
such that the field does not extend beyond the bottom of
the page. Zero indicates that the field is to be deleted. For
a mixed field (see ASFSEN), the depth of the field cannot
be greater than 1 unless the width of the field is equal to
the width of the device.
5 Width
The number of columns that the field occupies. For a field,
the depth of which is greater than 1, the width must not
extend beyond the right side of the page. If a field is
intended for use with a double-character primary symbol set
(see ASFPSS), then the width must be even. Zero indi-
cates that the field is to be deleted.

6 Type
See ASFTYP.

7 Intensity
See ASFINT.

8 Color
See ASFCOL.

9 Primary symbol set
See ASFPSS.

10 Highlight
See ASFHLT.

11 End
See ASFEND.ASRFMT (n-fields, count, array)

APL code 405
GDDM RCP code X'0C080800' (201852928)

 Chapter 3. The GDDM calls 47

 ASTYPE

12 Nulls
See ASFOUT.

13 Blanks
See ASFIN.

14 Table number
See ASFTRN.

15 Transparency
See ASFTRA.

16 Enable/disable shift-control codes
See ASFSEN.

17 Field outlining
See ASFBDY.

 Description

Defines alphanumeric fields for the current page. Existing
fields that are not referred to by the ASRFMT call remain
unchanged. To define a complete new set of fields for the
page, deleting any that were previously defined, use
ASDFMT. Existing fields that are referred to by the ASRFMT
call are first deleted, and then created according to the new
definitions. If the cursor was positioned within any of the
deleted fields, the cursor position is reset to the top left-hand
corner of the page window.

The number of attributes specified for each field is deter-
mined by count . Any attributes that are not specified are
chosen according to their default values; see ASDFLT.

 Principal errors

ADMð2ð3 W FIELD n LIGHT-PEN ATTRIBUTE MAY BE

INEFFECTIVE

ADMð2ð4 W FIELD n IS TOO SMALL TO BE A LIGHT PEN FIELD

ADMð2ð5 E FIELD n POSITION IS INVALID

ADMð2ð6 E ALPHANUMERIC FIELD a1 OVERLAPS ALPHANUMERIC

FIELD a2

ADMð2ð7 E NUMBER OF FIELDS n IS NEGATIVE

ADMð2ð8 E COUNT n IS INVALID

ADMð2ð9 E FIELD IDENTIFIER n IS NEGATIVE

ADMð211 W {FIELD n1} ATTRIBUTE {n2} VALUE n3 IS

INVALID

ADMð224 W FIELD n1 WIDTH n2 MUST BE EVEN FOR A DBCS

FIELD

ADMð225 E FIELD n ALREADY EXISTS

ADMð226 W FIELD n CANNOT BE BOTH DBCS AND MIXED

ADMð227 W FIELD n CANNOT BE SET TO MIXED STATUS

ADM3ð12 E CURRENT PAGE HAS HIGH PERFORMANCE

ALPHANUMERICS

 ASTYPE

 Function

To override alphanumeric character-code assignments.

Note: Code page conversion functions are recommended in
preference to the ASTYPE call. Support for the call is con-
tinued for compatibility reasons, and to support APL code
page 293.

 Parameters

type (specified by user) (fullword integer)
The new type number. Possible values are:
0 Translation from application code page to device code

page.
1 No translation, except the removal of invalid charac-

ters.
2 EBCDIC: GDDM assumes the terminal is an EBCDIC

terminal and finds a matching type number from the
EBCDIC group.

3 Kanji/Hangeul: GDDM assumes the terminal is a
Kanji/Hangeul terminal and finds a matching type
number from the Kanji/Hangeul group.

n Select type “n,” where “n” is from the range supplied
for your installation, overriding the default.

 Description

Overrides alphanumeric character-code assignments by
defining a type that is associated with a set of translation
tables to be used on alphanumeric fields.

GDDM uses code conversion tables to ensure that a
hexadecimal character code appears as the same character
on all devices, thus giving programs a degree of device-
independence. The meanings assumed for the hexadecimal
values are shown in Figure 1 on page 49, Figure 2 on
page 49, and Figure 3 on page 50.

ASTYPE (type)

APL code 111
GDDM RCP code X'0C081300' (201855744)

48 GDDM Base Application Programming Reference

Figure 1. GDDM default EBCDIC character codes (code page 00351)

Figure 2. Katakana character codes (Tables 32772, 32792, and 32793) (code page 00290)

 Chapter 3. The GDDM calls 49

 CDPU

Figure 3. Japan (Latin) extended character codes (code page 01027)

The sets of translation tables are associated with type
numbers that, in turn, are associated with device character-
istics. It is the type number that is specified in the ASTYPE
call.

At initialization, GDDM discovers the type of device in use
and, by selecting a type number, specifies a set of translation
tables. The ASTYPE call can be used either to specify a
particular device type, or to specify the assumptions that
GDDM uses to select a device type – for example, to
assume that the device is a Kanji/Hangeul device.

The translation type you specify takes effect when data is
transmitted to the device. To make it effective for data that
was transmitted previously, call FSREST to cause
retransmission of all the data to the device.

The ASTYPE call is a specialized call and should not be
used in normal programming. A full description of the trans-
lation tables and associated type numbers is in the GDDM
System Customization and Administration book.

ASTYPE is a tool for system programmers and special situ-
ations. Usually, ASTYPE should be left to the default. An
example of the use of ASTYPE would be to allow a
Kanji/Hangeul terminal to be used with APL. ASTYPE(2)
would be specified before the use of APL and ASTYPE(3)
before the use of Kanji/Hangeul.

The effect of a type value of 0, which is the default for the
ASTYPE parameter, causes translation from the application

code page to the device code page. However, the results,
under Version 2 Release 2 of GDDM, will be the same as
under earlier releases if ADMDATRN was not modified in the
earlier releases and if no CECP application code page is
explicitly specified.

Using an application code page of 00351 is equivalent to
executing an ASTYPE call with a type value of 0 in an earlier
release.

Using an application code page of 00290 or 1027 (GDDM
Katakana) is equivalent to executing an ASTYPE call with a
type value of 3 in an earlier release.

Executing an ASTYPE call with a type value of 293 will
select an application code page of 293 (suitable for use with
APL) on terminals that support it.

 Principal errors
ADMð216 E TYPE n IS INVALID

 CDPU

 Function

To control the printing of Composite Documents.

50 GDDM Base Application Programming Reference

 CGLOAD

 Parameters

CD-count (specified by user) (fullword integer)
The number of 8-byte name-parts in CD-name . It must be
1 for MVS, VSE, and CICS, and 3 for CMS.

CD-name (specified by user) (array of 8-byte character
tokens)
This list gives the name-parts, that constitute the name, by
which the composite document interface file is known to the
underlying subsystem.

CICS Temporary queue name

VSE Batch DLBL file name (7 characters)

TSO DD name

CMS Filename Filetype Filemode
Either or both of the filetype and filemode can
be omitted, in which case default values of
LISTCDP and “ñ” respectively are used.

The number of name-parts that can be specified is
subsystem-dependent. GDDM left-justifies each name part.

opt-cnt (specified by user) (fullword integer)
The number of fullwords in opt-list . Zero can be specified
to indicate that opt-list is empty and is not to be inspected.

opt-list (specified by user) (an array of fullword integers)
Printing options, ignored in cases where the target printer
does not support the corresponding facility. A default value
is used for an element that is missing, or has a value of
zero. Each element of the array can be one of:
1 Number of uncollated copies. The default is one copy.

This option applies only to family-1 IPDS printers.
2 Duplex control:

1 Simplex – the default.
2 Normal duplex.
3 Tumble duplex.

3 View control.
This option applies on CICS, TSO, and CMS only, and
then only when the document is viewed.
0 View the entire document.
+n Draw page n with images included.
−n Draw page n with images indicated by boxes.
If +n or −n is specified, the CDPU call creates a GDDM
page containing the required output, but leaves the
input or output for the application program to process.

4 Deletion control:
0 Same as 1 (the default).
1 The input file is not deleted.
2 The input file is deleted.
3 The input file is deleted only if processing has

been completed successfully (see note below).

4 The input file is deleted only if processing has
not been completed successfully.

Note: Where “successfully” means there have been
no messages, except informational ones generated
while the document is being processed.

 Description

Print or view a composite document. The existing contents
of the page, if any, are deleted by a call to CDPU.

If an application calls the CDPU with the view control param-
eter set to a non-zero value, the application can control how
the document is browsed. The CDPU creates a GDDM page
containing the specified document page, but does no input or
output. The application must issue its own ASREAD (or
other input/output call) and interpret the returned values. In
addition the application can:

� Define a graphics field for the document page to be
shown in. The default is a field covering the whole
screen.

� Display instructions to the user.

� Test for requests for document pages beyond the docu-
ment end.

Note: If the IMGINIT,WHITE procopt is active, the whole
screen will be white, not just that part of the screen which
represents the page.

For more information on the printing of Composite Docu-
ments, refer to the GDDM Base Application Programming
Guide.

 Principal errors
ADM2758 E COMPOSITE DOCUMENTS ARE NOT SUPPORTED FOR

THIS DEVICE

ADM276ð E FIELD NOT CONVERTED

ADM2775 E INVALID COMPOSITE DOCUMENT NAME COUNT, n

ADM2776 W INVALID NUMBER OF OPTIONS, n

ADM2777 W INVALID PARAMETER. COPY COUNT n IS NEGATIVE

ADM2778 W INVALID PARAMETER. DUPLEX CONTROL VALUE n

IS INVALID

ADM2779 W COMPOSITE DOCUMENT CONTAINS ERRORS

ADM278ð W INVALID ACTIVE ENVIRONMENT GROUP ON PAGE n

ADM2782 W GRAPHIC POSITION IS OFF PAGE

ADM2795 W DELETION CONTROL VALUE n IS INVALID - FILE

NOT DELETED

 CGLOAD

 Function

| To import (load) a picture from a Computer Graphics Metafile
| (CGM).

CDPU (CD-count, CD-name, opt-cnt, opt-list)

APL code 1196
GDDM RCP code X'40000000' (1073741824)

 Chapter 3. The GDDM calls 51

 CGLOAD

 Parameters

cgm-count (specified by user) (fullword integer)
The number of 8-byte name parts in cgm-name . Valid
range is 1 through 3 under VM, 1 through 7 otherwise.

cgm-name (specified by user) (array of 8-byte character
tokens)
The name-parts that constitute the name by which the
CGM file is known to the underlying subsystem. GDDM
left-justifies each name part. The number of name parts
that can be specified is subsystem-dependent. Under
VM/CMS, there are three elements in the array, defined
as follows:

1 The CMS filename of the file. Can be any valid CMS
file name.

2 The CMS filetype of the file. Can be any valid CMS
file type. If cgm-count <2, a filetype of “CGM” is
assumed.

3 The CMS filemode of the file. Can be any valid CMS
filemode, or “ñ,” indicating the first occurrence of the
file in the CMS search order. if cgm-count <3, a
filemode of “ñ” is assumed.

Under TSO or MVS/Batch, this specifies either

� An allocated ddname, or
� A fully qualified data set name, such as

'CGM.PICTURE.NO43', or
� If the file is part of a partitioned data set, a name

and member name such as
'CGM.PICTURE.EXTRACTS(NO43)', or

� If the quotation marks are omitted and the param-
eter is not a ddname, a name to which a data set
qualifier is added to the front in the usual TSO way.

If the name exceeds eight characters in length, it must
be placed in consecutive members of the array and, if
necessary, padded with blanks.

For example, if the DSNAME is contained in quotes and
is

aaaa.bbbb.ccc

it looks like this:

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

cgm-name(1) = │ ' │ a │ a │ a │ a │ . │ b │ b │

 └───┴───┴───┴───┴───┴───┴───┴───┘

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

cgm-name(2) = │ b │ b │ . │ c │ c │ c │ ' │ │

 └───┴───┴───┴───┴───┴───┴───┴───┘

profile (specified by user) (8-byte character string)
The name (left-justified) of the CGM profile. If this
parameter is not specified, the default is ADM.
However, on CMS, the default is the CGM filetype speci-
fied.

opt-count (specified by user) (fullword integer)
The number of elements specified in the opt-array
parameter.

opt-array (specified by user) (an array of fullword integers)
Specifies how CGLOAD is to restore a picture from the
CGM file. The parameter has six elements. If an
element is not specified, the action taken is the same as
if it had been specified as 0.

1 – picture-number
The sequence number within the CGM of the
picture to be loaded. CGM source files may
contain more than one picture and in this case the
pictures are considered to be numbered sequen-
tially starting with 1. picture-number is defined as
follows:
−1 Loads all pictures in the input file
0 the default, as specified in the profile. If the

picture number is not specified in the con-
version profile or is specified as zero, −1 is
used.

≥1 Specifies the number of the (single) picture
to be loaded from the input file

If more than one picture is loaded, the individual
pictures are not identifiable in terms of segment
numbers.

2 – seg-base
Identifies which segment is used as the starting
point for loading into the GDDM page. Segments
are created using the next unused segments
greater than or equal to seg-base . Allowed values
are:
0 The default, as specified in the profile. If

the seg-base is not specified in the conver-
sion profile or is specified as zero, 1 is
used.

≥1 The CGM picture is loaded in unused seg-
ments with identifiers ≥seg-base .

3 – load-type
Specifies how the picture is to be restored from the
CGM. The options are:
0 The default, as specified in the profile. If the

load-type is not specified in the conversion
profile or is specified as zero, 2 is used.

1 The picture is restored without transformation,
using the page’s current window and viewport
coordinate system. To restore the saved data
satisfactorily, a window coordinate system that
corresponds to the coordinates used in the
CGM must be defined using a GSWIN call or a
GSUWIN call.

2 The picture space of the CGM picture is accom-
modated within the current viewport, preserving
the aspect ratio that the picture had when it was

CGLOAD (cgm-count,cgm-name,profile,opt-count,opt-
array,
seg-count,desc-len1,descriptor1,ret-len1,desc-len2,
descriptor2,ret-len2)

APL code 669
GDDM RCP code: X'0C0C1F00' (202120960)

52 GDDM Base Application Programming Reference

 CGLOAD

saved. Any primitives outside the picture space
of the CGM picture may be lost.

3 Reserved.
4 At the time of the CGLOAD, the shape of the

picture held in the file to be loaded is used to
define the picture space, and the rest of the
graphics hierarchy is defaulted. The load then
proceeds as for load-type = 2 .

If the picture space has been defined (or
defaulted), this load-type is equivalent to load-
type = 2 .

4 – symbol-set
Specifies the action to be taken when loading a
CGM picture that contains fonts. Note that GDDM
loads symbol sets to emulate CGM fonts. The
options are:
0 The default, as specified in the profile. If the

symbol-set is not specified in the conversion
profile or is specified as zero, 2 is used.

1 GDDM loads the symbol sets corresponding to
the fonts in the CGM input file after mapping
according to the profile. They are loaded with
the identifiers specified in the profile. Any
symbol sets that are already loaded are over-
written (unless the symbol set already loaded is
the one that is actually required; that is, has the
same name, type, and LCID, in which case it is
not loaded again).

This option should be used to ensure that the
values of the GDF_FONT_INDEXs specified in
the profile are used as LCIDs without change.

2 Same action as in 1 except that no existing
symbol sets are overwritten. Symbol sets which,
if loaded, would clash with the LCID of one
already loaded are moved to new LCIDs. The
largest unused identifiers are used for this
purpose. References to fonts in the CGM file
are mapped to the new LCIDs if they have been
moved, not to the LCID corresponding to the
GDF_FONT_INDEX in the profile.

If there are insufficient unused identifiers for all
the symbol sets to be loaded, the device default
symbol set is used.

This option should be used where the applica-
tion needs to ensure that no existing symbol
sets or LCIDs are altered.

5 – seg-use
Specifies how many segments are to be created
when loading a CGM picture. The options are:
0 The default, as specified in the profile. If the

seg-use is not specified in the conversion profile
or is specified as zero, 2 is used.

1 All CGM primitives are placed into separate
segments. This option should be used where
the resultant GDF file is intended to be edited.

2 The entire CGM picture (or pictures) loaded is
placed in a single GDDM segment. This option
should be used where the resultant GDF file is

required to be small or where no subsequent
editing of the file is required.

6 – code-page
Specifies the code page that was used by the CGM
generating application. This option determines the
way all text strings are translated. It is unlikely that
the application writer using the CGLOAD call knows
the required information; it is, therefore, recom-
mended that this parameter is coded as zero, so
that the information is obtained from the conversion
profile. Allowed values are:
0 the default, as specified in the profile. If the

code page is not specified in the conversion
profile or is specified as zero, 850 is used.

437 Code page 437 (United States), as shown in
| the GDDM System Customization and
| Administration book.
| 819 Code page 819 (ISO/ANSI Multilingual), as
| shown in the GDDM System Customization
| and Administration book. This 8-bit ASCII
| code page contains all the characters in the
| GDDM CECP code pages.
| 850 Code page 850 (Multilingual), as shown in
| the GDDM System Customization and
| Administration book.

Other Code page specified in the user modifiable
ADMDATRN module.

seg-count (returned by GDDM) (fullword integer)
Count of the number of segments created. The result
depends on the setting of the seg-use parameter.

desc-len1 (specified by user) (fullword integer)
The maximum number of bytes to be returned in the
descriptor1 parameter.

descriptor1 (returned by GDDM) (character string)
A character string of at least desc-len1 bytes to receive
the text from the “Begin Metafile” element of the metafile
followed by a X'15' byte followed by the text from the
“Metafile Descriptor” element of the metafile. The
number of bytes placed in descriptor1 is returned in the
ret-len1 parameter.

ret-len1 (returned by GDDM) (fullword integer)
The number of bytes of information returned in
descriptor1 .

desc-len2 (specified by user) (fullword integer)
The maximum number of bytes to be returned in the
descriptor2 parameter.

descriptor2 (returned by GDDM) (character string)
A character string of at least desc-len2 bytes to receive
the picture name (from begin picture element) from the
metafile. If more than one picture is being loaded (that
is, picture-number =−1), the descriptors for these are
concatenated together, with a x'15' byte placed in
between each. The number of bytes placed in
descriptor2 is returned in the ret-len2 parameter.

 Chapter 3. The GDDM calls 53

 CGSAVE

ret-len2 (returned by GDDM) (fullword integer)
The number of bytes of information returned in
descriptor2 .

 Description

Retrieves one or all pictures from a Computer Graphics
Metafile (CGM) on auxiliary storage and loads it into the
current GDDM page. A segment must not be open when the
CGLOAD call is made; CGLOAD does not leave any
segment open. CGLOAD loads the CGM picture into the
GDDM page, with the window, viewport, picture space and
so on, under control of the load-type parameter. If GDDM
detects an error, the picture reverts to its original state,
without any changes applied.

CGLOAD loads primitives into their own unique segment, to
assist with later editing of the picture, or can load the entire
picture into one segment under control of the seg-use
parameter.

The drawing defaults within the CGM file are incorporated
into the segment data to be loaded. The current drawing
defaults are not modified. Thus the loaded data reflects the
drawing defaults in the CGM file, but CGLOAD does not
affect any data currently displayed.

The way that CGM orders are converted to GDF orders and
the limitations and restrictions of this process are described
in Chapter 13, “Computer Graphics Metafiles” on page 323.

The corresponding CGM save function is provided by the
CGSAVE call.

The permitted formats of the CGMs and conversion profiles
handled by this call are defined in Chapter 13, “Computer
Graphics Metafiles” on page 323.

CGLOAD is only available under the CMS, TSO and
MVS/Batch environments. When CGLOAD is invoked in an
unsupported environment, the error ADM3292 (listed below)
is returned.

 Principal errors
ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð128 W SYMBOL SET n OPTION UNSUPPORTED

ADMð135 E SYMBOL SET n TYPE UNSUPPORTED

ADMð146 E ARRAY COUNT n IS INVALID

ADMð173 E STRING LENGTH n IS INVALID

ADMð182 W INVALID CHARACTER CODE X'xx' IN STRING

ADMð232 E CODE PAGE n IS NOT SUPPORTED

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð313 E FILE 'a' HAS INVALID RECORD CONTENT

ADM3157 E SYMBOL SET IDENTIFIER n ALREADY IN USE

ADM3158 E NO MATCH IN FONT FOR CODE PAGE INDEX ENTRY

ADM327ð W MORE SYMBOL SETS THAN SYMBOL-SET IDENTIFIERS

ADM329ð E INVALID CGM ORDER X'xx', LINE n1 OFFSET n2

ADM3291 E INVALID VALUE n1 FOR ELEMENT n2 OF OPTION

ARRAY

ADM3292 E CGM FUNCTIONS ARE NOT SUPPORTED IN THIS

ENVIRONMENT

ADM3293 E ERROR AT ITEM n KEYWORD a1 IN FILE 'a2'

ADM3294 E CGM ERROR CODE abbcc AT LINE n1 OFFSET n2

ADM3295 E INVALID OR UNSUPPORTED CGM ORDER X'xx'

 CGSAVE

 Function

| Exports (saves) segments in a Computer Graphics Metafile
| (CGM).

 Parameters

cgm-count (specified by user) (fullword integer)
The number of 8-byte name parts in the cgm-name
parameter. Valid range is 1 through 3 under VM, 1
through 7 otherwise.

cgm-name (specified by user) (array of 8-byte character
tokens)
The name-parts that constitute the name by which the
CGM is to be known to the underlying subsystem. The
format of the name-parts is subsystem-dependent and is
defined in the same way as for the CGLOAD call, except
that, under TSO, partitioned data set member names are
not permitted. On CMS, the default filetype and
filemode are “CGM” and “A1”.

profile (specified by user) (8-byte character string)
The name (left-justified) of the CGM profile file on auxil-
iary storage. The format of this parameter is identical to
the parameter of the same name on CGLOAD. The pro-
files are intended for use in conversion in both
directions.

If this parameter is not specified, the default is ADM.
However, on CMS, the default is the CGM filetype speci-
fied.

seg-count (specified by user) (fullword integer)
The number of elements in the seg-array parameter.

seg-array (specified by user) (an array of fullword integers)
An array of segment identifiers. If the number of ele-
ments or the first segment identifier is zero, all the
graphics data in the GDDM page is saved in the CGM
file. If the number of elements is greater than zero,
each identified segment is saved in the named file. The

CGSAVE (cgm-count, cgm-name,profile,seg-count,
seg-array,opt-count,opt-array,desc-len1,
descriptor1,desc-len2,descriptor2)

APL code 670
GDDM RCP code X'0C0C2000' (202121216)

54 GDDM Base Application Programming Reference

 DSCLS

segments are stored in the file in the order specified in
seg-array . If this parameter has 0 after the first
element, GDDM does not save any more elements
beyond that point. Duplicate segment identifiers are not
allowed.

opt-count (specified by user) (fullword integer)
The number of elements in the opt-array parameter.

opt-array (specified by user) (an array of fullword integers)
An array of control information. The parameter has two
elements. If an element is not specified, the action
taken is the same as if it had been specified as zero.
The values that can be specified are:

1 – overwrite
Specifies whether the new CGM file can overwrite
an existing CGM file of the same name on auxiliary
storage. Possible values are:
0 Overwrite existing file. This is the default.
1 Do not overwrite existing file.

2 – code-page
Specifies the code page that the CGM receiving
application is expecting. This option determines the
way text strings are translated. It is unlikely that
the application writer using the CGSAVE call knows
the required information; it is, therefore, recom-
mended that this parameter is coded as zero so
that the information is obtained from the conversion
profile. Allowed values are:
0 The default, as specified in the profile. If the

code page is not specified in the conversion
profile or is specified as zero, 850 is used.

| 437 Code page 437 (United States), as shown in
| the GDDM System Customization and Admin-
| istration book.
| 819 Code page 819 (ISO/ANSI Multilingual), as
| shown in the GDDM System Customization
| and Administration book. This 8-bit ASCII
| code page contains all the characters in the
| GDDM CECP code pages.
| 850 Code page 850 (Multilingual), as shown in
| the GDDM System Customization and Admin-
| istration book.

Other Code page specified in the user modifiable
ADMDATRN module.

desc-len1 (specified by user) (fullword integer)
The number of characters in the descriptor1 parameter.

descriptor1 (specified by user) (array of character)
A descriptive record, of up to 253 bytes, that is saved in
the metafile as the text of the “Begin Metafile” element.
The normal convention is that this descriptor is used for
application-specific information, including an application
identifier.

desc-len2 (specified by user) (fullword integer)
The number of characters in the descriptor2 parameter.

descriptor2 (specified by user) (array of character)
A descriptive record, of up to 253 bytes, that is saved in
the metafile as the picture name (in the begin picture
element). The normal convention is that this descriptor
is for use by the end user.

 Description

Saves specific graphics segments, or all the graphics seg-
ments in the current GDDM page, into a CGM file on auxil-
iary storage. The segments or graphics data are saved in a
file defined by the cgm-name parameter. No segment must
be open when the CGSAVE call is issued.

The way that GDF orders are converted to CGM orders and
the limitations and restrictions of this process are described
in Chapter 13, “Computer Graphics Metafiles” on page 323.

The corresponding CGM load function is provided by the
CGLOAD call.

The format of the conversion profiles used by, and the CGMs
created by this call are defined in Chapter 13, “Computer
Graphics Metafiles” on page 323.

The text of the “Metafile Descriptor” element of the metafile is
generated automatically by CGSAVE and contains informa-
tion about the date and time of the conversion and the name
and version of the program performing the conversion.

CGSAVE is only available under the CMS, TSO, and
MVS/Batch environments. When CGSAVE is invoked in an
unsupported environment, the error ADM3292 (listed below)
is returned.

 Principal errors
ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð143 E SEGMENT IDENTIFIER n IS DUPLICATE

ADMð145 E SEGMENT n IS UNKNOWN

ADMð146 E ARRAY COUNT n IS INVALID

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð161 E GRAPHICS FIELD NOT DEFINED

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð232 E CODE PAGE n IS NOT SUPPORTED

ADMð324 E FILE 'a' ALREADY EXISTS

ADM3291 E INVALID VALUE n1 FOR ELEMENT n2 OF OPTION

ARRAY

ADM3292 E CGM FUNCTIONS ARE NOT SUPPORTED IN THIS

ENVIRONMENT

ADM3293 E ERROR AT ITEM n KEYWORD a1 IN FILE 'a2'

ADM3294 E CGM ERROR CODE abbcc AT LINE n1 OFFSET n2

 DSCLS

 Function

To close a device.

 Chapter 3. The GDDM calls 55

 DSCMF

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the device to be closed.

option (specified by user) (fullword integer)
Indicates an action to be performed at device closure. The
meaning depends upon the device family:

Family-1 (3270-family) devices not in CICS pseudo-
conversational mode

0 Erase the screen.
1 Do not erase the screen (see note 3).
2 Erase the screen and unlock the keyboard.
3 Do not erase the screen, but unlock the keyboard (see

note 3).

Family-1 (3270-family) devices in CICS pseudo-
conversational mode

0 Erase the screen. Also, unlock the keyboard and save
any device data that has changed.

1 Do not erase the screen. Unlock the keyboard and
save any device data that has changed.

2 Erase the screen, unlock the keyboard, and erase the
saved device data.

3 Do not erase the screen, but unlock the keyboard and
erase the saved device data.

Family-2 (queued printer files)

0 Cancel a print file (see note 4)
1 Enqueue a file for printing (see note 5).

Family-3 (system printer files)

0 Cancel a print file (see note 6).
1 Enqueue a file for printing (see note 7).

Family-4 (page printer files)

0 Cancel or delete the print file(s).
1 Enqueue or keep the print file(s).

Notes:

1. The option value is ignored for family-1 printers.

2. Under VM/CMS, if output has been directed to the virtual
punch, the virtual punch is closed, and the punch file
enqueued, whichever option is specified.

3. Under TSO, the screen is erased, whichever option
value is specified.

4. Under IMS/VS, it is not possible to cancel a queued
printer file, so it is enqueued, whichever option value is
specified.

5. Under VM/CMS, if the DSOPEN procopt
(INVKOPUV,YES) has been specified, the function of

the GDDM Print Utility (ADMOPUV) is invoked, after
which the print file is erased. Otherwise, a queued
printer file is kept, but not enqueued, and an installation-
defined ADMQPOST EXEC is invoked if present. For
more information, see the GDDM System Customization
and Administration book.

6. Under CICS/VS, IMS/VS, or TSO, it is not possible to
cancel a system printer file, so it is enqueued, whichever
option value is specified.

7. Under VM/CMS, when the system printer output has
been directed to a disk file, the system printer file is
kept, but not enqueued.

8. The keyboard is only unlocked if it is currently locked. It
may have been previously unlocked by calling FSFRCE
and using the AUNLOCK processing option.

 Description

Terminates the use of a device by GDDM.

Any resources (such as symbol sets or page contents) that
have been defined for the device are released. Any device
that is subsequently opened with the same device identifier
bears no relationship to the device now being closed.

Any usage currently in force for this device is discontinued.

If operator windows are being used by this instance of
GDDM, a call to DSCLS may cause operator windows to
be deleted. If an operator window that is associated with
a virtual device in another instance of GDDM is deleted,
the results of subsequent operations on that virtual
device are undefined (see WSDEL).

Note: This function differs from most GDDM functions, in
that the function tries to complete even if an error is returned.

 Principal errors

ADMðð74 E INVALID DEVICE IDENTIFIER

ADMðð82 E DEVICE DOES NOT EXIST

ADMðð89 W INVALID OPTION

ADMð3ð4 E INVALID FILE NAME, 'a'

ADMð312 E CONCURRENT USAGE OF FILE 'a' NOT ALLOWED

ADMð327 E 'a1' ERROR CODE X'xx', ON 'a2'

Note: Messages ADMð3ð4, ADMð312, and ADMð327 are only
issued in CICS transaction-dependent pseudoconversational
mode.

 DSCMF

 Function

To enable automatic entry into User Control.

DSCLS (device-id, option)

APL code 902
GDDM RCP code X'0C000201' (201327105)

56 GDDM Base Application Programming Reference

 DSCOPY

 Parameters

control (specified by user) (fullword integer)
Possible values are:
0 Disabled; that is, should not cause automatic entry into

User Control. This is the default.
1 Enabled; subsequent “read” calls force automatic entry

into User Control.

 Description

This call causes subsequent “read” type calls (such as
ASREAD) to force the screen automatically into User Control
mode at the initial entry level. Initial entry level varies
according to other factors related to the program environ-
ment, as follows:

Window entry level: If the DSOPEN processing option
WINDOW is in effect.

Graphic entry level: If the device supports graphics and the
DSOPEN processing option WINDOW is not in effect.

Output panel entry level: None of the above; that is,
windows are not used, and graphics are not supported.

If the DSOPEN processing option CTLMODE is not active,
the DSCMF call has no effect.

 Principal errors

ADMð153 E CONTROL VALUE n IS INVALID

ADM2997 E USER CONTROL IS NOT ALLOWED

 DSCOPY

 Function

Send transformed picture to alternate device.

 Parameters

width (specified by user) (short floating point)
The percentage width of the output area on the output
medium.

depth (specified by user) (short floating point)
The percentage depth of the output area on the output
medium.

hor-off (specified by user) (short floating point)
The percentage horizontal offset, from the left of the
medium, of the output area on the output medium.

ver-off (specified by user) (short floating point)
The percentage vertical offset, from the top of the medium,
of the output area on the output medium.

count (specified by user) (fullword integer)
The number of elements in the option-array parameter.

option-array (specified by user) (array of fullword integers)
An array of options for the DSCOPY call. There are three
elements:
1 – source

Specifies which type of data to copy. Three possible
values:
0 Graphics. Only the graphics field is copied to the

output area (default).
1 Image. Only the image field is copied to the output

area.
2 The whole page. All non-alphanumeric fields

(graphics and image) are copied to the output
area. .

2 – aspect ratio control
Specifies whether or not to maintain the aspect ratio of
the required picture when copied to the output area.
Two possible values:
0 Preserve aspect ratio of picture within output area

(default).
1 Stretch picture to fit the output area.

3 – rotation
Specifies the clockwise rotation applied to the picture.
Four possible values:
0 0 degrees (default)
1 90 degrees
2 180 degrees
3 270 degrees.

 Description

Copies the contents of the chosen source to the current
alternate device. The copied picture is sized and positioned
(and rotated) according to the values specified in percent-
ages of the target device's page (positioned to cell accuracy
on cell-constrained devices). Thus, the size of the copy, in
character cell units, can differ from that of the picture on the
current page, and a larger picture may be obtained than
would have been the case using FSCOPY.

If aspect-ratio-control value 1 is specified, the picture is
“stretched” to fit the requested output area. Otherwise, the
aspect ratio of the picture is preserved within the output area.
If the picture has different proportions from those of the
output area, this means that the picture will be smaller than
the requested output area in one dimension, and centered
within it.

DSCMF (control)

APL code 439
GDDM RCP code X'0C080C01' (201853953)

DSCOPY (width, depth. hor-off, ver-off, count, option-
array)

APL code 909
GDDM RCP code X'0C180008' (202899464)

 Chapter 3. The GDDM calls 57

 DSDROP

Note: The picture displayed may be smaller than the field in
which it is drawn, therefore, selecting 100% does not neces-
sarily fill the page.

For more information about the handling of picture compo-
nents during the copy process, refer to the FSCOPY call.

Notes:

| 1. A width or depth (but not both) of more than 100%, up
| to 1000%, may be specified, to allow the user to take

advantage of devices which support drawings too long
for a single sheet of paper (for example, roll-feed plot-

| ters). The dimension that can exceed 100% is that cor-
| responding to the physical width after any rotation
| specified in the PLTROTAT processing option is applied.
| Thus if PLTROTAT specifies a rotation of 90 or 270
| degrees, it is the depth value in this call that may
| exceed 100%.

| Specifying a value >100% for a copy to a single-sheet
| device has unpredictable results.

2. The setting of GSARCC has no bearing on this call.

3. Printing or plotting processing options (procopts) that
affect the size, rotation or position of the output are
honoured in addition to values specified by the DSCOPY
call.

4. The limitations to rotated graphics described by the
GSSAGA call also apply to graphics rotated by the
DSCOPY call.

 Principal errors

ADMðð7ð E NO ALTERNATE DEVICE

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE |GSCOPY|MAPPING}'

IS NOT SUPPORTED FOR THIS DEVICE

ADMð89ð E INVALID WIDTH n SPECIFIED

ADMð891 E INVALID DEPTH n SPECIFIED

ADMð892 E INVALID HORIZONTAL OFFSET n SPECIFIED

ADMð893 E INVALID VERTICAL OFFSET n SPECIFIED

ADMð894 E SUM OF WIDTH AND HORIZONTAL OFFSET n IS

INVALID

ADMð895 E SUM OF DEPTH AND VERTICAL OFFSET n IS

INVALID

ADMð896 E SOURCE TYPE n DOES NOT EXIST

ADMð897 E SOURCE OF COPY n MUST BE IN THE RANGE ð

THROUGH 2

ADMð898 E ROTATION VALUE n MUST BE IN THE RANGE ð

THROUGH 3

ADMð899 E ASPECT RATIO CONTROL n MUST BE ð OR 1

 DSDROP

 Function

To discontinue device usage.

 Parameters

usage (specified by user) (fullword integer)
The device usage code. Possible values are:
1 Current primary device
2 Current alternate device.

device-id (specified by user) (fullword integer)
The identifier of the device concerned.

 Description

Indicates that a device is no longer to operate with the speci-
fied usage.

Unless it is also being used in another mode (for example,
as both the primary and alternate device), the device now
enters a state in which the only operations that can be per-
formed against it are DSCLS, DSRNIT, DSQDEV, and
DSUSE. Its resources are not, however, released, and its
usage (together with all the contents, and so on, that existed
at the time of the DSDROP) may subsequently be restored
by means of a DSUSE call.

A device is automatically dropped when the application
issues a DSUSE call for a different device.

 Principal errors

ADMðð74 E INVALID DEVICE IDENTIFIER

ADMðð76 E INVALID DEVICE USAGE

ADMðð82 E DEVICE DOES NOT EXIST

ADMðð84 E DEVICE NOT IN USE

 DSFRCE

 Function

To output a member to a Partitioned Data Set

DSDROP (usage, device-id)

APL code 904
GDDM RCP code X'0C000203' (201327107)

DSFRCE (member-name)

APL Code 910
GDDM RCP code X'0C10000C' (202375180)

58 GDDM Base Application Programming Reference

 DSOPEN

 Parameters

member-name (specified by user) (8-byte character string)
The name (left-justified) that is to be given to the current
page, to be stored in page segment or overlay format as a
member of a partitioned data set.

 Description

Outputs the current page as a page segment or overlay, to a
member of the partitioned data set defined by the DSOPEN
for the current device.

The device must be opened with processing option
FRCETYPE set to DSFRCE.

The characteristics of the member are those specified on the
current DSOPEN.

 Principal errors

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE

 DSOPEN

 Function

To open a device.

 Parameters

device-id (specified by user) (fullword integer)
The device identifier. It must not be negative.

The values 0 and 1 should also be avoided, unless it is
certain that they are not required for default devices.

Note that GDDM can automatically open devices, as
follows:

� It opens the default primary device (device-id = 0),
when no primary device has been specified (by a
DSUSE), or

� It opens the default alternate device (device-id = 1), if
an FSOPEN statement is issued.

family (specified by user) (fullword integer)
The device-family code, which can take these values:

1 3270-family devices
These include:

3270 displays and printers
 Plotters
 Scanners

5550-family displays and printers
5081 high function graphics display
Personal computer systems using GDDM-PCLK or
GDDM-OS/2 Link, together with attached printers
and plotters

 ASCII displays.

For a full list of these devices, see the GDDM General
Information manual for the latest release.

2 Queued printer files
Queued printer output for any of the family-1 devices.

3 System printer files
For a full list of system printers, see the GDDM
General Information manual for the latest release.

4 Page printer files
For a full list of page printers, see the GDDM General
Information manual for the latest release.

Note: A device-family code of zero, which can be returned
by DSQDEV, FSQDEV, or FSQURY (see the descriptions
of these functions), cannot be specified for the family
parameter on DSOPEN.

device-token (specified by user) (8-byte character string)
Tells GDDM where to find the properties of the device.
GDDM left-justifies the supplied parameter, and converts it
to uppercase, if necessary. It can have these values:

� 'ñ '—GDDM is to determine device properties
from subsystem tables, the device itself, or GDDM’s
own defaults, or both as appropriate to the device and
subsystem.

� The name of a device token that is part of the
ADMLSYS1, ADMLSYS3, ADMLSYS4, or ADMLSYSA
table. A version of each of these tables is supplied
with GDDM, and contains several device tokens. A
table containing different definitions can be regenerated
if required. For contents of the GDDM-supplied tables
and other information, see Chapter 21, “Device charac-
teristics tokens” on page 421.

Notes:

1. The device token determines the size of the default
page. (See the maxpage parameter of the ADMM3270
macro in the GDDM System Customization and Admin-
istration book).

2. On a queued printer (family-2 device), the device token
does not affect the device properties subsequently
used by the GDDM print utility when it processes the
print request; the device token is used only to deter-
mine the size of the default page. The device charac-
teristics are established when the real output device is
opened. If a heading page is specified, it is created at

DSOPEN (device-id, family, device-token, procopt-count,
procopt-list, name-count, name-list)

APL code 901
GDDM RCP code X'0C000200' (201327104)

 Chapter 3. The GDDM calls 59

 DSOPEN

output time using the default page size of the real
output device.

procopt-count (specified by user) (fullword integer)
The number of fullwords in procopt-list . Zero can be
specified to indicate that procopt-list is empty and is not to
be inspected.

procopt-list (specified by user) (an array of fullword inte-
gers)
This list is used to pass miscellaneous processing options
to GDDM. Some of these options are dependent on the
device family, and some on a particular subsystem.

Each option is passed as an option group, consisting of a
fullword option code, followed by one or more fullwords of
option data. Option groups can be specified in any order.
Only those option groups for which it is specifically required
to override GDDM’s default action need be specified. If an
option group is not relevant in the execution circumstances
(for example, CMS attention handling, while operating
under TSO), that option group is ignored.

The parameter list takes the form:

┌──────────────────────────┐

│ First Option Group Code │

├──────────────────────────┤

│ Option 1 │

├──────────────────────────┤

│ Option 2 │

├──────────────────────────┤

│ (....) │

├──────────────────────────┤

│ Second Option Group Code │

├──────────────────────────┤

│ Option 1 │

├──────────────────────────┤

│ (....) │

└──────────────────────────┘

The option groups are described in detail in Chapter 19,
“Processing options” on page 395.

name-count (specified by user) (fullword integer)
The number of 8-byte name-parts in name-list . Zero can
be specified to indicate that name-list is empty and is not
to be inspected. Even if name-list is empty, it must be
specified in the parameter list of the call.

name-list (specified by user) (array of 8-byte character
tokens)
This list gives the name-parts that constitute the name by
which the device is known to the underlying subsystem.
The number of name-parts that can be supplied and their
meanings are subsystem- and family-dependent. GDDM
left-justifies each supplied name-part and converts it to
uppercase, if necessary. Even if name-list is empty, it
must be specified in the parameter list of the call.

The values for the name-count and name-list parameters
for the various subsystems are shown in Chapter 20, “Name-
lists” on page 415.

 Description

Opens (initializes) a device that GDDM is to access.

There is usually no need to issue a DSOPEN call when the
output is to appear on the invoking terminal – known as the
user console . By default, GDDM automatically opens the
user console with device ID of 0 if it is required.

If a device other than the user console is to be made known
to GDDM, it must have an explicit DSOPEN call unless a
nickname is used (see below) that acts on GDDM’s auto-
matic opening of the user console.

After an explicit DSOPEN and before creating any output for
a device, the device must be made current using a DSUSE
call. According to the usage specified in the DSUSE call,
statements apply to that device until a new device is made
current. The scheme is the same as that for pages; that is,
several devices are available but only one of them is current
at any one time.

In a windowing environment, the DSOPEN call applies to a
virtual device that is displayed in an operator window of a
real device. However, unless the application needs to use
the windowing calls, it does not have to distinguish between
real and virtual devices. For more information, see the
GDDM Base Application Programming Guide.

DSOPEN calls are required for auxiliary devices, such as
plotters, which can be attached through 3179-G, 3192-G, or
3472-G display stations, 3270-PC/G or 3270-PC/GX work-
stations, 5550-family Multistations, or devices using
GDDM-PCLK. To GDDM, a plotter is a family-1 device. It is
identified by using DSOPEN’s name-count and name-list
parameters. For full information, see Chapter 20, “Name-
lists” on page 415.

Image scanners (3117 and 3118) are always attached to an
image display (3193), and therefore DSOPEN calls cannot
be made directly to them; DSOPEN calls must be made to
the image display.

All loadable-character-set stores on the device are assumed
to be available for use by GDDM, unless they are subse-
quently reserved by a call to PSRSV.

In CICS transaction-dependent pseudoconversational mode,
on the initial invocation of a transaction and after processing
the initial input, the PSCNVCTL processing option must be
set to “start pseudoconversational mode.” On subsequent
invocations, it must be set to “continue pseudoconversational
mode.” For further information, see the GDDM Base Applica-
tion Programming Guide.

60 GDDM Base Application Programming Reference

 DSOPEN

Notes:

1. There are restrictions on the use of DSOPEN for some
subsystems. For further information, see the GDDM
Base Application Programming Guide.

2. To enable the invocation of the Interactive Chart Utility in
circumstances that require special DSOPEN parameters,
the PGF feature of GDDM provides the sample module
ADMUCDSO. This module is supported under TSO and
VM/CMS only. Information about how to use
ADMUCDSO is given in the GDDM-PGF Programming
Reference book.

3. Throughout the description of this call, references to
TSO also apply to the MVS Batch environment.

Example of a DSOPEN call

Here is an example of a DSOPEN call. The example
assumes that the necessary declare statements for the pro-
gramming language in use have been written (for a PL/I
model, see the GDDM Base Application Programming
Guide).

This example assigns a device identifier of 11 to a local 3279
Model 3 display (screen size 32 by 80), with processing
option groups 1000 and 1001 (for CMS PA1/PA2 protocol
and attention handling), and with a virtual address known to
VM/CMS as '061'.

The DSOPEN call to define the device in this way is:

CALL DSOPEN(11,1,'L79A3',6,P_LIST,1,N_LIST)

The following diagram illustrates the values in each of the
DSOPEN parameters:

Device Identifier Device Family Device Token

┌────────┐ ┌─────┐ ┌────────┐

│ 11 │ │ 1 │ │ 'L79A3'│

└────────┘ └─────┘ └────────┘

 (Character)

 Procopt-count Procopt-list

 ┌──────┐ ┌────────┐

 │ 6 │ │ 1ððð │

 └──────┘ ├────────┤

(Number of elements in the procopt- │ 2 │

 list array called P_LIST) ├────────┤

 │ 1ðð1 │

 ├────────┤

 │ 1 │

 ├────────┤

 │ 8 │

 ├────────┤

 │'12AB8ð'│

 └────────┘

 Name-count Name-list

 ┌────────┐ ┌───────┐

│ 1 │ │ 'ð61' │

 └────────┘ └───────┘

 (Number of elements in the name-list

array called N_LIST) (hexadecimal)

The procopt-list called P_LIST is constructed as follows:

┌──────────┐

│ │ First procopt group code

│ 1ððð │ (CMS PA1/PA2 protocol)

├──────────┤

│ │ Procopt value for this group

│ 2 │ (PA1 to CP, PA2 to user)

├──────────┤

│ │ Second procopt group code

│ 1ðð1 │ (CMS attention handling)

├──────────┤

│ │ First procopt value (extended

│ 1 │ attention handling) for group

├──────────┤

│ │ Second procopt value (length of

│ 8 │ feedback block) for group

├──────────┤

│ │ Third procopt value (address of

│X'12AB8ð' │ feedback block) for group

└──────────┘

 Principal errors

ADMðð74 E INVALID DEVICE IDENTIFIER

ADMðð75 E INVALID DEVICE FAMILY n

ADMðð77 E DEVICE ALREADY EXISTS

ADMðð78 E INVALID NAME COUNT n

ADMðð79 E INVALID PROCESSING OPTIONS COUNT n

ADMðð8ð E DEVICE IS NOT HARDCOPY. DEVICE TOKEN WAS 'a'

ADMðð85 E UNSUPPORTED PROCESSING OPTION CODE n

ADMðð86 E INVALID PROCESSING OPTION VALUE n1 FOR CODE

n2

ADMðð87 E QUERY ERROR: TOKEN 'a',HDR X'llllttqq' OFF

X'xx' REASON n

ADMðð88 E QUERY VALUE ERROR: TOKEN 'a', HDR

X'llllttqq' , OFF X'xx'

ADMðð9ð E NO USABLE AREA IN QUERY REPLY

ADMðð91 E DEVICE NOT SUPPORTED ON THIS SUBSYSTEM.

DEVICE TOKEN WAS 'a'

ADMðð92 E CONFLICT BETWEEN PROCESSING OPTION CODE n

AND DEVICE TOKEN 'a'

ADMðð93 W PAGE SIZE REDUCED TO n1,n2 TO FIT MEDIUM

ADMðð94 W PROCESSING OPTION CODE n NOT SUPPORTED BY

PLOTTER

ADMðð96 E AUXILIARY DEVICE TYPE a IS UNKNOWN TO GDDM

ADMðð97 E AUXILIARY DEVICE 'a' NOT FOUND

ADMð1ðð S DEVICE NOT SUPPORTED FOR FAMILY n. DEVICE

TOKEN WAS 'a'

ADMð1ð1 E USABLE AREA WIDTH OR DEPTH NOT LESS THAN

16384 PIXELS

ADMð1ð2 E INVALID PROCOPT GROUP. CODE = a1{, NUMBER =

n}, REASON = a2

ADMð1ð3 E PLOTTER CANNOT SUPPORT THE REQUESTED PAPER

SIZE

ADMð1ð4 E PLOT AREA IS TOO BIG FOR THE CURRENT PLOTTER

SETUP

ADMð1ð6 E DEVICE TOKEN 'a' IS FOR AUXILIARY DEVICES

ONLY

ADMð1ð7 E PLOTTER CANNOT BE SUPPORTED ON AN

OUTPUT-ONLY TERMINAL

 Chapter 3. The GDDM calls 61

 DSQCMF

ADMð1ð8 E CANDIDATE OPERATOR WINDOW ALREADY IN USE OR

NOT ACCESSIBLE

ADMð1ð9 E ONLY ONE DEVICE AT A TIME MAY BE WINDOWED

ADMð4ðð E DEFAULT 'MAXIMUM TRANSMISSION SIZE' n IS

INVALID

ADMð4ð1 E INVALID TERMINAL TYPE. THIS IS NOT A DISPLAY

TERMINAL

ADMð4ð2 E TERMINAL ERROR. RETURN CODE n (DECIMAL) FROM

a

ADMð4ð3 E TERMINAL a DISCONNECTED OR DOES NOT EXIST

ADMð4ð4 E DATA STREAM ERROR

ADMð4ð7 E DEFAULT 'MAXIMUM FSSAVE/FSSHOW BUFFER SIZE',

n, IS INVALID

ADMð4ð9 E INVALID COLOR MASTER SET NUMBER n

ADMð441 S TERMINAL ERROR{ ON a}. DEVICE DISCONNECTED

OR NOT DEFINED

ADMð444 E INVALID CMS ATTN OPTION FOR DEVICE 'a'

ADMð445 E INVALID CMS PA1/PA2 OPTION FOR DEVICE 'a'

ADMð461 E I/O PCB ALREADY IN USE OR NOT AVAILABLE

ADMð462 E NO TP PCB WITH DESTINATION a AVAILABLE FOR

USE BY THIS DEVICE

ADMð481 E NAME COUNT OF n1 FOR 'a' IS INVALID FOR

FAMILY n2

ADMð482 E DEVICE NAME LIST 'a' IS INVALID FOR FAMILY n

ADMð483 E COLOR MASTER a NOT FOUND

ADMð484 E NO DEVICE TOKEN PROVIDED FOR DUMMY DEVICE

ADMð485 E SUBSYSTEM DEVICE 'a' ALREADY OPEN

ADMð872 W SCREEN SIZE TOO SMALL FOR USER CONTROL

 DSQCMF

 Function

To query automatic entry to User Control function.

 Parameters

function (returned by GDDM) (fullword integer)
Defines the status of automatic entry to User Control. Pos-
sible values are:
0 Automatic entry to User Control is disabled.
1 Automatic entry to User Control is enabled.

 Description

Returns the current status of automatic entry to User Control
as set by the most recent DSCMF call.

 Principal errors

None.

 DSQDEV

 Function

To query device characteristics.

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the device whose characteristics are
required.

device-token (returned by GDDM) (8-byte character string)
This parameter indicates the source of GDDM’s information
about the device properties. It can take the following
values:

� 'ñ '— GDDM-determined device properties from
subsystem tables, the device itself, from GDDM’s own
defaults, or from both as appropriate.

� The name of a device definition that is part of the
ADMLSYSn table (where n is 1, 3, 4, or A).

procopt-count (specified by user) (fullword integer)
The number of fullwords in procopt-list . Zero can be
specified to indicate that the procopt-list is empty and is
not to be returned.

procopt-list (returned by GDDM) (an array of fullword inte-
gers)
In this list, GDDM returns the processing option groups that
are applicable to the particular device’s family, and to the
environment in which GDDM is operating. (Plotter proc-
essing options are returned for plotters only.) Each option
group consists of several contiguous fullwords, the first of
which is a code identifying the particular option. The list is
padded with zeros, if necessary. If the procopt-count
value is too small, a processing option group may be trun-
cated. For variable-length “mergeable” groups only (groups
4 and 20), the embedded count is modified appropriately.

For information on processing option groups, and the fami-
lies and environments to which they apply, refer to
Chapter 19, “Processing options” on page 395.

name-count (specified by user) (fullword integer)
The number of 8-byte tokens in name-list . Zero can be
specified to indicate that name-list is empty and is not to
be returned.

name-list (returned by GDDM) (array of 8-byte character
tokens)
The name by which the device is known to the underlying

DSQDEV (device-id, device-token, procopt-count,
procopt-list, name-count, name-list, char-count,
char-list)

APL code 907
GDDM RCP code X'0C000206' (201327110)

DSQCMF (function)

APL code 440
GDDM RCP code X'0C080C02' (201853954)

62 GDDM Base Application Programming Reference

 DSQUID

subsystem. Again, for the meaning of these tokens for
various device families and in various environments, refer
to Chapter 20, “Name-lists” on page 415.

char-count (specified by user) (fullword integer)
The number of fullwords in char-list . Zero can be specified
to indicate that char-list is empty and is not to be returned.

char-list (returned by GDDM) (an array of fullword integers)
An array of fullword integers to receive the device charac-
teristics information. For an explanation of the device char-
acteristics information that can be returned, see FSQURY
(code=0).

 Description

Requests the characteristics of the device to be returned. A
device token, processing options list, and name-list are
returned in DSOPEN format, including the values of any
options that were defaulted when the device was opened;
see DSOPEN. Another list, containing miscellaneous device
characteristics, is also returned.

Storage for these lists is provided by the invoker. The
various count parameters indicate how many elements
(fullwords, or 8-byte tokens, as appropriate) for which there is
room in each list. If there is not enough space, GDDM
returns only as many elements as the space allows; if there
is extra space, it pads the space with zeros or blanks, as
appropriate.

 Principal errors

ADMðð74 E INVALID DEVICE IDENTIFIER

ADMðð78 E INVALID NAME COUNT n

ADMðð79 E INVALID PROCESSING OPTIONS COUNT n

ADMðð81 E INVALID DEVICE CHARACTERISTICS COUNT

ADMðð82 E DEVICE DOES NOT EXIST

ADMð129 E ARRAY COUNT n IS INVALID

 DSQUID

 Function

To query unique device identifier.

 Parameters

device-id (returned by GDDM) (fullword integer)
An identifier for which no device currently exists.

 Description

Requests return of a unique unused device identifier. This
call can be used by a modular application program to obtain
an identifier for a new device, without conflicting with a
device that has already been opened, or that will be opened
later, by another part of the application. The device identifier
returned is the highest available unused number.

 Principal errors

None.

 DSQUSE

 Function

To query device usage.

 Parameters

usage (specified by user) (fullword integer)
The code for the usage for which the current device is
required. For valid usage codes, see DSUSE.

device-id (returned by GDDM) (fullword integer)
Receives the identifier of the device currently operating with
the specified usage. If there is none, a value of –1 is
returned.

 Description

Returns the identifier of the device currently operating with
the specified usage.

 Principal errors

ADMðð76 E INVALID DEVICE USAGE

 DSRNIT

 Function

To reinitialize a device.

DSQUSE (usage, device-id)

APL code 906
GDDM RCP code X'0C000205' (201327109)

DSQUID (device-id)

APL code 905
GDDM RCP code X'0C000204' (201327108)

DSRNIT (device-id, option)

APL code 908
GDDM RCP code X'0C000207' (201327111)

 Chapter 3. The GDDM calls 63

 DSUSE

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the device to be reinitialized.

option (specified by user) (fullword integer)
The action to be carried out at device reinitialization. For
the use of this parameter, see DSCLS.

 Description

Restores the status of a device to that which existed just
after it was first opened, so that all resources (symbol sets,
for example) that have been defined for the device are
released.

Any usage currently in force for this device is discontinued;
after a DSRNIT call has processed, the device is not in use
as either the primary or the alternate device.

If operator windows are being used by this instance of
GDDM, a call to DSRNIT may cause operator windows to
be deleted. If an operator window that is associated with
a virtual device in another instance of GDDM is deleted,
the results of subsequent operations on that virtual
device are undefined (see WSDEL).

Note: This function differs from most GDDM functions in
that the function tries to complete even if an error is returned.

 Principal errors

ADMðð74 E INVALID DEVICE IDENTIFIER

ADMðð82 E DEVICE DOES NOT EXIST

ADMðð89 W INVALID OPTION

 DSUSE

 Function

To specify device usage.

 Parameters

usage (specified by user) (fullword integer)
The device usage code. Possible values are:
1 Current primary device
2 Current alternate device.

device-id (specified by user) (fullword integer)
The identifier of the device concerned.

 Description

DSUSE activates a device, and specifies the usage that the
application may make of the device. The device so activated
becomes the one whose contents are manipulated by subse-
quent calls. For example, the current primary device is the
one within which a page would be created if an FSPCRT call
were issued.

These rules apply to DSUSE:

� The device must already be open.
� Any device currently operating with the required usage is

dropped from that usage.
� A device of any family can be used as the primary or

alternate device. However, for family-4 alternate
devices, a cell-based device token must be used.

Note: If you issue a function requiring a primary device to
be in use, when no primary device is in use, then GDDM
makes the default primary device the current primary device.
(The default primary device is always given the device ID 0.)
GDDM also makes the alternate device that has been
opened by an FSOPEN call the current alternate device.

 Principal errors

ADMðð74 E INVALID DEVICE IDENTIFIER

ADMðð76 E INVALID DEVICE USAGE

ADMðð82 E DEVICE DOES NOT EXIST

 ESACRT

 Function

To create an application group.

 Parameters

application-group-id (returned by GDDM) (fullword integer)
The identifier of the new application group that was created
and made current.

 Description

Creates a new application group and returns its identifier.
The new application group becomes the current application
group. All instances of GDDM initialized from this time until
another application group is made current are associated
with this application group.

The purpose of application groups is to manage GDDM
resource recovery within a single operating task or subtask.

ESACRT (application-group-id)

APL code 127
GDDM RCP code X'000A0000' (655360)

DSUSE (usage, device-id)

APL code 903
GDDM RCP code X'0C000202' (201327106)

64 GDDM Base Application Programming Reference

 ESADEL

A call to ESADEL releases all the resource obtained by the
GDDM instances associated with a particular application
group, by terminating all such instances (see FSTERM).
This function can be used, typically, by a task manager to
release any remaining GDDM resources when a windowed
application terminates.

If the task manager uses operating system tasking services
to manage resource recovery, this function should not be
needed, but it can be used with care. An application group
must not be current if there is a chance of an instance of
GDDM being initialized in another task or subtask. The con-
sequences of ignoring this rule are undefined.

 Principal errors

None.

 ESADEL

 Function

To delete application group.

 Parameters

application-group-id (specified by user) (fullword integer)
The identifier of the application group to be deleted.

The current application group could be deleted, either explic-
itly, or implicitly by causing the instance of GDDM which
created it to be terminated. In either case, the new current
application group is the application group associated with this
instance of GDDM, if there is one, or else is zero.

 Description

Releases all resources obtained by GDDM instances associ-
ated with the specified application group, by causing an
FSTERM to be issued for all such instances.

If operator windows are being used by this instance of
GDDM, a call to ESADEL may cause them to be deleted.
If an operator window that is associated with a virtual
device in another instance of GDDM is deleted, the
results of subsequent operations on that virtual device
are undefined (see WSDEL).

 Principal errors

ADMðð4ð E APPL GROUP ID n INVALID OR BELONGS TO

ANOTHER GDDM INSTANCE

 ESAQRY

 Function

To query the current application group.

 Parameters

application-group-id (returned by GDDM) (fullword integer)
The identifier of the current application group, or 0 if there
is no application group current.

 Description

Returns the identifier of the current application group.

 Principal errors

None

 ESASEL

 Function

To select an application group.

 Parameters

application-group-id (specified by user) (fullword integer)
The identifier of the application group to be made current,
or 0.

 Description

Selects an application group to become the current applica-
tion group. If an application group identifier of 0 is specified,
none of the existing application groups are considered to be
current.

 Principal errors

ADMðð41 E APPLICATION GROUP IDENTIFIER n IS INVALID

ESAQRY (application-group-id)

APL code 129
GDDM RCP code X'000C0000' (786432)

ESADEL (application-group-id)

APL code 128
GDDM RCP code X'000B0000' (720896)

ESASEL (application-group-id)

APL code 130
GDDM RCP code X'000D0000' (851968)

 Chapter 3. The GDDM calls 65

 ESEUDS

 ESEUDS

 Function

To specify encoded user default specification.

 Parameters

length (specified by user) (fullword integer)
The length in bytes of an encoded user default specification
list (UDSL). The length must not exceed 32000.

encoded-UDSL (specified by user) (character)
The encoded user default specification list (UDSL). An
encoded user-default specification list consists of encoded
external defaults, see Chapter 18, “External defaults” on
page 379, and encoded nicknames.

 Description

Specifies one or more encoded user default specifications
(UDSs) as an encoded user default specification list (UDSL).

Encoded format of a nickname UDS: The encoded
format of a nickname UDS is shown here.

 ┌───────────────────────────────────────┐

Word 1 │ Length (in full-words): 2N+P+2T+1ð │

 ├───────────────────────────────────────┤

 2 │ UDS-code: 2ðð1 │

 ├───────────────────────────────────────┤

3 │ Replace (ð) or Append (1) │

 ├───────────────────────────────────────┤

 4 │ Source family │

 ├───────────────────────────────────────┤

5 │ Number of source name-parts (N) │

 ├───────────────────────────────────────┤

6 │ Source-name-part 1 (8 bytes) │

│ (padded with blanks, as necessary) │

 7 │ │

 ├───────────────────────────────────────┤

8 │ Source-name-part 2 (8 bytes) │

│ (padded with blanks, as necessary) │

 9 │ │

 ├───────────────────────────────────────┤

. . .

 ├───────────────────────────────────────┤

2N+4 │ Source-name-part N (8 bytes) │

│ (padded with blanks, as necessary) │

 2N+5 │ │

 ├───────────────────────────────────────┤

 2N+6 │ Target family │

 ├───────────────────────────────────────┤

2N+7 │ Device token (8 bytes) │

│ (padded with blanks, as necessary) │

 2N+8 │ │

 ├───────────────────────────────────────┤

2N+9 │ Number of procopt words (P) │

 ├───────────────────────────────────────┤

 2N+1ð │ Procopt-word 1 │

 ├───────────────────────────────────────┤

 2N+11 │ Procopt-word 2 │

 ├───────────────────────────────────────┤

. . .

 ├───────────────────────────────────────┤

 2N+P+9 │ Procopt-word P │

 ├───────────────────────────────────────┤

2N+P+1ð │ Number of target-name parts (T) │

 ├───────────────────────────────────────┤

2N+P+11 │ Target-name-part 1 (8 bytes) │

│ (padded with blanks, as necessary) │

 2N+P+12 │ │

 ├───────────────────────────────────────┤

2N+P+13 │ Target-name-part 2 (8 bytes) │

│ (padded with blanks, as necessary) │

 2N+P+14 │ │

 ├───────────────────────────────────────┤

. . .

 ├───────────────────────────────────────┤

2N+P+2T+9 │ Target-name-part T (8 bytes) │

│ (padded with blanks, as necessary) │

2N+P+2T+1ð │ │

 ├───────────────────────────────────────┤

2N+P+2T+11 │ Number of Desc words (D) │

 ├───────────────────────────────────────┤

2N+P+2T+12 │ Description-word 1 │

 ├───────────────────────────────────────┤

2N+P+2T+13 │ Description-word 2 │

 ├───────────────────────────────────────┤

. . .

 ├───────────────────────────────────────┤

2N+P+2T │ Description-word D │

 +D+11 │ │

 └───────────────────────────────────────┘

The operation of an encoded nickname UDS is identical to
that of a source-format nickname UDS. However, the fol-
lowing points should be noted:

� A null source-name-list is expressed by specifying 0 as
the number of source-name-parts (N) and by omitting
the source-name-parts entirely.

� A null device token is expressed by specifying it as all
blanks or all X'00'.

� A null procopt-list is expressed by specifying 0 as the
number of procopt-words (P) and by omitting the
procopt-words entirely.

ESEUDS (length, encoded-UDSL)

APL code 124
GDDM RCP code X'00080000' (524288)

66 GDDM Base Application Programming Reference

 ESLIB

� A null target-name-list is expressed by specifying 0 as
the number of target-name-parts (T) and by omitting the
target-name-parts entirely.

 Principal errors

ADMðð57 E DEFAULTS ERROR. INVALID COUNT n IN UDS IN a

ADMðð61 E DEFAULTS ERROR. UDS {TYPE 'a1'| KEYWORD

'a2'| CODE n} NOT ALLOWED IN a3

ADMðð62 E DEFAULTS ERROR. UDS {TYPE 'a'| CODE n}

UNKNOWN

ADMðð64 E DEFAULTS ERROR. VALUE IN {'a1'} UDS {KEYWORD

'a2'| CODE n} IS INVALID

ADMðð65 E DEFAULTS ERROR. UDS {KEYWORD 'a'| CODE n}

NOT VALID ON THIS SUBSYSTEM

ADMðð66 E DEFAULTS ERROR. {'a1'} UDS {KEYWORD 'a2'|

CODE n} HAS TOO MANY OPERANDS

 ESLIB

 Function

To perform library management.

Note: This function is not available under VM/CMS.

 Parameters

type (specified by user) (fullword integer)
The type of object. Possible values are:

0 All types of object
1 Image or vector symbol sets
2 Generated mapgroups
3 Pictures saved by an FSSAVE call
4 Chart format descriptions
5 Chart data files
6 Reserved for GDDM-IMD tutorial pages
7 GDF files saved by a GSSAVE call
8 Reserved for GDDM-GKS metafiles
9 Chart data definition tables
10 Projection definitions
11 Image data
12 Reserved for GDDM-PCLK and GDDM-OS/2 Link

files

count (specified by user) (fullword integer)
The number of library names supplied. It must be in the
range 1 through 256.

names (specified by user) (array of 8-byte character tokens)
The list of library names.

If any token is ‘ñ ’ the default for the given type of

object, as defined in GDDM’s external defaults, is substi-
tuted. Otherwise, the interpretation of the name depends
on the subsystem in which the application program is
running, as follows:

CICS The names must be those of VSAM data sets
set up during the generation of the CICS
system. The use of such data sets is more
fully explained in the GDDM System
Customization and Administration book.

IMS The names must be DBD names that match
those appearing in the Program Specification
Block for the application program. Their asso-
ciated program communication blocks (PCBs)
must have been made available for GDDM’s
use by the ESPCB call.

TSO The names must be ddnames or file names
that have been allocated to partitioned data
sets.

 Description

The call names one or more libraries to be searched for
GDDM objects. It can be used to simplify data set searches,
and to improve data-set security by subsystem security
methods. The meaning of library depends on the sub-
system which GDDM is running under, thus:

CICS VSAM data set
IMS Database
TSO Partitioned data set.

A GDDM object is:

� A vector or image symbol set
� A GDDM-IMD-generated mapgroup
� A data stream saved by an FSSAVE call.
� A chart format descriptor
� A chart data descriptor
� A GDF file saved by a GSSAVE call.
� A chart data definition table

 � A projection
 � An image.

When a request is made to access an object (for example, to
show a saved data stream by an FSSHOW call). GDDM
searches the given libraries in the order specified in this
statement. For a request to store an object, the first library
in the list is used. That is, all libraries except the first are
treated as “read only.”

The library list may apply to all types of objects or to only a
single type (see below). The default library list for each
object is defined by external defaults; refer to Chapter 18,
“External defaults” on page 379.

 Principal errors
ADMð3ð1 S OBJECT TYPE OR FILENAME/DDNAME NOT DEFINED

IN EXTERNAL DEFAULTS

ADMð311 S FUNCTION NOT SUPPORTED

ESLIB (type, count, names)

APL code 112
GDDM RCP code X'08142000' (135536640)

 Chapter 3. The GDDM calls 67

 ESPCB

ADMð334 E PCB NOT AVAILABLE FOR DBD/LTERM NAME 'a'

ADMð344 E ERROR IN OBJECT DATABASE DEFINITION IN

EXTERNAL DEFAULTS

ADMð37ð E INVALID OBJECT TYPE - n

ADMð371 E INVALID NAME COUNT - n

 ESPCB

 Function

To identify program communication block.

Note: This function is available only under IMS/VS.

 Parameters

type (specified by user) (fullword integer)
Identifies the type of program communication block. Pos-
sible values are:
0 I/O PCB
1 TP PCB other than the I/O PCB
2 DB PCB.

pcb (specified by user) (12-byte character string)
Identifies the program communication block to be used (not
a pointer to it).

 Description

Identifies a program communication block (PCB) that can be
used by GDDM. This call is only applicable to transactions
running under the control of IMS/VS.

 Principal errors

ADMð335 E DUPLICATE PCB DEFINED

ADMð336 E INVALID PCB TYPE

 ESQCPG

 Function

To query the code page of a GDDM object.

 Parameters

object-name (specified by user) (8-byte character string)
The name of the object. When a CECP Application code
page is being used, this name is translated from the Appli-
cation code page into the Installation code page.

type (specified by user) (fullword integer)
The object type. It must be one of:

1 ADMSYMBL Symbol sets
2 ADMGGMAP Generated mapgroups
3 ADMSAVE FSSAVE files
4 ADMCFORM Chart format files
5 ADMCDATA Chart data files
6 Not used
7 ADMGDF GDF files
8 ADMGKSM GKS metafiles
9 ADMCDEF Chart definition files
10 ADMPROJ Projection definition files
11 ADMIMG Image data files

cpgid (returned by GDDM) (fullword integer)
The global code page identifier. If the object is not tagged
this parameter is zero. No validation is performed that the
code page global identifier is supported.

 Description

Returns the code page global identifier of the named object.
Objects that are not tagged with a code page global identifier
return a value of zero.

 Principal errors

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð37ð E INVALID OBJECT TYPE - n

 ESQEUD

 Function

To query encoded user default specification.

 Parameters

code (specified by user) (fullword integer)
The identifier of the external default.

The only supported values are 4, the national language,
and 125, the application code page.

length (specified by user) (fullword integer)
The length in bytes of the encoded user default specifica-
tion list (UDSL). It must be set to 12.

ESPCB (type, pcb)

APL code 113
GDDM RCP code X'081C1000' (136056832)

ESQEUD (code, length, encoded-UDSL)

APL code 135
GDDM RCP code X'00120000' (1179648)

ESQCPG (object-name, type, cpgid)

APL code 133
GDDM RCP code X'00100000' (1048576)

68 GDDM Base Application Programming Reference

 ESQOBJ

encoded-UDSL (returned by GDDM) (character)
The encoded user default specification list (UDSL).

 Description

Queries the current value of the specified external default.
ESQEUD(125,12,eudslist), for example, can be used to
query the current value of the application code page. For
CECP 00500 this would return 3 fullwords (3, 125, and 500)
in eudslist .

 Principal errors

ADMðð42 E INVALID DEFAULT IDENTIFIER n

ADMðð44 E INVALID LENGTH n1 FOR QUERY CODE n2

 ESQOBJ

 Function

To query existence of GDDM object on auxiliary storage.

 Parameters

object-name (specified by user) (8-byte character string)
The name of the object.

type (specified by user) (fullword integer)
The object type. It must be one of:

1 ADMSYMBL Image or vector symbol sets
2 ADMGGMAP Generated mapgroups
3 ADMSAVE Pictures saved by an FSSAVE call
4 ADMCFORM Chart format descriptions
5 ADMCDATA Chart data files
6 Reserved
7 ADMGDF GDF files saved by a GSSAVE call
8 ADMGKSM GKS metafiles
9 ADMCDEF Chart data definition tables
10 ADMPROJ Projection definitions
11 ADMIMG Image data

exists (returned by GDDM) (fullword integer)

0 The object does not exist.
1 The object exists.

 Description

Queries the existence of a GDDM object on auxiliary storage.
The existence of the object is indicated by the returned
parameter.

 Principal errors

ADMð3ð4 E INVALID FILE NAME, 'a'

ADMð37ð E INVALID OBJECT TYPE - n

 ESQUNL

 Function

To query length of device nickname information.

 Parameters

family (specified by user) (fullword integer)
The family code. Determines the family or families for
which the length of the nickname information is returned.
0 Families 0,1,2,3,4
1 Families 0 and 1 only
2 Families 0 and 2 only
3 Families 0 and 3 only
4 Families 0 and 4 only.

buffer-length (returned by GDDM) (fullword integer).
The length in bytes of the nickname information

 Description

Queries the length, in bytes, of nickname information avail-
able for the specified family. This may be used to determine
the length of the buffer required for ESQUNS.

 Principal errors

ADMðð75 E INVALID DEVICE FAMILY n

 ESQUNS

 Function

To query devices defined by nickname.

ESQUNL (family, buffer-length)

APL code 136
GDDM RCP code X'00130000' (1245184)

ESQOBJ (object-name, type, exists)

APL code 140
GDDM RCP code X'08142400' (135537664)

ESQUNS (family, buffer-length, buffer, returned-length)

APL code 137
GDDM RCP code X'00140000' (1310720)

 Chapter 3. The GDDM calls 69

 ESSCPG

 Parameters

family (specified by user) (fullword integer)
The family code. Determines the family or families for
which information is returned.
0 Families 0,1,2,3,4
1 Families 0 and 1 only
2 Families 0 and 2 only
3 Families 0 and 3 only
4 Families 0 and 4 only.

buffer-length (specified by user) (fullword integer)
The length in bytes of the buffer. ESQUNL may be used to
determine the length of the required buffer.

buffer (returned by GDDM) (character)
Buffer containing the device names and descriptions. The
buffer is a group of variable length elements, one per
device nickname. A typical element would be (lengths are
all in fullwords)

 1 1 variable 1 variable

 +-----+----+-----------+----+---------------------+

| FAM | NC | NL | DC | DESCRIPTION |

 +-----+----+-----------+----+---------------------+

where:
FAM The device-family code (see DSOPEN) of this entry.

Nicknames of FAM=0 will always be returned.
NC (fullword integer) Number of fullwords in the following

namelist.
NL The namelist information.
DC (fullword integer) Number of fullwords in the following

description. Possible values range from 0 to 18.
DESCRIPTION The description information for this nick-

name. This is supplied on the DESC parameter of
the nickname. For further information, refer to the
GDDM Base Application Programming Guide.

The length of each entry is 3+NC+DC fullwords

Note: Only complete entries are returned in this buffer.
returned-length (returned by GDDM) (fullword integer)

The length, in bytes, of the data returned in the buffer. If
zero, then NO matches were found using the specified
family .

 Description

Returns a list of devices which have been defined by nick-
name, together with their associated descriptions.

 Principal errors
ADMðð75 E INVALID DEVICE FAMILY n

ADM3ðð3 E LENGTH (n) IS INVALID

 ESSCPG

 Function

To set the code page of a GDDM object.

 Parameters

object-name (specified by user) (8-byte character string)
The name of the object. When a CECP Application code
page is being used, this name is translated from the Appli-
cation code page into the Installation code page.

type (specified by user) (fullword integer)
The object type. It must be one of:

1 ADMSYMBL Symbol sets
2 ADMGGMAP Generated mapgroups
3 ADMSAVE FSSAVE files
4 ADMCFORM Chart format files
5 ADMCDATA Chart data files
6 Not used
7 ADMGDF GDF files
8 ADMGKSM GKS metafiles
9 ADMCDEF Chart definition files
10 ADMPROJ Projection definition files
11 ADMIMG Image data files

cpgid (specified by user) (fullword integer)
The global code-page identifier. This must be in the range
0 through 65535. Other than for checking that the value is
within range, no validation is performed that the code page
global identifier is supported.

 Description

Copies the named object, setting the code page global identi-
fier. Normally the copy replaces the original object, but in
VM for example, the object may be copied from another disk
onto the A-disk.

 Principal errors

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð37ð E INVALID OBJECT TYPE - n

ADMðð43 E INVALID CODE PAGE IDENTIFIER n

 ESSUDS

 Function

To specify source-format user default specification.

ESSCPG (object-name, type, cpgid)

APL code 134
GDDM RCP code X'00110000' (1114112)

70 GDDM Base Application Programming Reference

 FSALRM

 Parameters

length (specified by user) (fullword integer)
The length in bytes of a source-format UDS. The length
must not exceed 32000.

source-UDS (specified by user) (character)
The source-format UDS. The first keyword in the UDS is
taken to be the UDS-type. Therefore, the UDS must not
start with a label.

 Description

Specifies a single user default specification (UDS) in source
format.

For a discussion and examples, refer to the GDDM Base
Application Programming Guide.

 Principal errors

ADMðð53 E DEFAULTS ERROR. 'a1' UDS KEYWORD 'a2' IS IN

CONFLICT

ADMðð58 E DEFAULTS ERROR. INVALID LENGTH n FOR 'a' UDS

ADMðð61 E DEFAULTS ERROR. UDS {TYPE 'a1'| KEYWORD

'a2'| CODE n} NOT ALLOWED IN a3

ADMðð62 E DEFAULTS ERROR. UDS {TYPE 'a'| CODE n}

UNKNOWN

ADMðð63 E DEFAULTS ERROR. 'a1' UDS KEYWORD 'a2'

UNKNOWN

ADMðð64 E DEFAULTS ERROR. VALUE IN {'a1'} UDS {KEYWORD

'a2'| CODE n} IS INVALID

ADMðð65 E DEFAULTS ERROR. UDS {KEYWORD 'a'| CODE n}

NOT VALID ON THIS SUBSYSTEM

ADMðð66 E DEFAULTS ERROR. {'a1'} UDS {KEYWORD 'a2'|

CODE n} HAS TOO MANY OPERANDS

ADMðð69 E DEFAULTS ERROR. 'a1' PROCESSING OPTION 'a2'

UNKNOWN

 FSALRM

 Function

To sound the terminal alarm.

 Parameters

None

 Description

Sounds the terminal alarm on the next transmission to the
device for the page selected when FSALRM was called.

 Principal errors

None

 FSCHEK

 Function

To check picture complexity before output.

 Parameters

None

 Description

Checks the complexity of a picture to discover whether it will
cause programmed symbol (PS) overflow (or storage over-
flow for IPDS printers), at the next FSFRCE, ASREAD,
GSREAD, or MSREAD call.

The FSCHEK call is ignored for devices that do not use pro-
grammed symbols to display pictures.

The FSCHEK call is not allowed if the primary device is a
queued printer and if graphics retrieval is in progress; see
GSGET.

 Principal errors

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð273 W PS OVERFLOW

ADMð275 W GRAPHICS {(IMAGE) }CANNOT BE SHOWN. REASON

CODE n

ADM3282 W AMOUNT OF DATA EXCEEDS THE STORAGE CAPACITY

OF THE DEVICE

ESSUDS (length, source-UDS)

APL code 123
GDDM RCP code X'00070000' (458752)

FSCHEK

APL Code 106
GDDM RCP code X'0C100002' (202375170)

FSALRM

APL Code 109
GDDM RCP code X'0C080000' (201850880)

 Chapter 3. The GDDM calls 71

 FSCLS

 FSCLS

 Function

To close alternate device.

Note: This call is not recommended for new programs. It is
obsolete and has been superseded by DSCLS.

 Parameters

option (specified by user) (fullword integer)
Indicates an action to be carried out at device closure. The
meaning of the action is as described under the DSCLS
call.

 Description

Terminates output to the currently open alternate device. For
a queued printer, the intermediate file used to buffer printer
output is closed.

 Principal errors

ADMðð7ð E NO ALTERNATE DEVICE

ADMðð89 W INVALID OPTION

 FSCOPY

 Function

To send page to alternate device.

 Parameters

None

 Description

Sends (copies) the current page contents to the currently
open alternate device. The size of the copy, in character-cell
units, is the same as that of the current page.

The copy is made as follows:

1. The file names specified for currently loaded symbol sets
or user-defined pattern or marker sets are noted. These
files are loaded before the page copy begins. If the
name originally associated with the symbol set ended
with the substitution character (see GSLSS), a new
device-dependent suffix to the file name is used when
the files are loaded for the alternate device. In this way
the symbol sets, pattern sets, and marker sets can be
tailored to the device in use.

If a file name for a symbol set was supplied in a call to
GSDSS or PSDSS, an attempt is made to load the set
for printing. If this cannot be located, the default symbol
set(s) are used.

2. Procedural alphanumeric, high-performance alphanu-
meric, mapped, graphics, and image fields are posi-
tioned relative to the top left-hand corner of the copy.
Field and character attributes are retained (although
some, such as blink, may not be supported by the output
device).

3. The graphics picture is mapped onto the corresponding
graphics field and the graphics are redrawn. The aspect
ratio of the picture can be controlled by using the
GSARCC call, but the default is to preserve the aspect
ratio of the source, in which case (because of the dif-
ferent cell sizes) the relative positions of items using
row/column coordinates and those using graphic coordi-
nates may change.

4. Because graphics text written in mode 1 or mode 2 is
dependent on the physical characteristics of the device,
its appearance on the output device may differ from that
displayed because of the different interpretation of some
graphics attributes. Although the standard symbol sets,
patterns, line types, and so on have been kept as close
as possible on all devices, some differences (for
example, the default pattern) have been forced by the
characteristics of the hardware.

If the current page is a mapped page, the name of the
mapgroup is noted. The same mapgroup must be avail-
able to the print utility when the copy is printed. The
mapgroup suffix is not reevaluated.

5. Because the format of graphics images is dependent on
the physical characteristics of the device, the appear-
ance on the output device may differ from that displayed
because of the pixel aspect ratio.

6. Image data is effectively transferred using an identity
projection. Because the target image has “defined”
resolution, the resolution flag of the source image deter-
mines whether resolution modification or pixel-to-pixel
mapping occurs. Overall, the attributes of the source
image (such as field, size, or position) determine the

FSCLS (option)

APL code 601
GDDM RCP code X'0C180004' (202899460)

FSCOPY

APL code 602
GDDM RCP code X'0C180001' (202899457)

72 GDDM Base Application Programming Reference

 FSENAB

appearance of the target image if the resolution flag is
set.

Notes:

1. The FSCOPY call causes a default primary device to be
established if one is not already in use.

2. The FSCOPY call is ignored for the IBM 5080 Graphics
System.

 Principal errors

ADMðð7ð E NO ALTERNATE DEVICE

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE

ADM3ðð4 E FIELD LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3ðð5 E DATA BUFFER n1, ERROR n2 AT INDEX n3

ADM3ð1ð E BUNDLE LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

 FSENAB

 Function

To enable or disable device input.

 Parameters

input-type (specified by user) (fullword integer)
The type of input to be enabled or disabled. Possible
values are:
1 Alphanumeric
2 Graphic
3 Image
4 CMS asynchronous interrupts (attentions)

control (specified by user) (fullword integer)
Specifies whether input is to be enabled or disabled. Pos-
sible values are:
0 Disable the specified input type.
1 Enable the specified input type.

 Description

Enables or disables input to be entered into the primary
device.

Alphanumeric, graphic, and image input can be individually
enabled or disabled by this call. Mapping input is considered
to be alphanumeric input.

When a device is opened, the initial enablement states are:

Alpha Enabled
Graphics Disabled
Image Disabled.
CMS asynchronous interrupts Enabled.

When an ASREAD or WSIO call is issued, any type of
enabled data can be entered.

When a “delayed” GSREAD is issued (that is, with the first
parameter = 1), graphics input is implicitly enabled. If neces-
sary, the GSREAD call is performed, and then the previous
graphics enablement is restored.

By explicitly enabling the types of input, the application can
use the same read call throughout. ASREAD is the most
appropriate because it does not affect the input enablement
and it returns most information, including PF/PA key and
modified alphanumeric field count. GSREAD(0,..,..) can then
be used to process the graphics input queue.

When a WSIO call is issued by a window-managing applica-
tion, the input from all owned virtual devices is solicited and
in each virtual device only enabled input types may be
entered.

If a window manager has its own windows and needs to
obtain graphic input from any of them, it must explicitly
enable them for graphics before issuing the WSIO call.

When alphanumerics is disabled, all fields are displayed pro-
tected, otherwise they are displayed normally.

When graphics is disabled, echoes are not displayed for any
partition in the virtual device.

When image is disabled, the image cursor is not displayed.

Input-type 4 applies only to CMS systems where the current
device is the user’s CMS console; in all other cases (MVS,
VSE, or not the CMS console) the input-type is valid but the
call is ignored. Disabling already disabled interrupts, or ena-
bling already enabled ones has no effect. How enabled
asynchronous interrupts are handled is determined by the
CMSATTN processing option, specified when the CMS
console is opened by GDDM.

An ASREAD call can be issued with no input type enabled.
This makes only the attention interrupt key data available.

 Principal errors

ADM3159 E INPUT TYPE n IS INVALID

ADM316ð E CONTROL VALUE n IS INVALID

FSENAB (input-type, control)

APL code 313
GDDM RCP code X'0C040E00' (201592320)

 Chapter 3. The GDDM calls 73

 FSEXIT

 FSEXIT

 Function

To specify an error exit, or error threshold, or both.

 Parameters

error-routine (specified by user) (fullword integer)
The address of the routine to receive control.

Initially, a default error exit is set. This displays the error
message on the device in use. This error exit is invoked
for any error whose severity equals or exceeds:
8 Error (on IMS/VS)
4 Warning (on all other subsystems)

The default error exit can always be reestablished by speci-
fying an error exit address consisting of a fullword binary
zero.

The default error exit (but not severity) is always reestab-
lished for the processing of the FSTERM call. A user error
routine is not given control as the result of errors arising
from FSTERM.

The ERRFDBK external default can be used to modify the
action of the default error exit; refer to Chapter 18,
“External defaults” on page 379.

severity (specified by user) (fullword integer)
Gives the minimum severity for which the error routine is to
be entered. If a value of zero or less is specified, the error
routine is invoked after every call to GDDM; if a severity
level of 17 or above is specified, the error exit is never
invoked. The severity levels are defined in FSQERR.

The default severity can also be modified by specifying a
value for the ERRTHRS external default; refer to
Chapter 18, “External defaults” on page 379.

 Description

Specifies a user routine to receive control at the end of each
call to GDDM if an error of at least the specified severity
occurs.

The routine is called exactly as if it had been called from the
point at which the GDDM function was invoked. A return
from the routine, therefore, gives control to the statement
after the one which invoked GDDM.

If an application program is using the nonreentrant interface,
a single parameter is passed to the error routine, namely a
160-byte error record, the contents of which are described in
FSQERR.

If the reentrant or system-programmer interface is used, two
parameters are passed to the error routine. The first of
these is the Application Anchor Block (AAB), previously
passed by the application program to GDDM. The second is
the error record referred to above.

FSEXIT can be called at any time. Subsequent FSEXIT calls
override the error routine and severity specifications of the
previous FSEXIT.

Note that the sample PL/I declarations described in “PL/I” on
page 6 contain a first-parameter descriptor of “ñ” for
FSEXIT, to allow this parameter to be of either type ENTRY
or FIXED BINARY (31). The PL/I application programmer
must ensure that a first parameter of zero is explicitly passed
as a FIXED BINARY (31) value; for example:

CALL FSEXIT (BINARY (ð,31,ð), error-threshold)

In COBOL, FSEXIT cannot be used to specify a user error
exit. However, it can still be used to specify an error
threshold if the error-routine address is specified as 0.

A user error exit, whose address is passed on an FSEXIT
call, is assumed to be executable in 31-bit mode if either:

1. The application call is in 31-bit mode, or

2. The top bit of the address passed on the FSEXIT call is
set. (For example, the address uses the MVS/XA con-
vention that the top bit of the address identifies its
AMODE.)

The first condition enables a high-level language program to
pass the address of an exit that is link-edited with itself. (It is
difficult (or not possible) to set the top bit of an address in,
for example, FORTRAN.)

If a 24-bit application uses a 31-bit user error exit (by setting
the top bit of the address), it is the user exit’s responsibility
to return control to the application in the correct AMODE,
because control returns directly from the exit to the applica-
tion.

 Principal errors

None.

 FSFRCE

 Function

To perform device output.

FSEXIT (error-routine, severity)

APL code 114
GDDM RCP code X'00030000' (196608)

FSFRCE

APL Code 102
GDDM RCP code X'0C100001' (202375169)

74 GDDM Base Application Programming Reference

 FSGET

 Parameters

None.

 Description

Causes all changes that affect the current partition set and
have occurred since the last call to ASREAD, GSREAD,
MSREAD, or FSFRCE to be reflected on the device. This
operation does not affect the status of any modified alphanu-
meric or mapped fields. The displayed partition set is
replaced by any subsequent transmissions to the terminal
(resulting from ASREAD, GSREAD, or MSREAD calls, other
FSFRCE calls, or non-GDDM processes) as and when they
occur. To hold the picture on the screen, ASREAD or
GSREAD must be used instead of FSFRCE.

If the primary device is a queued printer (family-2), or a
system printer (family-3), the action of FSFRCE is as
described under FSCOPY. In this case, the function is not
allowed if graphics retrieval is in progress; see GSGET.

For a plotter, pressing the Clear key on the attached work-
station while FSFRCE is running cancels the output.
However, when running under TSO, this only happens if the
DSOPEN processing option 2000 is set to zero.

 Principal errors

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð233 W SYMBOL SET IS NOT LOADED

ADMð273 W PS OVERFLOW

ADMð275 W GRAPHICS {(IMAGE) }CANNOT BE SHOWN. REASON

CODE n

ADMð498 E PRINT TERMINATED. RETURN CODE X'xxxxxx' FROM

DEVICE

ADMð9ð9 W NO GRAPHICS FIELD

ADMð911 W COMPOSED TEXT BLOCK OVERLAPS PAGE BOUNDARY.

TEXT IGNORED

ADMð92ð E CLEAR KEY PRESSED. PLOTTING IS TERMINATED

ADM2864 W PICTURE IS TOO LARGE FOR 5ð8ð DISPLAY LIST

BUFFER

ADM3ðð4 E FIELD LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3ðð5 E DATA BUFFER n1, ERROR n2 AT INDEX n3

ADM3ð1ð E BUNDLE LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3173 W GRAPHICS CANNOT BE SHOWN. CELL WIDTH OR

DEPTH EXCEEDS LOADABLE LIMIT

ADM3178 W PATTERNS CANNOT BE SENT TO DEVICE. AREA

SHADING MAY BE INCORRECT

ADM3179 W IMAGE CANNOT BE SHOWN. REASON CODE n

ADM3281 W GRAPHICS MAY BE VISIBLE WITHIN OPAQUE

ALPHANUMERIC FIELDS

ADM3282 W AMOUNT OF DATA EXCEEDS THE STORAGE CAPACITY

OF THE DEVICE

| FSGET

| Function

| To retrieve Family-4 datastream.

| Parameters

| buffer (returned by GDDM) (character)
| A data area, of length at least 8202 bytes, to receive the
| Family-4 datastream record.
| record-length (returned by GDDM) (fullword integer)
| A variable that is set to the length of the output record. If it
| is zero then all of the records have been returned.

| Description

| The records are retrieved sequentially as FSGET calls are
| issued. The records are in a format corresponding to the
| device token and the PROCOPT specification for
| OFFORMAT(HRIFORMT). They are identical to those which
| would have been written to an output dataset using FSFRCE.

| Calls to FSGET must have been preceded by a call to
| FSGETS.

| The supplied buffer must be large enough to accept the
| longest possible record which is 8202 bytes. GDDM is
| unable to check the length of your buffer, and if it is insuffi-
| cient, storage overwrite may occur.

| Principal errors
| ADMð286 E DATASTREAM RETRIEVAL NOT INITIALIZED

| FSGETE

| Function

| To terminate Family-4 buffered output.

| Parameters

| None.

| FSGET| (buffer, Data_length)
| |
| APL code| 621
| GDDM RCP code| X'0C10000A' (202375178)
| |

| FSGETE
| |
| APL Code| 622
| GDDM RCP code| X'0C10000B' (202375179)
| |

 Chapter 3. The GDDM calls 75

 FSGETS

| Description

| Causes early termination of retrieval of Family-4 datastream,
| following an FSGETS call with or without intervening FSGET
| calls. The call is not required if retrieval is completed to end
| of data but will not fail if issued once at that time. The
| purpose of the call is to release storage resources if for any
| reason it is not required to complete retrieval.

| Principal errors
| ADMð286 E DATASTREAM RETRIEVAL NOT INITIALIZED

| FSGETS

| Function

| To start Family-4 datastream retrieval.

| Parameters

| None.

| Description

| Causes the current page to be made available for family-4
| datastream retrieval via the FSGET call. The call is only valid
| when the currently open primary device is Family-4. It is
| designed to be used with the specification of a dummy
| device on the DSOPEN call. That is by specifying blanks in
| the name parameter. Without a dummy device the call will
| also create an output dataset as if an FSFRCE call had been
| issued.

| This function is not supported for PostScript output.

| FSGETS causes the creation of an internal chain of buffers
| containing the datastream records in storage, ready for
| retrieval by the FSGET call. This may cause problems
| where there are storage limitations. To reduce the size of the
| datastream it is recommended that the procopt OFFORMAT
| specifies the GRIMAGE or GRCIMAGE option. This may be
| implied by the choice of device token.

| If the OFDSTYPE(CDPFTYPE) procopt specifies DOC(PRIM)
| output then a call to FSGETS must be made after each page
| has been constructed by the application program. The
| records for each page must be retrieved using FSGET calls
| following every call to FSGETS. When formatted output has
| been requested with the OFFORMAT(HRIFORMT) procopt
| then GDDM inserts a BEGIN DOCUMENT (BDT) record in

| front of the first page. As it is not known at the time FSGETS
| is issued, which page is the last, an END DOCUMENT (EDT)
| record is never made available for FSGET.

| This function is not intended for use with color separation
| masters.

| Principal errors
| ADMð287 E DATASTREAM RETRIEVAL ALREADY INITIALIZED

 FSINIT

 Function

To initialize GDDM processing.

 Parameters

None

 Description

Initializes GDDM processing.

This call (in the form above or one of the other forms
below) must be the first GDDM statement to be executed,
unless the system programmer interface is being used;
see “The system programmer interface” on page 2.

This call is not usually required in GDDM-REXX programs. If
you do use it, it initializes a new instance of GDDM within the
instance of GDDM-REXX, thereby making the program reen-
trant.

The initialization process creates a control table holding
various anchor pointers, and sets GDDM variables to their
initial values.

Other forms for CICS, IMS, and TSO: To simplify link-
editing, other forms of the FSINIT call exist, specific to the
external interface being used and to some of the subsystem
environments; for example, CICS, IMS, and TSO. The other
forms simplify the use of linkage-editor automatic library call
facilities to resolve the required interfaces.

For a discussion on link-editing a GDDM application
program, refer to the GDDM Base Application Programming
Guide.

The other forms of FSINIT are:

FSINIT

APL Code 117

| FSGETS GDDM RCP code X'0C000001' (201326593)
| |
| APL Code| 620
| GDDM RCP code| X'0C100009' (202375177)
| |

76 GDDM Base Application Programming Reference

 FSLOG

Nonreentrant interface:

CICS: FSINNC

IMS: FSINNI (non-PL/I),

 FSINNPI (PL/I)

TSO: FSINN

Reentrant Interface:

CICS: FSINRC

IMS: FSINRI (non-PL/I),

 FSINRPI (PL/I)

TSO: FSINR

Therefore, a user writing a reentrant application program for
TSO can specify:

CALL FSINR(AAB);

A user writing a nonreentrant application program for CICS
can specify:

CALL FSINNC;

Note: The sample PL/I declarations (such as ADMUPINF)
do not include these other entry points. The PL/I application
programmer must, therefore, supply an entry-point declara-
tion for the particular form (FSINxx) to be used, as described
in “PL/I” on page 6. For example:

DCL FSINNC EXTERNAL ENTRY OPTIONS(ASM INTER);

 Principal errors
ADMððð2 E GDDM IS ALREADY INITIALIZED

 FSLOG

 Function

To send character string to alternate device.

 Parameters

length (specified by user) (fullword integer)
The length of string . The maximum length is as defined
(or defaulted) on the FSOPEN or DSOPEN statement, the
default for which is 80. Specifying length =0 leaves a blank
line in the output.

string (specified by user) (character)
The string of EBCDIC characters to be sent.

SO/SI (shift-out/shift-in) control-code characters can be
included in the string and are sent to the device as
“passthrough”; that is, they are not processed in any way.
A mixed string of single and double-byte characters can,
therefore, be presented, provided the alternate device sup-
ports SO/SI control codes as a delimiter of mixed strings,

and the SO/SI control codes are correctly paired in the
string. Neither of these conditions are checked by GDDM.

 Description

Sends (copies) the specified string to the currently open
family-1, family-2, family-3, or family-4 cell-based alternate
device.

FSLOG calls can be mixed with FSLOGC, FSCOPY, and
GSCOPY calls within a single open–close session. Consec-
utive FSLOG and FSLOGC data is batched together and
sent separately from any FSCOPY and GSCOPY output.

Note: The FSLOG call does not require a primary device to
be available, and so does not cause a default one to be set
up.

 Principal errors

ADMðð7ð E NO ALTERNATE DEVICE

ADMð282 E INVALID LOG DATA LENGTH

 FSLOGC

 Function

To send character string with carriage-control character to
alternate device.

 Parameters

length (specified by user) (fullword integer)
The length of string . The maximum length is 1 greater
than the length defined (or defaulted) in the FSOPEN or
DSOPEN call, the default for which is 80.

string (specified by user) (character)
The string of EBCDIC characters to be sent. The first char-
acter is interpreted according to the values in the following
table; an invalid carriage-control character is interpreted as
X'09'.

FSLOGC (length, string)

APL code 606
GDDM RCP code X'0C180005' (202899461)

FSLOG (length, string)

APL code 603
GDDM RCP code X'0C180003' (202899459)

Action

CTLASA
code
carriage-
control
characters

CTL360 code bytes
carriage-control characters

(Action
before
printing)

(Action
after
printing)

(Action
without
printing)

No line + X'01' X'03'

 Chapter 3. The GDDM calls 77

 FSOPEN

SO/SI (shift-out/shift-in) control-code characters can be
included in the string and are sent to the device as
“passthrough”; that is, they are not processed in any way.
A mixed string of single and double-byte characters can,
therefore, be presented, provided the alternate device sup-
ports SO/SI control codes as a delimiter of mixed strings,
and the SO/SI control codes are correctly paired in the
string. Neither of these conditions are checked by GDDM.

 Description

Sends (copies) the specified string to the currently open
family-1, family-2, family-3, or family-4 cell-based alternate
device. The first character of the string is interpreted as a
carriage-control character.

Overstriking characters are processed in the following way.
If several strings are to be printed on the same line:

� The end-result is underscored if an underscore occurs in
any string for a specific print position.

� The end-result is blank if a blank (or a null character
such as end-of-string) occurs in all the strings for a spe-
cific print position.

� Otherwise, the end-result for a specific print position is
the first non-blank character (except underscore) in the
strings for that position. For example, if the following
two lines were to be printed in the same positions:

 A B

 DC X

The line that would be printed would be:

 ADC B

FSLOGC calls can be mixed with FSLOG, FSCOPY,
and GSCOPY calls within a single open–close session.
Consecutive FSLOGC and FSLOG data is batched
together and sent separately from any FSCOPY and
GSCOPY output.

Note: The FSLOGC call does not require a primary device
to be available, and so does not cause a default one to be
set up.

 Principal errors

ADMðð7ð E NO ALTERNATE DEVICE

ADMð282 E INVALID LOG DATA LENGTH

 FSOPEN

 Function
Note: This call is not recommended for new programs. It is
obsolete and has been superseded by DSOPEN.

To open alternate device.

 Parameters

destination (specified by user) (8-byte character string)
The alternate device destination as an eight-character string
(left-justified). The interpretation of the string depends on
the subsystem, and is as described under DSOPEN for the
first element of name-list .

count (specified by user) (fullword integer)
The number of fullwords in array . It may be zero if all of
the print options are to be defaulted.

array (specified by user) (an array of fullword integers)
An array with a maximum significant length of nine
fullwords. If the first fullword is present, it is the parameter
content type, and must be zero. The remaining fullwords, if
present, comprise up to eight print-control processing
options (option-group 4), from the heading indicator to the
alphanumeric device type for translation. These are
described under DSOPEN.

If fewer than the maximum number of words are supplied,
the remainder are assigned default values.

 Description

Initializes output to the specified family-2 alternate device.
GDDM automatically opens a queued printer (family 2)
device, with a device identifier of 1, a default device token
'ñ ', the specified destination as the only element in
the name list, and processing options containing the speci-
fied array in the print control option group (4). It also auto-
matically makes this the alternate device.

FSOPEN is retained for compatibility. It is a Version 1
Release 1 call whose functions have been duplicated and
extended by DSOPEN.

Action

CTLASA
code
carriage-
control
characters

CTL360 code bytes
carriage-control characters

(Action
before
printing)

(Action
after
printing)

(Action
without
printing)

Space 1 line blank X'09' X'0B'

Space 2
lines

0 X'11' X'13'

Space 3
lines

- X'19' X'1B'

Space to
new page

1 X'89' X'8B'

FSOPEN (destination, count, array)

APL code 604
GDDM RCP code X'0C180000' (202899456)

78 GDDM Base Application Programming Reference

 FSPCLR

 Principal errors

ADMðð71 E INVALID PARAMETER COUNT

ADMðð72 E INVALID PARAMETER CONTENT TYPE

ADMðð73 E ALTERNATE DEVICE ALREADY OPEN

ADMðð77 E DEVICE ALREADY EXISTS

ADMð281 E INVALID PARAMETER ARRAY. REASON CODE n

 FSPCLR

 Function

To clear the current page.

 Parameters

None

 Description

Deletes all objects from the current page.
This includes:

 � Graphics fields.
 � Image fields.
� Procedural alphanumerics fields.
� Maps (including the floating area).
� High-performance alphanumerics fields (field lists).

Any panning or zooming that has been performed on the
picture (using User Control) is reset.

 Principal errors

None

 FSPCRT

 Function

To create a page.

 Parameters

page-id (specified by user) (fullword integer)
The identification of the new page. It must be greater than
zero and unique within the current partition. Zero is
reserved for the identification of the default page, which is
always available.

depth (specified by user) (fullword integer)
The depth of the page, in rows, starting at 1 for the top-
most row. If this is zero, the appropriate depth (according
to the area occupied by the current partition) is used.

width (specified by user) (fullword integer)
The width of the page, in columns, starting at 1 for the left-
most column. If this is zero, the appropriate width
(according to the area occupied by the current partition) is
used. For all devices, except roll-feed plotters and non-cell-
based family-4 devices, the maximum page width is 255
columns.

type (specified by user) (fullword integer)
Values 0 through 3 are retained for compatibility with pre-
vious releases. These values are ignored; all other values
are invalid.

For plotters, the number of characters across and down the
page depends on the paper size and is independent of the
size of the plotting area, as follows:

Paper size Depth Width

A4 or A 32 80
A3 or B 45 113
A2 or C 64 160
A1 or D 90 226
A0 or E 128 320

These values can be queried by using the FSQURY call.

For plotters, except roll-feed plotters, the width and depth
must not be greater than the size of the plot area, and the
corresponding number of plotter units must be less than
65536. For roll-feed plotters, either the width or, if plot rota-
tion is in force, the depth may exceed the default page width
or depth.

For IPDS printers, the width and depth must not exceed the
current values as set through the operator panel, or the
values contained in the device token that is being used.

For devices other than family-1 devices, the width must not
be greater than the width of the current partition. The
product of the width and depth must not be greater than
16000 for family-1 devices, or 32000 for family-3 devices.

FSPCLR

APL Code 301
GDDM RCP code X'0C040003' (201588739)

FSPCRT (page-id, depth, width, type)

APL code 302
GDDM RCP code X'0C040000' (201588736)

 Chapter 3. The GDDM calls 79

 FSPDEL

 Description

Creates a page of the specified size belonging to the device
(or current partition, if partitions are in use). Usually the
page size matches the partition (or the printer page), but
when you create the page, you can request a size that is
smaller than the partition (or printer page) or, on display
devices, larger than the partition. The new page is empty.

The entire depth or width of the page need not be able to be
displayed within the screen or current partition. Different
sections of the page are visible, according to the setting of
the page window; see FSPWIN.

If you do not specify the number of rows or columns, or both,
in a page, GDDM defaults to device-dependent numbers.
These are such that, if you do not specify a page window
depth or width, the resulting cell size depth or width is the
default for the device.

For family-4 devices, the effect of the page width and depth
specification on the FSPCRT call depends on the device
token in use:

� For AFPDS tokens which are cell-based, the depth and
width values allow the page to be defined in alphanu-
meric rows and columns. Graphics, image, and alpha-
numeric fields are subsequently defined on the page in
alphanumeric rows and columns, just the same as for
family-1 and family-2 devices.

� For other family-4 device tokens (which do not specify
cell sizes), the width and depth specified on the
FSPCRT call divide the available paper area into a grid.
The row spacing in this grid is given by the paper length
divided by the depth specified on FSPCRT, and the
column spacing by the paper width divided by the width
specified on FSPCRT. Graphics and image fields are
subsequently defined on the page in terms of this grid.
If no FSPCRT call is issued, the row and column
spacing defaults to pixels.

The new page becomes the one currently selected; see
FSPSEL.

To create a page for mapping, use the MSPCRT call.

If you use a device with primary and alternate screen sizes
(for example, the 3278 Model 5), you can select the required
size in the FSPCRT call. Note that in order to obtain the
primary screen size, you must suppress User Control, using
the CTLMODE procopt, for example, with the nickname:

ADMMNICK PROCOPT=((CTLMODE,NO))

In order to obtain the primary screen size, use of the
WINDOW procopt, partition calls and partition set calls must
also be avoided.

 Principal errors

ADMð13ð E PAGE n ALREADY EXISTS

ADMð131 E PAGE TYPE n IS INVALID

ADMð134 E PAGE IDENTIFIER n IS INVALID

ADMð137 E PAGE SIZE n IS INVALID

ADMð138 E PAGE DEPTH n1 OR WIDTH n2 IS TOO LARGE

ADM3155 E PAGE n1 MAXIMUM NUMBER OF CHARACTERS (n2)

EXCEEDED

 FSPDEL

 Function

To delete a page.

 Parameters

page-id (specified by user) (fullword integer)
Identifies the page to be deleted.

 Description

Deletes a page. This causes all objects on the page to be
deleted. See FSPCLR.

If this page was the current page, the default page becomes
the new current page.

The default page (identifier zero) cannot be deleted.

 Principal errors

ADMð132 E PAGE n DOES NOT EXIST

ADMð133 E ATTEMPT TO DELETE DEFAULT PAGE

 FSPQRY

 Function

To query specified page.

 Parameters

page-id (specified by user) (fullword integer)
The page about which information is required.

depth (returned by GDDM) (fullword integer)
The depth of the page, in rows.

FSPDEL (page-id)

APL code 303
GDDM RCP code X'0C040002' (201588738)

FSPQRY (page-id, depth, width, type)

APL code 304
GDDM RCP code X'0C040004' (201588740)

80 GDDM Base Application Programming Reference

 FSPSEL

width (returned by GDDM) (fullword integer)
The width of the page, in columns.

type (returned by GDDM) (fullword integer)
The page type, as defined for FSPCRT.

 Description

Returns information about the specified page. The depth
and width parameters are returned exactly as they could
have been specified in an FSPCRT call to create this page;
the real values are returned, even if they were defaulted
when the page was created.

 Principal errors

ADMð132 E PAGE n DOES NOT EXIST

 FSPSEL

 Function

To select a page.

 Parameters

page-id (specified by user) (fullword integer)
The page to be selected. A page identifier of zero causes
the default page to be selected.

 Description

Selects a page. This makes the named page the current
one, and has two effects:

� When the device is updated, the page that is current at
that time appears

� Any subsequent alphanumeric field creation or refer-
ence, mapped field creation or reference, or graphics
field creation or reference, is associated with this page.

Only one page can be selected at any time, and the speci-
fied page remains selected until it is deleted, or another page
is explicitly selected, or a new page is created.

If a page is deselected (for example, by creating another
page) and then reselected, the contents of the page are
unchanged. In particular, any previously open graphics
segment will still be open.

 Principal errors

ADMð132 E PAGE n DOES NOT EXIST

ADM3155 E PAGE n1 MAXIMUM NUMBER OF CHARACTERS (n2)

EXCEEDED

 FSPWIN

 Function

To set page window.

 Parameters

row (specified by user) (fullword integer)
The new page window row number, or –1 (to leave the
existing value unchanged). Must be 1 through page depth,
or –1.

column (specified by user) (fullword integer)
The new page window column number, or –1 (to leave the
existing value unchanged). Must be 1 through page width,
or –1.

depth (specified by user) (fullword integer)
The new page window depth in rows, or –1 (leaving the
existing value unchanged), or 0 (to indicate the default
depth). Whenever the page window depth is changed, the
page window row number is checked for correctness and
reduced if necessary (see above).

width (specified by user) (fullword integer)
The new page window width in columns, or –1 (to leave the
existing value unchanged), or 0 (to indicate the default
width). A value other than –1 can only be specified imme-
diately after FSPCRT, in which case this value must be not
less than the page width. The value must be such that,
using the minimum character-box width, this number of
characters can be displayed side-by-side within the current
partition.

 Description

Sets the origin and size of a page window, or alters the
origin of a page window.

The dimensions of the page window can be set explicitly only
once, before any data has been placed on the page. The
dimensions can be changed implicitly during a PTNMOD call.

The page window is a rectangular area covering some part
of the page. It determines how much of the page is seen by
the operator in the partition to which the page belongs.

FSPWIN (row, column, depth, width)

APL code 309
GDDM RCP code X'0C040C00' (201591808)

FSPSEL (page-id)

APL code 305
GDDM RCP code X'0C040001' (201588737)

 Chapter 3. The GDDM calls 81

 FSQCPG

The row value must be between 1 and the page depth. The
row that is actually positioned at the top of the partition is
given by the algorithm:

min(row,page.depth-window.depth+1)

This ensures that there is never any blank space following
the last line of the page. The cursor is moved, if necessary,
so that it is inside the new page window.

The column value must be between 1 and the page width.
The column that is actually positioned at the top of the parti-
tion is given by the algorithm:

min(col,page.width-window.width+1)

On devices that support variable size cells (such as the 3290
display), the value of the size of the page window is used to
select the cell size used when displaying the page. A large
page window width and depth can be used to get a small cell
size. A small page window depth and width can be used to
get a large cell size. The largest cell size that you can get
with a call to FSPCRT is the loadable size. To get a cell
size between this size and the maximum, you need to create
a page window with FSPWIN. For more information on vari-
able cell sizes, refer to the GDDM Base Application Program-
ming Guide.

The page window depth can be implicitly altered by
PTNMOD, for devices on which partitions are supported.
Altering the size of the partition does not change the cell size
used for any of the pages that it contains. The row posi-
tioned at the top of the partition is determined by the algo-
rithm given above.

The rules for setting column and width are similar to those
for setting row and depth; that is, the column value and the
width should not cause the window boundaries to go outside
the page boundaries. If necessary, the cursor is moved so
that it is inside the new page window at the top-left corner.

Notes:

1. GDDM is unaware of changes to the scroll position
caused by hardware scrolling by the operator. The
value used in the above algorithm is the value last
known to GDDM.

2. When an image cursor is enabled at the time of the I/O
call (ASREAD, FSFRCE), and hardware scrolling is
being used, the device may alter the window position to
ensure that the image cursor is visible.

 Principal errors

ADM315ð E PAGE n WINDOW SIZE CANNOT BE ALTERED

ADM3151 E PAGE n1 WINDOW DEPTH (n2) IS INVALID

ADM3152 E PAGE n1 WINDOW WIDTH (n2) IS INVALID

ADM3153 E PAGE n1 WINDOW ROW (n2) IS INVALID

ADM3154 E PAGE n1 WINDOW COLUMN (n2) IS INVALID

ADM3156 I PAGE n1 WINDOW ROW ALTERED TO n2 AND COLUMN

TO n3

 FSQCPG

 Function

To query current page identifier.

 Parameters

page-id (returned by GDDM) (fullword integer)
The identifier of the current page.

 Description

Returns the identifier of the current page.

 Principal errors

None.

 FSQDEV

 Function

To query device characteristics.

Note: This call is retained for compatibility with pre-
vious releases; it should not be used in new programs.
It is recommended that the FSQURY call is used instead.

 Parameters

count (specified by user) (fullword integer)
The number of elements in array . If fewer elements are
supplied than are required, information about the remaining
attributes is not returned. If more than the required number
are supplied, those in excess are set to zero.

array (returned by GDDM) (an array of fullword integers)
Receives information about the device. This is described in
the FSQURY call under the information for code=0.

FSQCPG (page-id)

APL code 306
GDDM RCP code X'0C040005' (201588741)

FSQDEV (count, array)

APL code 110
GDDM RCP code X'0C040500' (201590016)

82 GDDM Base Application Programming Reference

 FSQERR

 Description

Returns the characteristics of the current primary device.

 Principal errors

ADMð129 E ARRAY COUNT n IS INVALID

 FSQERR

 Function

To query last error.

 Parameters

length (specified by user) (fullword integer)
The length in bytes of the storage provided to receive the
error data. The number of bytes of information provided is
that specified in the length parameter, or 160, whichever is
the smaller.

array (returned by GDDM) (character)
The data describing the error. The information is formatted
as follows:

Error Record Structure The error record has a length of
160 bytes, and contains mixed integer and textual informa-
tion. The format is as follows:

Severity (offset 0)
A fullword binary integer denoting the error severity. Pos-
sible values are:

0 Informative (or no error)
4 Warning
8 Error (function call ignored)
12 Severe error (resultant state unpredictable)
16 Irrecoverable (not passed to an error exit)

Error number (offset 4)
A fullword binary integer number identifying the error. The
numbers correspond to the error-message numbers (listed
in the GDDM Messages book) without the three-letter
prefix. The number is zero if no error occurred.

The function name (offset 8)
Two fullwords (eight characters) containing the name of the
function whose invocation caused the error. If the error exit
threshold is zero or less, the function name is that of the
GDDM function called. For FSQERR, the field contains
blanks if no error occurred since the last call to FSQERR,
or if there have been no errors since initialization.

Message length (offset 16)
A fullword binary integer containing the length (in charac-
ters) of the message, excluding trailing blanks. The
maximum length is 80; it is zero if no error occurred.

Message text (offset 20)
The text of the error message associated with the error
number, padded with trailing blanks if necessary to fill in the
80-character length.

The entry-point function code (offset 100)
A fullword binary integer (the request control parameter or
RCP code) representing the GDDM function invoked. (For
a list of RCP codes, refer to the GDDM Diagnosis book). If
the error-exit threshold is zero or less, the RCP code is that
of the last GDDM function called. For FSQERR, the
number is zero if no error occurred since the last call to
FSQERR, or if no error occurred since initialization.

Parameter list pointer (offset 104)
A fullword containing the contents of Register 1 at the point
of call. This pointer makes it possible to obtain the param-
eters for the call that generated the error. If the error-exit
threshold is zero or less, the information in this field is that
for the last GDDM function called. Note that this value is
not necessarily meaningful if the parameter-list area was
reused by the application program; this can happen if
FSQERR is invoked.

Return address (offset 108)
A fullword containing the contents of Register 14 at the
point of call. This makes it possible to obtain the storage
address of the call that generated the error. If the error-exit
threshold is zero or less, the information refers to the last
GDDM function called.

Arithmetic insert 1 (offset 112)
A fullword binary integer or short floating point number
whose content depends on the error. Inserts are indicated
in the appropriate error messages, which are listed and
described in the GDDM Messages book. This word is zero
if no error occurred.

Arithmetic insert 2 (offset 116)
See the description of “arithmetic insert 1” above.

Character insert 1 (offset 120)
Five fullwords (20 characters); the contents depend on the
error, as noted for the arithmetic inserts. The field is blank
if no error occurred.

Character insert 2 (offset 140)
See the description of “character insert 1” above.

 Description

Returns information about the last error, that is, the last
GDDM call whose returned severity code was nonzero. If no
error other than an informative severity error occurred since
initialization or since the last call to FSQERR, the value zero
is returned.

FSQERR (length, array)

APL code 107
GDDM RCP code X'00040000' (262144)

 Chapter 3. The GDDM calls 83

 FSQSYS

 Principal errors

None.

 FSQSYS

 Function

To query systems environment.

 Parameters

count (specified by user) (fullword integer)
The number of elements in array . If fewer elements are
supplied than are required, information about the remaining
attributes is not returned. If more than the required number
of elements are supplied, the excess elements are unde-
fined.

array (returned by GDDM) (array of 8-byte character tokens)
System environment information, arranged as follows:

1. The identifier of the GDDM resident version/release
(that is, the release of GDDM that has been link-edited
with the application program). These values are
returned (x, y, and z are all integers):

'VxRy.z ' if the release number is less than 10.
'VxRyy.z ' if the release number is equal to or

greater than 10.

2. The identifier of the GDDM transient version/release
(that is, the release of GDDM that is being dynamically
loaded). These values are returned:

'VxRy.z ' if the release number is less than 10.
'VxRyy.z ' if the release number is equal to or

greater than 10.

3. The subsystem environment. One of these values can
be returned:

'CICS '

'IMS '

'TSO '

'CMS '

'MVS '

'VSE '

4. The subsystem qualifier. These values can be
returned:

'MVS ' or
'VSE ' (for CICS/VS)
'BATCH ' (for TSO Batch)
' ' (for TSO Interactive)
'BATCH ' (for MVS Batch)

'BATCH ' (for VSE Batch)

The value returned for IMS/VS or VM/CMS is unde-
fined.

 Description

Returns information about the current GDDM and subsystem
environment.

 Principal errors

ADMðð68 E INVALID ARRAY COUNT OF n SPECIFIED

 FSQUPD

 Function

To query update mode.

 Parameters

control (returned by GDDM) (fullword integer)
The current setting of Update Mode. Possible values are:
−1 Optimized update mode has no effect on the current

device.
 0 Not optimized.
1 Optimized by a GDDM-chosen method.

 Description

Returns the current setting of the update mode.

The update mode is set by the FSUPDM call, or by a proc-
essing option when the device is opened, or by User Control.

This call can be used by an application to find out the default
mode of processing so that it can restore this mode when
temporarily entering an update mode.

 Principal errors

None.

 FSQUPG

 Function

To query unique page identifier.

FSQSYS (count, array)

APL code 122
GDDM RCP code X'00060000' (393216)

FSQUPD (control)

APL code 663
GDDM RCP code X'0C0C1A01' (202119681)

84 GDDM Base Application Programming Reference

 FSQURY

 Parameters

page-id (returned by GDDM) (fullword integer)
An identifier for which no page currently exists.

 Description

Requests that a unique, unused page identifier is returned.
This call may be used by a modular application program to
obtain an identifier for a new page, without conflicting with a
page already created by another part of the application
program. The page identifier returned is the highest avail-
able unused number.

 Principal errors

None

 FSQURY

 Function

To query device characteristics.

 Parameters

code (specified by user) (fullword integer)
Specifies the type of information to be returned in array .
Possible values are:

0 The characteristics of the device
1 The partition characteristics of the device
2 The graphics characteristics of the device
3 The characteristics of attached plotters
4 The characteristics of the image display
5 The characteristics of the image scanner
6 The characteristics of the image cursors

element-no (specified by user) (fullword integer)
Gives the index number of the first item of information to be
returned in the array parameter.

count (specified by user) (fullword integer)
Gives the number of items of information to be returned in
the array parameter.

array (returned by GDDM) (an array of fullword integers)
Returns the device characteristics information. The first
item returned is set into the first element of the array, the
second into the next, and so on. In the tables that follow,
AE stands for “Array element.”

When code=0 , the device characteristics information is
returned:

AE Device information

1 The device family code, which can take these values:

0 3277
1 3270-family devices
2 Queued printer files
3 System printer files
4 Page-printer and PostScript files

Note: The device family returned for a 5080
Graphics System depends on the 3270 display asso-
ciated with the 5080 at the time the device is opened.

2 Device input/output capability:

1 Dummy device
2 Device supports input and output
3 Device supports output only

3 Default (nonscrollable) page depth in rows (screen
depth for displays).

Note: For family-4 devices that are defined by non-
cell-based device tokens, page depth and width are
defined in pixels.

4 Default page width in columns (screen width for dis-
plays).

5 Default character-box depth (in display points for a
display or a printer, or plotter units for a plotter). The
value is defined in pixels for family-4 devices. For
family-4 devices that are defined by non-cell-based
device tokens, the default is 12 points (one sixth of an
inch).

Note: A “plotter unit” is the smallest possible dis-
placement of a pen on a plotter, and can be smaller
than a “pen width.”

6 Default character-box width (in display points for a
display or a printer, or plotter units for a plotter). The
value is defined in pixels for family-4 devices. For
family-4 devices that are defined by non-cell-based
device tokens, the default is half the default
character-box depth.

7 Vertical resolution in display points per meter for dis-
plays, plotter units per meter for plotters, or pixels per
meter for family-4 devices.

8 Horizontal resolution in display points per meter for
displays, plotter units per meter for plotters, or pixels
per meter for family-4 devices.

Some alphanumeric-only devices that do not allow
access to the screen on a pixel-by-pixel basis (such
as the 3180), do not return the horizontal and vertical
resolution of the screen to GDDM. In these cases,

FSQUPG (page-id)

APL code 307
GDDM RCP code X'0C040900' (201591040)

FSQURY (code, element-no, count, array)

APL code 121
GDDM RCP code X'0C040501' (201590017)

 Chapter 3. The GDDM calls 85

 FSQURY

GDDM may return nominal horizontal and vertical
pixel resolutions that will not necessarily match the
observed characteristics of the device. Applications
can find out whether a device is of this type, through
analysis of the “output class supported” field returned
by FSQURY code=2.

9 Whether character attributes can be entered from the
keyboard:

0 Can not be entered
1 Can be entered, if the keyboard feature is

installed

Note: GDDM cannot detect whether the appropriate
keyboard feature is actually installed or not.

10 Number of PS stores available.

11 Whether an APL feature (APL/TEXT or Data Analysis
– APL, or APL2) is available:

0 No APL feature is available
1 APL feature is available
2 APL2 feature is available

12 Number of alphanumeric colors supported:

1 Monochrome devices
7 Seven-color display, 4224 printer

Note: The value returned for an ASCII display or
four-color 3279 or 3287 is 1. If a color-master table is
being used by a family-4 page printer, the number of
colors is equal to the number of colors defined in the
selected color-master table. For plotters, the number
of colors equals the number of pens.

13 Availability of highlight feature:

0 No highlight feature
1 Highlight feature available

14 Alphanumeric device type for translation purposes;
see ASTYPE.

15 Exceptional device:

0 Normal (not one of the following)
2 Device is an IBM 8775
3 Auxiliary device; a plotter
4 Auxiliary device; a printer attached to a device

using GDDM-PCLK
5 Auxiliary device; a printer, plotter, or other hard-

copy device attached to a device using
GDDM-OS/2 Link

16 Background transparency support

0 No transparency support
1 Transparency support

17 Mixed (EBCDIC/DBCS) alphanumeric field support:

0 No support for mixed strings in alphanumeric
fields.

1 Explicit support (by device) for mixed strings in
any alphanumeric field. This means that you can
use the DBCS nonloadable symbol set.

x Emulated support (by GDDM) for mixed strings in
alphanumeric fields defined as “mixed” (see
ASFSEN), where x is the code-point corre-
sponding to the emulation character.

18 Field outlining support:

0 No outline support
1 Outline support

| 19 Identifier of the device’s code page for single-byte
| characters.

| 20 Identifier of the device’s single-byte character set.

| 21 Identifier of the device’s code page for double-byte
| characters, if applicable. Otherwise 0.

| 22 Identifier of the device’s double-byte character set, if
| applicable. Otherwise 0.

When code=1 , the partition characteristics information is
returned:

AE Device information

1 The number of real partitions supported by the device.

2 The number of emulated partitions that can be
created on the device.

If 0 is returned in both array elements 1 and 2, no
partition operations are possible.

The hardware partition identifiers that can be set with
the PTNCRT call must be in the range 0 through the
value returned in array element 1 minus 1.

3 The vertical scrolling characteristic of the device.
Possible values are:

0 Scrolling is not allowed
1 Scrolling is allowed and is software controlled
2 Scrolling is allowed and is hardware controlled

4 The horizontal scrolling characteristic of the device.
Possible values are:

0 Scrolling is not allowed
1 Scrolling is allowed and is software controlled
2 Scrolling is allowed and is hardware controlled

5 The total amount of storage in the scroll buffer of the
device that is available to hold pages that are to be
scrolled. This value is in bytes and is called M,
below.

6 The amount of scroll buffer storage required as over-
head for each row of a page. This value is in bytes
and is called R, below.

7 The amount of scroll buffer storage required as over-
head for each column of a page. This value is in
bytes and is called C, below.

8 The amount of scroll buffer storage required as over-
head for each position on the page. This value is in
bytes and is called P, below.

GDDM rejects any attempt to create a page such that
the sum of

86 GDDM Base Application Programming Reference

 FSQURY

no-of-rows\R + no-of-cols\C +

 no-of-rows\no-of-cols\P

over all the current pages in the partitions of the
current partition set is greater than M.

9 The depth, in pixels, of that area of the screen avail-
able to GDDM. For a device with real partitions and a
partition set with the partition control value set by the
PTSCRT call to 0, this corresponds to the maximum
depth allowed for the partition set grid. For any other
device, or for other partition sets, the value returned is
the same as for array element 27 of this group.

10 The width, in pixels, of that area of the screen avail-
able to GDDM. For a device with real partitions and a
partition set with the partition control value set by the
PTSCRT call to 0, this corresponds to the maximum
width allowed for the partition set grid. For any other
device, or for other partition sets, the value returned is
the same as for array element 28 of this group.

11 The depth of the default grid.

12 The width of the default grid. The default grid is the
grid that results in the device default character size
being used.

13 The depth of the minimum grid.

14 The width of the minimum grid. The minimum grid is
the grid that results in the largest characters sup-
ported by the device being used.

15 The depth of the maximum grid.

16 The width of the maximum grid. The maximum grid is
the grid that results in the smallest characters sup-
ported by the device being used.

17 The depth of the minimum grid that can be used for
graphics.

18 The width of the minimum grid that can be used for
graphics.

19 The depth, in pixels, of the default cell size for the
device.

20 The width, in pixels, of the default cell size for the
device.

21 The depth, in pixels, of the largest cell size supported
by the device.

22 The width, in pixels, of the largest cell size supported
by the device.

23 The depth, in pixels, of the smallest cell size sup-
ported by the device.

24 The width, in pixels, of the smallest cell size sup-
ported by the device.

25 The depth, in pixels, of the maximum cell size that
can be used for graphics on the device.

26 The width, in pixels, of the maximum cell size that can
be used for graphics on the device.

27 The depth, in pixels, of that area of the screen avail-
able to GDDM when using emulated partitions. For a
device with no real partitions, or a partition set with
the partition control value set by the PTSCRT call to 1
or 2, this corresponds to the maximum depth allowed
for the partition set grid.

28 The width, in pixels, of that area of the screen avail-
able to GDDM when using emulated partitions. For a
device with no real partitions, or a partition set with
the partition control value set by the PTSCRT call to 1
or 2, this corresponds to the maximum width allowed
for the partition set grid.

When code=2 , the graphics characteristics information is
returned:

AE Device information

1 Output class or classes supported. Possible values
are:

1 Alphanumerics only
2 Graphics only
3 Alphanumerics and graphics overlaid
4 Alphanumerics and graphics separated

2 Graphics class. Possible values are:

−1 Undefined (if the output class value is 1)
0 Output only (for example, printers and plotters)

 1 Interactive

3 Maximum horizontal size of the graphics field (in
pixels).

4 Maximum vertical size of the graphics field (in pixels).

5 Number of pixels per meter horizontally (rounded to
the nearest integer).

6 Number of pixels per meter vertically (rounded to the
nearest integer).

7 Default cell-size width for graphics (in pixels).

8 Default cell-size height for graphics (in pixels).

9 Number of available colors or gray-scales (including
background). For page printers with a color master
table specified in procopt group 3000 of the DSOPEN
call, this value identifies the number of entries in the
color master table.

For plotters, the returned value is the number of pens
plus 1 (for the background).

10 Not used.

11 Maximum choice device identifier supported. A
returned value of –1 indicates that no choice device is

| available. To query the availability of a specific
| choice device, use the GSQLID call.

12 Maximum locator device identifier supported. A
returned value of –1 indicates that no locator device is

| available. To query the availability of a specific
| locator device, use the GSQLID call.

 Chapter 3. The GDDM calls 87

 FSQURY

13 Maximum pick device identifier supported. A returned
value of –1 indicates that no pick device is available.

| To query the availability of a specific pick device, use
| the GSQLID call.

14 Maximum string device identifier supported. A
returned value of –1 indicates that no string device is

| available. To query the availability of a specific string
| device, use the GSQLID call.

15 Maximum stroke device identifier supported. A
returned value of –1 indicates that no stroke device is

| available. To query the availability of a specific stroke
| device, use the GSQLID call.

16 Not used.

17 The number of mouse or tablet buttons that are avail-
able to the application program. A returned value of 0
indicates that there are no mouse or tablet buttons
available.

18 Graphics cursor support. Possible values are:

−1 No graphics cursor supported.
0 Graphics cursor is emulated using the alphanu-

merics cursor.
1 The device provides a graphics cursor.

19 Foreground mix information.

1 OR
2 Overpaint (opaque)
4 Underpaint
8 Exclusive-OR
16 Leave alone (transparent)

A value is returned that indicates the modes of the
foreground mix supported on the device. Each mode
is represented by a number, and the value returned is
the sum of these numbers. For example, if the device
supported “OR” (1), “overpaint” (2), and “underpaint”
(4), the value returned by the FSQURY call is 7.

Note that these numbers correspond to the decimal
representation of a bit string that is five bits long, with
each bit set to 1 if the appropriate mode is supported.

20 Background mix information

1 OR
2 Overpaint (opaque)
4 Underpaint
8 Exclusive-OR
16 Leave alone (transparent).

A value is returned that indicates the modes of back-
ground mix supported on the device. Each mode is
represented by a number, and the value returned is
the sum of these numbers. For example, if the device
supported “overpaint” (2), and “leave-alone” (16), the
value returned by the FSQURY call is 18.

Note that these numbers correspond to the decimal
representation of a bit string that is five bits long, with
each bit set to 1 if the appropriate mode is supported.

21 Foreground/Background Mix combination. A value is
returned that indicates the modes of foreground mix
with which background mix is supported on the
device. The possible values are:

0 Background mix is supported with all modes of
foreground mix available on this device

1 Background mix is supported only if the fore-
ground mix mode is overpaint .

22 Alphanumerics and graphics interaction

1 When alphanumerics are removed from the
screen, GDDM does not restore any underlying
graphics. To restore the underlying graphics, the
application may call FSREST.

2 When alphanumerics are removed from the
screen, GDDM always restores any underlying
graphics.

88 GDDM Base Application Programming Reference

 FSQURY

When code=3 , the information on attached plotters is
returned:

AE Device information

1 Not used.

2 Pen velocity (see DSOPEN procopt group 11).

3 Pen pressure (see DSOPEN procopt group 13).

4 Paper-size value (1 through 5; see DSOPEN procopt
group 15).

5 Paper-size code:

1 ISO
2 ANSI

6 Roll-feed capability

0 The plotter does not support roll feed media.
1 The plotter supports roll feed media.
2 GDDM cannot determine plotter roll feed capa-

bility.

This value can be returned if no device token has
been specified for the plotter, and the plotter is an
attached IBM 6186 or IBM 6187 plotter, which
does not have roll media loaded.

This value can also be returned if no device
token has been specified and the plotter is not
directly attached.

7 Roll feed media

0 Roll feed media is not loaded.
1 Roll feed media is loaded.
2 The plotter is not directly attached and cannot be

queried.

This value is returned when output is to a
family-2 file to be spooled to a plotter, or plot
output is being redirected to an IBM-GL format
file, or output to a dummy device.

8 Plotter page feed

1 No page feed.
2 Page feed.

9 Minimum x value as a percentage of the maximum
paper width.

10 Maximum x value as a percentage of the maximum
paper width.

11 Minimum y value as a percentage of the maximum
paper height.

12 Maximum y value as a percentage of the maximum
paper height.

If the array elements 9 through 12 are all 0, GDDM
cannot determine the plotting area because the plotter
is not directly attached.

13 Plotter picture orientation

0 GDDM cannot determine the orientation.

This can occur when the plotter is not directly
attached, or when the PLTAREA processing
option is specified with all values given as zeros.

1 No rotation.
2 Picture rotated by 90 degrees.

14 Plot device

0 The device is not a plotter.
1 Plotter is a directly attached family-1 device, or a

dummy device.
2 Plotter output is directed to a family-2 ADMPRINT

file spooled to a plotter.
3 Plotter output is directed to an IBM-GL format file.

15 Plot delay. The delay, in seconds, between succes-
sive frames of a long roll medium plot.

16 Maximum page depth.

17 Maximum page width.

GDDM returns the maximum page size that should be
specified in an FSPCRT call to the plotter. When
GDDM uses the device characteristics to determine
page depth and width, the following assumptions are
made:

� The device does not support roll-feed media (if
unable to determine roll-feed capability).

� The plot is not rotated (if unable to determine ori-
entation).

If a plotter device token is specified for a family-2 device,
the values returned are determined from the device token,
and from the nickname matching the Stage 2 ID, provided
that you have specified:

� A Stage 2 ID procopt, and
� A nickname matching that ID.

Otherwise, all values are returned as zeros.

If FSQURY is issued for a family-1 device with a plotter
attached as an auxiliary device, the values returned are
determined from the auxiliary device, provided that you
have opened it. Otherwise, all values are returned as
zeros.

When code=4 , the image display characteristics information
is returned:

AE Device information

1 The width, in pixels, of the presentation area of the
device that can be used for image.

2 The depth, in pixels, of the presentation area of the
device that can be used for image.

3 The number of compression algorithms supported by
the device. Transfer operations using an unsupported
format invoke automatic conversion. For information
on the compression algorithms, see ISQCOM.

 Chapter 3. The GDDM calls 89

 FSQURY

4 The number of formats supported by the device.
Transfer operations using an unsupported format
invoke automatic conversion. For information on the
formats, see ISQFOR.

5 The number of transforms supported by the device.
Transfer operations using more than this number of
transforms will require emulation of those in excess of
the supported maximum or will be incomplete,
depending on the ISCTL setting. 0 (zero) is returned
if the device cannot perform transforms. −1 (minus 1)
is returned if there is no limit to the number of trans-
forms.

6 The maximum width, in pixels, of source image sup-
ported.

7 The maximum depth, in pixels, of source image sup-
ported.

When code=5 , the image scanner characteristics informa-
tion is returned:

AE Device information

1 Scanner attached. Indicates whether or not a scanner
is attached.

0 Scanner is not attached
1 Scanner is attached

2 The maximum width, in pixels, of the scanner area, at
the maximum resolution indicated by the parameter
returned in array element 5.

3 The maximum depth, in pixels, of the scanner area, at
the maximum resolution indicated by the parameter
returned in array element 6.

4 The units of resolution for the parameters below:

0 Inches
1 Meters

5 The maximum horizontal resolution, in the units given
in array element 4.

6 The maximum vertical resolution, in the units given in
array element 4.

7 The number of compression algorithms supported by
the device. Transfer operations using an unsupported
algorithm are emulated. For information on the com-
pression algorithms, see ISQCOM.

8 The number of formats supported by the device.
Transfer operations using an unsupported format are
emulated. For information on the formats, see
ISQFOR.

9 The number of transforms supported by the device.
Transfer operations using more than this number of
transforms are either emulated or are incomplete; see
ISCTL. 0 (zero) is returned if the device cannot
perform transforms. −1 (minus 1) is returned if there is
no limit to the number of transforms.

10 Type of scanner

0 3118 (feed-through scanner)

1 3117 (flat-bed scanner)

11 Type of input available

0 Bi-level only. Possibly processed by in-scanner
gray-scale transformations and conversions to bi-
level, the following query responses indicate
which of these are possible.

12 Automatic Document Feeder (ADF) feature.
Indicates whether the Automatic Document Feeder is
installed.

0 ADF is not installed
1 ADF is installed

13 Brightness. Indicates whether or not the IMRBRI call
is supported by the scanner; see IMRBRI.

0 Variable brightness not supported
1 Variable brightness supported

14 Contrast. Indicates whether or not the IMRCON call
is supported on this device.

0 Variable contrast not supported
1 Variable contrast supported

15 Threshold. Indicates whether or not the IMRCVB call
is supported on this device.

0 Variable threshold not supported
1 Variable threshold supported

16 Halftone. Indicates whether or not the halftone option
of the IMRCVB call is supported on this device.

0 Halftone not supported
1 Halftone supported

When code=6 , the image cursor characteristics information
is returned:

AE Device information

1 Image locator cursor. Indicates what type of image
locator cursor is available. Image locator attributes
are queried using the ISQLOC call.

0 Image locator cursor is not available
1 Image locator cursor is available in an emulated

form
2 Image locator is available

2 Image box cursor. Indicates whether or not an image
box cursor is available. Image box attributes are
queried using the ISQBOX call.

0 Image box cursor is not available
2 Image box cursor is available

 Description

The FSQURY call returns information on the characteristics
of the primary device and of plotters that are attached as
auxiliary devices.

When a 5080 or 6090 Graphics System is queried, the
graphics characteristics (code=2) refers to the 5080 or 6090

90 GDDM Base Application Programming Reference

 FSQWIN

display, and the other information refers to the associated
3270 device.

The DSQDEV call can be used to obtain information about
the DSOPEN parameters for the primary device.

Detailed descriptions of all the DSOPEN processing options,
are provided in Chapter 19, “Processing options” on
page 395.

 Principal errors

ADMð129 E ARRAY COUNT n IS INVALID

ADMð136 E INVALID ELEMENT NUMBER (n) FOR QUERY CLASS a

ADMð139 E QUERY CODE n IS INVALID

 FSQWIN

 Function

To query page window.

 Parameters

row (returned by GDDM) (fullword integer)
The page window top left row number.

column (returned by GDDM) (fullword integer)
The page window top column number.

depth (returned by GDDM) (fullword integer)
The page window depth in rows.

width (returned by GDDM) (fullword integer)
The page window width in columns.

Note: On some devices, the operator may change the
window origin without GDDM being aware of the fact. The
values returned are the values last set by GDDM.

 Description

Returns the origin and size of the current page window.

 Principal errors

None.

 FSREST

 Function

To restore entire screen contents on next output.

 Parameters

code (specified by user) (fullword integer)
Specifies whether the contents of PS stores (or GS stores
on PC 3270 PC/G terminals) are to be restored, together
with the rest of the screen. Possible values are:
0 Data only. (Note that GDDM may still determine that

some programmed symbols need to be transmitted.)
1 Data and symbols.

 Description

Causes a complete retransmission of all data to the device
upon the next call to FSFRCE, ASREAD, GSREAD, or
MSREAD. Optionally, any programmed symbols that should
be held by the device may also be transmitted.

If GDDM display device I/O is being interleaved with
non-GDDM I/O to the same device, FSREST should be
called before the first call to ASREAD, FSFRCE, GSREAD,
or MSREAD that follows any non-GDDM I/O. This ensures
that GDDM restores the screen contents correctly.

 Principal errors

ADMð218 E CODE n IS INVALID

 FSRNIT

 Function

To reinitialize GDDM.

 Parameters

None.

FSREST (code)

APL code 103
GDDM RCP code X'0C080C00' (201853952)

FSQWIN (row, column, depth, width)

APL code 310
GDDM RCP code X'0C040C01' (201591809)

FSRNIT

APL code 118
GDDM RCP code X'0C000002' (201326594)

 Chapter 3. The GDDM calls 91

 FSSAVE

 Description

Reinitializes GDDM. This function is equivalent to the
FSTERM call followed by FSINIT. GDDM retains only infor-
mation about the primary device.

Do not use in association with GDDM-PGF; refer to the
CHRNIT call description in the GDDM-PGF Programming
Reference book.

FSRNIT can be used as a more efficient alternative to
FSTERM and FSINIT, where it is required to restart GDDM
with no memory of any previously defined pages, symbol
sets, and so on, but where the same primary device is to be
retained.

FSRNIT reinitializes the primary device (whether explicitly
opened, or opened by default), and closes all other currently-
open devices.

After the FSRNIT call has been processed, the primary
device will be available as the subject of a DSUSE. It is not
actually in use (although, as always, an implicit DSUSE call
is issued against the default primary device if necessary).

If operator windows are being used by this instance of
GDDM, a call to FSRNIT may cause them to be deleted.
If an operator window that is associated with a virtual
device in another instance of GDDM is deleted, the
results of subsequent operations on that virtual device
are undefined (see WSDEL).

Note: FSRNIT does not reinitialize the presentation
graphics routines of GDDM-PGF. If GDDM-PGF is being
used, issuing a call to FSRNIT produces unpredictable
results.

 Principal errors

None.

 FSSAVE

 Function

To save current device contents.

 Parameters

picture-name (specified by user) (8-byte character string)
The name (left-justified) to be assigned to the picture when
written to auxiliary storage.

 Description

Saves a device-dependent form of the primary device con-
tents on auxiliary storage for subsequent retrieval and display
in output-only mode by FSSHOW.

Alphanumeric field attributes are preserved by the FSSAVE
process. It is possible to enter data into input fields when
the picture is subsequently displayed using FSSHOR or
FSSHOW, but the data entered into such fields is not retriev-
able. This is a change from Version 1 Release 2 of GDDM
where all alphanumeric fields were changed to protected
when the picture was saved. Files saved before GDDM
Version 1 Release 3 continue to have all alphanumeric fields
protected when displayed using FSSHOR or FSSHOW.

The only limit on the complexity of the picture that can be
saved is the limit that would be imposed were an attempt
made to display the picture.

An FSSAVE call in an application running in an operator
window saves the contents of the virtual screen (without
borders), subject to the outer limits of the real screen. For
example:

– If the virtual screen is smaller than the real screen, the
virtual screen is saved.

– If the virtual screen is larger than the real screen, a real
screen-sized virtual screen is saved.

For the FSSAVE-related GDDM external defaults, those
effective for the real device are used.

For information about which devices support this call, see
“Device specific saved pictures” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð233 W SYMBOL SET IS NOT LOADED

ADMð273 W PS OVERFLOW

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE

ADM3ðð4 E FIELD LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3ðð5 E DATA BUFFER n1, ERROR n2 AT INDEX n3

ADM3ð1ð E BUNDLE LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3282 W AMOUNT OF DATA EXCEEDS THE STORAGE CAPACITY

OF THE DEVICE

 FSSHOR

 Function

To display a saved picture (extended FSSHOW).

FSSAVE (picture-name)

APL code 104
GDDM RCP code X'0C100004' (202375172)

92 GDDM Base Application Programming Reference

 FSSHOW

 Parameters

picture-name (specified by user) (8-byte character string)
The name (left-justified) of the picture to be read from auxil-
iary storage.

key (returned by GDDM) (fullword integer)
The type of attention interrupt received. Possible values
are:

0 ENTER key

1 PF key

2 Light pen

3 Badge reader.

The badge record field (the one containing the cursor)
has special characters from the badge reader replaced
by blanks when the operation succeeds. This opera-
tion causes a refresh of the display at the next call to
FSFRCE or ASREAD.

4 PA key

5 CLEAR key

6 Other.

The interrupt received from the device does not belong
to any of the defined categories; the qualifier value is
undefined.

7 Output-only device.

The primary device only accepts output, and does not
return input; the qualifier value is undefined. A
warning message is returned to emphasize this situ-
ation.

qualifier (returned by GDDM) (fullword integer)
The value, if any, associated with key . Possible values
are:

(for key=1) PF key number
(for key=3) 0 success

1 failure
(for key=4) PA key number.

 Description

Obtains the specified picture from auxiliary storage, and dis-
plays it in the same way as the FSSHOW call. Also, it
returns the identity of the key used to terminate the display.

Restrictions exist on the use of some keys, depending on the
operating environment. For further information, refer to the
GDDM Base Application Programming Guide.

Data can be entered into unprotected fields, but the data
entered cannot be retrieved by the application.

For information about which devices support this call, see
“Device specific saved pictures” in Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð272 E SAVED DATA CANNOT BE SHOWN. REASON CODE n

ADMð276 W DEVICE IS OUTPUT ONLY

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE

ADMð498 E PRINT TERMINATED. RETURN CODE X'xxxxxx' FROM

DEVICE

 FSSHOW

 Function

To display a saved picture.

 Parameters

picture-name (specified by user) (8-byte character string)
The name (left-justified) of the picture to be read from auxil-
iary storage.

 Description

Obtains the specified picture from auxiliary storage, and dis-
plays it.

This causes immediate output of the stored picture. The
picture retrieved must have been created on a device
compatible with the one in use when FSSHOW is proc-
essed .

On receipt of any keyboard interrupt, the screen is erased,
the previous screen contents are restored, and processing
may continue.

Even if the windowing processing option is specified, the
saved picture is displayed using the whole real screen
without the window borders, and without the other windows.
The GDDM external defaults that are effective for the real
device are used.

For information about which devices support this call, see
“Device-specific saved pictures” on page 242.

FSSHOR (picture-name, key, qualifier)

APL code 119
GDDM RCP code X'0C100007' (202375175)

FSSHOW (picture-name)

APL code 105
GDDM RCP code X'0C100005' (202375173)

 Chapter 3. The GDDM calls 93

 FSTERM

 Principal errors

ADMð272 E SAVED DATA CANNOT BE SHOWN. REASON CODE n

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE

ADMð498 E PRINT TERMINATED. RETURN CODE X'xxxxxx' FROM

DEVICE

 FSTERM

 Function

To terminate GDDM processing.

 Parameters

None.

 Description

Terminates GDDM processing for the application program,
closes all the devices, and releases all the resources (such
as storage) acquired.

In GDDM-REXX programs, this call is required only if the
program is reentrant. It is used to terminate an instance of
GDDM within the instance of GDDM-REXX.

The FSTERM call must be used as the last GDDM function
executed in a program, to perform essential housekeeping.

Note to CICS/VS users: : Under CICS/VS, it is the GDDM
application programmer’s responsibility to unlock the key-
board and leave the device in a state ready to process the
next transaction.

This can be done by using the relevant option on the DSCLS
call for the screen device.

If operator windows are being used by this instance of
GDDM, a call to FSTERM may cause them to be deleted.
If an operator window that is associated with a virtual
device in another instance of GDDM is deleted, the
results of subsequent operations on that virtual device
are undefined (see WSDEL).

 Principal errors

None.

 FSTRAN

 Function

To perform code conversion on a character string.

 Parameters

type (specified by user) (fullword integer)
The type of code conversion. Possible values are:

0 EBCDIC code conversion. All characters are subject to
code conversion.

1 Mixed code conversion. Characters following Shift-out
(X'0E') up to the next Shift-in (X'0F') are copied
without code conversion. The sequence of SO and SI
characters is validated. There must be an even
number of bytes between the SO and SI characters
and they must appear as matched pairs with no
nesting.

2 EBCDIC code conversion with folding. Same as 0 with
folding of lower-case characters to uppercase.

3 Mixed code conversion with folding. Same as 1 with
folding of lower-case single-byte characters to upper
case.

from-page (specified by user) (fullword integer)
The code-page identifier for in-string . A value of 0 (the
default) identifies the application code page. Other possible
values are defined in the current ADMDATRN tables.

to-page (specified by user) (fullword integer)
The code-page identifier for out-string . A value of 0 (the
default) identifies the application code page. Other possible
values are defined in the current ADMDATRN tables.

length (specified by user) (fullword integer)
The length of in-string and out-string . The range of both
is 0 through 16384.

in-string (specified by user) (character)
The character string to be converted.

out-string (returned by GDDM) (character)
The converted string.

 Description

Copies a character string in user storage, converting it into a
different code page.

 Principal errors

ADMð23ð E TRANSLATION TYPE n IS INVALID

ADMð231 E INVALID SO/SI SEQUENCE IN MIXED FIELD

FSTRAN (type, from-page, to-page, length, in-string, out-
string)

APL code 132
GDDM RCP code X'000F0000' (983040)

FSTERM

APL code 116
GDDM RCP code X'0C000000' (201326592)

94 GDDM Base Application Programming Reference

 FSTRCE

ADMð232 E CODE PAGE n IS NOT SUPPORTED

ADMð235 W STRING CONTAINS UNTRANSLATABLE CHARACTERS

ADMð236 E INVALID LENGTH n

Product-sensitive programming information

 FSTRCE

 Function

To control internal trace.

Note: This call is intended for diagnostic purposes only, and
is not meant for use in production programs.

 Parameters

control (specified by user) (fullword integer)
Determines the level of the trace output to be generated.

 Description

Controls the internal trace functions. FSTRCE is intended for
internal error diagnosis. The control details and the output
format are defined in the GDDM Diagnosis book.

By default, trace is deactivated.

 Principal errors

None.

End of Product-sensitive programming information

 FSUPDM

 Function

To set update mode.

 Parameters

control (specified by user) (fullword integer)
The update mode to be used. Possible values are:
0 No optimization (the default).
1 Optimization by a GDDM-chosen mode.

 Description

Allows control over the way updates to graphics data take
place on a particular device.

When data is updated (for example, when a segment is
deleted), the graphics is usually redrawn to produce the
correct representation on the screen. The FSUPDM call can
be used to indicate that updates should be optimized so that
only changed segments are updated.

The effect of selecting update mode is that the picture is put
into a representation that allows optimized updating. A
faithful representation is not ensured, but GDDM produces a
“working model” that allows the operator to identify parts of
the picture and to request the updates from the application.

The application can request that GDDM choose a particular
update mode appropriate for the device or the application
can request that no optimization is performed.

The only devices that support the FSUPDM call are the
3270-PC/G, the 3270-PC/GX, the 3179-G, 3192-G, and
3472-G color display stations, the 5550-family Multistation,
and devices using GDDM-PCLK, which optimize picture
updates by drawing the whole screen in exclusive-OR mix
mode. This mix mode only reflects changes correctly if data
does not overlap. If it does overlap, the final color of a par-
ticular pixel is obtained by exclusive-ORing the colors of the
different data involved.

Also, when overlapping partitions are deleted or modified,
there may in some cases be inaccuracies that reappear in
the data.

The update mode can also be set by a DSOPEN processing
option either by a DSOPEN call, or by a nickname override.

Also, User Control can be used to select a particular update
mode in devices that support it.

The initial value of the update mode is that set by the proc-
essing option.

Note: Fast update mode is not supported for ASCII
graphics devices.

 Principal errors

ADM3271 E UPDATE MODE n IS INVALID

FSTRCE (control)

APL code 108
GDDM RCP code X'00020000' (131072)

FSUPDM (control)

APL code 662
GDDM RCP code X'0C0C1A00' (202119680)

 Chapter 3. The GDDM calls 95

 GSAM

 GSAM

 Function

To set attribute mode.

 Parameters

n (specified by user) (fullword integer)
The attribute mode. Possible values are:
0 Preserve attributes (the default)
1 Do not preserve attributes.

 Description

Specifies the current attribute mode.

The attribute mode is used to specify whether primitive attri-
butes should be preserved when set to a new value, so that
they may be restored as required; see GSPOP. Any attri-
butes that have been preserved in a called segment are
automatically restored on return to the caller; see GSCALL.

The following primitive attributes are affected:

� Background Mix Mode (GSBMIX)
� Character Angle (GSCA)
� Character Box Size (GSCB)
� Character Direction (GSCD)
� Character Mode (GSCM)
� Character Set (GSCS)
� Character Shear (GSCH)

 � Color (GSCOL)
� Current Position (GSCP)
� Current Transform (GSSCT)
� Line Width (GSFLW and GSLW)
� Line Type (GSLT)
� Marker Size (GSMB and GSMSC)
� Marker Symbol (GSMS)
� Mixing Mode (GSMIX)

 � Pattern (GSPAT)
� Primitive Tag (GSTAG)
� Segment Viewing Limits (GSSVL)
� Text Alignment (GSTA)

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

 GSARC

 Function

To draw a circular arc.

 Parameters

xc (specified by user) (short floating point)
The x coordinate of the center as an absolute point in world
coordinates.

yc (specified by user) (short floating point)
The y coordinate of the center as an absolute point in world
coordinates.

angle (specified by user) (short floating point)
The angle subtended by the arc in degrees.

If the angle is positive (nonzero), the arc is drawn counter-
clockwise; if the angle is negative, the arc is drawn clock-
wise.

There are no limits on the value of the angle specified; for
example, if a value of 400 degrees is specified, a full circle
is drawn, and then an arc of 40 degrees (both performed in
a counterclockwise direction).

 Description

Draws a circular arc about a specified point, starting at the
current position. The arc subtends the specified angle at the
center. If the angle is positive, the arc is drawn counter-
clockwise from the starting point; if negative, the arc is drawn
clockwise.

Note that the direction of the arc is determined in world-
coordinate space, assuming the x axis runs from left to right
and the y axis runs from bottom to top. The direction may
appear reversed on the display surface if the lower window
limit is larger than the upper limit on either axis.

The arc has the color, line width, and line type given by the
current values of these attributes.

The current position is set to the end of the arc.

 Principal errors

ADMð154 E COORDINATE f IS INVALID

GSAM (n) GSARC (xc, yc, angle)

APL code 647 APL code 521
GDDM RCP code X'0C0C1311' (202117905) GDDM RCP code X'0C0C0600' (202114560)

96 GDDM Base Application Programming Reference

 GSARCC

 GSARCC

 Function

To specify aspect-ratio control (for copy).

 Parameters

control (specified by user) (fullword integer)
Specifies how the aspect ratio is to be determined when a
copied picture is processed for the target device of a copy
function. Possible values are:

0 Preserve the picture space aspect ratio (the default).

When the picture is copied to another device, the
picture space is mapped onto a picture space with the
same aspect ratio so that, for example, a displayed
circle is presented as a circle. This happens even if
the original picture space is determined by default.

1 Allow the picture space to be defaulted when copied.

This option maps the graphics field onto the corre-
sponding graphics field of the target device (which
occupies the same alphanumeric rows and columns),
so that the graphics aspect ratio changes in the same
way as that of the alphanumeric fields – as determined
by hardware cell sizes. This happens even if the ori-
ginal picture space is set explicitly.

This control allows an area within an alphanumeric field
layout that is assigned to graphics to be preserved
when the page is copied. For example, if a GDDM
page is the same size as a display screen (as happens
with the default page), this control makes the FSCOPY
call produce a true copy of the screen, but with a dif-
ferent aspect ratio.

 Description

Specifies whether the aspect ratio is to be preserved when a
picture is copied to another device (for example, by FSCOPY
or GSCOPY).

The GSARCC call specifies whether the graphics aspect
ratio itself, or the relationship between the graphics and
alphanumeric fields, is to be preserved.

The control applies to the current page. It relates to any
current or future graphics field on that page, but it does not
cause a graphics field to be defined if none exists.

 Principal errors

ADMð153 E CONTROL VALUE n IS INVALID

 GSAREA

 Function

To start a shaded area.

 Parameters

control (specified by user) (fullword integer)
Specifies whether boundary lines are to be drawn. Pos-
sible values are:
0 Do not draw boundary lines
1 Draw boundary lines.

 Description

Begins the construction of a shaded area. The construction
is terminated by the GSENDA call.

The following calls are the only ones that can be used
between a GSAREA and a GSENDA call:

 � GSARC GSCOL GSELPS GSFLW GSLINE
GSLT GSLW GSMIX GSMOVE GSPFLT
GSPLNE GSVECM

� GSCP and GSPOP are sometimes allowed.

� GSCALL is allowed if the segment being called contains
only functions that are valid inside an area.

� All ASaaaa and FSaaaa calls.

The area shading is performed using the current pattern, as
set by the GSPAT call. The color and color-mixing modes
that are current at the time the GSAREA call is issued define
the attributes to be applied to the pattern.

Note: If a multicolored pattern is required, the color must be
set to neutral (by a GSCOL(7) call) before the GSAREA call
is issued.

The area boundary consists of one or more closed figures,
each constructed by calls to GSARC, GSLINE, GSPLNE,
GSELPS, GSPFLT, or an element of GSVECM having a
control value of 1. Calls to GSCOL and GSMIX can be used
to control how the area boundary is to be colored. Calls to
GSLT, GSLW, and GSFLW may be interspersed to control
line attributes as desired. The starting point of each closed
figure is the current position when GSAREA is called, or as
specified by a subsequent call to GSMOVE. Figure con-

GSARCC (control)

APL code 598
GDDM RCP code X'0C0C000B' (202113035)

GSAREA (control)

APL code 522
GDDM RCP code X'0C0C0408' (202114056)

 Chapter 3. The GDDM calls 97

 GSBMIX

struction continues until a call to GSMOVE (or an element of
GSVECM with a control value of zero), or GSENDA is met.
The end point of the figure is the current position resulting
from the last line or arc drawn.

Each figure should be closed; that is, the start and end
points should be identical. If this is not so, the figure is arbi-
trarily closed by a straight line connecting the start and end
points.

The figures formed in this way jointly define the area
boundary. Any connected region with an odd number of line
crossings from infinity is shaded with the current shading
pattern and color. Regions with an even number of line
crossings from infinity are not shaded.

If the control parameter of the GSAREA call is zero, the
actual boundary lines are not drawn, but the shading ends at
the boundaries. If the control parameter is 1, the boundary
lines and any lines added to close figures are drawn, using
the current line attributes, which can be changed the bounda-
ries, as noted above.

The way that areas are shaded is device dependent, and this
may lead to unexpected results. For example, with
GDDM-OS/2 Link, areas are shaded to include the bounda-
ries which may lead to hidden axes on a surface graph.

The current position is not changed by the GSAREA call, but
can be changed by the moves and lines between GSAREA
and GSENDA, including any used to close figures.

Area definitions may not be nested.

For information about restrictions on various devices, see
“Graphics area shading” on page 247.

 Principal errors

ADMð153 E CONTROL VALUE n IS INVALID

ADMð159 E ATTEMPT TO START SECOND AREA

 GSBMIX

 Function

To set current background color-mixing mode.

 Parameters

n (specified by user) (fullword integer)
Defines the color-mixing mode. Possible values are:

0 The drawing default; initially the same as 5 (or 2 if
transparent mode is not supported on the device).

2 Opaque mode; the background of the primitive takes
precedence over whatever is underneath.

5 Transparent mode; the background of the primitive has
no effect on what is underneath.

 Description

Controls the way that the background color of a primitive is
combined with the color of any primitive which it overlaps.

The degree of support for various combinations of foreground
and background mix modes is device-dependent. Variations
are listed in the tables below. On IBM devices that support
background mix orders any combination of foreground and
background mix modes is allowed.

The background mix attribute remains in effect until it is
changed by another GSBMIX call.

When a segment is created by the GSSEG call, the back-
ground mix attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the back-
ground mix attribute is reset to the value that was in effect
when the segment was created.

The following primitives are affected by the background mix
attribute:

Areas
The background of an area is defined to be every pixel within
the area that is not set by the shading pattern.

Mode-1 and Mode-2 text
The background of a mode-1 or mode-2 character is every
pixel within the character definition that is not set. However,
the effect of background mix on mode-1 characters is device-
dependent, and in some cases only one of the background
mix modes is supported.

Mode-3 text
The background of a mode-3 character is the complete char-
acter box.

Note: For mixed-character strings, if the shift-out and
shift-in control codes take a position in the displayed string
(see GSSEN), the shift-out and shift-in characters do not
have a background.

Images
For an image, the background is every pixel within the image
that is not set.

Markers
For an image marker, the background is every pixel within
the marker definition that is not set. The background of a
vector marker is the complete marker box.

If a combination of foreground and background mix modes is
requested that is not allowed, the call specifying this combi-
nation (GSMIX or GSBMIX) issues a warning message. In
this case the requested mode is recorded, but while this

GSBMIX (n)

APL code 664
GDDM RCP code X'0C0C1317' (202117911)

98 GDDM Base Application Programming Reference

 GSBND

combination exists results are device dependent; normally all
primitives are drawn with a background mix mode of trans-
parent and with the requested foreground mix mode. If a
subsequent change to the foreground mix mode results in
the requested combination of modes becoming valid, the
requested background mix mode is used.

Note: The fixed-point GDF that is generated for devices not
supporting the background mix order contains backgrounds
in the form of areas. If this GDF is stored by means of the
GSGET or GSSAVE calls, and then redrawn at a different
scale, the background of images and mode-2 text is not
scaled by the same amount as the foreground. This does
not occur with floating-point GDF.

For information about restrictions on various devices, see
“Combinations of foreground and background mix modes” on
page 246.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADM3266 W FOREGROUND MIX n1 BACKGROUND MIX n2

COMBINATION INVALID

 GSBND

 Function

To define a data boundary.

 Parameters

u1 (specified by user) (short floating point)
u2 (specified by user) (short floating point)

The left- and right-hand extents of the data boundary in
world coordinates.

v1 (specified by user) (short floating point)
v2 (specified by user) (short floating point)

The lower and upper extents of the data boundary in world
coordinates.

 Description

Explicitly defines the outer limits of the primitive data to be
retained by GDDM when clipping is enabled. It may be set
whenever there are no open graphics segments.

If the clipping mode is 0, the data boundary has no effect.

If the clipping mode is 1, parts of the picture that fall com-

pletely outside the boundary are removed and parts of the
picture that lie across the boundary are clipped to the
boundary, according to the normal clipping rules for the prim-
itive.

If the clipping mode is 2, parts of the picture that fall com-
pletely outside the boundary are, in general, removed and
parts of the picture that lie across the boundary are retained
without being clipped.

For more information about the clipping mode, see GSCLP.

Setting the data boundary causes the establishment of a
default graphics field, if the graphics field was not already
set. If the boundary was not set when the graphics field is
established, it defaults to be the same as the graphics
window. The boundary can be reset to the default either by
setting it to the same values as the current graphics window
or by using zero for each parameter.

The parameters are checked to ensure that, with respect to
the direction of the coordinate system of the graphics
window, the right extent is greater than the left and that the
upper extent is greater than the lower.

 Principal errors

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADM3255 E DATA BOUNDARY SPECIFICATION f IS INVALID

ADM3256 E RIGHT DATA BOUNDARY f1 ¬> LEFT f2

ADM3257 E UPPER DATA BOUNDARY f1 ¬> LOWER f2

 GSCA

 Function

To set current character angle.

 Parameters

dx (specified by user) (short floating point)
dy (specified by user) (short floating point)

Two short floating-point numbers giving the x and y sepa-
ration of two points along the baseline.

If a baseline at an angle A is required, this angle can be
obtained by setting dx=cos(A) and dy=sin(A) if one x-axis
unit is physically equal to one y-axis unit.

If both dx and dy are zero, the attribute is set to the drawing
default value.

GSBND (u1, u2, v1, v2)

APL code 657
GDDM RCP code X'0C0C000D' (202113037)

GSCA (dx, dy)

APL code 510
GDDM RCP code X'0C0C0708' (202114824)

 Chapter 3. The GDDM calls 99

 GSCALL

 Description

Specifies the angle of the baseline for the characters in a
string, as a relative vector. The angle attribute remains in
effect until it is changed by another GSCA call. When a
segment is created by the GSSEG call, the angle attribute is
set to the drawing default value. When a segment is closed
by the GSSCLS call, the angle attribute is reset to the value
that was in effect when the segment was created; see
Figure 4 on page 100.

In character-mode 1, the call has no effect when characters
are drawn.

In character-mode 2, the angle is used to determine the posi-
tion of each character, but the orientation of characters within
the character box is inherent in their definitions. The charac-
ters are positioned so that the lower left-hand corners of the
character definitions are placed at the lower left-hand corners
of the character boxes. This is illustrated in Figure 4.

In character-mode 3, the angle is observed accurately, and
the character boxes are rotated to be normal to the character
baseline. If the window coordinate system is such that one
x-axis unit is not physically equal to one y-axis unit, a rotated
character string appears to be sheared.

AAA
Character
boxes

Character
definition

Start position

baseline

GSCA (–1, –0.5)

AAA

Character
boxes

Character definition

Start position

baseline

GSCA (1, 0.5)

dx = 2
dy = 1

d x = – 2
d y = – 1

Figure 4. Character angle and mode-2 text positioning (GSCA)

 Principal errors

ADMð157 E ANGLE f1, f2 NOT DEFINED

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSCALL

 Function

To call a segment.

 Parameters

segid (specified by user) (fullword integer)
The identifier of the segment to be called.

GSCALL (segid, flag, sx, sy, hx, hy, rx, ry, dx, dy, type)

APL code 653
GDDM RCP code X'0C0C1402' (202118146)

100 GDDM Base Application Programming Reference

 GSCALL

flag (specified by user) (fullword integer)
The call flag. This must be cleared to 0.

sx (specified by user) (short floating point)
sy (specified by user) (short floating point)

A scale transformation in terms of an x-axis scaling (sx)
and a y-axis scaling (sy). The segment origin is used as a
reference point; the axes that are used to scale are parallel
to the x and y axes but pass through the segment origin. A
scale factor in the range 0 through 1 shrinks primitives; a
scale factor of greater than 1 stretches primitives. A nega-
tive scale factor reflects primitives about the other axis.

Specifying scale factors sx=1 and sy=1 does not perform
any scaling. This setting can be used to suppress scaling
(to allow a simple rotation, for example).

hx (specified by user) (short floating point)
hy (specified by user) (short floating point)

A shear transformation in terms of the displacements that a
point on the y axis makes after shearing. The axes used
for shearing are parallel to the x and y axes, but pass
through the current segment origin. This is similar to the
method used in the GSCH call for character shear. Note
that primitives below the x axis are sheared in the opposite
direction to those above the x axis. The points on the x
axis itself are not moved. If hx=a and hy=b are used, an
identical effect is achieved with hx=–a and hy=–b .

Specifying shear factors hx=0 and hy=1 does not perform
any shearing. This setting can be used to suppress
shearing (to allow a simple rotation, for example).

Specifying hy=0 is not valid (because it would produce an
infinite shear).

rx (specified by user) (short floating point)
ry (specified by user) (short floating point)

A rotation transformation in terms of the displacements that
a point on the x axis makes after rotating. The axes used
for rotating are parallel to the x and y axes, but pass
through the current segment origin. This is similar to the
method used for the character angle in the GSCA call.

Specifying rotation components rx=1 and ry=0 does not
perform any rotation. This setting can be used to suppress
rotation (to allow a simple scaling, for example).

Because two zero values would be ambiguous, specifying
rx=0 and ry=0 is taken as equivalent to rx=1 and ry=0 (no
rotation).

The (rx,ry) values below produce these special cases:
(0, 0) No rotation; equivalent to (1,0)
(1, 0) No rotation
(0, 1) Rotation by 90 degrees counterclockwise
(1, 1) Rotation by 45 degrees counterclockwise
(0,–1) Rotation by 90 degrees clockwise
(–1,0) Rotation by 180 degrees clockwise (or counter-

clockwise).

and, in general:
(rx,ry) Rotation by theta degrees counterclockwise,

where tan(theta)=ry/rx (assuming a uniform world-
coordinate system).

Note: A rotation of (–1,0) is equivalent to a scale factor of
sx=–1 and sy=–1 .

dx (specified by user) (short floating point)
dy (specified by user) (short floating point)

A displacement of dx parallel to the x axis and dy parallel
to the y axis. This transformation does not use the
segment origin.

Specifying displacements components of dx=0 and dy=0
does not perform any displacement. This setting can be
used to suppress displacements (to allow a simple rotation,
for example).

type (specified by user) (fullword integer)
How the existing current transformation is to be modified by
the scaling, shear, rotation, and displacement components
specified. Possible values are:

0 New/replace
Any current transform previously defined is discarded and is
replaced by the combined effect of the specified compo-
nents.

1 Additive
The combined effect of the specified components is added
to the effect already present in the existing current trans-
form. The new transform combines both effects in the
order (i) old transform, and (ii) GSCALL parameter values.
This option is the most useful for incremental updates to
transforms.

2 Preemptive
The combined effect of the specified components is added
to the effect of the existing current transform. The new
transform combines both effects in the order (i) GSCALL
parameter values, and (ii) the old transform. The effect is
as if the GSCALL parameters modify the primitives of the
segment (without transformation) and the existing transfor-
mation is applied again.

 Description

Calls the segment with the specified identification number
from the open segment.

This function is only valid from within a segment.

The transformation specified by the geometric attributes is
set before calling the segment to allow its scale, shear, rota-
tion, and position to be specified. This transform only applies
to the called segment and is reset on return to the transform
in operation before the call was made. If the type parameter
specifies the additive or preemptive option, the transform is
combined with the previous current transform (if any) speci-
fied on a GSSCT call.

If a GSCALL is issued while inside an area definition, the
segment being called should only contain functions that are
valid inside an area; see GSAREA. If an invalid function is
used inside the called segment, that call is not processed.

 Chapter 3. The GDDM calls 101

 GSCB

If there is a segment transform on the called segment, it is
always applied to its primitives before the current transform.

Consider the following call structure:

 Segment 1

 (Transform) Always applied

 GSSCT(...)

GSCALL(2,.....type)

 GSSCLS

 Segment 2

 (Transform) Always applied

 GSSCLS

Note: After a GSCALL, primitive attributes may not always
match the values returned on the query attribute calls. If a
called segment changes any attributes while the attribute
mode (see GSAM) is set to 1 (do not preserve), these values
will still be current on return from the called segment.
However, as the called segment may not exist when the
GSCALL order is given, or the called segment may be
deleted and recreated before the picture is produced, any
attribute query calls will only return the attribute values
expected for the current segment.

If the called segment does not contain explicit set attribute
calls, then the effect of set attribute calls in the calling
segment is similar to the effects of changing the drawing
default values by use of the GSDEFS call.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð149 E NO CURRENT GRAPHICS SEGMENT

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADM3262 W CALL TO SEGMENT n PRODUCES RECURSIVE LOOP

ADM3265 W CALLED SEGMENT n NOT FOUND

ADM3268 W CALLED SEGMENT IS CURRENT

ADM3273 W CALLED SEGMENT n CONTAINS FUNCTIONS INVALID

INSIDE AN AREA

Note: Messages ADM3262 and ADM3265 are a result of
GSCALL, but are not issued until the picture is displayed by
means of a call to ASREAD, or FSREAD, for example.

 GSCB

 Function

To set character-box size.

 Parameters

width (specified by user) (short floating point)
The width of the character box in world-coordinate units.

height (specified by user) (short floating point)
The height of the character box in world-coordinate units.

The width determines the spacing of consecutive characters
along the baseline. The height determines the spacing of
consecutive lines.

Both the width and height can be positive, negative, or zero.

When either parameter is negative, the spacing occurs in the
opposite direction to normal and each character is drawn
reflected in character-mode 3. Thus, for example, a nega-
tive height in the standard direction in mode 3 means that
the characters are drawn upside down and the string drawn
below the baseline (assuming a standard window definition,
with x increasing from left to right and y increasing from the
bottom to the top).

A zero character width or height is also valid; here, the string
of characters collapses into a line (or several lines). If both
are zero, the string is drawn as a single point.

 Description

Sets the character spacing, or size, or both for subsequent
characters. The character-box size attribute remains in effect
until it is changed by another GSCB call.

When a segment is created by the GSSEG call, the
character-box size attribute is set to the drawing default
value.

When a segment is closed by the GSSCLS call, the
character-box size attribute is reset to the value that was in
effect when the segment was created.

In character-mode 1, the box size specified is ignored. Char-
acters use the standard hardware size and spacing.

In character-mode 2, the spacing of consecutive characters
is determined by the parameters given, but the size of char-
acters is not affected, because this is inherent in the char-
acter definitions. Characters are placed as described under
the GSCA call. The separation of characters along the

GSCB (width, height)

APL code 511
GDDM RCP code X'0C0C0707' (202114823)

102 GDDM Base Application Programming Reference

 GSCBS

baseline is given by the width parameter, and the separation
of consecutive lines (perpendicular to the baseline) is given
by the height parameter. Note that the character-box width
measures the separation along the baseline. Because in
character-mode 2 the characters themselves cannot be
rotated when the angle of the baseline is changed, it is
usually also necessary to change the character-box size to
achieve satisfactory spacing.

In character-mode 3, the parameters determine the size and
aspect ratio of the characters. The size of each character is
such as to fill the character box. Consecutive lines of char-
acters are separated by the value specified in the height
parameter. Characters are separated along the baseline
(defined by GSCA) by the value in the width parameter.

Spacing works as follows. After GSCHAR or GSCHAP has
drawn a nonproportionally spaced character, the current posi-
tion is moved along by an amount equal to the width of the
character box. After drawing a proportionally spaced char-
acter, the movement is a fraction of the character box width.
This fraction is the ratio between the character's assigned
width and the maximum, as recorded in the definition of the
character.

The amount of space occupied by a proportionally spaced
character string can be determined by the GSQTB call.

The default character-box size, where this call is not used, is
the cell size of the current device. This means that the same
text output on different devices may show differences in the
spacing of character-mode 2 text.

 Principal errors

ADMð155 E CHARACTER SIZE f IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSCBS

 Function

To set character-box spacing.

 Parameters

width-multiplier (specified by user) (short floating point)
The amount by which the current character-box width is to
be multiplied.

height-multiplier (specified by user) (short floating point)
The amount by which the current character-box height is to
be multiplied.

 Description

Sets the amount of space or overlap to be provided between
successive character boxes in a character string.

When a segment is created by the GSSEG call, the
character-box spacing attribute is set to the drawing default
value.

When a segment is closed by the GSSCLS call, the
character-box spacing attribute is reset to the value that was
in effect when the segment was created.

The character-box spacing text attribute has two components
to specify the spacing in the horizontal (width-multiplier)
and vertical (height-multiplier) directions. The way they are
used depends on the current character direction (defined by
the GSCD call.

When the character direction is horizontal, the width-
multiplier controls the amount of space between successive
character boxes, horizontally, and the height-multiplier con-
trols the spacing allowed between rows of characters, verti-
cally.

When the character direction is vertical, the height-multiplier
controls the spacing between successive character boxes,
vertically, and the width-multiplier controls the spacing
between columns of characters, horizontally.

Both parameters are expressed as multipliers that are
applied to the current character-box width and height to
derive the amount of overlap or extra space that is to be pro-
vided. The parameters are short floating-point numbers
which can be negative, zero, or positive:

� A negative value gives overlapping character boxes.
� A value of zero (the initial default) results in standard

spacing.
� A positive value allows extra space between character

boxes.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

 GSCD

 Function

To set current character direction.

GSCBS (width-multiplier, height-multiplier)

APL code 646
GDDM RCP code X'0C0C130F' (202117903)

GSCD (control)

APL code 512
GDDM RCP code X'0C0C0709' (202114825)

 Chapter 3. The GDDM calls 103

 GSCD

 Parameters

control (specified by user) (fullword integer)
The character direction. Possible values are:

0 The drawing default; initially, the same as 1.

1 Character boxes (defined by GSCB) are arranged par-
allel to, and directed along, the baseline. New-line
direction is 90 degrees clockwise from the baseline.
This is the usual convention for Roman text.

2 Character boxes are arranged in columns directed 90
degrees clockwise from the baseline. New-column
direction is the reverse of the baseline direction. This
is the usual convention for Chinese characters. This
option can be used for drawing Roman text vertically (a
y-axis title on a graph, for example).

3 Character boxes are arranged parallel to, but in the
reverse of, the baseline direction. New-line direction is
90 degrees clockwise from the baseline. This is the
usual convention for Arabic text.

4 Character boxes are arranged in columns directed 90
degrees counterclockwise from the baseline. New-
column direction is the reverse of the baseline direc-
tion.

Figure 5 illustrates these options. In each case, the current
position at the start of the string is marked by the letters “sp ”,
and the current position at the end of the string is marked by
“ep”.

 Description

Specifies the direction in which the characters in a string are
to be drawn, relative to the baseline specified in a GSCA
call.

The character direction attribute remains in effect until it is
changed by another GSCD call.

When a segment is created by the GSSEG call, the char-
acter direction attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the char-
acter direction attribute is reset to the value that was in effect
when the segment was created.

baseline

baseline

baseline

baseline

Control = 1

Control = 3

Control = 4

Control = 2

sp

sp

ep

ep

ep

sp

sp

1 2 3

3 2 1

456

654

7 4 1

9 6 3

258

258

9 6 3

7 4 1

Figure 5. Character direction (GSCD)

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

104 GDDM Base Application Programming Reference

 GSCH

 GSCH

 Function

To set current character shear.

 Parameters

dx (specified by user) (short floating point)
dy (specified by user) (short floating point)

The x and y separation of two points on an upright char-
acter stroke.

If dx=0 and dy=1 (initial default), “upright” characters result.
If dx and dy are both positive or both negative, the charac-
ters slope from bottom left to top right. If dx and dy are of
opposite signs, the characters slope from top left to bottom
right. No character inversion ever takes place as a result of
a shear alone. (Inversion can be performed with the GSCB
call.)

Usually, it is an error to specify a zero value for dy because
this would imply an “infinite” shear. However, if both dx and
dy are zero, the attribute is set to the drawing default value.

 Description

EShear
angle

Character baseline

dx

dy

Figure 6. Character shear (GSCH)

Shears mode-3 characters to the angle defined by dx,dy .
The character-shear attribute remains in effect until it is
changed by another GSCH call.

When a segment is created by the GSSEG call, the
character-shear attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the
character-shear attribute is reset to the value that was in
effect when the segment was created.

Characters in a character string may be subjected to a shear
transformation. This causes upright lines to be inclined to
their normal angle, rather as if the characters were italic.
The top of the character box remains parallel to the character
baseline.

The relative vector dx,dy defines the angle of the upright
strokes relative to the baseline; see Figure 6.

The call has no effect on mode-1 (string precision) character
strings.

For mode-2 (character precision) strings, the call may affect
the position of individual characters but not their shape.

In character-mode 3, the transformation is observed accu-
rately.

 Principal errors

ADMð157 E ANGLE f1, f2 NOT DEFINED

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSCHAP

 Function

To draw a character string at current position.

 Parameters

length (specified by user) (fullword integer)
The number of characters in string .

string (specified by user) (character)
The string of characters to be drawn. See also string
under GSCHAR.

 Description

Draws a text string in the graphics field starting at the current
position. Also allows a new text string to be appended to a
previous one. For information on attribute settings, such as
position, spacing, size, and clipping, that affect character
drawing, see GSCHAR.

 Principal errors

ADMð111 W DBCS SYMBOL SET 'a' NOT AVAILABLE

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADMð169 E CHARACTER STRING LENGTH n IS INVALID

ADM3252 W CHARACTER X'xx' REPLACED BY SHIFT-IN

CHARACTER

GSCH (dx, dy)

APL code 558
GDDM RCP code X'0C0C070C' (202114828)

GSCHAP (length, string)

APL code 523
GDDM RCP code X'0C0C0501' (202114305)

 Chapter 3. The GDDM calls 105

 GSCHAR

ADM3253 W DBCS CHARACTER X'xxxx' IS INVALID AND

REPLACED BY A BLANK

ADM3264 W DBCS CHARACTER STRING LENGTH n MUST BE EVEN

 GSCHAR

 Function

To draw a character string at a specified point.

 Parameters

x (specified by user) (short floating point)
Specifies the starting x position of the string in world coordi-
nates.

y (specified by user) (short floating point)
Specifies the starting y position of the string in world coordi-
nates.

length (specified by user) (fullword integer)
The length of the string parameter in bytes.

string (specified by user) (character)
Contains the characters to be drawn. Character codes are
compatible with those in alphanumeric fields. (See the
ASTYPE call.)

| Character codes X'01', X'02', X'03', X'05', X'06',
| X'07', X'09', X'0B', X'0C', X'0D', X'11', X'12',
| X'13', X'14', X'2B', and X'FF' have reserved meanings
| and should not be used. X'0E' and X'0F' are shift-out
| and shift-in characters for double-byte character sets
| (DBCS), or are invalid if the MIXSOSI external default is set
| to NO. X'15' is interpreted as a new-line character. The

nth new-line character in the string sets the current position
to n character-box heights below that at the start of the
string. “Below” is more strictly defined by a line whose
direction is 90 degrees clockwise from the character
baseline. For some more discussion, see GSCA and
GSCD.

The symbols displayed depend on the current character
mode. For a description of which symbol sets are used for
each of the possible modes, see GSCM.

In character-modes 1 and 2, character code X'00' is
device dependent. This will usually be a blank, but on
some devices this character code will be undefined. In
character-mode 3, code X'00' is displayed using the code-
point definition from the vector symbol set selected to
define the character; see GSCS and GSLSS.

In character-modes 2 and 3, if a DBCS symbol set is
loaded, or if GSCS(8) is specified, the character string is
treated as containing all double-byte characters. To obtain

a mixed graphic character string of SBCS and DBCS, the
external default MIXSOSI=YES must be specified, and the
characters delimited by shift-out (SO) (X'0E') and shift-in
(SI) (X'0F') control codes (see GSSEN). The DBCS
symbol set selected will be the default DBCS symbol set,
as named by the DBCSDNM external default. The shift-out
and shift-in control codes do not have a background for
purposes of background mix.

Mixed character strings and character strings with a length
of more than 240 characters drawn using a default char-
acter angle, character box, character-box spacing, char-
acter shear, or character direction will have undefined
results when those default attributes are changed by use of
a drawing defaults section. The text alignment attribute for
such character strings are fixed at the time the character
string is created and if the default text alignment is used,
changes to the default text alignment are not honored.

 Description

Draws a character string starting at the specified point.

 GSCHAR(x,y,length,string)

is equivalent to:

 GSMOVE(x,y)

 GSCHAP(length,string)

If the window is normal (that is, if x coordinates increase
from left to right and y coordinates increase from the bottom
to the top), the character angle set by GSCA is zero
(GSCA(1,0)), and the width and height of the character box
(set by GSCB) are both positive, each character in the string
is positioned within a character box so that its lower left-hand
corner is at the current position. The current position is
advanced along the character baseline after each character
is drawn to give the starting position for the next character.

The spacing and size of the characters is controlled by the
current character-box size (GSCB), the current character-box
spacing (GSCBS), and the current text alignment (GSTA).
The style of the characters depends on the current character
set (GSCS). The angle at which the string is drawn is deter-
mined by the current character angle (GSCA), the character
shear is controlled by GSCH, and the character direction is
controlled by GSCD.

Spacing works as follows. After GSCHAR or GSCHAP has
drawn a nonproportionally spaced character, the current posi-
tion is moved along by an amount equal to the width of the
character box. After drawing a proportionally spaced char-
acter, the movement is a fraction of the character box width.
This fraction is the ratio between the character’s assigned
width and the maximum, as recorded in the definition of the
character.

Again assuming a character angle of zero degrees, if either:

The window is inverted so y increases from the top to
the bottom, or
The character-box height is negative,

GSCHAR (x, y, length, string)

APL code 524
GDDM RCP code X'0C0C0500' (202114304)

106 GDDM Base Application Programming Reference

 GSCLP

The top left-hand corner of the character box is at the current
position.

Similarly, if either

The window is reversed so x increases from left to right,
or
The character width is negative,

the bottom right-hand corner of the character box is at the
current position. If the character angle is not zero, the posi-
tion of the character box relative to the current position can
be determined by deciding on the position if the angle were
zero degrees (as described above) and then rotating the
character box about the selected corner by the required
number of degrees.

Vector symbols are always drawn using the standard default
line type and line width. Shaded vector symbols are always
filled with the standard default shading pattern.

The degree to which approximation of the position and size
is allowed, as well as the area used during correlation of the
character string, is controlled by the character-mode attribute
(GSCM).

After the string has been drawn, the current position is the
point at which the next character would have been drawn,
had it existed. For characters drawn in character-mode 1
(using the following the call.

Note: If this current position is used (for example, as the
starting point for a line or a subsequent string), the
position is calculated for the primary device in use.
This may appear wrong if the picture is transmitted to
another device, such as a printer, with a different
character size.

If clipping is enabled, and part of the character string lies
outside the window, the results depend on the character
mode, as follows:

� For character-mode 1 (string precision), if the start point
is within the window, the complete character string is
sent as output. (It may not all be visible if some of it lies
outside the graphics field.) For plotters, each part of
each character is treated separately; any part of any
character that is outside the window is removed.

� For character-mode 2 (character precision), each char-
acter is treated separately. If the start point of a char-
acter lies within the window, it is sent as output;
otherwise, it is discarded.

� For character-mode 3 (stroke precision), each part of
each character is treated separately. Any part of any
character that is outside the window is removed.

If clipping is not enabled, the result, if any part of the string is
outside the window, is not defined.

 Principal errors

ADMð111 W DBCS SYMBOL SET 'a' NOT AVAILABLE

ADMð154 E COORDINATE f IS INVALID

ADMð156 W COORDINATE OUTSIDE PICTURE SPACE

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADMð169 E CHARACTER STRING LENGTH n IS INVALID

ADM3252 W CHARACTER X'xx' REPLACED BY SHIFT-IN

CHARACTER

ADM3253 W DBCS CHARACTER X'xxxx' IS INVALID AND

REPLACED BY A BLANK

ADM3264 W DBCS CHARACTER STRING LENGTH n MUST BE EVEN

 GSCLP

 Function

To enable and disable clipping.

 Parameters

control (specified by user) (fullword integer)
Controls the clipping mode. Possible values are:
0 Clipping disabled (the default)
1 Clipping enabled (precise clip)
2 Clipping enabled (rough clip)

 Description

Enables and disables clipping to the current clipping rec-
tangle. The setting applies only to the current page.

When clipping is enabled, parts of the picture that fall outside
the clipping rectangle are, in general, removed. The data
boundary, if it has been defined (with GSBND), is the clip-
ping rectangle; otherwise, the current graphics window
(determined by GSWIN or GSUWIN) is used.

Clipping can be performed to two degrees of precision,
according to the clipping mode selected:

Precise Clipping (Mode 1)
If a primitive (for example a line) falls completely outside the
clipping rectangle, it is discarded. If a primitive falls partly
within and partly outside the clipping rectangle, the primitive
is clipped to keep only the part within the rectangle. Lines
and arcs are shortened to stop at the rectangle boundary.
Markers appear if their center points are within the rectangle.
For character strings, the result depends on the character
mode; see GSCHAR.

Rough Clipping (Mode 2)
The general rule for all primitives is that if any part of the
primitive lies within the clipping rectangle, the whole primitive
is retained without change. Otherwise the primitive is dis-
carded.

GSCLP (control)

APL code 501
GDDM RCP code X'0C0C0203' (202113539)

 Chapter 3. The GDDM calls 107

 GSCLR

For primitives such as fillets (see GSPFLT) and polylines
(see GSPLNE) which are constructed from a series of
simpler primitives, the clipping rule is applied, individually, to
each component of the primitive.

When the primitive is curved (for example, an arc or an
ellipse), the clipping rule is applied to the major and minor
axes of the curve.

Note: If clipping is not enabled, all parts of the drawing
should lie within the window. If they do not, the results are
not defined.

 Principal errors

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð153 E CONTROL VALUE n IS INVALID

 GSCLR

 Function

To clear the graphics field.

 Parameters

None.

 Description

Clears the graphics field by deleting all of its graphics seg-
ments.

The effect is not apparent on the display until the next trans-
mission to the device is required.

The picture space can be redefined following a GSCLR call if
the GSPS call is issued before any other call is issued that
would cause the picture space to default. If no explicit GSPS
call is issued after GSCLR, the picture space that is retained
is the one that was in effect before the GSCLR call.

 Principal errors

None.

 GSCM

 Function

To set current character mode.

 Parameters

n (specified by user) (fullword integer)
Defines the character mode. Possible values are:

0 The drawing default; initially, the same as 1.

1 The hardware character generator is used to position
individual characters in the string, with any limitations
this may impose. The character set defined by the
GSCS call must be a standard character set (either
character set 0, or if featured on the device, the APL
character set 1), or a previously loaded PS set or
image symbol set.

If clipping is enabled (see GSCLP) and part of the
character string lies outside the window, the complete
character string is sent as output if the start point is
within the window. (It may not all be visible if some of
it lies outside the graphics field.) For plotters, each
part of each character is treated separately; any part of
any character that is outside the window is removed.

2 The values of the character box, character-box size,
character angle, character direction, and text alignment
specifications are used to position individual characters
in the string. However, the size and orientation are
determined when the symbol set is created. The char-
acter set must be the standard set 0 or an image
symbol set loaded previously by GSDSS or GSLSS. If
clipping is enabled (see GSCLP), each character is
treated separately. If the start point of a character lies
within the window, it is sent as output; otherwise, it is
discarded.

Correlation for mode-2 text is based on the text box
around the characters and does not necessarily include
all of an image character.

If the user does not specify a suitable character set for
mode 2 text, the default mode 1 character set is used.

3 For all devices, the character box, character-box size,
character angle, character direction, and text alignment
specifications are followed exactly. Characters are
rotated so that they are at right angles to the character
baseline. The character set must be the standard
vector set 0 or a vector symbol set loaded previously
by a GSDSS or GSLSS call.

GSCM (n)

APL code 513
GDDM RCP code X'0C0C0705' (202114821)

GSCLR

APL Code 506
GDDM RCP code X'0C0C0303' (202113795)

108 GDDM Base Application Programming Reference

 GSCOL

If clipping is enabled, any portion of a character that is
outside the window is truncated; see GSCLP.

 Description

Controls the character mode to be used in drawing a char-
acter string in the graphics field. The character-mode attri-
bute remains in effect until it is changed by another GSCM
call.

When a segment is created by the GSSEG call, the
character-mode attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the
character-mode attribute is reset to the value that was in
effect when the segment was created.

For limitations on specific devices, see “Graphics text” in
Chapter 4, “Device variations” on page 241.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSCOL

 Function

To set current color.

 Parameters

n (specified by user) (fullword integer)
A fullword integer in the range −2 through 32767.
−2 White; if a device does not explicitly support white, it

is emulated using an appropriate supported color (for
example, color 8 (background) for plotters and
printers, and color 7 (neutral) for displays).

−1 Black; if a device does not explicitly support black, it
is emulated using an appropriate supported color (for
example, color 7 (neutral) for plotters and printers,
and color 8 (background) for displays).

0 Drawing default; initially, these are the standard
defaults for these devices, namely green on displays
(orange on a 3290), black on printers, and the
maximum pen stall number on plotters.

 1 Blue
 2 Red
 3 Pink (magenta)
 4 Green
 5 Turquoise (cyan)

 6 Yellow
7 Neutral; white on displays and black on printers.
8 Background; black on displays and (usually) white on

printers and plotters.
 9 Dark blue
10 Orange
11 Purple
12 Dark green
13 Dark turquoise (cyan)
14 Mustard
15 Gray
16 Brown

 Description

Sets the current value of the color attribute. The color attri-
bute remains in effect until it is changed by another GSCOL
call.

Note: The color set by GSCOL applies to all subsequent
graphics primitives until it is changed. To ensure their
correct colors, the color should be set to 7 (neutral) before
multicolored characters, markers, or shading patterns are
used.

When a segment is created by the GSSEG call, the color
attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the color
attribute is reset to the value that was in effect when the
segment was created.

For information about the limitations of and variations on spe-
cific devices, see “Graphics colors” on page 245.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

 GSCOPY

 Function

To send graphics to alternate device.

 Parameters

depth (specified by user) (fullword integer)
The depth of the alternate device’s copy area, in rows.

width (specified by user) (fullword integer)
The width of the alternate device’s copy area, in columns.

Both depth and width must be positive, and they must not

GSCOL (n)

APL code 514
GDDM RCP code X'0C0C0701' (202114817)

GSCOPY (depth, width)

APL code 605
GDDM RCP code X'0C180002' (202899458)

 Chapter 3. The GDDM calls 109

 GSCORR

exceed the maximum size of the page allowed on the alter-
nate device; this is defined by the device token specified in a
DSOPEN call or defaulted to 'ñ ' in FSOPEN.

 Description

Sends (copies) the contents of the graphics field to the cur-
rently open family-1. family-2, or family-4 cell-based alternate
device. The graphics are of the specified size on the alter-
nate device’s page. Thus, the size of the copy, in character-
cell units, can be different from that of the graphics field on
the current page, and a larger graphics picture may be
obtained than might otherwise have been the case using
FSCOPY.

By default, the aspect ratio of the picture space is preserved
on the alternate device; that is, it has the same aspect ratio

| as that on the primary device. This applies even if the
picture space size has been defaulted. The GSARCC call
can be used to change the aspect ratio so that it matches
that of the graphics field.

GDDM disables clipping when the graphics are sent to the
alternate device; therefore, if different symbol sets are used
on the original device and the alternate device, the results
might not be exactly the same.

Comments in the description of FSCOPY concerning symbol
sets, graphics text, and graphics images also apply to
GSCOPY.

Notes:

1. The GSCOPY call causes a default primary device to be
established, if one is not already in use.

2. The GSCOPY call is ignored for the IBM 5080 Graphics
System.

 Principal errors

ADMðð7ð E NO ALTERNATE DEVICE

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð277 E '{FSSAVE|FSSHOW|FSSHOR|FSCOPY|

GSCOPY|DSCOPY|MAPPING|DSFRCE|FSFRCE}' IS NOT

SUPPORTED FOR THIS DEVICE

ADMð283 E INVALID OUTPUT SIZE

ADMð284 E NO GRAPHICS FIELD DEFINED

 GSCORR

 Function

To correlate a tag to a primitive.

Note: This call is not recommended for new programs. It is
obsolete and has been superseded by GSCORS.

 Parameters

ctype (specified by user) (fullword integer)
The type of segment on which correlation is to be per-
formed. Possible values are:

0 Only visible and detectable segments with nonzero
identifiers are correlated. This gives the same corre-
lation criteria as used by a pick device; see GSIPIK.

1 All segments with nonzero identifiers are correlated,
regardless of the detectability and visibility attributes of
the segments.

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The x and y coordinates of the position of the center of the
aperture (in world coordinates).

atype (specified by user) (fullword integer)
The type of aperture to be used. Possible values are:

0 The default; same as 1.

1 Scaled pick aperture
The spec-array parameter must contain a single
element, which is a uniform scaling factor that is
applied to the device’s default pick aperture; see
GSIPIK.

2 Rectangular aperture
The spec-array parameter must contain two world-
coordinate values, giving the width and height (respec-
tively) of a rectangular aperture. The center of the
rectangle is positioned at the point given by the values
in the x and y parameters during correlation.

c1 (specified by user) (fullword integer)
The number of elements in the spec-array parameter.

spec-array (specified by user) (array of short floating-point
numbers)
An array of floating-point numbers as defined by the atype
parameter.

c2 (specified by user) (fullword integer)
The number of elements in the seg-array and tag-array
parameters.

seg-array (returned by GDDM) (an array of fullword integers)
An array of segment identifiers. The elements are returned
in reverse drawing order. See the description of the num-
hits parameter.

tag-array (returned by GDDM) (an array of fullword integers)
An array of primitive tags. The elements are returned in
reverse drawing order. See the description of the num-hits
parameter.

GSCORR (ctype, x, y, atype, c1, spec-array, c2, seg-array,
tag-array, num-hits)

APL code 638
GDDM RCP code X'0C0C1500' (202118400)

110 GDDM Base Application Programming Reference

 GSCORS

num-hits (returned by GDDM) (fullword integer)
The number of hits returned in the seg-array and tag-array
parameters.

A “hit” is an instance of a segment identifier and tag pair for
which the primitives lie completely or partially within the
specified aperture. Two different primitives in the same
segment might have the same tag, and would therefore
produce the same hit. GDDM counts this as a single hit;
the hit is only recorded once in the seg-array and tag-
array parameters returned by GDDM. The num-hits
parameter, therefore, returns this number of distinct hits.

The vectors seg-array and tag-array are set to the hits that
are found, up to the maximum defined in the c2 parameter.
Corresponding elements form the “hit” pair. The number
returned in num-hits , therefore, contains the number of
pairs set if the c2 parameter is greater than the number of
hits detected. The number of elements set in the seg-
array and tag-array parameters is precisely the number
returned in num-hits , and never exceeds the value speci-
fied in c2.

If the same value is returned in the num-hits parameter as
is specified in the c2 parameter, there may be more hits
that cannot be returned in seg-array and tag-array . If all
hits are important, specify arrays that are large enough to
contain the maximum number of hits expected.

 Description

Returns (correlates) a segment and tag pair for each tagged
primitive in the current graphics field, that intersects the
specified aperture. The aperture is compared with all eligible
primitives, whether they belong to the current viewport or not.

Only primitives with a nonzero tag in segments with a
nonzero identifier are correlated using this call.

GSCORR sets the default graphics field, picture space,
viewport, and window if they have not already been defined.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADMð195 E APERTURE TYPE n IS INVALID

ADMð196 E APERTURE SPECIFICATION f IS INVALID

ADM325ð E CORRELATION TYPE n IS INVALID

 GSCORS

 Function

To correlate segments and tags.

 Parameters

ctype (specified by user) (fullword integer)
The type of segment on which correlation is to be per-
formed. Possible values are:

0 Only visible and detectable segments with nonzero
identifiers are correlated. This gives the same corre-
lation criteria as used by a pick device; see GSIPIK.

1 All segments with nonzero identifiers are correlated,
regardless of the detectability and visibility attributes of
the segments.

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The x and y coordinates of the position of the center of the
aperture (in world coordinates).

atype (specified by user) (fullword integer)
The type of aperture to be used. Possible values are:

0 The default; same as 1.

1 Scaled pick aperture
The spec-array parameter must contain a single
element, which is a uniform scaling factor that is
applied to the device’s default pick aperture; see
GSIPIK.

2 Rectangular aperture
The spec-array parameter must contain two world-
coordinate values, giving the width and height (respec-
tively) of a rectangular aperture. The center of the
rectangle is positioned at the point given by the values
in the x and y parameters during correlation.

c1 (specified by user) (fullword integer)
The number of elements in the spec-array parameter.

spec-array (specified by user) (array of short floating-point
numbers)
An array of floating-point numbers as defined by the atype
parameter.

c2 (specified by user) (fullword integer)
The maximum number of hits that can be returned in the
seg-array and tag-array parameters.

depth (specified by user) (fullword integer)
The number of segment and tag pairs to be returned for
each hit.

seg-array (returned by GDDM) (an array of fullword integers)
An array of (c2 times depth) elements containing segment
identifiers. For each hit, a set of depth values are
returned.

GSCORS (ctype, x, y, atype, c1, spec-array, c2, depth,
seg-array, tag-array, num-hits)

APL code 655
GDDM RCP code X'0C0C1501' (202118401)

 Chapter 3. The GDDM calls 111

 GSCP

tag-array (returned by GDDM) (an array of fullword integers)
An array of (c2 times depth) elements containing primitive
tags. For each hit, a set of depth values are returned.

num-hits (returned by GDDM) (fullword integer)
The number of hits returned in the seg-array and tag-array
parameters.

A “hit” is an instance of a segment identifier and tag pair for
which the primitives lie completely or partially within the
specified aperture. Two different primitives in the same
segment might have the same tag, and would therefore
produce the same hit. GDDM counts this as a single hit;
the hit is only recorded once in the seg-array and tag-
array parameters that GDDM returns. The num-hits
parameter, therefore, returns this distinct number of hits.

The tables seg-array and tag-array are set to the hits that
are found, up to the maximum defined in the c2 parameter.
Corresponding sets of elements form the “hit” pairs. The
number returned in num-hits therefore contains the number
of sets of depth pairs set if the c2 parameter is greater
than the number of hits detected. The number of elements
set in the seg-array and tag-array parameters is the
number returned in num-hits multiplied by the depth .

If the same value is returned in the num-hits parameter as
is specified in the c2 parameter, there may be yet more hits
that cannot be returned in seg-array and tag-array . If all
hits are important, specify arrays that are large enough to
contain the maximum number of sets of hits that are
expected.

 Description

Returns (correlates) segment and tag pairs for each tagged
primitive in the current graphics field, that intersects the
specified aperture. The data returned for each “hit” (or corre-
lation) consists of a set of segment and tag pairs. The first
pair is the correlated pair, and successive segment and tag
pairs represent successive levels of nesting, repeated until
the root segment (non nested) is reached.

The aperture is compared with all eligible primitives, whether
they belong to the current viewport or not.

Only primitives with a nonzero tag in segments with a
nonzero identifier are correlated using this call.

GSCORS sets the default graphics field, picture space,
viewport, and window if they have not already been defined.

The depth value specifies the number of sets of segment and
tag pairs to be returned for each hit. If the root segment is
reached before depth values, the remaining values are set to
zero. If more than depth values are available, only that
number are returned.

Example:

Start segment 1

 Tag 1ð

 Call 2

End segment 1

Start segment 2

 Tag 2ð

 Call 3

 Tag 21

 Pick 1

End segment 2

Start segment 3

 Tag 3ð

 Pick 2

End segment 3

For pick 1 return, at depth=2:

Segment Tag
2 21
1 10

For pick 2 return, at depth=5:

Segment Tag
3 30
2 20
1 10
0 0
0 0

If depth was less than 3, only the first “depth” values would
be returned.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADMð195 E APERTURE TYPE n IS INVALID

ADMð196 E APERTURE SPECIFICATION f IS INVALID

ADM325ð E CORRELATION TYPE n IS INVALID

 GSCP

 Function

To set current position.

GSCP (x, y)

APL code 668
GDDM RCP code X'0C0C1319' (202117913)

112 GDDM Base Application Programming Reference

 GSCPG

 Parameters

x (specified by user) (short floating point)
y (specified by user) (short floating point)

Specify, in world coordinates, a point to which the current
position is to be moved. The new value of the current posi-
tion is (x,y).

 Description

Sets the current position to the specified point.

This call is equivalent to the GSMOVE call, except that, if the
current attribute mode is 0 (preserve attributes; see GSAM),
the current position is saved before being set to the new
value, so that it can be restored using a GSPOP call.

 Principal errors

ADMð154 E COORDINATE f IS INVALID

 GSCPG

 Function

To set 4250 current code page.

 Parameters

type (specified by user) (fullword integer)
The type and usage of the code page. The only value that
can be specified is:

5 A code page for a 4250 page printer.

code-page-name (specified by user) (8-byte character string)
The name (left-justified) of the code page to be used. The
GDDM-supplied default code-page name is AFTC0395.
The user can specify a code-page name of “ñ” to restore
the default code page as the current one.

A selection of code-page names supplied by IBM with, and
in support of, the 4250 page-printer fonts are:

AFTC0293 APL
AFTC0361 International
AFTC0363 Pi Font
AFTC0382 Austria, Germany, Switzerland (German)
AFTC0383 Belgium
AFTC0384 Brazil
AFTC0385 Canada (French)
AFTC0386 Denmark, Norway
AFTC0387 Sweden

AFTC0388 France, Luxembourg, Switzerland
AFTC0389 Italy, Switzerland (Italian)
AFTC0390 Japan
AFTC0392 Spain, Philippines
AFTC0393 Latin America (Spanish-speaking)
AFTC0394 United Kingdom, Ireland, Australia, Hong

Kong S.A.R., New Zealand
AFTC0395 United States, Canada (English)
AFTC0829 Math Symbols.

 Description

Specifies the name of the code page that is to become the
current code page.

The current code page defines the set of characters and their
associated code points that form the subset of a page printer
font specified in a subsequent GSLSS call.

Note: The GSCPG call must be made before the associ-
ated GSLSS call.

A type-5 (4250) code-page name is supplied in the form
AFTCnnnn. The code-page name specified overrides the
default code-page name defined for the installation in
GDDM’s external defaults (the CPN4250 option). A code
page is current until either another GSCPG call is issued or
the device is closed.

 Principal errors

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð3ð7 E FILE 'a' NOT FOUND

 GSCS

 Function

To set current symbol set.

 Parameters

symbol-set-id (specified by user) (fullword integer)
The symbol-set identifier.

For character-mode 1 , it is:
0 The drawing default character set.
1 The APL set, if featured.
n Corresponding to the symbol-set identifier specified for

a programmed symbol (PS) set that has previously
been loaded into the device by a PSDSS, PSLSS, or
PSLSSC call, or to an image symbol set that has been
previously loaded by a GSLSS or GSDSS call.

GSCPG (type, code-page-name)

APL code 215
GDDM RCP code X'0C040D00' (201592064)

GSCS (symbol-set-id)

APL code 515
GDDM RCP code X'0C0C0706' (202114822)

 Chapter 3. The GDDM calls 113

 GSDEFE

n corresponding to the symbol-set identifier specified for
a 4250 printer font that was the subject of a previous
GSLSS call (type =5).

For character-mode 2 , the symbol-set identifier is:
0 The drawing default character set.
n Corresponding to the symbol-set identifier specified for

an image symbol set (ISS) defined to GDDM by
GSDSS or GSLSS (type =1)

n Corresponding to the symbol-set identifier specified for
a 4250 printer font that was the subject of a previous
GSLSS call (type =5).

n Corresponding to the symbol-set identifier specified for
a DBCS image symbol set (ISS) defined to GDDM by
GSLSS (type =8).

For character-mode 3 , the symbol-set identifier designates
the particular vector symbol set (VSS) to be used. The
symbol-set identifier can be:
0 Identifying the drawing default vector symbol set
n Corresponding to the symbol-set identifier specified for

a vector symbol set defined by GSDSS or GSLSS
(type =2).

n Corresponding to the symbol-set identifier specified for
a DBCS vector symbol set (VSS) defined to GDDM by
GSLSS (type =9).

Notes:

1. Character strings passed to GSCHAP or GSCHAR
while a DBCS character set is selected are treated as
DBCS characters.

2. Specifying symbol-set-id =8 or MIXSOSI=YES selects
the default DBCS symbol sets, as named by the
DBCSDNM external default.

 Description

Sets the current value of the symbol-set attribute. The
symbol-set attribute remains in effect until it is changed by
another GSCS call.

When a segment is created by the GSSEG call, the attribute
is set to the drawing default value.

When a segment is closed by the GSSCLS call, the attribute
is reset to the value that was in effect when the segment was
created.

For limitations on specific devices, see Chapter 4, “Device
variations” on page 241.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSDEFE

 Function

To end drawing defaults definition.

 Parameters

None.

 Description

Ends the drawing defaults definition set by the GSDEFS call.
Any following attribute calls are explicit settings of that attri-
bute.

 Principal errors

ADM3261 E END DRAWING DEFAULTS DEFINITION IGNORED

 GSDEFS

 Function

To start the drawing defaults definition.

 Parameters

count (specified by user) (fullword integer)
The number of elements in the array .

array (specified by user) (an array of fullword integers)
An array of options for the GSDEFS call. Currently, there
is one element:
Type
Specifies the action GDDM is to take with the new defaults
definition:
0 The default; same as 1.
1 The defaults definition specifies default values that

should be merged into existing default values. Any
attribute default specifically set overrides an existing
default value; but any that are not referenced are not
changed.

GSDEFE

APL code 661
GDDM RCP code X'0C0C1901' (202119425)

GSDEFS (count, array)

APL code 660
GDDM RCP code X'0C0C1900' (202119424)

114 GDDM Base Application Programming Reference

 GSDEFS

2 The default definition totally overrides any existing
default definitions. Any attribute default not specified
within this definition is set to the standard default value,
which is device-dependent.

 Description

Starts the drawing defaults definition.

Attribute calls following this call, until a GSDEFE call, set the
drawing default to the value specified. If any attribute call is
used more than once, the last occurrence takes precedence.
The drawing defaults definition section can be used to com-
pletely replace the existing drawing default values, or to
merge new values into them (see parameter definition
below).

Attributes that can have their default values set are:

� Background mixing mode (GSBMIX)
� Character angle (GSCA)
� Character box (GSCB)
� Character box Spacing (GSCBS)
� Character direction (GSCD)
� Character mode (GSCM)
� Character shear (GSCH)

 � Color (GSCOL)
� Line type (GSLT)
� Line width (GSLW or GSFLW)
� Marker box (GSMB)
� Marker symbol (GSMS)
� Mixing mode (GSMIX)
� Primitive tag (GSTAG)
� Shading pattern (GSPAT)
� Symbol set (GSCS)
� Text alignment (GSTA)

If drawing defaults have not been defined, the standard attri-
butes, which are device-dependent, are used. To reset a
specific drawing default value to its initial state, in most
cases, zero values can be specified. However, for character
box and marker box, the standard default for the device must
be specified.

Any attribute query calls within this section return the current
default value.

Once a default has been set, in most cases it can be
referred to using a value of zero when explicitly setting the
current attribute value, for example GSCOL(ð). Attributes that
differ from this general case are:

Primitive tag
The default value is assumed at the start of a segment, and
cannot be set explicitly. Therefore, for example, if the default
tag is set to 1, all primitives in segments have a tag of 1,
unless it is explicitly changed by a GSTAG call. A GSTAG(ð)
call does not set the current tag to the default value, but
instead sets the current tag to zero.

Character angle
This attribute is set by specifying an x and a y component. If
both are zero, the drawing default value is used.

Character box
This attribute is set by specifying an x and a y component.
The default value is assumed at the start of a segment. If a
GSCB call is then issued, it is not possible to restore the
default value for the character box within the segment.

The drawing default for the character box is converted from
world coordinates to device-dependent coordinates at the
time the default is defined. Therefore, a subsequent change
to the world-coordinate system using a GSWIN or GSUWIN
call does not alter the actual size of the character box.

Consider the following example:

CALL GSUWIN(ð,1ðð,ð,1ðð);

CALL GSDEFS(1,1);

CALL GSCB(1ð,1ð); /\ Set default character

box to (1ð,1ð) \/

CALL GSDEFE;

CALL GSUWIN(ð,2ðð,ð,2ðð); /\ Change the window \/

CALL GSSEG(1);

CALL GSCM(3); /\ Character mode 3 -

current character box

assumes default value

when segment is opened \/

CALL GSCHAR(....);

CALL GSCB(1ð,1ð); /\ Set current character

box to (1ð,1ð) \/

CALL GSCHAR(....);

CALL GSSCLS;

The first character string has the drawing default character
box which was defined as (10,10) when a uniform window of
(0,100,0,100) was in effect. The subsequent change to the
window does not affect the default, so this first character
string is drawn as if the change to the window had not
occurred. The second character string has a character box
defined as (10,10) in the new window (0,200,0,200), and is,
therefore, half the size of the first string.

Character shear
This attribute is set by specifying an x and a y component. If
both are zero, the drawing default value is assumed.

Marker box
This attribute is set by specifying an x and a y component.
As for character box, once the marker box has been set
within a segment, it cannot be set back to default.

The drawing default for the marker box is converted from
world coordinates to device-dependent coordinates at the
time the default is defined. Therefore, a subsequent change
to the world coordinate system using a GSWIN or GSUWIN
call does not alter the actual size of the default marker box.
(See the description for character box above.)

Character-box spacing
The default value is assumed at the start of a segment, and
cannot be set explicitly. Thus, for example, if the default
character-box spacing is set to (1, 1), all character primitives
will assume this value for the attribute, unless it has been

 Chapter 3. The GDDM calls 115

 GSDEFS

explicitly changed by a GSCBS call. A GSCBS(ð,ð) call does
not set the current character-box spacing attribute to the
default value, but instead sets it to be a spacing of (0, 0).

If a specific value is not set within the drawing default defi-
nition, the standard default value is used. The standard
default values are device-dependent. For example, if the
color is not set within the drawing defaults section, then the
default color is green on multicolor displays, but black on
printers.

The graphics field is defaulted if it has not already been set.
Clearing the graphics field by use of the GSCLR call does
not affect the current drawing defaults.

Drawing default values affect the entire picture. Any primi-
tives with default attributes, whether they are specified before
a drawing defaults definition or after, assume the attribute
values specified by that definition.

Any primitives outside segments are discarded.

Thus, a call to GSDEFS can affect the appearance of
existing primitives, and can cause a redraw of the picture.
Subsequent drawing defaults definitions override the existing
drawing default values for each attribute specified between
the GSDEFS and GSDEFE calls. The type parameter indi-
cates whether default values for attributes not specified in the
definition are to be left unchanged or set to the standard
default.

Under some conditions, changes to drawing defaults for
some attributes are not honored.

� Character box, character angle, and character shear
attributes are combined to form a geometric transforma-
tion. If one of these values is set, it causes the other
two to be set as well. When a segment is opened,
these attributes assume the default value. If none of
them are explicitly set, subsequent changes to the
defaults are reflected in the character primitives.
However, as soon as one of them is set, all three are
“fixed” and any subsequent changes to the default
values for these attributes are not reflected in the fol-
lowing character primitives.

� If either the x or the y direction for the window is
reversed, the character transform (that is, Character
Box, Character Angle and Character Shear) is “fixed”
when a segment is opened. Subsequent changes to
default values for these attributes are not reflected for
character primitives in segments that are created while
the window is reversed.

� If a character string is very long (more than 240 charac-
ters) or is a mixed character string (that is, it contains
shift-out (SO) or shift-in (SI) control codes, representing
the change from single-byte to double-byte characters,
or the converse) the text alignment attribute is “fixed” at
the time the string is drawn. Subsequent changes to the
default value for text alignment are not honored for such

strings. Subsequent changes to the default values of
character box, character angle, character-box spacing,
and character direction will have undefined results on
very long character strings or mixed character strings
that have been drawn using the default values for the
attributes listed.

Between the GSDEFS and the GSDEFE calls, the following
calls cannot be issued:

FSCOPY GSCALL GSSDEFS GSLOAD
GSMSC GSPOP GSSAGA GSSATS
GSSAVE GSSCPY GSSCT GSSDEL
GSSEG GSSINC GSSORG GSSPOS
GSSPRI GSSTFM GSSVL

and (if the device is a queued printer)

ASREAD FSCHEK FSFRCE.

Calls that draw lines, arcs, fillets, characters, markers, areas,
and images are also not allowed between the GSDEFS and
GSDEFE calls.

If the GSSAVE call is used to save a picture, any drawing
default values that have been set are saved with the picture.
If a picture containing drawing defaults is loaded using the
GSLOAD call, the application can choose to ignore the
defaults, append them to the current drawing defaults, use
them to over-ride the current drawing defaults, use them to
totally replace the current drawing defaults, or incorporate
them into the segment data to be loaded; see GSLOAD.

If this last option is selected, any attribute that references a
default is changed to set the drawing default value explicitly,
and the default values currently in use by the application are
not altered. Note that this option does not guarantee that the
loaded picture completely reproduces the picture at the time
it was saved. This is because any drawing default values
not specified in the saved file, results in the current drawing
default values being used for that attribute. If these have not
been set, the standard default for the current device is used,
and for some attributes this value is device-dependent (see
above). Also, any segment that is both chained and called
will not correctly inherit from its caller attributes for which a
default value was specified. This could also result in a
change in the picture.

Primitives that have been clipped may not fully reflect
changes to drawing defaults. For example, if the default
character set is changed, then a clipped string may not be
re-displayed in the new character set. Similarly, a character
string may change length if different proportionally-spaced
fonts are used. If a string was totally clipped out because all
characters were outside the clip area, then changing the font
does not result in the characters appearing, even though the
new font may have caused the length of the string to be such
that it would have extended into the clip area. However, if
no clipping is in effect, then all changes to the drawing
defaults are fully reflected.

116 GDDM Base Application Programming Reference

 GSDSS

 Principal errors

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADM326ð E INVALID FUNCTION DURING DRAWING DEFAULTS

DEFINITION

 GSDSS

 Function

To load a graphics symbol set from the application program.

 Parameters

type (specified by user) (fullword integer)
The type and usage of this symbol set. Possible values
are:

1 ISS to be retained by GDDM for dot-matrix graphics
text.

2 VSS to be retained by GDDM for generation of vector
graphics text.

3 Shading pattern set (must be ISS).
4 Marker symbol set (may be either ISS or VSS).

symbol-set-name (specified by user) (8-byte character
string)
The name (left-justified) of the symbol set. For this call, the
symbol-set name serves only to identify the set. No file
operations are performed. The name is returned by
GSQSS, and is also used to locate an equivalent character
set if a copy is made to a printer. If neither of these oper-
ations is to be used, the name may be left blank.

symbol-set-id (specified by user) (fullword integer)
The identifier by which this symbol set is referred to in later
statements. The GSDSS call checks that the identifier of a
type-1 symbol set is not the same as an existing type-5
symbol-set identifier that has been loaded by a GSLSS call.

The allowable symbol-set identifiers are:

0 Pattern or marker symbol set
65 through 223 Other symbol sets.

Each loaded symbol set should have a unique identifier
with respect to all other symbol sets loaded by GSDSS,
GSLSS, PSDSS, PSLSS, or PSLSSC calls. This avoids
any uncertainty that might arise from a device treating dif-
ferent types of symbol sets as equal candidates for dis-
playing a character string. If, however, a symbol-set
identifier is the same as one that has previously been

issued for the same type, the new definitions replace the
previous ones.

length (specified by user) (fullword integer)
The length of data storage provided for the value given in
data .

data (specified by user) (character)
The symbol-set definitions to be loaded; see Chapter 8,
“Symbol set formats” on page 275.

 Description

Loads a set of symbol definitions from data passed by the
application program. The symbol set may be an image
symbol set (ISS) or a vector symbol set (VSS). For a plotter,
vector symbol sets may be loaded; image symbol sets can
also be loaded for characters and markers, but not for
shading patterns.

The definitions are retained by GDDM for graphics use.

For information about restrictions on various devices, see
“Graphics area shading” on page 247.

 Principal errors

ADMð115 E SYMBOL SET 'a' LENGTH n IS INVALID

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð119 E SYMBOL SET 'a' HAS INCONSISTENT

{IMAGE|VECTOR} TYPE

ADMð123 E SYMBOL SET n1 HAS INVALID FORMAT. REASON

CODE n2

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð128 W SYMBOL SET n OPTION UNSUPPORTED

ADMð135 E SYMBOL SET n TYPE UNSUPPORTED

ADM3157 E SYMBOL SET IDENTIFIER n ALREADY IN USE

 GSELPS

 Function

To draw an elliptical arc.

 Parameters

p (specified by user) (short floating point)
The major axis length; cannot be zero.

q (specified by user) (short floating point)
The minor axis length; cannot be zero.

GSDSS (type, symbol-set-name, symbol-set-id, length,
data)

APL code 201
GDDM RCP code X'0C040301' (201589505)

GSELPS (p, q, tilt-angle, xe, ye)

APL code 551
GDDM RCP code X'0C0C0601' (202114561)

 Chapter 3. The GDDM calls 117

 GSENAB

tilt-angle (specified by user) (short floating point)
The inclination of the major axis to the x axis in degrees
(the major axis is that with length P, regardless of which
axis is the longer). Positive tilt angles result in counter-
clockwise rotation of the ellipse, negative tilt angles result in
clockwise rotation.

xe (specified by user) (short floating point)
The x coordinate of the end point of the arc.

ye (specified by user) (short floating point)
The y coordinate of the end point of the arc.

 Description

Draws a curve that starts at the current position and follows
an elliptic curve until it reaches the end point; see Figure 7.
The ellipse has major and minor axis lengths given by the
parameters p and q, and the major axis (p) is inclined to the
x axis by the axis tilt angle supplied.

The arc is considered to be constructed as follows. An
ellipse with the given major and minor axis lengths is con-
structed with the major axis lying along the x axis. The
ellipse is then rotated by the axis tilt angle and moved so
that current position and the end point both lie on the curve.

In general, there are two possible positions for the ellipse
center. One is to the right and one is to the left of the line
drawn from the start point to the end point viewed in that
direction. If p and q have the same sign, the center point to
the left of the line is chosen and the arc is drawn counter-
clockwise about it. If p and q have opposite signs, the arc is
drawn clockwise about the center to the right of the line.

The arc drawn is never longer than half an ellipse.

The arc has the color, line width, and line type given by the
current values of these attributes.

The current position is set to the end of the arc.

 Principal errors

ADMð154 E COORDINATE f IS INVALID

ADMð176 E AXIS LENGTH f OUT OF RANGE

ADMð177 W ARC RADIUS TOO SMALL

 GSENAB

 Function

To enable or disable a logical input device.

q = Minor Axis Length

End Point = (xe, ye)

p = Major Axis Length

Start Point
(current
position)

Til t
angle

x axis

Figure 7. How an ellipse is drawn (GSELPS)

 Parameters

device-type (specified by user) (fullword integer)
The type of the logical input device to be enabled. Possible
values are:

1 Choice.
2 Locator.
3 Pick.
4 String
5 Stroke

device-id (specified by user) (fullword integer)
The identification of the logical input device to be enabled.

Possible values for the device identifications for the dif-
ferent device types are:

Choice

 0 The ENTER key.
 1 The PF keys.
 2 Alphanumeric light-pen detect
 4 The PA keys.
 5 The CLEAR key.
 8 The data keys.
10 The mouse or puck buttons.

Values correspond to the values returned by ASREAD.

Locator

1 The mouse or tablet, or cursor keys.

Pick

1 The mouse or tablet, or cursor keys.

String

1 The string device provides an area into which char-
acters can be typed.

Stroke

1 The mouse or tablet (if configured).

control (specified by user) (fullword integer)
An integer that shows the new state of the given input
devices:

GSENAB (device-type, device-id, control)

APL code 572
GDDM RCP code X'0C0C0D00' (202116352)

118 GDDM Base Application Programming Reference

 GSENDA

0 Disabled. No operator input expected from the device.
If the device cannot physically be disabled, any input is
ignored by GDDM. This is the initial state.

1 Enabled. Operator input is expected from the device
and is to be allowed when subsequent GSREAD calls
are issued.

Note: If all three parameters are set to zero (that is,
GSENAB(ð,ð,ð)), all previously enabled input devices are dis-
abled.

 Description

Enables a logical input device. This must be done before
input of a particular type can be received; initializing a device
does not enable it.

If a locator device is enabled, the initial position, specified in
the GSILOC call is used for the position of the graphics
cursor. If the locator was not initialized before being
enabled, the default cursor is used and its position set to the
center of the graphics field.

The locator is triggered by the terminal operator causing an
attention interrupt (for example, using the ENTER key). For
details of the trigger key used on a particular device, see
GSREAD. If it is required to know which key is pressed,
choice logical input devices must also be enabled.

If a pick device is enabled, the segment and tag specified in
the GSIPIK call is used to identify a particular primitive, and
the initial position of the graphics cursor is set accordingly. If
no primitive is found, the position of the graphics cursor is
set to the center of the graphics field, and an informational
message is issued. If the pick was not initialized before
being enabled, the position of the graphics cursor is set to
the center of the graphics field.

The pick is triggered by the terminal operator causing an
attention interrupt (for example, using the ENTER key). For
details of the trigger key used on a particular device, see
GSREAD. If it is required to know which key is pressed,
choice logical input devices must also be enabled.

The string data is triggered by pressing the ENTER key or
the PF keys. It is also triggered by the mouse or puck
buttons if they are used to support other enabled logical input
devices.

If a stroke device is enabled, the initial position specified in
the GSISTK call is used to position the initial marker (the X
symbol). If the stroke device is not initialized before it is
enabled, the symbol is positioned at the center of the
graphics field. The specified or defaulted initial position of a
stroke device overrides that of a locator device and that of a
locator device overrides that of a pick device.

When a logical input device is enabled or disabled, the
default graphics field, picture space, viewport, and window
are set if they were not specified or defaulted. When the
graphics field is deleted or redefined, all logical input devices

are reset to their default state (disabled with default initial
values).

A device can only be enabled if it is currently disabled .

Enabled devices can be manipulated by the operator when-
ever the current page is displayed. Input from logical input
devices is received by use of the GSREAD call.

It is permissible to enable different logical input device types
(for instance, a locator and a pick) at the same time, even
though the same hardware needs to be used for both. The
position indicated is both returned to the application as
locator input, and used to select a primitive to be returned to
the application. The initial value of the pick is ignored in this
circumstance, and the echo for the pick is the same as that
for the locator. If the locator is disabled, the pick remains at
the locator position.

Multiple choice devices can be enabled, but multiple locator
devices, multiple pick devices, multiple string devices, or mul-
tiple stroke devices are not allowed.

When multiple partitions are used, each page can have its
own set of logical input devices. The user can interact with
all of the partitions that have logical input devices enabled.

Note: All logical input devices are associated with a
graphics field. If you redefine the graphics field after an input
device has been enabled, or select another page, the device
is disabled.

For information about restrictions on various devices, see
“Graphics logical input devices” on page 247.

 Principal errors

ADMð153 E CONTROL VALUE n IS INVALID

ADM32ð1 E INPUT DEVICE TYPE n IS INVALID

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð5 I DEFAULT USED IN GRAPHICS CURSOR POSITIONING

ADM32ð6 E LOCATOR COORDINATE f OUTSIDE PICTURE SPACE

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

ADM3211 E ECHO SEGMENT IDENTIFIER n IS INVALID

ADM3212 E DEVICE IS OUTPUT ONLY

ADM3213 E APERTURE f IS INVALID

 GSENDA

 Function

To end a shaded area.

GSENDA

APL code 525
GDDM RCP code X'0C0C0409' (202114057)

 Chapter 3. The GDDM calls 119

 GSFLD

 Parameters

None

 Description

Ends the construction of a shaded area. The construction is
started by the GSAREA call. If necessary, a final line is con-
structed to close the area.

The current position is not changed, unless a closure line
must be drawn, in which case the current position is moved
to the end point of the line.

 Principal errors

ADMð16ð E END AREA IGNORED

 GSFLD

 Function

To define the graphics field.

 Parameters

row (specified by user) (fullword integer)
The row position on the page of the top left-hand corner of
the graphics field.

column (specified by user) (fullword integer)
The column position on the page of the top left-hand corner
of the graphics field.

Note: If a row or column of zero is specified, the graphics
field is deleted.

depth (specified by user) (fullword integer)
The depth of the field.

width (specified by user) (fullword integer)
The width of the field.

Note: If either the depth or width is zero, the graphics field
is deleted.

 Description

Overrides the default graphics field on the current page. The
graphics field is used to display graphics primitives. The
region to be occupied by the graphics field is defined in
row/column coordinates.

Note: Only one graphics field is allowed per page.

If the graphics field is redefined, the following occurs:

� The existing graphics contents are lost
� All segments in the original field are deleted
� Any logical input devices enabled for the page are reset

to their default state
� Any User Control panning and zooming that has been

performed on the picture is reset.

A new graphics field is created in the newly-defined area.

If the graphics field covers the screen, a field attribute byte
(displayed as a blank) may (depending on the device)
occupy the lower-right-hand corner of the screen. Because
this position is not available for use, graphics field positioning
and picture construction should be planned accordingly.

If no graphics field was created when required for a
requested function, a graphics field is created automatically.
This default graphics field covers the entire GDDM page.

For family-4 devices, the row and column units that apply to
the GSFLD parameters depend on the device token in use:

� For cell-based AFPDS tokens, alphanumeric rows and
columns are used, just as for family-1 and family-2
devices.

� For other family-4 device tokens (which do not specify
cell sizes) the row and column units are determined by
the FSPCRT call, which divide the available paper area
into a grid. If no FSPCRT call is issued, the row and
column units default to pixels.

On family-4 devices, if graphics are rastered into image
(which depends on the device token used and the setting of
the OFFORMAT procopt), the graphics field is rounded down
to a multiple of 32 pixels in each direction.

For restrictions on various devices, see “Dual screen size” on
page 241.

 Principal errors

ADMð141 E GRAPHICS FIELD POSITION n IS INVALID

ADMð144 E GRAPHICS FIELD OVERLAPS IMAGE FIELD

ADMð164 E GRAPHICS FIELD SIZE n IS INVALID

GSFLD (row, column, depth, width)

APL code 502
GDDM RCP code X'0C0C0000' (202113024)

120 GDDM Base Application Programming Reference

 GSFLSH

 GSFLSH

 Function

To clear the graphics input queue.

 Parameters

input-device-type (specified by user) (fullword integer)
The type of the device whose input is to be flushed. If the
type is 0, all input is flushed regardless of the device identi-
fier specified.

input-device-id (specified by user) (fullword integer)
The identifier of the device whose input is to be flushed. If
the identifier is –1, all input of the specified type is flushed.

 Description

Flushes any items associated with a specific input device or
device type from the graphics input queue. When the
graphics input queue is flushed, the default graphics field,
picture space, viewport, and window are set if they have not
previously been specified or defaulted.

 Principal errors

ADM32ð1 E INPUT DEVICE TYPE n IS INVALID

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

 GSFLW

 Function

To set current fractional line width.

 Parameters

linewidth-multiplier (specified by user) (short floating point)
Specifies the multiplier to be applied to the standard line
width:
0.0 Drawing default
>0.0 Linewidth multiplier (cannot exceed 100.0).

 Description

Sets the current value of the line-width attribute as a floating-
point value. The representation of the line width may thus be
set to fractional values. The widest line is drawn that does
not exceed the requested line width.

The standard line width in pixels for the current device (see
table below) is multiplied by the line-width-multiplier, and the
result rounded down to an integer value. This value defines,
in pixels, the width of the lines subsequently drawn.

If the result is zero, the drawing default line width is used.
The initial default line width is the standard line width. The
default may be changed by a call to GSDEFS followed by a
call to GSFLW or GSLW.

If the result is more than the maximum for the current device,
the maximum is used.

If the result is less than the minimum for the current device,
the minimum is used.

The attribute remains in effect until it is changed by another
GSFLW call, or a GSLW call.

When a segment is created by the GSSEG call, the attribute
is set to the default value.

When a segment is closed by the GSSCLS call, the attribute
is reset to the value that was in effect when the segment was
created.

Note: The line-width attribute does not affect mode-3 char-
acters or vector markers that are drawn using GSCHAP,
GSCHAR, GSMARK, or GSMRKS. These characters always
use the standard default line width.

See also the GSLW call.

For restrictions on various devices, see “Graphics line types
and widths” on page 247.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

 GSGET

 Function

To retrieve graphics data.

GSFLSH (input-device-type, input-device-id)

APL code 573
GDDM RCP code X'0C0C0E00' (202116608)

GSFLW (linewidth-multiplier)

APL code 561
GDDM RCP code X'0C0C070E' (202114830)

GSGET (buffer-length, buffer, GDF-length)

APL code 555
GDDM RCP code X'0C0C0B02' (202115842)

 Chapter 3. The GDDM calls 121

 GSGETE

 Parameters

buffer-length (specified by user) (fullword integer)
Gives the length of the data buffer supplied. The maximum
possible length of a GDF order is 257 bytes (comprising 1
order-code byte, 1 length byte, and up to 255 data bytes),
and therefore buffer-length must be specified to be at least
257 bytes long.

buffer (returned by GDDM) (character)
A data area, of stated length, to receive the GDF data.

GDF-length (returned by GDDM) (fullword integer)
A variable that is usually set to the length of GDF data
placed in the buffer. If it is zero (and no error is reported),
all the GDF data requested has already been returned.

 Description

Retrieves graphics data from the current page into the sup-
plied buffer.

The graphics data that is kept as a representation of the
picture on the current page is converted to graphics data
format (GDF) and placed in the buffer supplied.

For information about GDF, see Chapter 10, “GDF order
descriptions” on page 281 and refer to the GDDM Base
Application Programming Guide.

Retrieval of graphics data must start with a call to GSGETS.
This shows the data that is needed. One or more calls to
GSGET can then be used to fetch the data.

If the buffer is large enough to contain the GDF data
requested, the data is returned and the last parameter is set
to show its length. If the buffer is not large enough, as many
complete GDF orders as will fit are placed into the buffer.
More data can be obtained by another call to GSGET. All
data has been extracted when a length of zero is returned
(without error).

Each call to GSGET retrieves several complete GDF orders;
parts of orders cannot be returned. (This means that buffers
obtained from GSGET can be returned as input to GDDM
through GSPUT. If there is not enough room in the buffer to
take a complete order, no data is returned, and an error is
raised.

The GSGETS call begins the retrieval of graphics data. This
shows the data that is needed. One or more calls to GSGET
can then be used to fetch the data. Graphics retrieval is
ended by GSGETE.

If the amount of data returned does not completely fill the
buffer, any unused space is padded with GDF no-operation
orders; note that the X'FF' character is not a valid GDF
order, and is only included to maintain compatibility with
releases of GDDM earlier than Version 2 Release 1. This
padding is not included in the value returned in the
GDF-length parameter. After all the GDF data has been

returned, the first padding character is set to X'FF'; see also
GSPUT.

 Principal errors

ADMð173 E STRING LENGTH n IS INVALID

ADMð178 E GRAPHICS RETRIEVAL NOT INITIALIZED

 GSGETE

 Function

To end retrieval of graphics data.

 Parameters

None.

 Description

Ends the retrieval of graphics data (see also GSGET and
GSGETS).

The function can be called whether or not all the graphics
data has been retrieved.

 Principal errors

ADMð178 E GRAPHICS RETRIEVAL NOT INITIALIZED

 GSGETS

 Function

To start retrieval of graphics data.

 Parameters

count (specified by user) (fullword integer)
The number of elements in the following array.

array (specified by user) (an array of fullword integers)
The data required. The array can have these elements:

GSGETE

APL Code 556
GDDM RCP code X'0C0C0B01' (202115841)

GSGETS (count, array)

APL code 554
GDDM RCP code X'0C0C0B00' (202115840)

122 GDDM Base Application Programming Reference

 GSIDVF

1 The identifier of the segment required. If the identifier is
zero or if the array has no elements, all segments are
retrieved.

2 The format of the GDF information to be returned. Pos-
sible values are:

0 or 2 2-byte integer GDF. This is the default.

For restrictions on various devices, see
“Device-specific saved pictures” on page 242.

All coordinates within GDF orders are defined
by a device-dependent coordinate system
(defined by the initial Comment order within the
GDF).

4 4-byte short floating-point GDF. All coordinates
within GDF orders are defined by the current
window coordinate system (extended as neces-
sary to cover the graphics field).

3 The type of GDF information to be returned. Possible
values are:

0 or 1 For segments: Initial Comment order and
segment GDF. This is the default.

2 For pictures: Initial Comment order, symbol set
names, picture prolog, and segment GDF. For
information on the format of GDF orders that
are returned, see Chapter 10, “GDF order
descriptions” on page 281.

 Description

Starts the retrieval of graphics data format (GDF), symbol
set, window, and coordinate type information from the current
page. The GDF information can be returned in either fixed-
point or floating-point format, depending on the value of the
second element of the array parameter.

Retrieval of graphics data cannot be started when there is an
open segment.

The graphics data for an individual named segment, or the
data for all segments being kept for the page, may be
retrieved,

GSGETS specifies the data required and begins the retrieval.
Data is obtained by GSGET and the retrieval is ended by
GSGETE.

The following calls cannot be issued after GSGETS until a
GSGETE call has been issued:

FSCOPY GSCALL GSDEFE GSDEFS
GSGETS GSLOAD GSSAGA GSSATS
GSSAVE GSSCPY GSSDEL GSSEG
GSSINC GSSORG GSSPOS GSSPRI
GSSTFM

and (if the primary device is a queued printer)

ASREAD FSCHEK FSFRCE.

For full information on GDF and its orders, see the
Chapter 10, “GDF order descriptions” on page 281.

 Principal errors

ADMð145 E SEGMENT n IS UNKNOWN

ADMð146 E ARRAY COUNT n IS INVALID

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð161 E GRAPHICS FIELD NOT DEFINED

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð18ð E GRAPHICS RETRIEVAL NOT SUPPORTED BY DEVICE

 GSIDVF

 Function

To set initial floating-point data value for a graphics input
device.

 Parameters

device-type (specified by user) (fullword integer)
The type of device that is to be given an initial value. Pos-
sible values are:

2 Locator device
3 Pick device

device-id (specified by user) (fullword integer)
This must have a value of 1, which identifies the device.
See GSILOC or GSIPIK for further details of the locator or
pick device.

element-number (specified by user) (fullword integer)
The element of the locator or pick device that is to be given
an initial value.

For a locator device (device-type =2), the element number
can be:

0 Delete all float values for this device.
1 The initial value is an x coordinate.
2 The initial value is a y coordinate.

For a pick device (device-type =3), the element number
can be:

0 Delete all float values for this device.
1 The initial value is the pick aperture.

GSIDVF (device-type, device-id, element-number, float-
value)

APL code 571
GDDM RCP code X'0C0C0C05' (202116101)

 Chapter 3. The GDDM calls 123

 GSIDVI

float-value (specified by user) (short floating point)
The initial value to be set for the device element.

For a locator device, this provides data needed to define
the locator echo:

For a rubber-band echo (echo-type 4), the x or y coor-
dinate of the fixed end of the line.

For a rubber-box echo (echo-type 5), the x or y coordi-
nate of the fixed corner of the box.

Notes:

1. If a coordinate has not been provided on GSIDVF
before the device is enabled (see GSENAB), for
echo types 4 and 5 the coordinate defaults to the
corresponding coordinate of the initial locator posi-
tion, as set by GSILOC.

2. If only the x coordinate is set, the initial rubber-
band or rubber-box is a horizontal line. If only the
y coordinate is set, the initial rubber-band or
rubber-box is a vertical line.

For a segment echo (echo-type 6), the x or y offset
from the locator position at which the segment origin is
to be positioned. For the definition of a segment origin,
see GSSPOS. If a coordinate has not been provided
on GSIDVF before the device is enabled (see
GSENAB), the default offset is 0,0.

| For segment scaling (echo-type 8), the unit scale sizes
| on the x and y axes.

| Note: If either the x or the y unit scale value is set to
| zero, no scaling is performed in this direction.

For a pick device, the initial value is the size of the pick
aperture given as a ratio to the default aperture size. For
3270-family devices, it is the height of the hardware cells.

 Description

Used with GSILOC to set initial values for rubber-banded,
rubber-boxed, and segment echoes; and with GSIPIK to set
the size of the aperture of the pick window. Its use is
optional in all cases. GSIDVF can be used only when the
specified locator or pick device is disabled.

When a data item is initialized, the default graphics field,
picture space, viewport, and window are set if not previously
specified or defaulted. When the graphics field is deleted or
redefined, all data values for all input devices are deleted.

 Principal errors

ADM32ð1 E INPUT DEVICE TYPE n IS INVALID

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

ADM32ð9 E ELEMENT NUMBER OR DATA VALUE n IS INVALID

 GSIDVI

 Function

To set initial integer data value for graphics input device.

 Parameters

device-type (specified by user) (fullword integer)
The type of device that is to be given an initial value. Pos-
sible values are:

2 Locator device
4 String device

device-id (specified by user) (fullword integer)
This must have a value of 1, which identifies the device.
See GSILOC or GSISTR for further details of the locator or
string device.

element-number (specified by user) (fullword integer)
The element of the device-type that is to be given an initial
value.

For a locator device (device-type=2), the value can be:

0 Delete the segment identification associated with this
locator.

1 The initial value is the segment identification of the
segment that is to be used as the echo (echo-type 6).

For a string device (device-type=4), the value can be:

0 delete (reset to zero) any previous integer values
1 The integer value is the initial cursor position.

integer-value (specified by user) (fullword integer)
The initial value to be set for the device element.

For a locator device, the identification of the segment that
is to be used as the echo for this locator. The segment
must have the transformable attribute assigned with a
GSSATI call.

For a string device, it is the field position under which the
cursor must be placed. Note that a zero value is treated
the same as a 1. The maximum value must not be greater
than the maximum length of a string; see GSISTR.

GSIDVI (device-type, device-id, element-number,
integer-value)

APL code 570
GDDM RCP code X'0C0C0C04' (202116100)

124 GDDM Base Application Programming Reference

 GSILOC

 Description

| Used with GSILOC, to set the segment identifier for locator
| echo-types 6,7,8, and 9 and with GSISTR, to set the field

position under which the cursor must be placed. The
GSIDVI call can be used only when the specified locator or
string is disabled.

When a data element is initialized, the default graphics field,
picture space, view-port, and window are set if not previously
specified or defaulted. When the graphics field is deleted or
redefined, all data values for all input devices are deleted.

 Principal errors

ADM32ð1 E INPUT DEVICE TYPE n IS INVALID

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

ADM32ð9 E ELEMENT NUMBER OR DATA VALUE n IS INVALID

 GSILOC

 Function

To initialize locator.

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the locator to be initialized. The only valid
value is:

1 The mouse or tablet, or the cursor keys.

echo-type (specified by user) (fullword integer)
The echo is what the operator sees on the screen when
using the locator. Possible values are:

| 0 The default echo or system cursor is used to show the
locator position. The initial position is described by the

| x-coord and y-coord parameters. Users of
| GDDM-OS/2 Link can use the Alt-Cur key to toggle
| through the following range of system cursors:

| 1. Black and white target
| 2. Black and white cross
| 3. XOR target
| 4. XOR cross
| 5. XOR full-screen crosshair

1 A null echo.

2 The locator position is shown by a device-dependent
echo (typically a cross-hair cursor).

The initial position is described by the x-coord and
y-coord parameters.

3 The locator position is shown by a small tracking cross.
The initial position is described by the x-coord and
y-coord parameters.

4 The locator position is shown by a “rubber-band,”
which is a line having one end fixed and the other end
at the locator position. The initial position of the locator
end of the line is given by the x-coord and y-coord
parameters. This is also the initial position of the fixed
end of the line. The GSIDVF call must be used to
position the fixed end of the line if a different initial
position is required.

5 The locator position is shown by a “rubber-box,” which
is a rectangle with sides parallel to the x and y axes
having one corner fixed and the opposite corner at the
locator position. The initial position of the locator
corner of the box is given by the x-coord and y-coord
parameters. This is also the initial position of the fixed
corner of the box. The GSIDVF call must be used to
position the fixed corner of the box if a different initial
position is required.

6 The locator position is shown by a transformable
graphics segment that is moved round the screen as
the workstation locator is moved. Note that a copy of
the segment is “attached” to the locator. The original
segment remains displayed at its current position.
After a GSREAD using a locator with echo-type 6 has
completed with an interrupt for a locator device, the
segment is not repositioned to the locator position. If
the application needs to move the segment, it must do
so explicitly with a suitable call, for example, GSSPOS.

When a locator is enabled, the copy of the echo
segment attached to the locator is always displayed as
visible and nonhighlighted, regardless of the current
attribute settings for the segment.

The segment attached to the locator may be clipped,
according to where it was drawn and whether clipping
was requested. To ensure that the completed segment
is attached, it should be drawn at a position where the
entire segment is visible.

By default, the local origin of the segment is displayed
at the locator position as specified by the x-coord and
y-coord parameters. The position of the segment in
relation to the locator position can be altered by speci-
fying the relative displacement of the segment origin to
the locator position by use of the GSIDVF call, or by
changing the segment origin by a GSSORG call.

The GSIDVI call must be used to identify the trans-
formable segment that is to be the echo.

Note: Parts of the segment may be clipped out during
User Control pan-and-zoom activities.

GSILOC (device-id, echo-type, x-coord, y-coord)

APL code 568
GDDM RCP code X'0C0C0C00' (202116096)

 Chapter 3. The GDDM calls 125

 GSIMG

| 7 The locator position is shown by a transformable
| graphics segment that can be scaled along both axes
| as the workstation locator is moved. Note that a copy
| of the segment is “attached” to the locator. The ori-
| ginal segment remains displayed at its current size.
| The scaling of the segment is based on the distance
| between a reference point set using the GSIDVF call.
| Scaling is performed independently along the x- and y
| axes.

| If the application is to scale the actual segment, it must
| do so explicitly with a suitable call, such as GSSAGA.

| The GSIDVI call must be used to identify the trans-
| formable segment that is to be the echo.

| 8 The locator position is shown by a transformable
| graphics segment that can be rotated through the
| angle that the workstation locator makes with a refer-
| ence point set using the GSIDVF call. Note that a
| copy of the segment is “attached” to the locator. The
| original segment remains displayed at its current orien-
| tation. The rotation of the segment is based on the
| angle made by the moving locator and a static refer-
| ence point set using the GSIDVF call.

| If the application is to actually rotate the segment, it
| must do so explicitly with a suitable call, such as
| GSSAGA.

| The GSIDVI call must be used to identify the trans-
| formable segment that is to be the echo.

| 9 The locator position is shown by a transformable
| graphics segment that can be sheared at the angle that
| the workstation locator makes with a reference point
| set using the GSIDVF call. Note that a copy of the
| segment is “attached” to the locator. The original
| segment remains displayed with its current shape. The
| shearing of the segment is based on the angle made
| by the moving locator and a static reference point
| selected by the end user.

| The GSIDVI call must be used to identify the trans-
| formable segment that is to be the echo.

x-coord (specified by user) (short floating point)
y-coord (specified by user) (short floating point)

The x- and y-coordinates specify the initial position of the
locator on the screen. The values are specified in world
coordinates. The coordinates are mapped to a screen posi-
tion using the window and viewport currently in effect. Any
change to the window or viewport before a GSREAD call is
issued does not affect the initial locator position on the
screen.

 Description

Provides an initial value and echo characteristics for a
locator.

A locator cannot be initialized if it is enabled.

When a locator is initialized, the default graphics field, picture
space, viewport, and window are set if they have not been
specified. The coordinates supplied are converted to device
coordinates before being stored. When the graphics field is
deleted or redefined, all initial values for the locators are
reset to the default.

FOR INFORMATION ABOUT RESTRICTIONS ON
VARIOUS DEVICES, SEE “Graphics logical input devices”
on page 247.

 Principal errors

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð3 E ECHO TYPE n IS UNSUPPORTED

ADM32ð6 E LOCATOR COORDINATE f OUTSIDE PICTURE SPACE

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

 GSIMG

 Function

To draw a graphics image.

 Parameters

type (specified by user) (fullword integer)
The type of the graphics image to be drawn. It must be
cleared to 0.

width (specified by user) (fullword integer)
The width of the graphics image in pixels. It must be less
than 2040.

depth (specified by user) (fullword integer)
The depth of the graphics image in pixels.

length (specified by user) (fullword integer)
The length in bytes of the graphics image data, including
padding.

image-data (specified by user) (character)
The graphics image data to be displayed. The pixels must
be given row by row, starting at the top and running from
left to right within each row.

GSIMG (type, width, depth, length, image-data)

APL code 552
GDDM RCP code X'0C0C0A00' (202115584)

126 GDDM Base Application Programming Reference

 GSIMGS

 Description

Draws a graphics image at the current position. All graphics
images handled are expected to be rectangular and to
consist of an array of pixels (or display points), each pixel
being represented by one bit.

The width and depth specified determine how many pixels
there are in the horizontal and vertical directions. The data
determines which of the pixels are visible. A bit set to 1 sets
the associated pixel on; a bit cleared to 0 leaves the associ-
ated pixel unchanged, if the background mix is transparent,
or sets it to the background color if the background mix is
opaque.

The top left-hand corner of the graphics image is placed at
the current position and the data supplied is drawn row by
row starting at the top. Each row is drawn from left to right
and must be padded out to an integral number of bytes if the
image width specified is not a multiple of 8. If, for example,
the graphics image width specified is 12, each row of data
must be padded out to a length of 16 so that the data in the
row occupies 2 bytes exactly. If this is not done, the
graphics image is distorted.

The length of graphics image data specified must consider
the padding of each row of data. The length must be given
in bytes, and an error message is issued if it is wrong.

Because of the different sizes of pixels for different devices,
the relationship of the graphics image with respect to other
graphics primitives is device dependent.

The color of the graphics image is determined by the current
value of the color attribute. The current position remains
unchanged after the graphics image has been drawn.

If clipping is enabled (see GSCLP), the graphics image is
output only if the current position is within the window. The
complete graphics image is output even if some part of the
graphics image lies outside the window (regardless of the
current clipping state).

For information about restrictions on various devices, see
“Graphics image” on page 247.

 Principal errors

ADMð148 E IMAGE TYPE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADMð17ð E IMAGE SIZE n IS INVALID

ADMð171 E IMAGE DATA LENGTH n IS INVALID

 GSIMGS

 Function

To draw a scaled graphics image.

 Parameters

type (specified by user) (fullword integer)
The type of the graphics image to be drawn. It must be
cleared to 0.

width (specified by user) (fullword integer)
The width of the graphics image in display points. It must
be less than 2040.

depth (specified by user) (fullword integer)
The depth of the graphics image in display points.

length (specified by user) (fullword integer)
The length in bytes of the graphics image data, including
padding.

image-data (specified by user) (character)
The graphics image data to be displayed. The display
points must be given row by row, starting at the top and
running from left to right within each row.

x-size (specified by user) (short floating point)
A number determining the size, in world coordinate units, of
the graphics image window in the x direction.

y-size (specified by user) (short floating point)
A number determining the size, in world coordinate units, of
the graphics image window in the y direction.

 Description

Draws a graphics image in the same way as the GSIMG call,
but scales the size of the graphics image as well.

The first five parameters are interpreted in the same way as
the parameters of the GSIMG call. The x-size and y-size
values are floating-point numbers determining the size of the
“image window,” the graphics image being scaled independ-
ently in the x direction and y direction to fit within the
window.

Only integral scaling-up is performed; each bit in the graphics
image is mapped onto a small rectangular area, the width
and depth of which is an integral number of pixels. If the
window is smaller than the provided graphics image in either
dimension, a scale factor of one is used in that dimension.

 Principal errors

ADMð148 E IMAGE TYPE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADMð17ð E IMAGE SIZE n IS INVALID

ADMð171 E IMAGE DATA LENGTH n IS INVALID

ADMð183 E IMAGE WINDOW SIZE f IS INVALID

GSIMGS (type, width, depth, length, image-data, x-size,
y-size)

APL code 565
GDDM RCP code X'0C0C0A04' (202115588)

 Chapter 3. The GDDM calls 127

 GSIPIK

 GSIPIK

 Function

To initialize pick device.

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the pick to be initialized:

1 This is the only value that can be specified.

echo-type (specified by user) (fullword integer)
The type of feedback the operator is to receive when oper-
ating the pick. This value must be zero.

segment-id (specified by user) (fullword integer)
tag (specified by user) (fullword integer)

The primitive at which the pick should initially be placed.
The segment should be visible and detectable. The initial
screen position is determined from the segment identifier
and tag when the pick device is enabled.

If either the segment identifier or the tag are specified as 0,
the initial position of the pick is at the center of the graphics
field.

If, when GSENAB is issued, the segment/tag combination
does not exist or the segment is invisible or nondetectable,
the initial position of the pick is set at the center of the
graphics field.

 Description

Specifies the initial conditions for a pick device.

A pick cannot be initialized if it is currently enabled.

When a pick is initialized, the default graphics field, picture
space, viewport, and window are defined if not previously
specified by the application.

When the graphics field is deleted or redefined, all initial
values for pick devices are reset to the default.

Note: If the pick is initialized and not changed by the ter-
minal operator, it does not necessarily return the initial value
(for example, if a detectable segment of higher priority also
exists at the pick initial position).

For information about restrictions on various devices, see
“Graphics logical input devices” on page 247.

 Principal errors

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð3 E ECHO TYPE n IS UNSUPPORTED

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

 GSISTK

 Function

To initialize stroke device.

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the stroke device to be initialized:

1 This is the only value that can be specified; only one
stroke device is available.

echo-type (specified by user) (fullword integer)
The type of feedback the operator is to receive when oper-
ating a stroke device. Possible values are:

0 Default (polyline).
1 Polyline.

The echo is a series of lines joining the x,y positions.
2 Polymarker.

The echo is a series of markers at the x,y positions.
The default marker (a cross) is used.

sampling-method (specified by user) (fullword integer)
The method used to record x,y pairs. Possible values are:

0 Default (polylocator).
1 Polylocator.

When a button on the mouse or tablet is pressed, x,y
values are generated.

2 Stream.
When a mouse or tablet button is pressed, the x,y
positions are generated automatically to reflect the
position of the locator device, and are echoed by lines
joining the generated x,y positions. This traces an
outline of the path taken by the locator device.

Note: Echo-type 2 is not supported for sampling-
method 2.

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The starting position that is returned as the initial position
when, for example, a mouse is defined as the stroke

GSIPIK (device-id, echo-type, segment-id, tag)

APL code 569
GDDM RCP code X'0C0C0C01' (202116097)

GSISTK (device-id, echo-type, sampling-method, x, y,
count)

APL code 595
GDDM RCP code X'0C0C0C07' (202116103)

128 GDDM Base Application Programming Reference

 GSISTR

device. The position is ignored when a tablet with a stylus
is defined as the stroke device.

count (specified by user) (fullword integer)
The maximum number of pointings that are accepted. The
maximum number that can be specified is 1024. The
default is 64.

 Description

Provides initial values for the stroke device.

A stroke device lets the operator enter a sequence of x,y
positions, or “pointings,” by moving a locator device (a
mouse, tablet four-button cursor (puck), or tablet stylus) and
using the buttons on this device.

The pairs of x,y values are generated either one at a time in
response to the buttons (polylocator-sampling method), or as
a continuous stream of values giving the trajectory of the
moving locator device (stream-sampling method), started,
restarted, or suspended by the use of the mouse or tablet
buttons.

A stroke device cannot be initialized if it is currently enabled.
When a stroke device is initialized, the default graphics field,
picture space, view port, and window are set if they have not
already been defined.

Note: CICS/VS does not allow a message to be read
whose length exceeds the DFHTCT TYPE=LINE INAREAL
parameter value by more than 4000 bytes (for
BTAM-connected terminals), or whose length exceeds the
DFHTCT TYPE=TERMINAL TIOAL value2 (for
VTAM-connected terminals). However, the stroke device
contribution to the input in an inbound message is of length

(6 \ count) bytes, using the stream-sampling method,
and
(9 \ count) bytes, using the polylocator-sampling
method,

plus a fixed overhead of 22 bytes, and the stroke contribution
may cause the CICS/VS restrictions to be exceeded. There-
fore, it might be necessary to increase the DFHTCT values
or restrict the count value to enable successful operation of
the stroke device. Note also that the inbound message con-
tains alphanumeric input and input from other logical-input
devices.

For information about restrictions on various devices, see
“Graphics logical input devices” on page 247.

 Principal errors

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð3 E ECHO TYPE n IS UNSUPPORTED

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

ADM3219 E STROKE DEVICE INITIAL POSITION f OUTSIDE

PICTURE SPACE

ADM322ð E MAXIMUM NUMBER OF POINTINGS n IS INVALID

 GSISTR

 Function

To initialize string device.

 Parameters

device-id (specified by user) (fullword integer)
The identifier of the string device to be initialized.
1 This is the only value that can be specified.

echo-type (specified by user) (fullword integer)
The type of string device. Possible values are:
1 Normal echo of characters (the same as mode-1 char-

acter strings). This is the default.
2 No echo (the character string is not displayed).

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The world coordinates of the start of the string.
count (specified by user) (fullword integer)

The number of character positions in the string.
string (specified by user) (character)

The initial value of the character string. The length of the
string must equal the value in count .

 Description

Provides an initial value and echo characteristics for the
string device.

The string device is defined as device-id =4 in the GSENAB
call. It is a string of characters that can be initialized by the
application program and typed into by the operator. A string
device is echoed by displaying the characters in the string as
the operator types them.

The string data is put into the input queue when the operator
presses ENTER or a PF key. The string data is returned to
the application program by issuing a GSREAD call, followed
by a GSQSTR call.

A string device cannot be initialized if it is currently enabled
(by a GSENAB call). When a string device is initialized, the
default graphics field, picture space, viewport, and window
are set if they have not already been defined.

When the string device is enabled, the operator can type
character data starting at the first position in the string.
When no more character positions remain, any further input
is discarded. The string can be altered by using the back-
space key or the move cursor left and right keys and typing

GSISTR (device-id, echo-type, x, y, count, string)

APL code 594
GDDM RCP code X'0C0C0C06' (202116102)

 Chapter 3. The GDDM calls 129

 GSLINE

in new characters. A cursor (an underline) shows the current
position (where the operator is entering or changing charac-
ters) in the string.

The string echo is treated as a mode-1 character string for
positioning and clipping. Clipping does not alter the contents
of the data in the string device.

The maximum length of a string is device dependent. The
length of the default string device is 8 characters, initialized
to blanks.

For information about restrictions on various devices, see
“Graphics logical input devices” on page 247.

 Principal errors

ADM32ð2 E INPUT DEVICE IDENTIFIER n IS INVALID

ADM32ð3 E ECHO TYPE n IS UNSUPPORTED

ADM32ð8 E INPUT DEVICE TYPE n1 IDENTIFIER n2 IS

ALREADY ENABLED

ADM3217 E STRING DEVICE INITIAL POSITION f OUTSIDE

PICTURE SPACE

ADM3218 E INITIAL STRING LENGTH n IS INVALID

 GSLINE

 Function

To draw a straight line.

 Parameters

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The end-point of the line in world coordinates.

 Description

Draws a straight line from the current position to the speci-
fied end point.

The line has the color, line width, and line type given by the
current values of these attributes. The current position is set
to the end point of the line.

If the specified end point lies outside the window boundaries
and clipping is not enabled, the results are undefined. If clip-
ping is enabled, only the section of the line within the current
window is visible.

 Principal errors

ADMð154 E COORDINATE f IS INVALID

 GSLOAD

 Function

To load segments.

 Parameters

name (specified by user) (8-byte character string)
The name (left-justified) of the GDF file from which seg-
ments or the GDF object is to be loaded. This must be a
valid external object name for the subsystem being used.

count1 (specified by user) (fullword integer)
The number of elements specified in the opt-array param-
eter.

opt-array (specified by user) (an array of fullword integers)
Specifies how GSLOAD is to restore a picture when it is

| copied from the segment library. The parameter has seven
elements; the options are:

1–seg-base
The starting segment identifier for loading segments into
the GDDM page.

2–load-type
Specifies how the segment is to be restored from the
segment library

3–draw-defaults
Specifies the action to be taken when loading a GDF
object that contains drawing default specifications.

4–resolve
Specifies the action to be taken when loading a GDF
object that contains call segment orders to segments
that do not exist in the object

5–symbol-set
Specifies the action to be taken when loading a GDF
object that references a symbol set.

6–seg-zero
Specifies how segments from the GDF object with an
identifier of 0 are renumbered.

| 7–primitive tag value
| Specifies a tag value to add to all untagged primitives to
| allow them to be picked with a locator device.

These elements are described in detail in the next section.

GSLOAD (name, count1, opt-array, seg-count, count2,
descriptor)

APL code 593
GDDM RCP code X'0C0C1201' (202117633)

GSLINE (x, y)

APL code 526
GDDM RCP code X'0C0C0401' (202114049)

130 GDDM Base Application Programming Reference

 GSLOAD

seg-count (returned by GDDM) (fullword integer)
When seg-base = 0, seg-count is always 0. When seg-
base > 0, seg-count is the number of named segments
created by the GSLOAD call. This may include previously
unnamed segments and extra segments (created by
GSLOAD to resolve call segment orders) depending upon
the other parameters to GSLOAD.

count2 (specified by user) (fullword integer)
The length supplied for the descriptor parameter.

descriptor (returned by GDDM) (character)
The descriptive record, of up to 253 bytes, that is saved
with the picture.

The elements of opt-array

� seg-base (first element)

Specifies whether segments being loaded are to be renum-
bered. The options are:

0 Segments loaded from auxiliary storage are not renum-
bered, and therefore retain their original segment identi-
fiers (the default).

>0 Segments loaded from auxiliary storage are renumbered
with identifiers in the range seg-base through (seg-base
+ seg-count − 1). Any call segment order that refer-
ences a segment within the GDF object has the segment
identifier changed to the new identifier given to that
segment.

� load-type (second element)
Specifies how the picture is to be restored from the segment
library. The options are:

0 The default; same as 1.
1 The segment or picture primitives are restored without

transformation, using the page’s current window and
viewport coordinate system. This is the default action.
Note that if the picture being restored was saved using
2-byte integer coordinates (see GSSAVE), the picture
data is defined in a device-dependent coordinate system.
(There is no relationship between the application
program’s window coordinate system and the device-
dependent system.) To restore the saved data satisfac-
torily, a window coordinate system that corresponds to
the device-dependent system for the saved data must be
defined using a GSWIN call or a GSUWIN call.

2 The picture space of the GDF object is accommodated
within the current viewport, preserving the aspect ratio
that the picture had when it was saved. Any primitives
outside the picture space of the GDF object may be lost.

3 The bottom left-hand corner of the picture space of the
GDF object is placed at the origin (0,0) of the world-
coordinate system, preserving the size of the picture
when it was created.

4 If, at the time of the GSLOAD, the picture space and the
rest of the graphics hierarchy have not been defined, the
shape of the picture held in the file to be loaded is used
to define the picture space, and the rest of the graphics
hierarchy is defaulted. The load then proceeds as for
load-type = 2 .

If the picture space has been defined (or defaulted), this
load-type is equivalent to load-type = 2 .

Note: When GDF is saved, the whole picture space is
saved, not just the current viewport. The aspect ratio of the
GDF cannot be determined before it is loaded.

� draw-defaults (third element)
Specifies the action to be taken when loading a GDF object
that contains drawing default specifications. The options are:

0 The default; same as 5.
1 Any drawing default definitions within the saved data are

ignored.
2 Drawing default definitions within the saved data are

appended to the current drawing defaults. A drawing
default value within the saved data is used to set the
current drawing default value for that attribute, providing
that it has not been previously set.

This may affect existing primitives.
3 Drawing default definitions within the saved data are

used to over-ride the current drawing defaults. A drawing
default value within the saved data is used to set the
current drawing default for that attribute. The values for
drawing defaults not held in the saved data remain
unchanged.

This may affect existing primitives.
4 Drawing default values within the saved data are used to

totally replace the current drawing defaults. All current
values for drawing defaults not held in the data are dis-
carded, and the value reset to the standard default.

This may affect existing primitives.
5 The drawing defaults within the saved data are incorpo-

rated into the segment data to be loaded. The current
drawing defaults are not modified. Thus the loaded data
reflects the drawing defaults at the time the data was
saved, but the GSLOAD does not affect any data cur-
rently displayed. This is the default action.

Note: Segments that are both called and chained, do
not inherit attribute values from the caller, for those attri-
butes with default values defined in the data.

� resolve (fourth element)
Specifies the action to be taken when loading a GDF object
that contains call segment orders to segments which do not
exist in the object. The options are:

0 Default; same as 1.
1 All call segment orders within the GDF object that cannot

be resolved are ignored, and a warning message issued.
2 All call segment orders within the GDF object that cannot

be resolved remain unchanged.

� symbol-set (fifth element)
Specifies the action to be taken when loading a GDF object
that references symbol sets. The options are:

0 Default; same as 1.
1 GDDM loads the symbol sets that were loaded at the

time the segment was saved. It also loads them with the
same identifiers, regardless of any symbol sets that might
already have been loaded.

 Chapter 3. The GDDM calls 131

 GSLOAD

2 GDDM loads each symbol set that was loaded at the
time the segment was saved, but only if a symbol set of
the same name is not already loaded. The symbol sets
to be loaded are allocated new identifiers. The largest
unused identifiers are used for this purpose. If there are
not enough unused identifiers for all the symbol sets to
be loaded, the default symbol sets are used instead.
GDDM allows only one loaded pattern set and one
loaded marker set at a time on internal storage. Addi-
tional pattern sets or marker sets are not loaded.

� seg-zero (sixth element)
Specifies how segments from the segment library with identi-
fier 0 are renumbered.

0 The default; same as 1
1 Do not renumber segments with identifier 0.
2 Renumber segments with identifier 0 according to the

seg-base element.

| � primitive tag value (seventh element)
| Specifies a tag value to add to all untagged primitives to
| allow them to be picked with a locator device.

| 0 The default; do not change primitive tags.
| >0 Any other fullword integer value; tag all primitives which
| currently have a zero tag value with this new value to
| make them detectable and pickable.

 Description

Retrieves a complete copy of a graphics data format (GDF)
object from the segment library on auxiliary storage and
loads it into the current GDDM page.

GSSAVE can be used to save GDF objects.

The segments in the GDF object can be loaded with a set of
segment identifiers, which can either be the same, or dif-
ferent, from the ones with which they were saved on the
segment library.

A segment must not be open when the GSLOAD call is
made; GSLOAD does not leave any open segment.

Segments retain their segment attributes when they are
loaded.

GSLOAD loads the GDF object into the current window and
viewport. The default graphics field, picture space, viewport,
and window are set if they have not been specified.

GDDM loads the symbol sets that the segment used at the
time it was saved, and all others that were loaded at the
time, whether they were used by the segment or not. The
default is to load these symbol sets with their original identi-
fiers even if any loaded symbol sets possess the same iden-
tifier. The application can specify, by using symbol-set
option 2, that symbol sets are to be loaded with distinct iden-
tifiers to avoid the over-writing of loaded symbol sets.

It is not possible to determine what symbol sets a GDF uses
before it is loaded.

If the symbol sets cannot be loaded, GDDM creates the
picture using default symbol sets. If GDDM detects other
types of errors, the picture reverts to its original state, without
any changes applied.

The application may specify what action GDDM is to take
concerning any drawing default definitions contained within
the GDF object. (For a description of the drawing defaults
definition, see GSDEFS). The default action is to incorporate
the values given in the defaults definition into the segment
data (option 5). This is done by including, at the start of
each chained segment, orders to set those attributes for
which default data exists in the file, to the specified default
value.

A consequence of this process, is that a segment which is
both called and chained does not inherit an attribute value
from its caller if a drawing default for that attribute was speci-
fied in the file. If the data to be loaded was saved in fixed-
point format, the appearance of the loaded data is
device-dependent, and subsequent changes to the drawing
defaults may not be reflected.

 Principal errors

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð119 E SYMBOL SET 'a' HAS INCONSISTENT

{IMAGE|VECTOR} TYPE

ADMð123 E SYMBOL SET n1 HAS INVALID FORMAT. REASON

CODE n2

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð128 W SYMBOL SET n OPTION UNSUPPORTED

ADMð135 E SYMBOL SET n TYPE UNSUPPORTED

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð143 E SEGMENT IDENTIFIER n IS DUPLICATE

ADMð146 E ARRAY COUNT n IS INVALID

ADMð153 E CONTROL VALUE n IS INVALID

ADMð173 E STRING LENGTH n IS INVALID

ADMð174 E INVALID OR UNSUPPORTED GDF ORDER X'xx'

ADMð175 E INVALID OR UNSUPPORTED LENGTH IN GDF ORDER

X'xx' OFFSET X'xxxxxxxx'

ADMð182 W INVALID CHARACTER CODE X'xx' IN STRING

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð313 E FILE 'a' HAS INVALID RECORD CONTENT

ADM3157 E SYMBOL SET IDENTIFIER n ALREADY IN USE

ADM3158 E NO MATCH IN FONT FOR CODE PAGE INDEX ENTRY

ADM3265 W CALLED SEGMENT n NOT FOUND

ADM327ð W MORE SYMBOL SETS THAN SYMBOL-SET IDENTIFIERS

ADM3275 E INVALID ELEMENT n1 VALUE n2 IN GSLOAD OPTION

ARRAY

ADM3276 W {PATTERN|MARKER} SET a1 ALREADY LOADED, a2

CANNOT BE LOADED

132 GDDM Base Application Programming Reference

 GSLSS

 GSLSS

 Function

To load a graphics symbol set from auxiliary storage.

 Parameters

type (specified by user) (fullword integer)
The type and usage of this symbol set. Possible values
are:

1 SBCS ISS to be used by GDDM for dot-matrix graphics
text.

2 SBCS VSS to be used by GDDM for generation of
vector graphics text.

3 Shading pattern set (ISS only).
4 Marker symbol set (ISS or VSS).
5 4250 page printer font. The symbol-set identifier must

be different from the identifiers of all loaded type-1
image symbol sets. The symbol set names supplied
by IBM are in the form AFTmmnnn. The DCF
SCRIPT/VS Language Reference manual describes a
font library index program that can be used to list all
4250-printer fonts that are held on a particular disk.

8 DBCS ISS to be used by GDDM for dot-matrix
graphics text.

9 DBCS VSS to be used by GDDM for generation of
vector graphics text.

symbol-set-name (specified by user) (8-byte character
string)
The name (left-justified) of the symbol set to be read from
auxiliary storage. Symbol sets for various devices can be
constructed by the Image Symbol Editor, or the
GDDM-PGF Vector Symbol Editor.

If an SBCS symbol-set name ends with a period character,
the “�” is replaced by another character, depending on the
device family and the default graphics cell size, or the pixel
resolution, of the current device. To find the device’s
graphics cell size, use the FSQURY call. For information
on the character that replaces the period, see the symbol
set naming convention described in Chapter 8, “Symbol set
formats” on page 275.

A DBCS symbol set name must consist of 1 through 6 non-
blank characters. The last character may be a period char-
acter, “�”. If present, the period substitution character is
replaced by a cell size character in the same way as for
SBCS symbol set names. To obtain the names of the
GDDM symbol set objects to be loaded, the DBCS ward

digits, which are the first two digits of the DBCS character,
are appended to the name.

Note: If a symbol set with the same name is loaded more
than once, without first being released (see GSRSS), it is
not defined whether GDDM uses the copy that it already
has, or takes a new copy (even if there is an intervening
ESLIB call. This could cause different results if GDDM
symbol sets have been modified during a session in which
they are used.

symbol-set-id (specified by user) (fullword integer)
The identifier by which this symbol set is referred to in later
statements. Possible values are:

0 Pattern or marker symbol set
65 through 223 Other symbol sets.

Each loaded symbol set should have a unique identifier
with respect to all other symbol sets loaded by GSDSS,
GSLSS, PSDSS, PSLSS, or PSLSSC calls. This avoids
any uncertainty that might arise from a device treating dif-
ferent types of symbol sets as equal candidates for dis-
playing a character string. If, however, a symbol-set
identifier is the same as one that has previously been
issued for the same type, the new definitions replace the
previous ones.

For devices that support image shading, the pattern is
padded or truncated to the graphics cell size (see the infor-
mation for code=2 under FSQURY) and this graphics cell
size pattern is repeated in successive cells.

Note: When using segments, remember that the symbol
set belongs to the device and not the segments. Therefore,
it is advisable to load symbol sets outside of segments; if a
symbol set is loaded within a segment, and that symbol set
has already been loaded in a previous segment using the
same symbol-set identifier, unexpected output may occur
when printing the page.

 Description

Loads a set of symbol definitions from auxiliary storage. The
symbol set can be either an image symbol set (ISS), a vector
symbol set (VSS), or a 4250 page printer font. For a plotter,
vector symbol sets may be loaded; image symbol sets can
be loaded for characters and markers, but not for shading
patterns.

The definitions are retained by GDDM for use by graphics.

For DBCS symbol sets, no GDDM symbol set object will be
loaded until a ward digit is known, either by a GSCHAR call
or by a GSQSSD call.

Note: When using the 4250 printer, and the National Lan-
guage is going to be changed (by means of the GSCPG
call), the GSLSS call must be made after the change.

For information about restrictions on various devices, see
“Graphics area shading” on page 247.

GSLSS (type, symbol-set-name, symbol-set-id)

APL code 202
GDDM RCP code X'0C040300' (201589504)

 Chapter 3. The GDDM calls 133

 GSLT

 Principal errors

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð119 E SYMBOL SET 'a' HAS INCONSISTENT

{IMAGE|VECTOR} TYPE

ADMð123 E SYMBOL SET n1 HAS INVALID FORMAT. REASON

CODE n2

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð127 E SYMBOL SET NAME 'a' IS INVALID

ADMð128 W SYMBOL SET n OPTION UNSUPPORTED

ADMð135 E SYMBOL SET n TYPE UNSUPPORTED

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð313 E FILE 'a' HAS INVALID RECORD CONTENT

ADM3157 E SYMBOL SET IDENTIFIER n ALREADY IN USE

ADM3158 E NO MATCH IN FONT FOR CODE PAGE INDEX ENTRY

ADM3178 W PATTERNS CANNOT BE SENT TO DEVICE. AREA

SHADING MAY BE INCORRECT

 GSLT

 Function

To set current line type.

 Parameters

n (specified by user) (fullword integer)
The line type. Possible values are:

0

1

2

3

4

5

6

7

8

- The drawing default line type

- Dotted line

- Short-dashed line

- Dash-dot line

- Double-dotted line

- Long-dashed line

- Dash-double-dot line

- Solid line

- Invisible line

For plotters, n is interpreted as a hardware line type:

0

1

2

3

4

5

6

7

8

- The drawing default line type

- Line type 2 (on 1, off 1)

- Line type 4 (on 3, off 1)

- Line type 6 (on 3, off 1,

on 1, off 1)

- Line type 9 (on 2, off 2)

- Line type 11 (on 6, off 2)

- Line type 13 (on 6, off 2,

on 2, off 2)

- Line type 1 (solid line)

- Invisible line

Note: Plotters do not support GDDM line-type 4 (hardware
line-type 9); GDDM therefore uses a dotted line with wider
spacing.

 Description

Sets the current value of the line-type attribute. Subsequent
primitives using lines (that is, those constructed by GSLINE,
GSARC, GSPLNE, GSELPS, GSPFLT, or GSVECM), have
the specified line type until it is changed by another GSLT
call.

When a segment is created by the GSSEG call, the line-type
attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the line-type
attribute is reset to the value that was in effect when the
segment was created.

Note: The line-type attribute does not affect mode-3 charac-
ters or vector markers that are drawn using GSCHAP,
GSCHAR, GSMARK, or GSMRKS. These characters always
use the standard drawing default line type.

For restrictions on various devices, see “Graphics line types
and widths” on page 247.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

 GSLW

 Function

To set current line width.

GSLT (n)

APL code 516
GDDM RCP code X'0C0C0703' (202114819)

GSLW (linewidth-multiplier)

APL code 517
GDDM RCP code X'0C0C0704' (202114820)

134 GDDM Base Application Programming Reference

 GSMARK

 Parameters

linewidth-multiplier (specified by user) (fullword integer)
Specifies the multiplier to be applied to the standard line
width:
0 Drawing default
>0 Linewidth multiplier (cannot exceed 100)

 Description

Sets the current value of the line-width attribute. The
standard line width in pixels for the current device (see table
below) is multiplied by the line-width multiplier. This value
defines, in pixels, the width of the lines subsequently drawn.

If the result is zero, the drawing default line width is used.
The initial default line width is the standard line width. The
default may be changed by a call to GSDEFS followed by a
call to GSFLW or GSLW.

If the result is more than the maximum for the current device,
the maximum is used.

If the result is less than the minimum for the current device
the minimum is used.

Subsequent primitives using lines have the specified width
until it is changed by another GSLW call, or a GSFLW call.

When a segment is created by the GSSEG call, the line-
width attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the line-
width attribute is reset to the value that was in effect when
the segment was created.

Note: The line-width attribute does not affect mode-3 char-
acters or vector markers that are drawn using GSCHAP,
GSCHAR, GSMARK, or GSMRKS. These characters always
use the standard drawing default line width. See also the
GSFLW call.

For restrictions on various devices, see “Graphics line types
and widths” on page 247.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

 GSMARK

 Function

To draw a marker symbol.

 Parameters

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The position of the marker in world coordinates.

 Description

Draws a single marker at a specified position.

A marker is a symbol used to show a position. It is very like
a character drawn in character-mode 2, except that it is posi-
tioned by its center.

The marker color is determined by the current value of the
color attribute set by GSCOL, and the marker is determined
by the current symbol specified by GSMS. The default
marker is device-dependent.

The current position is set to (x, y) .

The effect of transforming vector markers is device-
dependent.

 Principal errors

ADMð154 E COORDINATE f IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSMB

 Function

To set marker-box size.

 Parameters

width (specified by user) (short floating point)
The width of the marker box in world coordinates.

GSMARK (x, y)

APL code 527
GDDM RCP code X'0C0C0406' (202114054)

GSMB (width, depth)

APL code 636
GDDM RCP code X'0C0C1307' (202117895)

 Chapter 3. The GDDM calls 135

 GSMIX

depth (specified by user) (short floating point)
The depth of the marker box in world coordinates.

 Description

Sets the marker-box size for subsequent vector markers.

The vector marker is scaled to fill the marker box. The spec-
ified marker box overrules any marker scale that has been
set by a previous GSMSC call.

The marker-box attribute remains in effect until it is changed
by another GSMB call or a GSMSC call.

When a segment is created by the GSSEG call, the
marker-box attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the
marker-box attribute is reset to the value that was in effect
when the segment was created.

 Principal errors

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADM323ð E MARKER BOX SIZE f IS INVALID

 GSMIX

 Function

To set current foreground color-mixing mode.

 Parameters

n (specified by user) (fullword integer)
Defines the color-mixing mode. Possible values are:

0 The drawing default.

1 “Mix” mode.
Display points common to two primitives (for example,
a line crossing a color-shaded area) assume the color
resulting from the mixture of the two colors.Table 1
shows the results of mixing colors on a display device.

2 “Overpaint” mode.
The color of the current primitive takes precedence.
Any underlying color is obscured.

3 “Underpaint” mode.
Display points common to two primitives retain the
color specified for the first one drawn, unless that color
was “background” (color 8). For example, if an area is
shaded blue and then a yellow line is drawn across it,
the line is visible only where it lies outside the blue
area. However, if the shaded area is specified as the
background color (8), the line is yellow throughout its
length.

4 “Exclusive-OR” (XOR) mode.
The color attribute of the current primitive is
“exclusively-ORed” with the color attributes of the
underlying primitives.

This mode is provided for compatibility with picture
interchange format (PIF) files. It can also be used by
specific, high-function, interactive graphic applications,
that require high performance update of generated pic-
tures on a restricted range of devices. However, there
are restrictions in the support of this mode and is not
recommended for general applications.

Table 2 on page 137 shows the results of applying
exclusive-OR mode on a display device.

When this mode is active, primitives are
exclusively-ORed into the current picture. If the same
primitive is subsequently drawn in XOR mode, it will be
removed from the picture; the effect is as if it had
never been drawn. This gives an application program a
way of adding data to a picture, and subsequently
removing it, without causing a redraw of the picture.
(GDDM normally redraws some or all of the picture
when any part is deleted, as this is the only way that it
can be sure that the resulting picture is accurate.)

The main restrictions of XOR mode are:

� Use in conjunction with: overlapping partitions,
windows, and draft draw mode is not supported,
and may give unexpected results.

Table 1. Example color “mix” mode table (GSMIX)

Primitive color Underlying color

B R M G C Y N

Blue (B) B M M C C N N

Red (R) M R M Y N Y N

Magenta (M) M M M N N N N

Green (G) C Y N G C Y N

Cyan (C) C N N C C N N

Yellow (Y) N Y N Y N Y N

Neutral (N) N N N N N N N

GSMIX (n)

APL code 518
GDDM RCP code X'0C0C0702' (202114818)

136 GDDM Base Application Programming Reference

 GSMOVE

� If an update of the output device occurs (ASREAD,
GSREAD, or FSFRCE is issued) while XOR mode
is current in an open segment, the resulting picture
may be incorrect. Graphics primitives may “disap-
pear” from the picture as a result of being redrawn
in XOR mode.

� It should not be used outside a segment, because
screen redraws will give unpredictable results.

� Family-4 output is not fully supported. Some prim-
itives may be incorrectly drawn. In particular,
areas with boundaries are not drawn correctly.

Note: This mode must only be used for specific appli-
cations that can accept the function as it actually oper-
ates within the current release of GDDM. The effects
of using this mode may vary from one device to
another.

5 “Leave alone” or “Transparent” mode.
Primitives drawn in this mode are transparent and
therefore, do not appear.

 Description

Controls the way that the foreground color of a primitive is
combined with the color of any underlying primitive.

For display devices, the single-letter abbreviations in Table 1
on page 136 show the color that results from mixing the
current primitive color with any underlying color. For
example, if a red primitive overlaps a green one, the overlap
region appears as yellow; if a yellow primitive overlaps a red
one, the overlap region is also yellow. Note that mixing is
symmetrical; the resulting color is independent of the order in
which the colors appear.

Not all combinations of foreground and background color-mix
modes are allowed on all devices. For information on the

combinations of foreground and background color-mix modes
allowed, see GSBMIX.

The color-mix attribute remains in effect until it is changed by
another GSMIX call.

When a segment is created by the GSSEG call, the color-mix
attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the
color-mix attribute is reset to the value that was in effect
when the segment was created.

For information on color mixing within a shaded area, see
GSAREA.

For information about restrictions on various devices, see
“Graphics area shading” on page 247.

 Principal errors

ADMð187 W MIX MODE 'a' IS NOT SUPPORTED ON CURRENT

DEVICE

 GSMOVE

 Function

To move without drawing.

 Parameters

x (specified by user) (short floating point)
y (specified by user) (short floating point)

A point, in world coordinates, to which the current position
is to be moved. The new value of the current position is
(x,y).

 Description

Moves the current position to the specified point.

 Principal errors

ADMð154 E COORDINATE f IS INVALID

Table 2. Results of exclusive-OR mode (GSMIX)

Primitive
color

Underlying color

B R M G C Y N i

Blue (B) i M R C G N Y B

Red (R) M i B Y N G C R

Magenta (M) R B i N Y C G M

Green (G) C Y N i B R M G

Cyan (C) G N Y B i M R C

Yellow (Y) N G C R M i B Y

Neutral (N) Y C G M R B i N

GSMOVE (x, y)Backgrnd(i) B R M G C Y N i

APL code 528
GDDM RCP code X'0C0C0400' (202114048)

 Chapter 3. The GDDM calls 137

 GSMRKS

 GSMRKS

 Function

To draw a series of marker symbols.

 Parameters

count (specified by user) (fullword integer)
The number of markers to be drawn.

xarray (specified by user) (array of short floating-point
numbers)
An array of length count that specifies the x coordinates of
the marker positions.

yarray (specified by user) (array of short floating-point
numbers)
An array of length count that specifies the y coordinates of
the marker positions.

 Description

Draws a series of marker symbols at specified points. The
marker color is determined by the current value of the color
attribute set by GSCOL. The current position is set to the
position of the last marker in the series. The marker symbol
used is that specified by GSMS.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADMð154 E COORDINATE f IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSMS

 Function

To set the current type of marker symbol.

 Parameters

n (specified by user) (fullword integer)
The marker symbol number. Possible values are:
0 The drawing default

System-defined markers:

0

System-defined markers:

1

2

3

4

5

6

7

8

9

1 0

User-defined markers:

65 through 254

The drawing default

 Description

Selects the current marker symbol to be used by calls to
GSMARK and GSMRKS. System-defined markers are
shown above. User-defined markers can be created with the
Image Symbol Editor or the Vector Symbol Editor, and
loaded using GSDSS or GSLSS.

The marker-symbol attribute remains in effect until it is
changed by another GSMS call.

When a segment is created by the GSSEG call, the marker-
symbol attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the marker-
symbol attribute is reset to the value that was in effect when
the segment was created.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

 GSMSC

 Function

To set marker scale.

Note: This call is not recommended for new programs. It is
obsolete and has been superseded by GSMB.

GSMRKS (count, xarray, yarray)

APL code 529
GDDM RCP code X'0C0C0407' (202114055)

GSMS (n)

APL code 519
GDDM RCP code X'0C0C070B' (202114827)

GSMSC (scale)

APL code 563
GDDM RCP code X'0C0C071D' (202114845)

138 GDDM Base Application Programming Reference

 GSPAT

 Parameters

scale (specified by user) (short floating point)
Specifies the scaling of the marker symbol with respect to
the default marker box.

 Description

Sets the scale for subsequent marker symbols if the marker
symbol is from a vector set. It is not possible to change the
scale of image marker symbols. The parameter determines
the scale of the marker symbol with respect to the default
marker box. If the marker scale is not specified before out-
putting the first vector marker, a scale of 1 is assumed.

The marker-scale attribute remains in effect until it is
changed by another GSMSC call or a GSMB call.

When a segment is created by the GSSEG call, the marker-
scale attribute is set to the default value.

When a segment is closed by the GSSCLS call, the marker-
scale attribute is reset to the value that was in effect when
the segment was created.

The standard default marker box has the same width as the
standard default character box. The height of the marker
box is such that the aspect ratio of the marker box is the
same as that of the vector symbol set from which the marker
is selected.

The size of the marker box set in the GSMSC call overrides
any previous marker box that may have been set in the
GSMB call.

 Principal errors

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADMð168 E MARKER SCALE f IS INVALID

ADM326ð E INVALID FUNCTION DURING DRAWING DEFAULTS

DEFINITION

 GSPAT

 Function

To set current shading pattern.

 Parameters

n (specified by user) (fullword integer)
The number of the shading pattern to be used. The actual
pattern that appears depends on the pattern set that is
loaded. Possible values are:
0 The drawing default.
1 through 16 GDDM-defined patterns (see Figure 9

on page 141).
65 through 254 User-defined patterns; these can

include the 64 sample geometric pat-
terns (Figure 8 on page 140), or the 64
color shades shown in the GDDM Base
Application Programming Guide.

 Description

This call sets the current value of the pattern attribute. The
pattern attribute remains in effect until it is changed by
another GSPAT call. All areas use the specified pattern until
it is changed by another call to GSPAT. User-defined pat-
terns created with the Image Symbol Editor can be used, if
loaded by GSDSS or GSLSS. The sample geometric pat-
terns or color shades supplied with GDDM can also be
loaded in this way.

When a segment is created by the GSSEG call, the pattern
attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the pattern
attribute is reset to the value that was in effect when the
segment was created.

Note: Shaded vector characters or markers that are drawn
using GSCHAP, GSCHAR, GSMARK, or GSMRKS calls
always use the drawing default shading pattern.

Note: Black areas in this figure represent foreground color,
and white areas represent background color. Consequently,
if you use a foreground color of white and a background of
black, the result will appear to be the reverse of that shown
here.

For information about restrictions on various devices, see
“Graphics area shading” on page 247.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

GSPAT (n)

APL code 520
GDDM RCP code X'0C0C070A' (202114826)

 Chapter 3. The GDDM calls 139

 GSPFLT

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

Figure 8. Sample geometric shading patterns (GSPAT)

 GSPFLT

 Function

To draw a curved fillet.

 Parameters

count (specified by user) (fullword integer)
The number of points provided in xarray and yarray .

xarray (specified by user) (array of short floating-point
numbers)

yarray (specified by user) (array of short floating-point
numbers)
Two arrays containing the points defining the curve.

 Description

Draws a curve starting at current position and defined by the
vector of points supplied.

If two points are supplied, an imaginary line is drawn from
the current position to the first point and a second line from
the first point to the second; see Figure 10 on page 141. A
curve is then constructed, starting at the current position and
in the direction of the first line. The curve is drawn such that
it reaches the last point at a tangent to the second line,
having followed a path somewhat like a “curve of pursuit.”

The curve, together with the imaginary lines (which are not
drawn) has the appearance of a fillet.

If more than two points are supplied, an imaginary series of
lines is constructed through them (as in the GSPLNE call).
All the lines except the first and last are then divided in two
at their mid-points. A series of curved fillets are then drawn,
each starting at the end point of the last. Figure 10 on
page 141 shows the curve constructed, given current posi-
tion A and three points B, C, and D.

GSPFLT (count, xarray, yarray)

APL code 557
GDDM RCP code X'0C0C0602' (202114562)

140 GDDM Base Application Programming Reference

 GSPLNE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Plotters Printers and Displays

Note:

Black areas in this figure

represent foreground color,

and white areas represent

background color.

Consequently, if you use a

foreground color of white

and a background color of

black, the result will appear

to be the reverse of that

shown here.

Figure 9. GDDM-defined shading patterns (GSPAT)

The curves have the color, line width, and line type given by
the current values of these attributes. The current position is
set to the last point.

where:

A = Current position
B and C = Points specified

A

B

C

where:

A = Current position
B,C,D = Points specified

Curves to midpoint of BC

A

B

C D

Figure 10. Curved fillets (GSPFLT)

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADMð154 E COORDINATE f IS INVALID

 GSPLNE

 Function

To draw a series of lines.

 Parameters

count (specified by user) (fullword integer)
The number of lines to be drawn.

xarray (specified by user) (array of short floating-point
numbers)

yarray (specified by user) (array of short floating-point
numbers)
Arrays containing the end points of the lines. The nth line
is constructed by drawing a line from current position to the
point whose x coordinate is given by the nth member of
xarray and whose y coordinate is given by the nth member
of yarray . After each line has been drawn, the current
position is set to the end point.

GSPLNE (count, xarray, yarray)

APL code 530
GDDM RCP code X'0C0C0402' (202114050)

 Chapter 3. The GDDM calls 141

 GSPOP

 Description

Draws a series of straight lines starting at the current position
and passing through the vector of points specified.

The lines have the color, line width, and line type given by
the current values of these attributes. The current position is
set to the end point of the last line.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADMð154 E COORDINATE f IS INVALID

 GSPOP

 Function

To restore attributes.

 Parameters

count (specified by user) (fullword integer)
The number of attribute values to be restored.

 Description

Restores the primitive attributes that have been saved when
new attribute values have been set; see GSAM.

Each time a primitive attribute call (such as color, line type,
and so on) is issued when attributes are being saved, the
values are put into a “Last in, First out” stack.

The GSPOP call can reset the attribute values (starting with
the last one set) to the previous value; this is known as
“popping.” This allows a called segment (see GSCALL) to
change the values of the attributes, and allows them to be
restored on return to the caller (an implicit GSPOP is per-
formed when returning from a called segment). It can also
be used to restore a transformation to its previous value after
a set current transform; see GSSCT.

When inside an area, GSPOP is only valid if the attribute
being popped is valid inside an area. Note that is not pos-
sible to check whether the attribute to be popped is valid
before issuing the GSPOP call.

 Principal errors

ADM3225 W PRIMITIVE ATTRIBUTE STACK EMPTY

ADM3254 E ATTRIBUTE COUNT n IS INVALID

 GSPS

 Function

To define the picture space.

 Parameters

width (specified by user) (short floating point)
height (specified by user) (short floating point)

The width and height of the picture space. One of the
values must be 1; the other must be greater than zero but
must not exceed 1.

 Description

Explicitly defines the picture space to be used in the current
graphics field. The picture space defines the aspect ratio of
the displayed picture unless viewports are explicitly defined
with a call to GSVIEW.

The width and height specified are numbers between zero
and one that define the aspect ratio (ratio of width to height)
of the picture to be constructed.

The center of the picture space is mapped onto the center of
the graphics field. The projection ratios are then adjusted so
that the entire picture space is displayed in the graphics field
as large as possible, while maintaining the aspect ratio speci-
fied. Either the left- and right-hand edges, or the top and
bottom edges, of the picture space and graphics field coin-
cide. All coincide only if the aspect ratios of picture space
and graphics field are identical. If no graphics field is defined
or defaulted before GSPS is issued, a default graphics field
is set; see GSFLD.

A default picture space is used if no GSPS call is issued
before:

� The first viewport is defined or queried
� The first segment is opened
� The first primitive or attribute is drawn or set
� The cursor is queried in graphics coordinates
� Logical input devices are enabled or initialized.

The default equals the actual aspect ratio (in physical units
such as millimeters) of the graphics field. Note that this
normally alters the aspect ratio from that drawn on the
window, if viewports are not explicitly specified. The default
picture space, therefore, covers the graphics field. For plot-
ters, the default picture space depends on the plotting area

GSPS (width, height)

APL code 503
GDDM RCP code X'0C0C0001' (202113025)

GSPOP (count)

APL code 649
GDDM RCP code X'0C0C1313' (202117907)

142 GDDM Base Application Programming Reference

 GSPUT

size that is defined in DSOPEN’s procopt group 14; see
Chapter 19, “Processing options” on page 395.

The aspect ratio of the picture space can be obtained by a
call to GSQPS> Once specified or defaulted, the picture
space cannot be changed for that graphics field unless the
graphics field is cleared by using the GSCLR call. In this
case, the picture space can be redefined immediately after
the GSCLR call.

 Principal errors

ADMð162 E PICTURE SPACE PREVIOUSLY DEFINED OR

DEFAULTED

ADMð163 E PICTURE SPACE SIZE f1{, f2} IS INVALID

 GSPUT

 Function

To restore graphics data.

 Parameters

control (specified by user) (fullword integer)
The coordinate type used in the GDF data. Possible values
are:
1 1-byte binary integers
2 2-byte binary integers
4 4-byte short floating point.

length (specified by user) (fullword integer)
The length of the GDF string provided. The string of orders
is assumed to end when an apparent order code of X'FF'
is met, or when the complete string is interpreted, which-
ever is the sooner.

graphics-data (specified by user) (character)
A data area of the indicated byte length containing graphics
data in Graphics Data Format. The detailed rules for for-
matting the GDF string are given in Chapter 10, “GDF
order descriptions” on page 281.

 Description

Restores the graphics data provided in the graphics-data
parameter into the current graphics viewport, using the
current graphics window coordinates system. The default
graphics field, picture space, viewport, and window are
defaulted if they were not already specified.

Any series of graphics primitives (such as lines, arcs, areas,
character strings) together with their attributes can be coded
as a string of data bytes in graphics data format (GDF). This

consists of a series of GDF orders; see Chapter 10, “GDF
order descriptions” on page 281. Each order defines a
graphics primitive or an attribute setting that applies to fol-
lowing primitives.

If graphics data is held by an application program as a series
of GDF orders, it can be supplied to GDDM by a single
GSPUT call, rather than by many calls to the individual primi-
tives.

The interpretation of a GDF order string is equivalent to the
execution of call statements corresponding to the orders in
the string. The current position depends on the last order
executed, and the current values of the attributes (such as
color and line type) depends on the attribute setting orders
that have occurred. If the data was generated by previous
calls to GSGET, orders exist within that data to set the
segment attributes to those that were in effect when the data
was obtained. These GDF orders may change any attribute
settings that are currently in effect; see GSSATI.

 Principal errors

ADMð153 E CONTROL VALUE n IS INVALID

ADMð173 E STRING LENGTH n IS INVALID

ADMð174 E INVALID OR UNSUPPORTED GDF ORDER X'xx'

ADMð175 E INVALID OR UNSUPPORTED LENGTH IN GDF ORDER

X'xx' OFFSET X'xxxxxxxx'

ADMð182 W INVALID CHARACTER CODE X'xx' IN STRING

Note: Errors can also arise during interpretation of the indi-
vidual orders, as if the corresponding calls had been made
directly.

If such an error occurs, the individual orders before the order
in error will be processed, but all remaining orders in the
graphics-data will be ignored.

 GSQAGA

 Function

To query all geometric attributes.

 Parameters

id (specified by user) (fullword integer)
The identifier of the segment to be queried.

sx (returned by GDDM) (short floating point)
sy (returned by GDDM) (short floating point)

The x-axis and y-axis scaling factors about the segment
origin.

GSPUT (control, length, graphics-data)

APL code 553
GDDM RCP code X'0C0C0900' (202115328)

GSQAGA (id, sx, sy, hx, hy, rx, ry, dx, dy)

APL code 589
GDDM RCP code X'0C0C1104' (202117380)

 Chapter 3. The GDDM calls 143

 GSQAM

hx (returned by GDDM) (short floating point)
hy (returned by GDDM) (short floating point)

A pair of values defining a relative vector that denotes a
shear parallel to an x-axis through the segment origin.

The values returned represent the coordinates of a point on
a vertical line through the segment origin after being
sheared. The coordinates are relative to the segment
origin.

rx (returned by GDDM) (short floating point)
ry (returned by GDDM) (short floating point)

A pair of values defining a relative vector that denotes a
rotation about the segment origin.

The values returned represent the coordinates of a point on
a horizontal line through the segment origin after being
rotated. The coordinates are relative to the segment origin.

dx (returned by GDDM) (short floating point)
dy (returned by GDDM) (short floating point)

The x-axis and y-axis displacements.

 Description

Returns a summary of the transform of the segment specified
in the id parameter expressed in the same terms as those
used in the GSSAGA call. The segment must be trans-
formable.

The segment transform is a combination of a scale (sx,sy), a
shear (hx,hy), a rotation (rx,ry), and a displacement (dx,dy)
applied to the segment primitives in that order.

For more information, see the GDDM Base Application Pro-
gramming Guide.

The values returned in this call are expressed in the current
world coordinates.

Note: The results from the GSQAGA call might not match
the geometric attributes of a segment set by means of a
single GSSAGA call (because of inherent ambiguity in the
attribute specifications). However, the summary produces
the same effect as the attributes originally specified.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSQAM

 Function

To query the current attribute mode.

 Parameters

n (returned by GDDM) (fullword integer)
Receives the current attribute mode. Possible values are:
0 Preserve attributes (the default).
1 Do not preserve attributes.

 Description

Returns the current attribute mode, as set by the GSAM call.

 Principal errors

None.

 GSQATI

 Function

To query initial segment attributes.

 Parameters

attribute (specified by user) (fullword integer)
The attribute to be returned by this call. Possible values
are:

1 The current detectability status is to be returned.
The values that can be returned in value are:

0 Subsequent segments are not detectable.
1 Subsequent segments are detectable.

2 The current visibility status is to be returned.
The values that can be returned in value are:

0 Subsequent segments are not visible.
1 Subsequent segments are visible.

3 The current highlight status is to be returned.
The values that can be returned in value are:

GSQAM (n)

APL code 648
GDDM RCP code X'0C0C1312' (202117906)

GSQATI (attribute, value)

APL code 579
GDDM RCP code X'0C0C030A' (202113802)

144 GDDM Base Application Programming Reference

 GSQATS

0 Subsequent segments are not highlighted.
1 Subsequent segments are highlighted.

4 The current transformable status is to be returned.
The values that can be returned in value are:

1 Subsequent segments are nontransformable.
2 Subsequent segments are transformable.

5 The current stored/nonstored status is to be returned.
The values that can be returned in value are:

0 Subsequent segments are stored.
1 Subsequent segments are nonstored.

6 The current chained/nonchained status is to be
returned.
The values that can be returned in value are:

0 The segment is to be excluded from the drawing
chain.

1 The segment is to be included in the drawing
chain (the default).

Note: When a segment is nonchained, it is not added
to the drawing chain, and is therefore not drawn unless
it is called by another segment; see GSCALL.

value (returned by GDDM) (fullword integer)
Receives the current attribute value; see attribute above.

 Description

Returns the attributes currently assigned to the segments
being created. These attributes are modal settings used to
determine the initial attributes of new segments as those new
segments are created.

 Principal errors

ADMð184 E SEGMENT ATTRIBUTE CODE n IS INVALID

 GSQATS

 Function

To query segment attributes.

 Parameters

segment-id (specified by user) (fullword integer)
The identification of the segment for which attribute infor-
mation is to be returned by this call.

attribute (specified by user) (fullword integer)
The attribute of the segment, whose current status is to be
returned by this call. Possible values are:

1 Detectability
2 Visibility
3 Highlight
4 Transformability
5 Stored/nonstored
6 Chained/nonchained.

Note: When a segment is nonchained, it is not added to
the drawing chain, and is therefore not drawn unless it is
called by another segment; see GSCALL.

value (returned by GDDM) (fullword integer)
Receives the current attribute assigned to the segment.
Possible values are:

0 The segment is nondetectable, invisible, not high-
lighted, stored, or nonchained.

1 The segment is detectable, visible, highlighted, non-
stored, nontransformable, or chained.

2 The segment is transformable.

 Description

Returns the current value of the specified attribute within the
specified segment.

This call does not return the current transform of a trans-
formable segment; for information on this function, see
GSQAGA and GSQTFM.

 Principal errors

ADMð145 E SEGMENT n IS UNKNOWN

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð184 E SEGMENT ATTRIBUTE CODE n IS INVALID

 GSQBMX

 Function

To query the current background color-mixing mode.

 Parameters

n (returned by GDDM) (fullword integer)
The current value of the background color-mixing mode.
Possible values are:
0 The drawing default.
2 “Opaque” mode.
5 “Transparent” mode.

GSQBMX (n)

APL code 665

GSQATS (segment-id, attribute, value) GDDM RCP code X'0C0C1316' (202117910)

APL code 581
GDDM RCP code X'0C0C030C' (202113804)

 Chapter 3. The GDDM calls 145

 GSQBND

 Description

Returns the current value of the background color-mixing
mode, as set in the GSBMIX call.

 Principal errors

None.

 GSQBND

 Function

To query the current data boundary definition.

 Parameters

u1 (returned by GDDM) (short floating point)
u2 (returned by GDDM) (short floating point)

The left and right extents of the data boundary in world
coordinates.

v1 (returned by GDDM) (short floating point)
v2 (returned by GDDM) (short floating point)

The lower and upper extents of the data boundary in world
coordinates.

 Description

Returns the definition of the current data boundary in world-
coordinate units, as set in the GSBND call.

If a data boundary has not been defined, the values returned
in this call are those produced for the current graphics
window.

 Principal errors

None.

 GSQCA

 Function

To query character angle.

 Parameters

dx (returned by GDDM) (short floating point)
dy (returned by GDDM) (short floating point)

Receives the current values of the character baseline angle
coordinates.

 Description

Returns the current values of the character baseline angle
coordinates, as set by the GSCA call.

 Principal errors

None.

 GSQCB

 Function

To query character-box size.

 Parameters

x (returned by GDDM) (short floating point)
y (returned by GDDM) (short floating point)

The current dimensions of the character box.

 Description

Returns the current values of the character-box size, as set
by the GSCB call.

 Principal errors

None.

GSQCA (dx, dy)

APL code 532
GDDM RCP code X'0C0C0718' (202114840)

GSQBND (u1, u2, v1, v2)

APL code 656
GDDM RCP code X'0C0C000E' (202113038)

GSQCB (x, y)

APL code 533
GDDM RCP code X'0C0C0717' (202114839)

146 GDDM Base Application Programming Reference

 GSQCBS

 GSQCBS

 Function

To query character-box spacing.

 Parameters

width-multiplier (returned by GDDM) (short floating point)
The character box width multiplier.

height-multiplier (returned by GDDM) (short floating point)
The character box height multiplier.

 Description

Returns the current horizontal and vertical character-box
spacing values, as set by the GSCBS call.

 Principal errors

None.

 GSQCD

 Function

To query character direction.

 Parameters

code (returned by GDDM) (fullword integer)
The current character direction code.

 Description

Returns the code for the current character direction, as set
by the GSCD call.

 Principal errors

None.

 GSQCEL

 Function

To query default graphics cell size.

 Parameters

width (returned by GDDM) (short floating point)
height (returned by GDDM) (short floating point)

Receives the dimensions of the character cell.

 Description

Returns the size of the default graphics cell size in current
window units.

 Principal errors

None.

 GSQCH

 Function

To query character shear.

 Parameters

dx (returned by GDDM) (short floating point)
dy (returned by GDDM) (short floating point)

The current values of the character-shear angle coordi-
nates.

 Description

Returns the current values of the character-shear angle coor-
dinates, as set by the GSCH call.

 Principal errors

None.

GSQCBS (width-multiplier, height-multiplier) GSQCEL (width, height)

APL code 650 APL code 535
GDDM RCP code X'0C0C1310' (202117904) GDDM RCP code X'0C0C0202' (202113538)

GSQCH (dx, dy)
 GSQCD (code)
APL code 559
GDDM RCP code X'0C0C071C' (202114844)APL code 534
 GDDM RCP code X'0C0C0719' (202114841)

 Chapter 3. The GDDM calls 147

 GSQCHO

 GSQCHO

 Function

To query choice device data.

 Parameters

choice-data (returned by GDDM) (fullword integer)
The choice selected.

For PF keys, it is in the range 1 through 24.

For PA keys, it is in the range 1 through 3.

For Mouse or tablet keys, it is in the range 1 through 3.

For 3270-PC/G and 3270-PC/GX data keys, the value is in
the range 1 through 255, and is the character code corre-
sponding to the key that was pressed.

For other choice devices (the ENTER key, the CLEAR key,
and the alphanumeric light pen), the choice-data is always
set to zero.

 Description

Retrieves the data for a choice device from the current input
record. The record must correspond to input from a choice
device.

 Device variations:

For 3270-PC/G and 3270-PC/GX workstations , and
5550-family Multistations , PA3 is reserved by GDDM (to
perform local-mode processing or to redraw the screen).

 Principal errors

ADM321ð E REQUIRED DATA NOT FOUND

 GSQCLP

 Function

To query the clipping state.

 Parameters

state (returned by GDDM) (fullword integer)
Receives the current clipping state for the page. Possible
values are:
0 Clipping is disabled.
1 Clipping is enabled (precise clip).
2 Clipping is enabled (rough clip).

 Description

Returns the current clipping state.

 Principal errors

None.

 GSQCM

 Function

To query the current character mode.

 Parameters

n (returned by GDDM) (fullword integer)
The current character mode.

 Description

Returns the current value of the character-mode attribute, as
set by the GSCM call.

 Principal errors

None.

 GSQCOL

 Function

To query the current color.

GSQCHO (choice-data)

APL code 575
GDDM RCP code X'0C0C0F00' (202116864)

GSQCM (n)

APL code 537
GDDM RCP code X'0C0C0715' (202114837)

GSQCLP (state)
GSQCOL (n)
 APL code 536
APL code 538GDDM RCP code X'0C0C0204' (202113540)
GDDM RCP code X'0C0C0711' (202114833)

148 GDDM Base Application Programming Reference

 GSQCP

 Parameters

n (returned by GDDM) (fullword integer)
Receives the current value of the color attribute.

 Description

Returns the current value of the color attribute, as set by the
GSCOL call.

 Principal errors

None.

 GSQCP

 Function

To query the current position.

 Parameters

x (returned by GDDM) (short floating point)
y (returned by GDDM) (short floating point)

The x and y world coordinates of the current position.

 Description

Returns the current position.

 Principal errors

None.

 GSQCPG

 Function

To query code page.

 Parameters

type (specified by user) (fullword integer)
The type of code-page information that GDDM is to return.
The only value that can be specified is:

5 A code page for an IBM 4250 page printer.

symbol-set-id (specified by user) (fullword integer)
The identifier of the symbol set for which GDDM is to return
the associated code-page name. Possible values are:

0 Requests the name of the current code
page.

65 through 223 Requests the name of the code page
associated with the specified symbol-set
identifier.

code-page-name (returned by GDDM) (8-byte character
string)
The name (left-justified) of the required code page.

 Description

Returns either the name of the current code page or the
name of the code page associated with the specified
symbol-set identifier.

 Principal errors

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð12ð E SYMBOL SET n NOT LOADED

 GSQCS

 Function

To query the current symbol-set identifier.

 Parameters

n (returned by GDDM) (fullword integer)
The current symbol-set identifier.

 Description

Returns the current symbol-set identifier, as set by the GSCS
call.

 Principal errors

None.

GSQCP (x, y)

APL code 539
GDDM RCP code X'0C0C0700' (202114816)

GSQCS (n)

APL code 540
GDDM RCP code X'0C0C0716' (202114838)

GSQCPG (type, symbol-set-id, code-page-name)

APL code 216
GDDM RCP code X'0C040D01' (201592065)

 Chapter 3. The GDDM calls 149

 GSQCUR

 GSQCUR

 Function

To query the cursor position.

 Parameters

inwin (returned by GDDM) (fullword integer)
Returns information on the position of the alphanumeric
cursor. Possible values are:
0 The position returned is outside the window.
1 The position returned is inside the window.

x (returned by GDDM) (short floating point)
y (returned by GDDM) (short floating point)

Receives the x and y coordinates of the center of the char-
acter cell that contains the cursor.

 Description

Returns the coordinates of the current alphanumeric cursor
position in current window units. On devices where the
alphanumeric cursor is used to emulate a graphics cursor,
any movement of the alphanumeric cursor by the operator in
response to graphics calls (for example, GSREAD) does not
affect the alphanumeric cursor position recorded by GDDM.

The returned values of x and y are in world coordinates.

For plotters, the inwin value is always set to zero because
the alphanumeric cursor is always outside the graphics field.

 Principal errors

ADMð161 E GRAPHICS FIELD NOT DEFINED

 GSQFLD

 Function

To query the graphics field.

 Parameters

row (returned by GDDM) (fullword integer)
column (returned by GDDM) (fullword integer)

Returns the position on the GDDM page of the top left-hand
corner of the graphics field. If no graphics field is currently
defined, the parameters return values of 0.

depth (returned by GDDM) (fullword integer)
width (returned by GDDM) (fullword integer)

Returns the size of the graphics field in terms of rows and
columns. If no graphics field is currently defined, the
parameters return values of 0.

 Description

Returns the position and size of the graphics field, as set by
the GSFLD call.

 Principal errors

None.

 GSQFLW

 Function

To query the current fractional line width.

 Parameters

linewidth-multiplier (returned by GDDM) (short floating
point)
The current value of the fractional line-width multiplier.

 Description

Returns the current fractional line width as a floating-point
value.

 Principal errors

None.

GSQCUR (inwin, x, y)

APL code 541
GDDM RCP code X'0C0C0101' (202113281)

GSQFLW (linewidth-multiplier)

APL code 562
GDDM RCP code X'0C0C070F' (202114831)

GSQFLD (row, column, depth, width)

APL code 585
GDDM RCP code X'0C0C000A' (202113034)

150 GDDM Base Application Programming Reference

 GSQLID

 GSQLID

 Function

To query logical input device.

 Parameters

device-type (specified by user) (fullword integer)
The type of logical input device to be queried. For a defi-
nition of the valid values, see GSENAB.

device-id (specified by user) (fullword integer)
The identification of the logical input device to be queried.
For a definition of the valid values, see the GSENAB call
description.

count (specified by user) (fullword integer)
The number of items of information to be returned in the
list.

list (returned by GDDM) (an array of fullword integers)
The logical input device information. Possible values are:

1 Enabled state:

−1 The logical input device is not available.
0 The logical input device is not enabled.
1 The logical input device is enabled.

2 Current echo type:

−1 The input device is not available.
n (≥0) The input device is available with the specified

echo type. An input device that is not initialized
always returns a value of zero.

3 Maximum supported echo type:
The maximum echo type supported for the specified logical
input device. Possible values are:

−1 The logical input device does not exist.
0 The logical input device does not support any

echoes.
n If the returned value is greater than zero, all echo

types with a lower value, including zero, are sup-
ported.

 Description

Returns information about a specified logical input device,
including its availability, its enabled state, and its possible
echo types.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

 GSQLOC

 Function

To query graphics locator data.

 Parameters

inwin (returned by GDDM) (fullword integer)
Indicates whether the position returned is within the
window. Possible values are:

0 The position returned is outside the window that was in
effect at the time the data was generated

1 The position returned is inside the window that was in
effect at the time the data was generated.

x (returned by GDDM) (short floating point)
y (returned by GDDM) (short floating point)

The x,y position of the locator from the current input record.
The values returned are in window units, using the window
that was in effect when the locator data was generated.

 Description

Retrieves the locator data from the current input record,
which must correspond to input from a locator device.

Note: The locator data generated during GSREAD, and
which is awaiting retrieval, is kept by GDDM unmodified, irre-
spective of whether the particular segment whose identifier
appears on the queue has been repositioned or deleted, or if
some of the segment attributes have changed.

 Principal errors

ADM321ð E REQUIRED DATA NOT FOUND

 GSQLT

 Function

To query the current line type.

GSQLID (device-type, device-id, count, list) GSQLOC (inwin, x, y)

APL code 643 APL code 576
GDDM RCP code X'0C0C0C09' (202116105) GDDM RCP code X'0C0C0F01' (202116865)

GSQLT (n)

APL code 542
GDDM RCP code X'0C0C0713' (202114835)

 Chapter 3. The GDDM calls 151

 GSQLW

 Parameters

n (returned by GDDM) (fullword integer)
The current value of the line type.

 Description

Returns the current value of the line type, as set by the
GSLT call.

 Principal errors

None.

 GSQLW

 Function

To query the current line width.

 Parameters

linewidth-multiplier (returned by GDDM) (fullword integer)
The current value of the line-width multiplier.

 Description

Returns the current value of the line width. If a nonintegral
line width is queried as an integral value using GSQLW, the
integral part is returned.

 Principal errors

None.

 GSQMAX

 Function

To query the number of segments.

 Parameters

n-segments (returned by GDDM) (fullword integer)
The number of segments currently defined. The number
returned does not include segment zero.

max-segment (returned by GDDM) (fullword integer)
The maximum segment identifier currently defined. This is
zero if there are no segments on the current page.

 Description

Returns the number and range of segment identifiers on the
current page.

This call can be used to find a unique segment identifier by
adding one to the maximum segment identifier returned by
this call. This method for finding a unique identifier will not
work if the maximum defined segment identifier is the
maximum integer that can be represented; that is,
2 147 483 647.

 Principal errors

None.

 GSQMB

 Function

To query marker box.

 Parameters

width (returned by GDDM) (short floating point)
The width of the marker box in world coordinates.

depth (returned by GDDM) (short floating point)
The depth of the marker box in world coordinates.

 Description

Queries the value of the current marker box.

 Principal errors

None.

GSQLW (linewidth-multiplier)

APL code 543
GDDM RCP code X'0C0C0714' (202114836)

GSQMB (width, depth)

APL code 637
GDDM RCP code X'0C0C1308' (202117896)

GSQMAX (n-segments, max-segment)

APL code 544
GDDM RCP code X'0C0C0100' (202113280)

152 GDDM Base Application Programming Reference

 GSQMIX

 GSQMIX

 Function

To query the current foreground color-mix mode.

 Parameters

n (returned by GDDM) (fullword integer)
The current value of the foreground color-mix mode. Pos-
sible values are:
0 The drawing default.
1 “Mix” mode.
2 “Overpaint” mode.
3 “Underpaint” mode.
4 “Exclusive-OR” mode
5 “Leave alone” or “Transparent” mode.

 Description

Returns the current value of the foreground color-mix mode,
as set in the GSMIX call.

 Principal errors

None.

 GSQMS

 Function

To query the current marker symbol.

 Parameters

n (returned by GDDM) (fullword integer)
The current marker-symbol number.

 Description

Returns the current marker-symbol number.

 Principal errors

None.

 GSQMSC

 Function
Note: This call is not recommended for new programs. It is
obsolete and has been superseded by GSQMB.

To query marker scale.

 Parameters

scale (returned by GDDM) (short floating point)
The scale of the marker symbols with respect to the default
marker box.

 Description

Returns the current marker scale to be used when outputting
marker symbols that are defined as vector symbols.

 Principal errors

None.

 GSQNSS

 Function

To query the number of loaded symbol sets.

 Parameters

n (returned by GDDM) (fullword integer)
The number of symbol sets loaded by GSDSS or GSLSS.

GSQMIX (n)

APL code 545
GDDM RCP code X'0C0C0712' (202114834)

GSQMSC (scale)

APL code 564
GDDM RCP code X'0C0C071E' (202114846)

GSQMS (n)
 GSQNSS (n)
APL code 546
GDDM RCP code X'0C0C071B' (202114843) APL code 209
 GDDM RCP code X'0C040102' (201588994)

 Chapter 3. The GDDM calls 153

 GSQORG

 Description

Returns the number of loaded symbol sets. This function is
provided to allow the invoker of GDDM to reserve enough
storage to perform a subsequent GSQSS request.

 Principal errors

None.

 GSQORG

 Function

To query segment origin.

 Parameters

segment-id (specified by user) (fullword integer)
The identifier of the segment to be queried.

x (returned by GDDM) (short floating point)
y (returned by GDDM) (short floating point)

The x and y coordinates of the segment origin, specified in
current world coordinates.

 Description

Returns the position of the segment origin of the identified
segment in world coordinates. The identified segment need
not be transformable. For more information, see GSSPOS
and GSSORG.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSQPAT

 Function

To query the current shading pattern.

 Parameters

n (returned by GDDM) (fullword integer)
The current shading-pattern number.

 Description

Returns the current shading-pattern number.

 Principal errors

None.

 GSQPIK

 Function

To query pick data.

 Parameters

segment-id (returned by GDDM) (fullword integer)
The segment chosen by the terminal operator. If it is 0, the
detection process was initiated, but no primitive was identi-
fied.

primitive-tag (returned by GDDM) (fullword integer)
The tag of the primitive within the specified segment
chosen by the operator. If it is 0, the detection process
was initiated, but no primitive was identified.

 Description

Retrieves data from the current input record if the current
record contains pick data. If the input record does not
contain pick data, an error is raised.

Note: The pick data generated during GSREAD, and which
is awaiting retrieval, is kept by GDDM unmodified, irrespec-
tive of whether the particular segment whose identifier
appears on the queue has been repositioned or deleted, or if
some of the segment attributes have changed.

 Principal errors

ADM321ð E REQUIRED DATA NOT FOUND

GSQORG (segment-id, x, y)

APL code 639

GSQPIK (segment-id, primitive-tag)GDDM RCP code X'0C0C0316' (202113814)

APL code 577
GDDM RCP code X'0C0C0F02' (202116866)

GSQPAT (n)

APL code 547
GDDM RCP code X'0C0C071A' (202114842)

154 GDDM Base Application Programming Reference

 GSQPKS

 GSQPKS

 Function

To query pick structure.

 Parameters

count (specified by user) (fullword integer)
The number of elements in the segment and tag arrays.

segids (returned by GDDM) (an array of fullword integers)
Array for segment identifiers.

tagids (returned by GDDM) (an array of fullword integers)
Array for tag identifiers.

depth (returned by GDDM) (fullword integer)
The number of segment and tag pairs available in the
current input record (depth of pick path).

 Description

Retrieves pick structure data from the current input record if
the current record contains pick data. If the input record
does not contain pick data, an error message is issued.

Note: The pick data generated during GSREAD, and which
is awaiting retrieval, is kept by GDDM unmodified, irrespec-
tive of whether the particular segment whose identifier
appears on the queue has been repositioned or deleted, or if
some of the segment attributes have changed.

The data returned consists of pairs of segment identifiers and
tags, which indicate the level of nesting. The data returned
consists of the segment and tag of the picked data, the
segment and tag of all calling segments until the root
segment (the segment that was not called by another
segment) is reached.

If a segment is called in several places within another
segment, a tag before each call would allow the particular
instance of the called segment to be identified.

 Principal errors

ADM321ð E REQUIRED DATA NOT FOUND

 GSQPOS

 Function

To query segment position.

 Parameters

segment-id (specified by user) (fullword integer)
The identifier of the segment whose position is to be
returned.

x (returned by GDDM) (short floating point)
y (returned by GDDM) (short floating point)

The segment origin, in world coordinates, of the identified
segment.

 Description

Returns, in world coordinates, the current position of the
segment origin of the identified segment. For more informa-
tion, see GSSPOS and GSSORG.

 Principal errors

None.

 GSQPRI

 Function

To query segment priority.

 Parameters

ref-seg-id (specified by user) (fullword integer)
The identifier of a reference segment. A value of 0 shows
that either the lowest or highest priority segment is to be
returned in the seg-id parameter, as defined by the value in
the order parameter.

seg-id (returned by GDDM) (fullword integer)
The identifier of the segment that is immediately before or
after the segment specified in the ref-seg-id parameter. A
returned value of 0 shows that the segment specified in the
ref-seg-id parameter is either the lowest priority segment

GSQPKS (count, segids, tagids, depth) GSQPOS (segment-id, x, y)

APL code 654 APL code 583
GDDM RCP code X'0C0C0F05' (202116869) GDDM RCP code X'0C0C030E' (202113806)

GSQPRI (ref-seg-id, seg-id, order)

APL code 635
GDDM RCP code X'0C0C0313' (202113811)

 Chapter 3. The GDDM calls 155

 GSQPS

(when order = –1) or the highest priority segment (when
order = 1).

order (specified by user) (fullword integer)
Shows whether a segment identifier of a higher or lower pri-
ority than the segment identified in the ref-seg-id param-
eter is to be returned. Possible values are:

−1 Query the identifier of the segment with a lower priority
than the one named in the ref-seg-id parameter or, if
ref-seg-id =0, query the identifier of the segment with
the lowest priority

1 Query the identifier of the segment with a higher pri-
ority than the one named in the ref-seg-id parameter
or, if ref-seg-id =0, query the identifier of the segment
with the highest priority.

 Description

Returns the identifier of the named segment that is before or
after a specified named segment. The segment that is before
the specified segment is considered to have a lower priority
than the specified segment; similarly, the segment that is
after the specified segment is considered to have a higher
priority than the specified segment.

If all the primitives in all the segments are drawn in overpaint
mode (see GSMIX), a segment with a higher priority is
always drawn “on top” of all segments of a lower priority.

Note: The GSQPIK call returns the segment with the higher
priority if there is more than one detectable segment with a
pickable primitive in the pick window.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADM3226 E SEGMENT n IS UNKNOWN

ADM3228 E SEGMENT ORDERING n IS INVALID

 GSQPS

 Function

To query the picture-space definition.

 Parameters

width (returned by GDDM) (short floating point)
height (returned by GDDM) (short floating point)

The width and height of the picture space. One of the
values returned is 1; the other is less than 1.

 Description

Returns the picture-space definition. This function can be
used to adapt a picture layout to suit the shape of the
graphics field provided.

GSQPS does not create a default picture space; it returns
information about the default picture space if an explicit
picture space was not defined.

 Principal errors

None.

 GSQSEN

 Function

To query mixed string attribute of graphics text.

 Parameters

mixed (returned by GDDM) (fullword integer)
The mixed string attribute. Possible values are:
0 Default (Mixed with position).
1 Mixed with position.
2 Mixed without position.

 Description

Returns the current value of mixed string attribute set by
GSSEN.

 Principal errors

None.

GSQSEN (mixed)

APL code 667
GDDM RCP code X'0C0C1B01' (202119937)

GSQPS (width, height)

APL code 548
GDDM RCP code X'0C0C0004' (202113028)

156 GDDM Base Application Programming Reference

 GSQSIM

 GSQSIM

 Function

To query existence of simultaneous queue entry.

 Parameters

event-flag (returned by GDDM) (fullword integer)
Identifies whether there are any more simultaneous events
on the input queue. Possible values are:

0 There are no more simultaneous events on the input
queue. The next GSREAD updates the screen and
waits for input from the enabled logical input devices.

1 There are more simultaneous events on the input
queue. The next GSREAD call removes the top input
record from the queue and returns the information to
the program. The screen is not updated.

 Description

Shows whether there are any more simultaneous events on
the input queue.

 Principal errors

None.

 GSQSS

 Function

To query loaded symbol sets.

Note: For information about querying the number of loaded
symbol sets, see “GSQNSS – Query the number of loaded
symbol sets” on page 153.

 Parameters

n (specified by user) (fullword integer)
The number of loaded symbol sets to be queried.

types (returned by GDDM) (an array of fullword integers)
Identifies the types of symbol definitions. Possible values
are:
1 Image symbol set
2 Vector symbol set
3 Shading-pattern set
4 Marker symbol set
5 4250 page printer font
8 DBCS image symbol set
9 DBCS vector symbol set.

symbol-set-names (returned by GDDM) (array of 8-byte
character tokens)
The files from which the symbol sets were loaded or the
names specified in calls to GSDSS. The symbol-set name
returned for a symbol set that originally had the substitution
character “�” in its name is the substituted name. In the
case of a DBCS symbol set name, the substitution char-
acter will be replaced by its substitute, but ward digits will
not be appended.

symbol-set-ids (returned by GDDM) (an array of fullword
integers)
The identifiers associated with each symbol set.

 Description

Returns information about all symbol sets (image, vector, and
4250 fonts) loaded by GSDSS or GSLSS.

Each of the parameters (apart from n) is an array with n ele-
ments. Information about the first n symbol sets is returned;
if there are fewer than n, the types and symbol-set identifiers
for the remainder are cleared to zero.

 Principal errors

ADMð116 E NUMBER OF SYMBOL SETS n IS INVALID

 GSQSSD

 Function

To query symbol set data.

 Parameters

type (specified by user) (fullword integer)
The type of symbol set that is to be queried. The values
correspond to the type defined in the GSDSS or GSLSS
call, and are:

1 Image symbol set
2 Vector symbol set

GSQSIM (event-flag)

APL code 574
GDDM RCP code X'0C0C0E01' (202116609)

GSQSS (n, types, symbol-set-names, symbol-set-ids)
GSQSSD (type, id, count, data)
 APL code 210
APL code 586GDDM RCP code X'0C040103' (201588995)
GDDM RCP code X'0C0C0102' (202113282)

 Chapter 3. The GDDM calls 157

 GSQSTK

5 4250 page printer font
8 DBCS image symbol set
9 DBCS vector symbol set.

id (specified by user) (fullword integer)
The identifier of the symbol set to be queried.

count (specified by user) (fullword integer)
The number of elements in the data array.

data (returned by GDDM) (array of short floating-point
numbers)
Information about the symbol set. The values returned
depend on the type of symbol set specified in the type
parameter. Possible values are:

1 The first two elements of the array contain the width
and depth (respectively) of a symbol definition, given in
world coordinates.

2 The first two elements of the array contain the aspect
ratio of the grid on which the vector symbol set is
defined. The first element is the width (as a proportion
of the depth); the second element is always 1.

An application program can preserve the aspect ratio
of the vector symbols by specifying a character box
with the same aspect ratio as the symbol set.

5 The first two elements of the array contain the
maximum character width and the baseline increment
(respectively) of the specified font, given in world coor-
dinates.

8 As for 1.

9 As for 2.

 Description

Returns information about a specific symbol set that has
been loaded by a GSDSS call or a GSLSS call. Using the
values returned by GSQSSD, the character cell size can be
set so that loadable symbols are drawn with the aspect ratio
or size with which they were created.

GSQSSD sets the default graphics field, picture space,
viewport, and window if they have not already been specified
or defaulted.

A GDDM DBCS symbol set ward must be loaded before
information about a DBCS symbol set can be queried. No
symbol set wards will have been loaded by a GSLSS call, as
there are no ward digits available to this call. However, a
DBCS ward may have been loaded by a previous GSCHAR
call. If no ward has been loaded, the GSQSSD call will
attempt to load a DBCS ward, to obtain the requested infor-
mation.

 Principal errors

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð12ð E SYMBOL SET n NOT LOADED

ADMð129 E ARRAY COUNT n IS INVALID

ADM3279 E NO DBCS WARD AVAILABLE FOR SYMBOL SET 'a'

IDENTIFIER n

 GSQSTK

 Function

To query stroke data.

 Parameters

count (specified by user) (fullword integer)
The number of elements in the arrays x and y. If num-
points , the number of coordinate pairs available in the
current input record, is less than count , excess elements in
the arrays are undefined. If num-points is greater than
count , only count coordinate points are returned in the
arrays x and y.

draw-flag (returned by GDDM) (an array of fullword integers)
An array of control flags for each x,y pair, specifying:

� For polylocator sampling method:

−1 The x,y pair is not defined
>0 The number of the tablet or mouse button

pressed to record the x,y pair.

� For stream sampling method:

−1 The x,y pair is not defined.
0 The x,y pair represents a point sampled from the

trajectory of a moving cursor (that is, within, or at
the end of, a polyline).

1 The x,y pair starts a polyline. This value is
recorded, when stream mode is entered, by
pressing a tablet or mouse button.

x (returned by GDDM) (array of short floating-point numbers)
y (returned by GDDM) (array of short floating-point numbers)

Two arrays that return the x,y coordinate pairs. The values
returned are in window units, using the window that was in
effect when the stroke data was generated.

num-points (returned by GDDM) (fullword integer)
The number of coordinate pairs available in the current
input record.

GSQSTK (count, draw-flag, x, y, num-points)

APL code 597
GDDM RCP code X'0C0C0F04' (202116868)

158 GDDM Base Application Programming Reference

 GSQSTR

 Description

Retrieves the stroke data from the current input record, which
must correspond to input from a stroke device.

The array in the draw-flag parameter shows whether an x,y
coordinate pair was generated, and how the x,y coordinate
pair was generated.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADM321ð E REQUIRED DATA NOT FOUND

 GSQSTR

 Function

To query string data.

 Parameters

count (specified by user) (fullword integer)
The length of the string that is to be returned.

string (returned by GDDM) (character)
The input character string (left-justified, truncated, or
padded with blanks).

cursor-pos (returned by GDDM) (fullword integer)
The final position of the cursor within the string, or zero if a
position cannot be detected.

 Description

Returns the string data from the current input record, which
must correspond to input from a string device.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADM321ð E REQUIRED DATA NOT FOUND

 GSQSVL

 Function

To query the current segment viewing limits.

 Parameters

u1 (returned by GDDM) (short floating point)
u2 (returned by GDDM) (short floating point)

The left and right extents of the segment-viewing limits in
world coordinates.

v1 (returned by GDDM) (short floating point)
v2 (returned by GDDM) (short floating point)

The lower and upper extents of the segment-viewing limits
in world coordinates.

 Description

Returns the viewing limits of the current segment in world
coordinates.

If segment viewing limits have not been explicitly defined, the
values returned are those used for overall picture clipping.

 Principal errors

None.

 GSQTA

 Function

To query the current text alignment.

 Parameters

horiz (returned by GDDM) (fullword integer)
The current horizontal text alignment values.

vert (returned by GDDM) (fullword integer)
The current vertical text alignment values.

GSQSVL (u1, u2, v1, v2)

APL code 659
GDDM RCP code X'0C0C1315' (202117909)

GSQSTR (count, string, cursor-pos)

APL code 596
GDDM RCP code X'0C0C0F03' (202116867)

GSQTA (horiz, vert)

APL code 645
GDDM RCP code X'0C0C130E' (202117902)

 Chapter 3. The GDDM calls 159

 GSQTAG

 Description

Returns the current horizontal and vertical text alignment
values, as set by the GSTA call.

 Principal errors

None

 GSQTAG

 Function

To query current tag.

 Parameters

tag (returned by GDDM) (fullword integer)
The current tag identifier being assigned within the speci-
fied segment.

 Description

Returns the current tag as set by the GSTAG call.

 Principal errors

None.

 GSQTB

 Function

To query the text box.

 Parameters

length (specified by user) (fullword integer)
The number of characters in the string.

string (specified by user) (character)
The character string to be processed.

If GSCS(8) is specified or if GDDM’s external defaults
contain the MIXSOSI option, the character strings can
contain DBCS characters for modes 2 and 3.

count (specified by user) (fullword integer)
The number of elements to be returned in x-array and
y-array . If the values specified exceed 5, all values after
the fifth are set to zero.

x-array (returned by GDDM) (array of short floating-point
numbers)

y-array (returned by GDDM) (array of short floating-point
numbers)
Two arrays containing the relative coordinates of the text
box. The elements of each array are defined as:

1 Top-left corner
2 Bottom-left corner
3 Top-right corner
4 Bottom-right corner
5 Concatenation point.

The terms top-left, bottom-right, and so on are well defined
when the character angle is such that the baseline is par-
allel to the x axis and running left to right, and there is no
character shear. If the character string is rotated or
sheared, the term top-left applies to the corner of the box
that appears in the top-left position when no rotation or
shear is applied.

This is an example:

Set character angle = -1,1

String = ABCDE

Coordinates returned are as shown:

A
B

C
D

Etop right

bottom right

bottom left

top left

Figure 11. Text box enclosing rotated characters (GSQTB)

 Description

Returns the x and y components of the relative coordinates
of the four corners of a text box, where the text box is
defined as the parallelogram that encloses the specified
character string when displayed on the device. Also returned
are the relative coordinates of the concatenation point; that
is, the position where the next character would have been.
All coordinates are relative to the start point, as defined in
the GSCD call. The box is evaluated using the current char-

GSQTAG (tag)

APL code 567
GDDM RCP code X'0C0C1001' (202117121)

GSQTB (length, string, count, x-array, y-array)

APL code 560
GDDM RCP code X'0C0C0502' (202114306)

160 GDDM Base Application Programming Reference

 GSQTFM

acter mode, box, box spacing, angle, shear, direction, set
and text alignment.

For mode-2 text, GSQTB returns the coordinates of a box
that encloses the character boxes (not the symbols) within
the string. Image symbols do not necessarily fill the char-
acter boxes, and can also extend outside them. If the boxes
are angled, their edges are “staircased.” In all instances, the
text box is defined as running through the extremities of the
character boxes.

More information on how to use this call is given in the
GDDM Base Application Programming Guide.

 Principal errors
ADMð111 W DBCS SYMBOL SET 'a' NOT AVAILABLE

ADMð146 E ARRAY COUNT n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADMð169 E CHARACTER STRING LENGTH n IS INVALID

ADM3252 W CHARACTER X'xx' REPLACED BY SHIFT-IN

CHARACTER

ADM3253 W DBCS CHARACTER X'xxxx' IS INVALID AND

REPLACED BY A BLANK

ADM3264 W DBCS CHARACTER STRING LENGTH n MUST BE EVEN

 GSQTFM

 Function

To query segment transform.

 Parameters

id (specified by user) (fullword integer)
The identifier of the segment.

n (specified by user) (fullword integer)
The number of elements that are to be set in the array
parameter; n must be in the range 0 through 9.

array (returned by GDDM) (array of short floating-point
numbers)
The array into which the elements of the transform are to
be returned.

 Description

Returns the elements of the transform of the identified
segment. The transformation matrix that GDDM returns is
expressed in current window coordinates.

For more information on segment transforms, see the GDDM
Base Application Programming Guide.

 Principal errors
ADMð129 E ARRAY COUNT n IS INVALID

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSQVIE

 Function

To query the current viewport definition.

Note: This call creates a default graphics field if there is not
one already on the current page.

 Parameters

x1 (returned by GDDM) (short floating point)
x2 (returned by GDDM) (short floating point)

The position within the picture space of the left and right
boundaries of the viewport.

y1 (returned by GDDM) (short floating point)
y2 (returned by GDDM) (short floating point)

The position within the picture space of the lower and upper
boundaries of the viewport.

 Description

Returns the current viewport definition in picture-space units.

 Principal errors

None.

 GSQWIN

 Function

To query the current window definition.

GSQVIE (x1, x2, y1, y2)

APL code 549
GDDM RCP code X'0C0C0005' (202113029)

GSQTFM (id, n, array)

APL code 591
GDDM RCP code X'0C0C1105' (202117381)

GSQWIN (u1, u2, v1, v2)

APL code 550
GDDM RCP code X'0C0C0006' (202113030)

 Chapter 3. The GDDM calls 161

 GSREAD

 Parameters

u1 (returned by GDDM) (short floating point)
u2 (returned by GDDM) (short floating point)

The left and right boundaries of the window.
v1 (returned by GDDM) (short floating point)
v2 (returned by GDDM) (short floating point)

The lower and upper boundaries of the window.

 Description

Returns the current window definition in world-coordinate
units. If a window has not been defined, the values returned
in this call are those produced for a default window.

 Principal errors

None.

 GSREAD

 Function

To await graphics input.

 Parameters

delay (specified by user) (fullword integer)
Identifies whether GDDM should await action from the ter-
minal operator if the input queue is empty. Possible values
are:

0 GDDM is not to await action from the terminal operator
if the input queue is empty. An input-device-type of 0
is returned to show an empty queue.

1 GDDM is to await action from the terminal operator if
the input queue is empty. This option can only be
specified if there are currently enabled input devices.

input-device-type (returned by GDDM) (fullword integer)
The type of the input data. Possible values are:

0 The input queue is empty. This value is returned only
if 0 is specified for the delay parameter.

1 Choice device data.
2 Locator data.
3 Pick data.
4 String data.
5 Stroke data.

input-device-id (returned by GDDM) (fullword integer)
The source of the input data. Possible values are:

For choice devices:
The value returned identifies the choice device group.
Values that can be returned are:

0 The ENTER key.
1 The PF keys.
2 The alphanumeric light pen.
4 The PA keys.
5 The CLEAR key.
8 Data keys
10 The mouse or puck buttons

Note: Not all values can be returned from all devices. For
a list of supported values for specific devices, see
GSENAB.

More information on the specific choice can be obtained
using the GSQCHO call.

For locator devices:

1 The device identifier of the locator device.

The data returned by the locator can be obtained by using
the GSQLOC call.

For pick devices:

1 The device identifier of the pick device.

The data returned by the pick can be obtained by using the
GSQPIK call.

For string devices:

1 The device identifier of the string device.

The data returned by the string can be obtained by using
the GSQSTR call.

For stroke devices:

1 The device identifier of the stroke device.

The data returned by the stroke can be obtained by using
the GSQSTK call.

 Description

Returns the next graphics event, if necessary by performing
all outstanding output and awaiting input from a graphics
logical input device.

The processing of the GSREAD call is affected by the state
of the input queue, which contains information about the
input devices that the operator used during any interactions
with the terminal.

If the input queue contains records, the screen images are
not updated. The GSREAD call merely removes from the
input queue the top input record for a partition and page in
the current partition set, and returns the appropriate informa-
tion (the device type and identifier) to the application
program. The top input record becomes the current input
record. The partition and page from which the entry was
generated becomes the current partition and current page.

GSREAD (delay, input-device-type, input-device-id)

APL code 120
GDDM RCP code X'0C100003' (202375171)

162 GDDM Base Application Programming Reference

 GSRSS

If the input queue is empty, and if the application program
has requested that GDDM should wait for operator action,
and if some input devices are enabled, the current screen
images (both graphics and alphanumeric) are updated;
GDDM awaits operator action from the enabled devices. If
no input devices are enabled, an error message is issued.

The position of the graphics cursor is identified by echoes
from the relevant enabled-logical-input device; that is, pick
and locator for 3179-G or 3192-G color display stations, or
stroke, locator, and pick for 3270-PC/G and 3270-PC/GX
workstations, and the 5080 Graphics System.

On other devices, the alphanumeric cursor is located at the
current locator or pick position.

For all devices, only one graphics cursor is displayed on the
screen. If more than one enabled logical input device
requires a graphics cursor, the order of priority for positioning
the cursor is: first, the stroke, then the locator, and finally, the
pick.

When the operator causes an interrupt, the data returned is
added to the input queue. Note that multiple input records
might be generated if multiple input devices are enabled.
Any changes to alphanumeric fields can be determined by
issuing an ASQMOD call.

If the operator-generated interrupt does not result in any data
being added to the input queue, the audible alarm is
sounded, the terminal interrupt is ignored, and the read oper-
ation is tried again.

After the input queue has been generated, the current input
record is updated and the input device type and identifier are
returned to the application program. The partition from which
the interrupt was generated becomes the current partition.

Locator and pick devices are triggered by pressing a key that
returns the position of the device.

String and stroke devices are triggered by mouse or puck
buttons, data keys, the ENTER key or PF keys, except that
stroke devices are not triggered by tablet or mouse buttons.

If a pick is enabled and triggered, an entry is always gener-
ated on the queue for the pick device, regardless of whether
a primitive was detected. GSQPIK returns an indication as
to whether a primitive was actually detected or not.

When the picture is displayed for GSREAD, the page is
scrolled (see FSPWIN) to ensure that the alphanumeric
cursor position is within the displayed data on the screen. If
the alphanumeric cursor is being used as a graphic locator
device (as happens on devices such as the 3279), this
scrolling positions the page so that the graphic locator posi-
tion is visible.

For information about restrictions on various devices, see
“Graphics logical input devices” on page 247.

 Principal errors

ADMð27ð E SCREEN FORMAT ERROR

ADMð273 W PS OVERFLOW

ADMð275 W GRAPHICS {(IMAGE) }CANNOT BE SHOWN. REASON

CODE n

ADMð276 W DEVICE IS OUTPUT ONLY

ADM2864 W PICTURE IS TOO LARGE FOR 5ð8ð DISPLAY LIST

BUFFER

ADM3ðð4 E FIELD LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM3ðð5 E DATA BUFFER n1, ERROR n2 AT INDEX n3

ADM3ð1ð E BUNDLE LIST n1, ERROR n2 AT ARRAY ELEMENT

(n3,n4)

ADM317ð E NO ENABLED INPUT DEVICES

ADM3172 E INVALID READ DELAY VALUE

ADM3173 W GRAPHICS CANNOT BE SHOWN. CELL WIDTH OR

DEPTH EXCEEDS LOADABLE LIMIT

ADM3175 E UNEXPECTED ERROR FROM DEVICE. LOG ERROR

DATA: X'xxxxxxxxxxxx'

ADM3176 W ECHO SEGMENT NOT STORED IN DEVICE. DEFAULT

LOCATOR USED

ADM3177 W INSUFFICIENT SEGMENT STORAGE. STROKE ENTRIES

REDUCED TO n

ADM3178 W PATTERNS CANNOT BE SENT TO DEVICE. AREA

SHADING MAY BE INCORRECT

ADM3179 W IMAGE CANNOT BE SHOWN. REASON CODE n

 GSRSS

 Function

To release a graphics symbol set.

 Parameters

type (specified by user) (fullword integer)
The type of the symbol set to be released. Possible values
are:
1 Image symbol set
2 Vector symbol set
3 Shading-pattern set
4 Marker symbol set
5 4250 high-resolution printer font
8 DBCS image symbol set
9 DBCS vector symbol set.

symbol-set-id (specified by user) (fullword integer)
The identifier of the symbol set to be released; see GSLSS.
Must be specified as zero for patterns and markers.

GSRSS (type, symbol-set-id)

APL code 207
GDDM RCP code X'0C040401' (201589761)

 Chapter 3. The GDDM calls 163

 GSSAGA

 Description

Releases the specified symbol set. The type must corre-
spond exactly to that specified when the symbol set was
loaded or defined. A symbol set may be released, freeing
the storage occupied, when the application program no
longer needs it. A symbol set should not be released while a
graphics picture using it still exists.

 Principal errors

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð118 E SYMBOL SET TYPE n IS INVALID

ADMð12ð E SYMBOL SET n NOT LOADED

 GSSAGA

 Function

To set all geometric attributes.

 Parameters

id (specified by user) (fullword integer)
The identifier of the transformable segment.

sx (specified by user) (short floating point)
sy (specified by user) (short floating point)

A scale transformation in terms of an x-axis scaling (sx)
and a y-axis scaling (sy). The segment origin is used as a
reference point: the axes that are used to scale are parallel
to the x and y axes but pass through the segment origin. A
scale factor that has magnitude in the range 0 through 1
shrinks primitives; a scale factor of greater than 1 stretches
primitives. A negative scale factor reflects primitives about
the other axis.

Specifying scale factors sx=1 and sy=1 does not perform
any scaling. This setting can be used to suppress scaling
(to allow a simple rotation, for example).

hx (specified by user) (short floating point)
hy (specified by user) (short floating point)

A shear transformation in terms of the displacements that a
point on the y axis makes after shearing. The axes used
for shearing are parallel to the x and y axes, but pass
through the current segment origin. This is similar to the
method used in the GSCH call for character shear. Note
that primitives below the x axis are sheared in the opposite
direction to those above the x axis. The points on the x
axis itself are not moved. If hx=a and hy=b are used, an
identical effect is achieved with hx=−a and hy=−b.

Specifying shear factors hx=0 and hy=1 does not perform
any shearing. This setting can be used to suppress
shearing (to allow a simple rotation, for example).

Specifying hy=0 is not valid.

rx (specified by user) (short floating point)
ry (specified by user) (short floating point)

A rotation transformation in terms of the displacements that
a point on the x axis makes after rotating. The axes used
for rotating are parallel to the x and y axes, but pass
through the current segment origin. This is similar to the
method used for the character angle in the GSCA call.

Specifying rotation components rx=1 and ry=0 does not
perform any rotation. This setting can be used to suppress
rotation (to allow a simple scaling, for example).

Because two zero values would be ambiguous, specifying
rx=0 and ry=0 is taken as equivalent to rx=1 and ry=0 (no
rotation).

The (rx,ry) values below produce these special cases:

(0,0) no rotation; equivalent to (1,0).
(1,0) no rotation.
(0,1) rotation by 90 degrees counterclockwise.
(1,1) rotation by 45 degrees counterclockwise.
(0,−1) rotation by 90 degrees clockwise.
(−1,0) rotation by 180 degrees clockwise (or counter-

clockwise).

and, in general:

(rx,ry) rotation by theta degrees counterclockwise, where
tan(theta)=ry/rx (assuming a uniform world coordi-
nate system).

Note: A rotation of (−1,0) is equivalent to a scale factor of
sx=−1 and sy=−1. This inherent ambiguity prevents
GSQAGA returning values that are necessarily equal to
those specified. However, the values returned in GSQAGA
are consistent in that the components (taken together) are
equivalent to those specified in GSSAGA.

dx (specified by user) (short floating point)
dy (specified by user) (short floating point)

A displacement of dx parallel to the x axis and dy parallel
to the y axis. This transformation does not use the segment
origin.

Specifying displacements components of dx=0 and dy=0
does not perform any displacement. This setting can be
used to suppress displacements (to allow a simple rotation,
for example).

type (specified by user) (fullword integer)
How the existing segment transform is to be modified by
the scaling, shear, rotation, and displacement components
specified. Possible values are:

0 New/replace
Any transform previously defined for the segment is dis-
carded and is replaced by the combined effect of the speci-
fied components.

GSSAGA (id, sx, sy, hx, hy, rx, ry, dx, dy, type)

APL code 588
GDDM RCP code X'0C0C1102' (202117378)

164 GDDM Base Application Programming Reference

 GSSATI

1 Additive
The combined effect of the specified components is added
to the effect already present in the segment transform. The
new transform combines both effects in the order (i) old
transform, and (ii) GSSAGA parameter values. This option
is the most useful for incremental updates to segment
transforms.

2 Preemptive
The combined effect of the specified components is added
to the effect of the existing segment transform. The new
transform combines both effects in the order (i) GSSAGA
parameter values, and (ii) the old transform. The effect is
as if the GSSAGA parameters modify the primitives of the
segment (without transformation) and the existing transfor-
mation is applied again.

 Description

Sets or modifies the transform of the identified segment by
specifying x-axis and y-axis scale factors, and shear, rota-
tion, and displacement values. The parameters are specified
in current window coordinates (as defined in the GSWIN
call). If the window coordinates are not uniform (see
GSUWIN for how to define these), graphics data appears to
be sheared as it is rotated.

A segment transform alters the displayed appearance of a
segment without altering the primitives within the segment.
An existing segment transform can be canceled at any time
(by specifying type=0), thus reverting to the original appear-
ance.

The combined effect of the scale, shear, rotation, and dis-
placement specified is used to update the segment trans-
form. This is performed in three distinct ways, controlled by
the type parameter. In all cases, the other parameters are
taken as a unit, the effects being combined into a single
composite transformation; that is, scale, shear, rotation, and
displacement, in that order.

Note: The GSSTFM call also allows the segment trans-
forms to be set or modified using matrix algebra, and is
therefore more mathematically oriented.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSSATI

 Function

To set initial segment attributes.

 Parameters

attribute (specified by user) (fullword integer)
The number of the segment attribute (for example, 2 for vis-
ibility).

value (specified by user) (fullword integer)
The setting of the segment attribute specified in the attri-
bute parameter. Possible values are:

1 Detectability attribute.
A segment can be detectable (value = 1) or non-detectable
(value = 0).

When a segment is made detectable, the segment identifier
can be returned as a result of selection through a pick
device. A segment cannot be detected by using a pick
device if that segment is invisible. The value given in the
GSTAG call must not be zero if a segment is to be detect-
able.

2 Visibility attribute.
A segment can be visible (value = 1) or invisible (value =
0).

When a segment is visible it is displayed. An invisible
segment does not appear on the display, nor can it be
detected.

3 Highlight attribute.
A segment can be highlighted (value = 1) or nonhighlighted
(value = 0).

The effect of highlighting varies according to the device, as
follows:

On displays it is white,
On printers it is black,
On plotters it takes the color associated with pen 7, or
the highest available pen number.

4 Transformability attribute.
A segment can be either transformable (value = 2) or
nontransformable (value = 1).

All segments can be repositioned using the GSSPOS call,
transformed (scaled, sheared, rotated, and displaced) using
the GSSAGA or GSSTFM call, and used as an echo
segment. If a segment is not going to be used for any of
these purposes it should be marked as nontransformable
as GDDM may use this attribute to optimize the data
stream.

GSSATI (attribute, value)

APL code 578
GDDM RCP code X'0C0C0309' (202113801)

 Chapter 3. The GDDM calls 165

 GSSATS

5 Not used.

6 Chaining attribute.
A segment can be either chained (value = 1) or nonchained
(value = 0).

When a segment is nonchained, it is not added to the
drawing chain, and is therefore not drawn unless it is called
by another segment; see GSCALL.

 Description

Specifies the attributes to be assumed by subsequently
created segments. These attributes are modal settings used
to determine the initial attributes of new segments as they
are created.

When a graphics field is created, the segment attributes are
nontransformable, nondetectable, visible, nonhighlighted,
stored, and chained.

The GSSATI call causes the default window, viewport picture
space, graphics, page, and so on, to be set up.

 Principal errors

ADMð184 E SEGMENT ATTRIBUTE CODE n IS INVALID

ADMð185 E SEGMENT ATTRIBUTE VALUE n IS INVALID

 GSSATS

 Function

To modify segment attributes.

 Parameters

segment-id (specified by user) (fullword integer)
The identification of the segment to be modified by this call.
A value of zero cannot be specified.

attribute (specified by user) (fullword integer)
The segment attribute that is to be modified by this call.
Possible values are:
1 Detectability
2 Visibility
3 Highlighting.

The effect of highlighting varies according to the
device:

On displays it is white,
On printers it is black,
On plotters it takes the color associated with pen
7, or the highest available pen number.

4 Transformability

5 Not used
6 Chained/nonchained mode.

When a segment is nonchained, it is not added to the
drawing chain unless it is called by another segment;
see GSCALL.

value (specified by user) (fullword integer)
The desired value to be assigned to the segment attribute.
Possible values are:
0 The segment is to become nondetectable, invisible,

nonhighlighted, or excluded from the drawing chain, as
defined by the contents of attribute .

1 The segment is to become detectable, visible, high-
lighted, nontransformable, or included in the drawing
chain (default).

2 The segment is to become transformable.

 Description

Sets the dynamic attributes that can be assigned to a
segment.

The dynamic attributes are detectability, visibility, highlighting,
transformability, and chain mode. Segment zero cannot
have attributes applied to it.

The highlighting attribute has the effect of setting the color
for all primitives in the segment to neutral, which is white for
displays, and black for printers. For more information on the
effect of this on graphics devices, see GSCOL.

When a segment is modified from nonchained to chained, it
is added to the end of the drawing chain.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

ADMð184 E SEGMENT ATTRIBUTE CODE n IS INVALID

ADMð185 E SEGMENT ATTRIBUTE VALUE n IS INVALID

 GSSAVE

 Function

To save segments.

 Parameters

count1 (specified by user) (fullword integer)
The number of elements in the seg-array parameter.

GSSATS (segment-id, attribute, value)

APL code 580
GDDM RCP code X'0C0C030B' (202113803)

GSSAVE (count1, seg-array, name, count2, parm-array,
count3, descriptor)

APL code 592
GDDM RCP code X'0C0C1200' (202117632)

166 GDDM Base Application Programming Reference

 GSSCLS

seg-array (specified by user) (an array of fullword integers)
An array of segment identifiers. If the number of elements
or the first segment identifier is zero, all the graphics data
in the GDDM page is saved in the file specified in the
name parameter. If the number of elements is greater than
zero, each identified segment is saved in the named file.
The segments are stored in the file in the order specified in
seg-array . If this parameter has 0 after the first element,
GDDM does not save any more elements beyond that
point. Duplicate segment identifiers are not allowed.

name (specified by user) (8-byte character string)
The name (left-justified) that is to be given to the GDF
object on auxiliary storage. This must be a valid external
object name for the subsystem being used.

count2 (specified by user) (fullword integer)
The number of elements in the parm-array parameter.

parm-array (specified by user) (an array of fullword integers)
An array of control information. The parameter has two
elements:

1–Overwrite control
Specifies whether the new GDF object can overwrite an
existing object of the same name on auxiliary storage.
Possible values are:

0 Overwrite existing file. This is the default.
1 Do not overwrite existing file.

2–Coordinate data type
Controls the type of coordinate data to be saved. Pos-
sible values are:

2 Save as 2-byte integers.
4 Save as 4-byte short floating-point values. This is the

default.

count3 (specified by user) (fullword integer)
The number of characters specified in the descriptor
parameter.

descriptor (specified by user) (character)
The descriptive record, of up to 253 bytes, that is saved
with the picture.

 Description

Saves segments, or all the graphics data in the current
GDDM page, onto auxiliary storage. No segment must be
open when the GSSAVE call is issued.

Graphics data format (GDF) objects are loaded with the
GSLOAD call.

The segments or graphics data are saved in the GDDM
segment library as a GDF object with the name specified in
the GSSAVE call’s name parameter. The saved GDF object
contains descriptive information, segments and their attri-
butes, and primitives and their attributes – that is, the same
information that is returned to the application program by the
GSGET call together with a list of all symbol sets loaded for

the current device, whether the segments to be saved refer
to them or not; see GSLOAD.

For restrictions on various devices, see “Device-specific
saved pictures” in Chapter 4, “Device variations” on
page 241.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð143 E SEGMENT IDENTIFIER n IS DUPLICATE

ADMð145 E SEGMENT n IS UNKNOWN

ADMð146 E ARRAY COUNT n IS INVALID

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð161 E GRAPHICS FIELD NOT DEFINED

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

ADMð324 E FILE 'a' ALREADY EXISTS

 GSSCLS

 Function

To close the current segment.

 Parameters

None.

 Description

Causes the current segment to be closed, so that no more
primitives can be added to it. After this operation, there is no
current segment within the page. Closing a segment does
not delete the segment or affect the graphics primitives that
are displayed.

If an area is open, GSSCLS closes it as if a GSENDA call
had been issued immediately before the GSSCLS call. All
graphics attributes are reset to the values for the attributes
that were in effect at the time the corresponding segment
was created.

Note: It is important to ensure that an open segment is
closed before outputting a picture with such calls as
ASREAD, GSREAD, MSREAD, or FSFRCE. If this is not
done, GDDM closes the open segment, but an unnecessary
reshow can result if a GSSCLS call is issued subsequently.

 Principal errors

ADMð149 E NO CURRENT GRAPHICS SEGMENT

GSSCLS

APL code 507
GDDM RCP code X'0C0C0301' (202113793)

 Chapter 3. The GDDM calls 167

 GSSCPY

ADMð167 W AREA DEFINITION NOT COMPLETED

 GSSCPY

 Function

To copy a segment.

 Parameters

segment-id (specified by user) (fullword integer)
The identifier of the segment to be copied.

 Description

Copies transformed primitives from the identified segment
into the current stream of primitives. This can be either into
the open segment or into the stream of primitives outside
segments. The copied segment must not be open when the
GSSCPY call is issued.

GSSCPY can be issued in the middle of an area, but the
primitives that it copies must be valid within an area if
GSSCPY is to complete without error.

Each copied primitive is transformed by the segment trans-
form of the copied segment and it is displaced by an amount
that brings the segment origin of the copied segment to the
current position at the time the GSSCPY call was issued. If
clipping is enabled (see GSCLP), the transformed and dis-
placed primitives are clipped to the current viewport.

The primitives inherit the current primitive attributes at the
time of the call. After GSSCPY, the current position and
values of the primitive attributes are the same as they were
before the call.

If the identified segment was created when clipping was
enabled, the following current marker and character attributes
are not inherited by any marker or character strings within
the segment. Instead, the attributes that are used are those
that were defaulted when the markers or characters were
added to the identified segment.

The current primitive attributes that are not inherited are:

Character angle Marker box
Character box Marker scale
Character direction Marker symbol.
Character mode
Character set

Character shear.

Compare the action of the GSSCPY call with that of
GSSINC.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

 GSSCT

 Function

To set current transform.

 Parameters

sx (specified by user) (short floating point)
sy (specified by user) (short floating point)

A scale transformation in terms of an x-axis scaling (sx)
and a y-axis scaling (sy). The segment origin is used as a
reference point: the axes that are used to scale are parallel
to the x and y axes but pass through the segment origin. A
scale factor in the range 0 through 1 shrinks primitives; a
scale factor of greater than 1 stretches primitives. A nega-
tive scale factor reflects primitives about the other axis.

Specifying scale factors sx=1 and sy=1 does not perform
any scaling. This setting can be used to suppress scaling
(to allow a simple rotation, for example).

hx (specified by user) (short floating point)
hy (specified by user) (short floating point)

A shear transformation in terms of the displacements that a
point on the y axis makes after shearing. The axes used
for shearing are parallel to the x and y axes, but pass
through the current segment origin. This is similar to the
method used in the GSCH call for character shear. Note
that primitives below the x axis are sheared in the opposite
direction to those above the x axis. The points on the x
axis itself are not moved. If hx=a and hy=b are used, an
identical effect is achieved with hx=−a and hy=−b.

Specifying shear factors hx=0 and hy=1 does not perform
any shearing. This setting can be used to suppress
shearing (to allow a simple rotation, for example).

Specifying hy=0 is not valid (because it would produce an
infinite shear).

GSSCPY (segment-id)

APL code 633
GDDM RCP code X'0C0C1400' (202118144)

GSSCT (sx, sy, hx, hy, rx, ry, dx, dy, type)

APL code 651
GDDM RCP code X'0C0C1107' (202117383)

168 GDDM Base Application Programming Reference

 GSSDEL

rx (specified by user) (short floating point)
ry (specified by user) (short floating point)

A rotation transformation in terms of the displacements that
a point on the x axis makes after rotating. The axes used
for rotating are parallel to the x and y axes, but pass
through the current segment origin. This is similar to the
method used for the character angle in the GSCA call.

Specifying rotation components rx=1 and ry=0 does not
perform any rotation. This setting can be used to suppress
rotation (to allow a simple scaling, for example).

Because two zero values would be ambiguous, specifying
rx=0 and ry=0 is taken as equivalent to rx=1 and ry=0 (no
rotation).

The (rx,ry) values below produce these special cases:

(0,0) no rotation; equivalent to (1,0)
(1,0) no rotation
(0,1) rotation by 90 degrees counterclockwise
(1,1) rotation by 45 degrees counterclockwise
(0,-1) rotation by 90 degrees clockwise
(−1,0) rotation by 180 degrees clockwise (or counterclock-

wise).

and, in general:

(rx,ry) rotation by theta degrees counterclockwise, where
tan(theta)=ry/rx (assuming a uniform world-coordinate
system).

dx (specified by user) (short floating point)
dy (specified by user) (short floating point)

A displacement of dx parallel to the x axis and dy parallel
to the y axis. This transformation does not use the
segment origin.

Specifying displacements components of dx=0 and dy=0
does not perform any displacement. This setting can be
used to suppress displacements (to allow a simple rotation,
for example).

type (specified by user) (fullword integer)
How the existing segment transform is to be modified by
the scaling, shear, rotation, and displacement components
specified. Possible values are:

0 New/replace
Any current transform previously defined is discarded and is
replaced by the combined effect of the specified compo-
nents.

1 Additive
The combined effect of the specified components is added
to the effect already present due to previous current trans-
forms. The new transform combines both effects in the
order (i) old transform, and (ii) GSSCT parameter values.
This option is the most useful for incremental updates to
transforms.

2 Preemptive
The combined effect of the specified components is added
to the effect of the existing current transform. The new

transform combines both effects in the order (i) GSSCT
parameter values, and (ii) the old transform. The effect is
as if the GSSCT parameters modify the following primitives
(without transformation) and the existing transformation is
applied again.

 Description

Sets the transform used for following primitives by specifying
x-axis and y-axis scale factors, and shear, rotation, and dis-
placement values. The parameters are specified in current
window coordinates, as defined in the GSWIN call.

If the window coordinates are not uniform, graphics data
appears to be sheared as it is rotated. For information on
how to define window coordinates, see GSUWIN.

The combined effect of the scale, shear, rotation, and dis-
placement specified is used to update the current primitive
transformation. This is performed in three distinct ways, con-
trolled by the type parameter. In all cases, the other param-
eters are taken as a unit, the effects being combined into a
single composite transformation; that is, scale, shear, rota-
tion, and displacement, in that order.

If precise clipping is enabled (GSCLP mode 1), primitives are
clipped to the window before the current transform is
applied. Therefore, it is possible for primitives that have
been transformed to appear outside the viewport. They are
clipped to the graphics field.

Note: The GSSCT call can only be applied when a segment
is open; that is, after a GSSEG call and before a GSSCLS
call.

 Principal errors

ADMð149 E NO CURRENT GRAPHICS SEGMENT

 GSSDEL

 Function

To delete a segment.

 Parameters

segment-id (specified by user) (fullword integer)
Identifies the segment to be deleted.

GSSDEL (segment-id)

APL code 508
GDDM RCP code X'0C0C0302' (202113794)

 Chapter 3. The GDDM calls 169

 GSSEG

 Description

Causes the specified segment, together with any graphics
primitives defined within it, to be deleted.

When a visible segment is deleted, the effect is apparent at
the device only when the next device write takes place (that
is, when the next ASREAD, FSFRCE, GSREAD, or
MSREAD call is processed).

If the segment is current when it is deleted, there will be no
current segment after this operation.

 Principal errors

ADMð145 E SEGMENT n IS UNKNOWN

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

 GSSEG

 Function

To create a segment.

 Parameters

segment-id (specified by user) (fullword integer)
A number to be associated with the segment. The number
must not be negative.

If this parameter is zero, the segment is not named and
cannot be deleted explicitly. If the number is nonzero, it
must be unique within the current page.

 Description

Creates (opens) a segment with the specified identification
number.

A segment consists of a group of graphics primitives that
share the current viewport and window.

All current primitive attributes are set to the drawing default
values when a segment is created. The current position is
set to the world-coordinate origin.

The segment created becomes the current segment, to which
subsequent primitives are added. The window and viewport
cannot be changed while a segment is being constructed.

How to renumber a segment: The following example
shows how to renumber an existing segment.

GSSEG (new) Open the new segment

GSSINC (old) Include the old segment

GSSCLS

GSQTFM (old,9,array) Query the old segment transform

GSSTFM (new,9,array) Set the new segment transform

GSQORG (old,xorg,yorg) Query old segment origin

GSSORG (new,xorg,yorg) Set new segment origin

do i = 1 to 6 Query all the segment

GSQATS (old,i,value) attributes and set the

GSSATS (new,i,value) new segment attributes

end

GSSPRI (new,old,1) Make the new segment the

same as the old segment

GSSDEL (old) Delete the old segment

The above code only renumbers an existing closed segment;
it cannot renumber an open segment.

Also, this code cannot renumber references to a segment
from other segments that use the GSCALL function.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð143 E SEGMENT IDENTIFIER n IS DUPLICATE

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

 GSSEN

 Function

To set mixed string attribute of graphics text.

 Parameters

mixed (specified by user) (fullword integer)
The mixed string attribute state. Possible values are:
0 Mixed with position; the default.
1 Mixed with position.
2 Mixed without position.

GSSEG (segment-id)

APL code 509
GDDM RCP code X'0C0C0300' (202113792)

GSSEN (mixed)

APL code 666
GDDM RCP code X'0C0C1B00' (202119936)

170 GDDM Base Application Programming Reference

 GSSINC

 Description

Specifies whether or not the mixed string in the graphics text
is to take a one-byte position between single-byte characters
and double-byte characters (DBCS, used for Kanji and
Hangeul). The setting applies only to the current page and it
is defaulted when the page is created.

An application program can present a mixed string using the
GSCHAR call. In the mixed string, single-byte and double-
byte characters are delimited by shift-out (SO) (X'0E') and
shift-in (SI) (X'0F') control codes.

If “mixed with position” is specified by GSSEN, SO and SI
control codes in the subsequent GSCHAR call take one byte
position when the string is presented.

If “mixed without position” is specified by GSSEN, SO and SI
control codes in the subsequent GSCHAR call take no posi-
tion when the string is presented.

 Principal errors

ADM3267 E MIXED CHARACTER STRING ATTRIBUTE n IS

INVALID

 GSSINC

 Function

To include a segment.

 Parameters

segment-id (specified by user) (fullword integer)
The identifier of the segment to be included.

 Description

Copies the primitives of the identified segment into the
current stream of primitives. This can be either into the open
segment or into the stream of primitives outside segments.

The copied segment must not be open when the GSSINC
call is issued. GSSINC can be issued in the middle of an
area, but the primitives that are copied must be valid within
an area if GSSINC is to complete without error.

The effect of issuing a GSSINC call is to append the copied
primitives to the current primitives, as if they had been drawn
as part of the current primitive stream. This means that the
copied primitives are drawn precisely where they were ori-

ginally drawn (although they might be clipped differently).
The current position and primitive attributes are inherited and
are set by primitives from the copied segment. For a list of
the attributes that are not inherited, see GSSCPY. GSSINC
does not restore the attribute values.

Contrast the action of this call with that of GSSCPY.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð179 E INVALID FUNCTION DURING GRAPHICS RETRIEVAL

 GSSORG

 Function

To set segment origin.

 Parameters

segment-id (specified by user) (fullword integer)
The identifier of the segment.

x (specified by user) (short floating point)
The x coordinate of the segment origin, specified in current
world coordinates.

y (specified by user) (short floating point)
The y coordinate of the segment origin, specified in current
world coordinates.

 Description

Defines the segment origin of the identified segment. The
identified segment need not be transformable. Setting a
segment origin provides a reference point about which sub-
sequent segment transformations will be performed. Note
that GDDM does not provide a visible indication of the posi-
tion of the segment origin.

When a segment is created, all primitives are drawn relative
to the window origin identified by (0,0) in world coordinates.
By default, the segment origin coincides with the window
origin at the time the segment is created.

The GSSPOS call uses the segment origin as the reference
point when it repositions the segment.

The GSSCPY call uses the segment origin to determine the
placement of the copied segment.

GSSORG (segment-id, x, y)

APL code 587
GDDM RCP code X'0C0C0311' (202113809)

GSSINC (segment-id)

APL code 632
GDDM RCP code X'0C0C1401' (202118145)

 Chapter 3. The GDDM calls 171

 GSSPOS

The GSSAGA call uses the segment origin as the center
point for rotate, shear, and scale. The results returned in the
GSQAGA call also assume this point as the center of rotate,
shear, and scale.

The GSQORG call returns the position of the segment origin
in current world coordinates.

When a segment is used as an echo for a locator-logical-
input device, the segment’s origin establishes its position.

 Principal errors

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSSPOS

 Function

To set segment position.

 Parameters

segment-id (specified by user) (fullword integer)
The identifier of the segment to be repositioned. The
segment type must be transformable; see GSSATI.

x (specified by user) (short floating point)
y (specified by user) (short floating point)

The coordinates in current window units to which the
segment is to be moved.

 Description

Displaces the identified segment and its segment origin.

By default, the segment origin coincides with the window
origin at the time the segment was created. The segment
origin can be changed by the GSSORG call or by previous
GSSPOS calls.

When a segment is created, all primitives are drawn relative
to the window origin identified by (0,0) in world coordinates.

When a segment is displaced by GSSPOS, the segment
origin is moved to the point identified by the x,y parameters
in the coordinate system currently in effect (as defined by
GSWIN). The segment transform has a displacement added
to it; the amount is the same as that by which the segment
origin was displaced. This has the effect of displacing the
segment. Repositioning a segment does not alter the size or
aspect ratio of the image displayed.

The GSQPOS call returns the origin of a transformable
segment in the current world coordinates.

If a line or other primitive contained in the segment is moved
so that it is outside the boundary of the picture space, the
results depend on the device. On the IBM 3279 display and
similar devices, parts of vectors that are outside the graphics
field boundary will not be visible.

The displacement of the segment from the local origin (0,0)
is combined with the segment’s transformable attribute;
therefore, the new position affects subsequent GSQAGA and
GSQTFM calls and the results of GSSAGA calls.

For more information, see the GDDM Base Application Pro-
gramming Guide.

 Principal errors
ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSSPRI

 Function

To set segment priority.

 Parameters

seg-id (specified by user) (fullword integer)
The identifier of the segment whose priority is to be
changed. The priority of segment 0 cannot be changed.

ref-seg-id (specified by user) (fullword integer)
The segment that identifies a position in the segment list.
The segment specified in the seg-id parameter is drawn
either immediately before or after this segment, depending
on the value specified in the order parameter. Specifying 0
for ref-seg-id indicates that the position is to be the begin-
ning or the end of the segment list, as defined by the value
in the order parameter.

order (specified by user) (fullword integer)
Specifies whether the segment named in the seg-id param-
eter is to be drawn before or after the segment named in
the ref-seg-id parameter.

Possible values are:

−1 The segment named in the seg-id parameter is to
have a lower priority than the segment named in the
ref-seg-id parameter. The seg-id segment is drawn
before the ref-seg-id segment. If 0 is specified in the
ref-seg-id parameter, the segment identified in the

GSSPOS (segment-id, x, y)

APL code 582
GDDM RCP code X'0C0C030D' (202113805)

GSSPRI (seg-id, ref-seg-id, order)

APL code 634
GDDM RCP code X'0C0C0312' (202113810)

172 GDDM Base Application Programming Reference

 GSSTFM

seg-id parameter is placed as the highest priority
segment.

1 The segment named in the seg-id parameter is to
have a higher priority than the segment named in the
ref-seg-id parameter. The seg-id segment is drawn
after the ref-seg-id segment. If 0 is specified in the
ref-seg-id parameter, the segment identified in the
seg-id parameter is placed as the lowest priority
segment.

 Description

Changes the order in which segments are drawn and
detected.

Segments are, by default, drawn in order of priority, with the
lowest priority segment (the one that was created first) being
drawn first. A new segment is given a higher priority than
any existing segment and is added to the end of the list of
segments to be drawn.

If primitives are drawn in overpaint mode, they appear on top
of primitives in lower priority segments. Primitives in the
higher priority segments are picked if they lie within the pick
aperture.

The GSSPRI call changes the segment-drawing priority, the
order in which segments are picked and, in general, it also
changes the appearance of the picture.

The GSMIX call controls the mode of drawing (overpaint,
mixed, or underpaint mode) for each primitive, but it does not
alter the order in which segments are drawn or picked.
GSSPRI can be used instead of GSMIX when the same
mode of mixing (preferably overpaint mode, the default) is
used throughout the range of segments. To overpaint a
segment, it should have the highest priority; to underpaint it,
a segment should have the lowest priority.

Primitives outside segments, and primitives in segment 0, are
always added to the end of the list of segments current at
the time they are created; both can be followed, and there-
fore over-painted, by subsequent named segments.
Changing the priority of a segment may have the effect of
redrawing the whole picture; therefore, primitives outside
segments may be erased.

 Principal errors

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADM3226 E SEGMENT n IS UNKNOWN

ADM3227 E REFERENCED SEGMENT n IS UNKNOWN

ADM3228 E SEGMENT ORDERING n IS INVALID

 GSSTFM

 Function

To set segment transform.

 Parameters

id (specified by user) (fullword integer)
The identifier of the segment.

n (specified by user) (fullword integer)
The number of elements to be used in the array parameter.
If n is less than 9, the elements omitted default to the cor-
responding elements of the identity matrix (see above).
Specifying n=0 denotes that the identity matrix is used.
Specifying six elements means that the last row is assumed
to be (0 0 1).

array (specified by user) (array of short floating-point
numbers)
The elements of the transformation matrix, in row order.
Elements 7, 8, and 9 must be 0, 0, and 1.

type (specified by user) (fullword integer)
The way in which the segment is to be set. The options
have exactly the same meaning as those in the type
parameter of the GSSAGA call. Possible values are:

0 New/replace
The call redefines the segment transform; the previous
transform is discarded.

1 Additive
The call defines a segment transform that is to be applied
after the existing transform is applied to the segment. If M
is the existing matrix and N is the matrix defined by the
GSSTFM call, the resulting transformation matrix (R) is
given by:

R = N � M

where “�” denotes matrix multiplication.

The effect is that the specified transform applies to the
primitives as displayed, and the resulting transform com-
bines all previous effects with the new one.

2 Preemptive
The call defines a segment transform that is to be applied
before the existing transform is applied to the segment. If
M is the existing matrix and N is the matrix defined by the
GSSTFM call, the resulting transformation matrix (R) is
given by:

R = M � N

where “�” denotes matrix multiplication.

GSSTFM
(id, n, array, type)

APL code 590
GDDM RCP code X'0C0C1103' (202117379)

 Chapter 3. The GDDM calls 173

 GSSVL

The effect is that the specified transform applies to the ori-
ginal (untransformed) primitives before the existing trans-
form is reapplied. The resulting transform summarizes
these two effects as a transformation of the original primi-
tives.

 Description

Sets or modifies the segment transform.

Note: GSSTFM performs the same function as the
GSSAGA call. However, GSSTFM uses a matrix form of the
transform and therefore may not be suitable for many types
of user.

GSSTFM specifies the transform as a one-dimensional array
of n elements, being the first n elements of a 3-row by
3-column matrix ordered in rows. The order of the elements
is as follows:

 Matrix Array

┌ ┐

│ a b c │

│ d e f │ (a,b,c,d,e,f,ð,ð,1)

│ ð ð 1 │

└ ┘

The last row, if specified, must be (0,0,1). The transform
acts on the coordinates of the primitives in a segment, so
that a point with coordinates (x,y) is transformed to the point
(a\x+b\y+c,d\x+e\y+f) before display, all expressed in world
coordinates.

The initial value of the transform of a segment is the identity
matrix :

 Matrix Array
┌ ┐

│ 1 ð ð │

│ ð 1 ð │ (1,ð,ð,ð,1,ð,ð,ð,1)

│ ð ð 1 │

└ ┘

For more information on using these matrixes, see the
GDDM Base Application Programming Guide.

 Principal errors
ADMð129 E ARRAY COUNT n IS INVALID

ADMð14ð E SEGMENT IDENTIFIER n IS INVALID

ADMð145 E SEGMENT n IS UNKNOWN

 GSSVL

 Function

To define segment viewing limits.

 Parameters

u1 (specified by user) (short floating point)
u2 (specified by user) (short floating point)

The left- and right-hand extents of the segment viewing
limits, in world coordinates.

v1 (specified by user) (short floating point)
v2 (specified by user) (short floating point)

The lower and upper extents of the segment viewing limits,
in world coordinates.

 Description

Explicitly defines the viewing limits of the current segment in
world coordinates.

Viewing limits can be set within a segment as clipping
extents for all subsequent primitives in the segment and any
segments it calls. They can be changed at any time within
the segment and they are not subject to segment transforma-
tions. Limits specified in called segment override those set
by the limits of the root segment.

The default clipping limit is the graphics field for all clip
modes.

The limits are reset to their default values by using zeros for
all clip modes.

The parameters supplied are checked to ensure that, with
respect to the direction of the coordinate system of the
current graphics window, the right extent is greater than the
left and that the upper extent is greater than the lower.

 Principal errors

ADMð147 E SEGMENT VIEWING LIMIT f IS INVALID

ADM3258 E SEGMENT VIEWING LIMIT f1 NOT GREATER THAN f2

ADM3259 E SEGMENT VIEWING LIMIT f1 NOT GREATER THAN f2

GSSVL (u1, u2, v1, v2)

APL code 658
GDDM RCP code X'0C0C1314' (202117908)

174 GDDM Base Application Programming Reference

 GSTA

 GSTA

 Function

To set text alignment.

 Parameters

horiz (specified by user) (fullword integer)
The horizontal alignment. Possible values are:

−1 Standard. The alignment assumed depends on the
current character direction:

Left to right (0, 1) Left edge of first character
Top to bottom (2) Left edge of first character
Right to left (3) Right edge of first character
Bottom to top (4) Left edge of first character.

0 The drawing default (initially, −1).

1 Normal. The alignment assumed depends on the
current character direction:

Left to right (0, 1) Left
Top to bottom (2) Center
Right to left (3) Right
Bottom to top (4) Center.

2 Left alignment. The string is aligned on the left edge of
its leftmost character.

3 Center alignment. The string is aligned on the arith-
metic mean of Left and Right.

4 Right alignment. The string is aligned on the right
edge of its rightmost character.

vert (specified by user) (fullword integer)
The vertical alignment. Possible values are:

−1 Standard. The alignment assumed depends on the
current character direction.

Left to right (0, 1) Bottom edge of first character
Top to bottom (2) Top edge of first character
Right to left (3) Bottom edge of first character
Bottom to top (4) Bottom edge of first character.

0 The drawing default (initially, −1).

1 Normal. The alignment assumed depends on the
current character direction:

Left to right (0, 1) Base
Top to bottom (2) Top

Right to left (3) Base
Bottom to top (4) Base.

2 Top alignment. the string is aligned on the top edge of
its topmost character.

3 Cap alignment. The string is aligned on the cap of its
topmost character. Where Cap is not defined by the
symbol set, this is the same as Top.

4 Half alignment. The string is aligned on the arithmetic
mean of Base and Cap.

5 Base alignment. The string is aligned on the base of
its bottom character. Where Base is not defined by the
symbol set, this is the same as Bottom.

6 Bottom alignment. The string is aligned on the bottom
edge of its bottom character.

 Description

Sets the alignment, in the horizontal and vertical directions,
of subsequently output text strings. The text alignment attri-
butes remain in effect until they are changed by another
GSTA call.

When a segment is created by the GSSEG call, the text
alignment attribute is set to the drawing default value.

When a segment is closed by the GSSCLS call, the text
alignment attribute is reset to the value that was in effect
when the segment was created.

The parameters specify the alignment of character strings
horizontally and vertically. Together they define a reference
point within the string that is positioned on the starting point
specified for the string.

Note: The terms “top left,” “bottom right,” and so on, are
well defined when the character angle and the direction of
the coordinate system are such that the baseline is parallel
to the x axis, running from left to right on the display, and
there is no character shear.

If the character is rotated or sheared, the term “top left”
applies to the corner of the character box that appears in the
top left when no rotation or shear is applied; see GSQTB.

For example, if the direction of the coordinate system is
changed so that low x values lie on the right-hand side of the
display, the term “top” applies to the side of the display cor-
responding to high y values, and “left” applies to the side of
the display corresponding to low x values.

 Principal errors

ADMð152 E ATTRIBUTE VALUE n IS INVALID

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

GSTA (horiz, vert)

APL code 644
GDDM RCP code X'0C0C130D' (202117901)

 Chapter 3. The GDDM calls 175

 GSTAG

 GSTAG

 Function

To set current primitive tag.

 Parameters

tag (specified by user) (fullword integer)
Contains a number that is used to identify subsequent prim-
itives. 0 means that primitives are not named, are not
detectable, and cannot be correlated.

 Description

Specifies a tag by which the following primitives are to be
known. When the operator picks a graphics object or uses
the GSCORR call to locate an object, both the segment iden-
tifier and the primitive tag of the object picked are returned to
the application program if the segment has been marked as
detectable and the object has been assigned a tag.

If a tag of zero is specified, the primitives have no name and
are not detectable by picking or by using the GSCORR call.
Initially, the current tag is zero.

Primitives within segment zero cannot be picked or corre-
lated, and any tag applied to them is ignored.

The tag remains in effect until it is changed by another
GSTAG call.

When a segment is created by the GSSEG call, the tag is
set to the drawing default value.

When a segment is closed by the GSSCLS call, the tag is
reset to the value that was in effect when the segment was
created.

The GSTAG call is not allowed between GSAREA and
GSENDA calls; thus, all primitives within an area have the
same tag.

 Principal errors

ADMð158 E INVALID FUNCTION IN AREA DEFINITION

ADM32ðð E TAG n IS INVALID

 GSUWIN

 Function

To define a uniform graphics window.

 Parameters

x1 (specified by user) (short floating point)
x2 (specified by user) (short floating point)

The graphics window coordinates of the x axis.
y1 (specified by user) (short floating point)
y2 (specified by user) (short floating point)

The graphics window coordinates of the y axis.

 Description

Defines the graphics window such that either the x axis
spans the entire width of the viewport and the y axis is within
the height of the viewport, or that the y axis spans the entire
height of the viewport and the x axis is within the width of the
viewport. The graphics window is mapped to the current
viewport such that one x-axis unit physically equals (that is,
in terms of distance) one y-axis unit. If either axis is shorter
than the width or height of the viewport, that axis is centered
within the viewport.

GSQWIN returns the actual graphics window bounds (recal-
culated with either the x axis or y axis centered) not the
values passed to the GSUWIN call.

GSUWIN allows an application program to ensure that a
circle drawn with the GSARC call appears circular without
having to compute a graphics window coordinate system of
the same aspect ratio as the current viewport.

For information on where the character box at the current
position appears if the graphics window is inverted, reversed,
inverted and reversed, or in the normal position, see
GSCHAR.

If clipping is enabled, primitives that are drawn outside the
actual graphics window bounds are not visible. For more
details, see GSWIN.

 Principal errors

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð151 E WINDOW SPECIFICATION f1{, f2} IS INVALID

GSTAG (tag) GSUWIN (x1, x2, y1, y2)

APL code 566 APL code 584
GDDM RCP code X'0C0C1000' (202117120) GDDM RCP code X'0C0C0007' (202113031)

176 GDDM Base Application Programming Reference

 GSVECM

 GSVECM

 Function

To perform vector operations.

 Parameters

n (specified by user) (fullword integer)
The total number of lines or moves to be performed.

vector (specified by user) (an array of fullword integers)
An array of operations and coordinate pairs, in the order:

(ctrl1,x1,y1,ctrl2,x2,y2,...ctrli,xi,yi,...

 ctrln,xn,yn)

where ctrli specifies whether a move is to be performed,
or a line drawn, for the ith operation. The control values
can be:
0 A move is to be performed to (xi,yi)
1 A line is to be drawn to (xi,yi).

 Description

Performs a series of operations, each of which is either
drawing a line or moving the current position to a specified
end point.

If a line is drawn, it has the color, line width, and line type
given by the current values of these attributes.

The current position is set to the last end point.

If any specified point lies outside the window boundaries, the
line that ends at that specified point, any subsequent lines,
and the current position is not defined. If clipping is enabled,
only those sections of the lines within the current window are
visible.

 Principal errors

ADMð146 E ARRAY COUNT n IS INVALID

ADMð153 E CONTROL VALUE n IS INVALID

 GSVIEW

 Function

To define a viewport.

 Parameters

x1 (specified by user) (short floating point)
x2 (specified by user) (short floating point)

The left and right viewport boundaries in picture-space
units. The number specified in x1 must not exceed that in
x2.

y1 (specified by user) (short floating point)
y2 (specified by user) (short floating point)

The lower and upper viewport boundaries in picture-space
units. The number specified in y1 must not exceed that in
y2.

 Description

Explicitly specifies the current viewport boundaries in picture-
space units. A GSQPS call can be used to determine what
the picture-space units are (they are device-dependent if
defaulted). See Figure 12 on page 178. By default, the
viewport takes up the whole of the picture space.

A viewport is a region of the total picture space. Viewports
can be used to position the parts of a composite picture.
The viewport boundaries are parallel to those of the picture
space, and must be entirely within the defined or defaulted
picture space.

When the picture space of a graphics field is defined or
defaulted, the current viewport is set to cover the complete
picture space. By default , therefore, the viewport covers the
picture space.

Note: GSVIEW does not change the graphics window; see
GSWIN.

 Principal errors

ADMð142 E VIEWPORT BOUNDARY f OUTSIDE PICTURE SPACE

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð165 E VIEWPORT UPPER BOUNDARY f1 LESS THAN OR

EQUAL TO f2

ADMð166 E VIEWPORT RIGHT BOUNDARY f1 LESS THAN OR

EQUAL TO f2

GSVECM (n, vector) GSVIEW (x1, x2, y1, y2)

APL code 531 APL code 504
GDDM RCP code X'0C0C040A' (202114058) GDDM RCP code X'0C0C0003' (202113027)

 Chapter 3. The GDDM calls 177

 GSWIN

viewport 2

viewport 1

(, .5) (.5, .5) (1, .5)

(0, 0) (.5, 0) (1, 0)

(0, .25) (1, .25)

Picture space coordinates

Viewport 1

0.0

0.5

0.0

0.25

Viewport 2

0.5

1.0

0.25

0.5

Boundary

Left

Right

Lower

Upper

Figure 12. Example of how a viewport is defined (GSVIEW)

 GSWIN

 Function

To define a graphics window.

 Parameters

u1 (specified by user) (short floating point)
u2 (specified by user) (short floating point)

The left-hand and right-hand boundaries of the graphics
window. The boundary specified by the u1 value is
mapped to the left-hand edge of the viewport, and the
boundary specified by the u2 value is mapped to the right-
hand edge.

v1 (specified by user) (short floating point)
v2 (specified by user) (short floating point)

The lower and upper boundaries of the graphics window.
The boundary specified by the v1 value is mapped to the
bottom of the viewport, and the boundary specified by the
v2 value is mapped to the top.

 Description

Explicitly defines the graphics window that corresponds to
the viewport. In other words, it specifies the coordinate
system (world coordinates) to be used in the viewport.

The graphics window specification is used to position all
graphics primitives on the current page until a new graphics
window is specified. Before the first GSWIN call is issued, a
default graphics window of (0,100,0,100) is in force. All
graphics primitives in a segment must have the same
graphics window.

For information on where the character box at the current
position appears if the graphics window is inverted, reversed,
inverted and reversed, or in the normal position, see
GSCHAR.

If the mapping of the graphics window to the viewport is such
that one x-axis unit does not physically equal one y-axis unit,
the resultant pictures might appear “squashed” – for
example, circles drawn using the GSARC call might appear
elliptical.

If clipping is in effect, no part of a primitive (line, arc, char-
acter, or area) is visible outside the graphics window, with
the exception of mode-1 and mode-2 symbols (see
GSCHAR) and images (see GSIMG).

For another method of specifying graphics windows, see
GSUWIN.

Note: Graphics defined at the boundaries of the graphics
window may not appear.

GSWIN (u1, u2, v1, v2)

APL code 505
GDDM RCP code X'0C0C0002' (202113026)

178 GDDM Base Application Programming Reference

 IMACLR

 Principal errors

ADMð15ð E GRAPHICS SEGMENT n IS CURRENT

ADMð151 E WINDOW SPECIFICATION f1{, f2} IS INVALID

 IMACLR

 Function

To clear a rectangle in an image.

 Parameters

id (specified by user) (fullword integer)
The image in which the rectangle is to be cleared.

left-edge (specified by user) (fullword integer)
right-edge (specified by user) (fullword integer)

The columns of pixels that form the left and right edges of
the rectangle. The columns are included in the rectangle.
The parameter left-edge must be in the range 0 through
229–2 and right-edge must be in the range –1 through
229–2.

top-edge (specified by user) (fullword integer)
bottom-edge (specified by user) (fullword integer)

The rows of pixels that form the top and bottom edges of
the rectangle. The rows are included in the rectangle. The
parameter top-edge must be in the range 0 through 229–2
and bottom-edge must be in the range –1 through 229–2.

Note: If left-edge is set to “n” and right-edge is set to
“n–1,” zero width is implied, and, if top-edge is set to “n” and
bottom-edge is set to “n–1,” zero depth is implied.

 Description

Resets all pixels in the specified rectangle within the given
image to their initial value (all zero for bi-level image).

This call can be used to clear a writable device image (for
example, id=0), but not a read-only input device.

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3358 E IMAGE n DOES NOT EXIST

ADM3361 E IMAGE NOT WRITEABLE

ADM3362 E INVALID RECTANGLE COORDINATE VALUE

ADM3363 W RIGHT/BOTTOM EDGE EXCEEDS H-PIXELS/V-PIXELS

 IMACRT

 Function

To create an image.

 Parameters

id (specified by user) (fullword integer)
The new image. It must be −1, corresponding to a
scanner, or greater than zero, corresponding to an applica-
tion image, and must not be the identifier of an existing
image. Zero is reserved for the current device image and
cannot explicitly be created.

h-pixels (specified by user) (fullword integer)
The horizontal size of the image, in numbers of pixels. If
zero is used, an image containing no pixels is created.

v-pixels (specified by user) (fullword integer)
The vertical size of the image, in numbers of pixels. If zero
is used, an image containing no pixels is created.

im-type (specified by user) (fullword integer)
The type of image to be created.

0 Default, same as 1
1 Bi-level image (one bit per pixel).

res (specified by user) (fullword integer)
The resolution flag for the image. This specifies whether
the image is to have a defined or undefined resolution.
When an image has an undefined resolution, the values of
the h-res and v-res fields of the image are ignored during
image manipulations.

When a scanner image is created with an undefined resol-
ution, subsequent scanning is set at the resolution currently
set on the scanner, but the images resulting from this have
undefined resolution.

Projections containing extracts in real units cannot be
applied to images with undefined resolution; see IMREXR.

0 undefined resolution; that is, raw data. Image manipu-
lations using this image are performed using a pixel-to-
pixel mapping.

1 defined resolution; the image has a defined size in real
units.

res-unit (specified by user) (fullword integer)
The units for the h-res and v-res parameters. The value of
res-unit parameter is used only to interpret the h-res and
v-res parameters, and is not subsequently associated with
the image in any way.

IMACRT (id, h-pixels, v-pixels, im-type, res, res-unit,
h-res, v-res)

APL code 1601
GDDM RCP code X'3C010001' (1006698497)

IMACLR (id, left-edge, right-edge, top-edge, bottom-
edge)

APL code 1604
GDDM RCP code X'3C010008' (1006698504)

 Chapter 3. The GDDM calls 179

 IMADEL

0 inches
1 meters

h-res (specified by user) (short floating point)
v-res (specified by user) (short floating point)

The number of pixels in the horizontal or vertical direction
per unit of measure defined by res-unit . When the res
parameter is zero, the values of h-res and v-res are copied
into the image, but they are not used in image manipu-
lations until res is set to 1.

Values of 0 can be given for these parameters if res is 0,
providing that res is not subsequently changed to 1 using
IMARF. It is an error if an image with zero h-res and v-res
is used in this way.

The values of h-res and v-res must be the same for any
image that is to be retrieved by an IMAGT sequence
(IMAGTS, IMAGT, IMAGTE) using PPF format and IBM
3800 compression.

 Description

Creates an image of the specified horizontal and vertical
size, type, and resolution and associates it with the specified
identifier.

When created, images contain initial pixel values, defined to
be zeros for bi-level image.

The identifier id can be any value that does not correspond
to an already existing image. If the value of id has not been
determined using IMAGID, it should be either –1, or a
number in the range 1 through 230–1, so as not to conflict
with values reserved by IMAGID, which are in the range 230

through 231–1. If id was returned by IMAGID, it is no longer
reserved after IMACRT.

The IMACRT call can be used to define the attributes of a
scanner image by specifying id equal to −1. The image size
usually specifies the paper size.

For a 3118 scanner, the image is defined to be centered
over the vertical center line of the paper and aligned with the
top edge. Note that the paper-feed mechanism of the 3118
scanner automatically aligns the paper over the center of the
scanner sensor array.

For a 3117 scanner, the image is defined to be aligned on
the top, and left edges of the scanner bed.

 Principal errors

ADM335ð E IMAGE n ALREADY EXISTS

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3352 E IMAGE n1 HORIZONTAL SIZE n2 IS INVALID

ADM3353 E IMAGE n1 VERTICAL SIZE n2 IS INVALID

ADM3354 E IMAGE n1 TYPE n2 IS INVALID

ADM3355 E IMAGE n1 RESOLUTION FLAG n2 IS INVALID

ADM3356 E IMAGE n1 RESOLUTION UNIT n2 IS INVALID

ADM3357 E IMAGE n INVALID H-RES OR V-RES f FOR RES=1

ADM347ð E SCANNER DOES NOT EXIST

ADM3474 E SCANNER DOES NOT SUPPORT H-RES/V-RES OF

f1/f2

ADM3475 E IMAGE n1 UNSUPPORTED HORIZONTAL SIZE n2

PIXELS

ADM3476 E IMAGE n1 UNSUPPORTED VERTICAL SIZE n2 PIXELS

 IMADEL

 Function

To delete the image associated with the identifier.

 Parameters

id (specified by user) (fullword integer)
The image to be deleted.

 Description

Deletes the image associated with the specified identifier.
The identifier returns to its initial state, that is, before it was
associated with the image.

When the id is –1 (the scanner), the paper is ejected, and
the scanner is disconnected from the current device.

IMADEL cannot be used for image 0 (the current image
field).

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3358 E IMAGE n DOES NOT EXIST

 IMAGID

 Function

To get and reserve a unique image identifier.

IMADEL (id)

APL code 1603
GDDM RCP code X'3C010007' (1006698503)

IMAGID (id)

APL code 1600
GDDM RCP code X'3C010002' (1006698498)

180 GDDM Base Application Programming Reference

 IMAGT

 Parameters

id (returned by GDDM) (fullword integer)
An identifier for which no image exists and which is not
reserved.

 Description

Reserves a free image identifier with a value in the range 230

through 231–1, and returns this value in id . A free identifier
is one that does not currently have an image associated with
it and is not currently reserved. The identifier remains
reserved until an image is created specifying that identifier,
or until an FSTERM call is made.

The IMAGID call can be used to obtain identifiers that do not
conflict with those used by other parts of the application.

Identifiers in the range 230 through 231–1 should only be
used when obtained using the IMAGID call, as GDDM
internally-generated images (such as for device emulation)
also have identifiers in this range.

 Principal errors

None.

 IMAGT

 Function

To retrieve image data from an image.

 Parameters

id (specified by user) (fullword integer)
The identifier of the image from which data is to be
retrieved. This must be the same as on a previous call to
IMAGTS.

buffer-length (specified by user) (fullword integer)
The number of bytes of buffer that are available to receive
the image data. This must be at least 80 bytes, except for
3800 compression, when a minimum of 400 bytes is recom-
mended.

buffer (returned by GDDM) (character)
A data area, of at least the specified length, to receive the
image data.

data-length (returned by GDDM) (fullword integer)
The length of image data placed in the buffer by GDDM. If
it is zero, all the image data has been returned.

 Description

Retrieves image data from the specified image, and places it
into a buffer. The image data is returned in the format and
compression specified on the call to IMAGTS, which must
previously have been issued to start image retrieval from the
specified image.

IMAGTx sequences are transfer operations; for more infor-
mation, see the GDDM Base Application Programming
Guide.

More than one IMAGT call is usually needed to retrieve all of
the image data. If this is the case, the result depends on the
format in use:

For unformatted and 3193 data stream format, buffer-
length bytes of data are placed in each buffer except
the last, data-length being set to the value of buffer-
length . The last buffer contains the remaining data,
data-length being set to indicate the actual number of
bytes placed in the buffer; that is, a number in the range
1 through buffer-length . The remainder of the last
buffer is filled with zeros. Subsequent calls to IMAGT
give a data-length of zero, indicating “end of data,” in
which case the contents of the buffer are unaltered.

The data returned by IMAGT for unformatted and 3193
data-stream format can be entered into another image
using the IMAPT call with the same value of buffer-
length . It is not necessary to use a short length for the
final buffer.

Note: It is possible to use an IMAGT call to retrieve
data directly from a scanner if specific restrictions are
observed; this can reduce the amount of host processing
time required. For more information, see the GDDM
Base Application Programming Guide.

For page printer format, less than buffer-length bytes of
data are usually placed in each buffer, data-length
being set to indicate the actual number of bytes placed
in the buffer; that is, a value in the range 1 through
buffer-length . The remainder of the buffer is filled with
zeros. When all the data has been returned, calls to
IMAGT give a data-length of 0, indicating “end of data,”
in which case, the contents of the buffer are unaltered.

Note: If the compression on the preceding IMAGTS call is
specified as 3800, an image with an h-pixels value greater
than 8000 pixels is truncated to 8000 pixels. A warning
message is issued.

 Principal errors
ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3379 E INVALID BUFFER LENGTH

ADM3384 E NO PRECEDING IMAGTS CALL

ADM3385 E BUFFER LENGTH TOO SMALL

IMAGT (id, buffer-length, buffer, data-length)

APL code 1613
GDDM RCP code X'3C010015' (1006698517)

 Chapter 3. The GDDM calls 181

 IMAGTE

 IMAGTE

 Function

To end retrieval of data from an image.

 Parameters

id (specified by user) (fullword integer)
Specifies the identifier of the image for which retrieval is
ended. This must be the same as on a previous call to
IMAGTS.

 Description

Ends the retrieval of image data from the specified image.

The function can be called whether or not all image data has
been retrieved by calls to IMAGT.

IMAGTx sequences are transfer operations; for more infor-
mation, see the GDDM Base Application Programming
Guide.

 Principal errors
ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3384 E NO PRECEDING IMAGTS CALL

 IMAGTS

 Function

To start retrieval of data from an image.

 Parameters

id (specified by user) (fullword integer)
The application or device image for which retrieval is
started. Device image identifiers are allowed, as follows:
−1 Scanner input from the current device.

0 The image on the current GDDM page.
>0 Application images.

proj-id (specified by user) (fullword integer)
The projection to be applied.

format (specified by user) (fullword integer)
The format of the image. Possible values are:
0 Default (same as 2).
1 Unformatted.
2 3193 data stream format.
3 Page printer format.

The following values of format exist to allow the entry of
image data coming from a source that defines 1=black ; that
is, the opposite of that defined by GDDM. This feature is
provided because the supported formats do not uniquely
define which values map to black and which to white. If a
later release of GDDM supports a level of 3193 data-stream
format or page printer format that does allow polarity within
the format, the sign of the operand in existing application
programs will be ignored.
−1 Unformatted, where a pixel value of 1 indicates black.
−2 3193 data stream formats, where a pixel value of 1

indicates black.
−3 Page printer formats, where a pixel value of 1 indi-

cates black.
compression (specified by user) (fullword integer)

The compression type of the image. Possible values are:
0 Default (same as 1).
1 Uncompressed.
2 MMR (IBM 8815).
3 IBM 4250.
4 IBM 3800.

Only specific combinations of format and compression are
allowed; these are defined as follows:

Where:

MMR = modified-modified read
3193DSF = 3193 data stream format
PPF = page printer format.

 Description

Starts a “get” sequence, that is, the retrieval of image data
from a specified image. The call is followed by one or more
calls to IMAGT, specifying the same image. The image data
is retrieved in the specified format and compression. The
retrieval process must be ended by a call to IMAGTE.

IMAGTx sequences are transfer operations and therefore a
projection is applied to the data; for more information, see
the GDDM Base Application Programming Guide.

While retrieval is in progress, other images can be accessed,
but the specified image can only be accessed by IMAGT or
IMAGTE, or it can be deleted by IMADEL.

IMAGTE (id)

APL code 1614
GDDM RCP code X'3C010016' (1006698518)

 1
Unformatted

2
3193DSF

3
PPF

1 Uncompressed √ √
2 MMR (IBM 8815) √ √ √
3 IBM 4250 √
4 IBM 3800 √

IMAGTS (id, proj-id, format, compression)

APL code 1612
GDDM RCP code X'3C010014' (1006698516)

182 GDDM Base Application Programming Reference

 IMAPT

When the source of the transfer operation is a scanner, an
implicit FSFRCE is performed to ensure that the screen con-
tents are up to date and ready for any echoing that may be
done. All I/O is performed for the current page. If there is
no image field in the current page, one is created. All
echoing is to the current image field. The effect of echoing is
such that the scanned image is transferred to the image field
with the same projection; that is, as if the application had
issued:

IMXFER (−1,ð,proj-id)

followed by FSFRCE. Whenever possible, the echoing is
performed by the device. The ISCTL values are used to
determine the required quality of echoing, and thus whether
echoing is performed by the device, or by GDDM; for more
information, see the GDDM Base Application Programming
Guide.

It is not possible to start an IMAGT sequence from image –1
while an IMAPT sequence to the display (image 0) is in
progress.

 Principal errors
ADM3366 E INVALID SOURCE IMAGE IDENTIFIER

ADM3367 E SOURCE IMAGE DOES NOT EXIST

ADM3368 E SOURCE IMAGE NOT READABLE

ADM3369 E PROJECTION USES INCHES/METERS FOR SOURCE

WITH NO RESOLUTION

ADM3373 E INVALID IMAGE FORMAT

ADM3374 E INVALID IMAGE COMPRESSION

ADM3375 E COMPRESSION n1 IS NOT VALID FOR FORMAT n2

ADM3378 E IMAGE ENTRY OR RETRIEVAL ALREADY INITIALIZED

FOR IMAGE n

ADM3388 E IMAGE NOT SUITABLE FOR GET SEQUENCE IN

REQUESTED FORMAT

ADM339ð E IMAGE (AFTER PROJECTION APPLIED) UNSUITABLE

FOR REQUESTED FORMAT

ADM3391 W ONLY n1 OUT OF n2 TRANSFORMS WILL BE

PROCESSED

ADM3392 I OVERLAPPED TARGET RECTANGLES MAY GIVE

INCORRECT RESULTS

ADM3393 I SCALE FACTOR n1 APPROXIMATED TO n2

ADM3394 I SCALING ALGORITHM n1 APPROXIMATED TO n2

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð3 W NO IMAGE DATA TRANSFERRED

ADM3477 E SCANNER NOT READY. MAY BE SWITCHED OFF

ADM3478 E NO PAPER IN SCANNER

ADM3479 E SCANNER LAMP INTENSITY IS TOO LOW

ADM348ð E SCANNER PAPER JAM

ADM3481 E UNRECOVERABLE SCANNER ERROR OCCURRED

ADM3482 E PROJECTION WOULD REQUIRE SCANNER TO RESCAN

ADM3483 E SCANNER DISCONNECTED

ADM3484 W GRAY-SCALE TRANSFORMS MAY BE SIMPLIFIED TO

MEET SCANNER CAPABILITIES

 IMAPT

 Function

To enter data into an image.

 Parameters

id (specified by user) (fullword integer)
The identifier of the image into which the image data is to
be entered. This must be the same as on a previous call to
IMAPTS.

If the image does not exist, and the data is formatted or
compressed, the image is created implicitly from the data
presented on the first call to IMAPT for the image. If such
an image is not completely filled by subsequent calls to
IMAPT, it is an error and the incomplete image is deleted.

If the value of id was not obtained by means of an IMAGID
call, it should be in the range 0 through 230–1, so as not to
conflict with the values reserved by IMAGID, which are in
the range 230 through 231–1. If id was returned by
IMAGID, it is no longer preserved after a call to IMAPTS.

buffer-length (specified by user) (fullword integer)
The number of bytes of buffer containing the image data.
In non-XA environments, the buffer must not be greater
than 32Kb.

buffer (specified by user) (character)
A data area of at least the specified length containing all or
part of the image data, in the format specified by the call to
IMAPTS for the image.

 Description

Enters image data into the specified image.

The image data must be in the format and compression
specified on the call to IMAPTS, which must have been
made before this call to start image data entry to the speci-
fied image.

Enough calls to IMAPT should be issued until the image is
filled. On the call to IMAPT that contains the last part of the
image, any data from the final pixel (or for formatted or MMR
compressed data, the end of the last structure) to the end of
the buffer is ignored, and no error message is issued. Sub-
sequent IMAPT calls in this sequence are an error.

Note: For formatted data, IMAPTx sequences are transfer
operations; for more information, see the GDDM Base Appli-
cation Programming Guide.

IMAPT (id, buffer-length, buffer)

APL code 1610
GDDM RCP code X'3C010012' (1006698514)

 Chapter 3. The GDDM calls 183

 IMAPTE

 Principal errors

ADM337ð E INVALID TARGET IMAGE IDENTIFIER

ADM3371 E TARGET IMAGE NOT WRITEABLE

ADM3372 E PROJECTION USES IMRPLR WITH FRACTIONAL

COORDINATES. TARGET MUST EXIST

ADM3379 E INVALID BUFFER LENGTH

ADM338ð E INVALID DATA FOR SPECIFIED FORMAT OR

COMPRESSION

ADM3381 E NO PRECEDING IMAPTS CALL

ADM3382 W IMAGE IS FULL

ADM3387 E PROJECTION USES INCHES/METERS FOR TARGET

WITH NO RESOLUTION

ADM3391 W ONLY n1 OUT OF n2 TRANSFORMS WILL BE

PROCESSED

ADM3392 I OVERLAPPED TARGET RECTANGLES MAY GIVE

INCORRECT RESULTS

ADM3393 I SCALE FACTOR n1 APPROXIMATED TO n2

ADM3394 I SCALING ALGORITHM n1 APPROXIMATED TO n2

ADM34ð2 E PROJECTION DOES NOT EXIST

 IMAPTE

 Function

To end data entry into an image.

 Parameters

id (specified by user) (fullword integer)
The identifier of the image for which entry is ended. This
must be the same as on a previous call to IMAPTS.

 Description

Ends entry of image data to the specified image.

If the function is called before the image has been filled by
calls to IMAPT, a warning message is issued and the
remainder of the image is undefined.

Note: For formatted data, IMAPTx sequences are transfer
operations; for more information, see the GDDM Base Appli-
cation Programming Guide.

 Principal errors
ADM337ð E INVALID TARGET IMAGE IDENTIFIER

ADM3371 E TARGET IMAGE NOT WRITEABLE

ADM3372 E PROJECTION USES IMRPLR WITH FRACTIONAL

COORDINATES. TARGET MUST EXIST

ADM3381 E NO PRECEDING IMAPTS CALL

ADM3383 W IMAGE NOT FILLED

ADM3387 E PROJECTION USES INCHES/METERS FOR TARGET

WITH NO RESOLUTION

ADM3389 E FORMATTED OR COMPRESSED DATA INCOMPLETE. PUT

SEQUENCE CANCELED

ADM3391 W ONLY n1 OUT OF n2 TRANSFORMS WILL BE

PROCESSED

ADM3392 I OVERLAPPED TARGET RECTANGLES MAY GIVE

INCORRECT RESULTS

ADM3393 I SCALE FACTOR n1 APPROXIMATED TO n2

ADM3394 I SCALING ALGORITHM n1 APPROXIMATED TO n2

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð3 W NO IMAGE DATA TRANSFERRED

 IMAPTS

 Function

To start data entry into an image.

 Parameters

id (specified by user) (fullword integer)
The identifier of the image that receives the data. Output
device images can be specified; that is, zero, which identi-
fies the image on the current GDDM page. In this case the
projection may be evaluated in the device.

If the image does not exist, and the data is formatted or
compressed, the image is created implicitly from the data
presented on the first call or calls to IMAPT for the image.
If such an image is not completely filled by subsequent
calls to IMAPT, it is an error and the incomplete image is
deleted. For unformatted-uncompressed data, the image
must exist before the IMAPTS call is performed.

If the value of id was not obtained using an IMAGID call, it
should be in the range 0 through 230–1, so as not to conflict
with values reserved by IMAGID, which are in the range 230

through 231–1. If id was returned by IMAGID, it is no
longer reserved after IMAPTS.

proj-id (specified by user) (fullword integer)
A projection to be applied. For unformatted data that is not
MMR-compressed, only 0 (the identity projection) is
allowed.

format (specified by user) (fullword integer)
The format of the image. Possible values are:

0 Default (same as 2).
1 Unformatted.
2 3193 data stream format.
3 Page printer format, or 8815 data stream format.

IMAPTS (id, proj-id, format, compression)

APL code 1609
GDDM RCP code X'3C010011' (1006698513)

IMAPTE (id)

APL code 1611
GDDM RCP code X'3C010013' (1006698515)

184 GDDM Base Application Programming Reference

 IMAQRY

The following values of format exist to allow the entry of
image data coming from a source that defines 1=black ; that
is, the opposite of that defined by GDDM. This feature is
provided because the supported formats do not uniquely
define which values map to black and which to white. If a
later release of GDDM supports a level of 3193 data-stream
format or page printer format that does allow polarity within
the format, the sign of the operand in existing application
programs will be ignored.

−1 Unformatted, where a pixel value of 1 indicates black.
−2 3193 data stream formats, where a pixel value of 1

indicates black.
−3 Page printer formats, where a pixel value of 1 indi-

cates

Only specific combinations of format and compression are
allowed; for further information, see the description of the
IMAGTS call.

compression (specified by user) (fullword integer)
The compression type of the image. Possible values are:

0 For formatted data, the compression is to be deter-
mined by inspection of the data. For unformatted data
(that is, format=1), this is the same as option 1.

1 Uncompressed.
2 MMR (IBM 8815).
3 IBM 4250.
4 IBM 3800.

Only specific combinations of format and compression are
allowed; for further information, see the description of the
IMAGTS call.

 Description

Starts a “put” sequence; that is, it initializes the process of
data entry to a specified image.

The call is followed by one or more calls to IMAPT, speci-
fying the same image and giving data in the specified format
and compression. The process must be ended by a call to
IMAPTE.

For formatted data and unformatted-MMR data, IMAPTx
sequences are transfer operations, with all the usual rules
applying; for more information, see the GDDM Base Applica-
tion Programming Guide.

For data that is unformatted and uncompressed, a proj-id of
zero must be specified.

While scanning is in progress, and an IMAGT sequence from
image –1 is being performed, it is not possible to start a
IMAPT sequence to the display (image 0). The scanner
echo facility (ISESCA) provides this function and ensures
that the maximum amount of processing is off-loaded to the
display and scanner, within the quality requirements set by
ISCTL and ISXCTL.

 Principal errors

ADM337ð E INVALID TARGET IMAGE IDENTIFIER

ADM3373 E INVALID IMAGE FORMAT

ADM3374 E INVALID IMAGE COMPRESSION

ADM3375 E COMPRESSION n1 IS NOT VALID FOR FORMAT n2

ADM3376 E PROJECTION-ID MUST BE ZERO FOR UNFORMATTED

DATA

ADM3377 E IMAGE DOES NOT EXIST. FORMATTED DATA

REQUIRED

ADM3378 E IMAGE ENTRY OR RETRIEVAL ALREADY INITIALIZED

FOR IMAGE n

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

 IMAQRY

 Function

To query attributes of an image.

 Parameters

id (specified by user) (fullword integer)
The image whose attributes are to be returned. If a device
image is specified, (for example, id=0), the attributes of this
are returned.

h-pixels (returned by GDDM) (fullword integer)
The horizontal size of the image, in numbers of pixels.

v-pixels (returned by GDDM) (fullword integer)
The vertical size of the image, in numbers of pixels.

im-type (returned by GDDM) (fullword integer)
The data type of pixels in the image. Only bi-level is cur-
rently supported.
1 Bi-level image, (one bit per pixel).

res (returned by GDDM) (fullword integer)
Indicates whether or not the image has a defined resol-
ution. Possible values are:
0 undefined resolution; that is, raw data.

Image manipulations using this image are performed
using a pixel-to-pixel mapping.

1 defined resolution.
The image has a defined size in real units.

res-unit (specified by user) (fullword integer)
The units in which to return the h-res and and v-res
values. This need not be the same as the value supplied
on the IMACRT call that created the image.
0 inches.
1 meters.

IMAQRY (id, h-pixels, v-pixels, im-type, res, res-unit,
h-res, v-res)

APL code 1619
GDDM RCP code X'3C010004' (1006698500)

 Chapter 3. The GDDM calls 185

 IMARES

h-res (returned by GDDM) (short floating point)
v-res (returned by GDDM) (short floating point)

The number of pixels in the horizontal or vertical direction
per unit of measure defined by res-unit . When res is zero,
the values of h-res and v-res that are returned are the
most recent values set, although if res is zero, these values
will not have been used in image manipulations.

 Description

Returns the current attributes of the specified image. These
values reflect any changes resulting from operations that
alter image attributes.

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3356 E IMAGE n1 RESOLUTION UNIT n2 IS INVALID

ADM3358 E IMAGE n DOES NOT EXIST

 IMARES

 Function

To convert the resolution attributes of an image.

 Parameters

id (specified by user) (fullword integer)
The image for resolution conversion. This must not be zero
(image on the current GDDM page) but it can be –1.

res-unit (specified by user) (fullword integer)
The units for the h-res and v-res parameters. Possible
values are:
0 Inches.
1 Meters.

h-res (specified by user) (short floating point)
v-res (specified by user) (short floating point)

The number of pixels in the horizontal or vertical direction
per unit of measure defined by res-unit .

alg (specified by user) (fullword integer)
The resolution-conversion/scaling algorithm to be used
when resolution conversion is performed on the image.
Possible values are:
0 Default, same as 1.
1 Pixel replication.

Pixels are replicated when new pixels are required on
scaling up, and are deleted when scaling down.

2 Black pixel retention.
Pixels are replicated when new pixels are required on
scaling up, but when scaling down white pixels are

deleted in preference to adjacent black pixels. This
algorithm is an improvement over pixel replication for
images containing black on white text or graphics.

3 White pixel retention.
Pixels are replicated when new pixels are required on
scaling up, but when scaling down black pixels are
deleted in preference to adjacent white pixels. This
algorithm is an improvement over pixel replication for
images containing white on black text or graphics.

 Description

Converts the resolution attributes of the specified image to
the values given.

If the image has undefined resolution, that is the res field of
the image has the value 0, the effect of IMARES is to
change only the h-res and v-res fields of the image, while
the image data is not changed. The alg parameter is
ignored.

If the image has defined resolution, that is, the res field of
the image has the value 1, the effect of IMARES is to scale
the image data and modify the h-res and v-res fields by the
corresponding amount. The effect is that the size of the
image in real units is unchanged, but that the h-pixels and
v-pixels are scaled by the ratios of the new and old h-res
and v-res values.

A scanner image can only have defined a resolution that it
supports. The supported resolutions can be queried with the
ISQRES call. If a scanner image is specified, the algorithm
parameter of IMARES is ignored, the next image being
scanned at the new resolution.

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3356 E IMAGE n1 RESOLUTION UNIT n2 IS INVALID

ADM3357 E IMAGE n INVALID H-RES OR V-RES f FOR RES=1

ADM3358 E IMAGE n DOES NOT EXIST

ADM336ð E INVALID RESOLUTION/SCALING ALGORITHM

ADM3474 E SCANNER DOES NOT SUPPORT H-RES/V-RES OF

f1/f2

 IMARF

 Function

To change resolution flag of an image.

IMARES (id, res-unit, h-res, v-res, alg)

APL code 1602
GDDM RCP code X'3C010006' (1006698502)

IMARF (id, flag)

APL code 1620
GDDM RCP code X'3C01000C' (1006698508)

186 GDDM Base Application Programming Reference

 IMARST

 Parameters

id (specified by user) (fullword integer)
The identifier of the image. Zero (the image on the current
GDDM page) and –1 (for the 3117 or 3118 scanner) can be
specified.

flag (specified by user) (fullword integer)
Specifies the new value for the res field of the image. Pos-
sible values are:
0 Undefined resolution.
1 Defined resolution.

If this is specified, the h-res and v-res attributes of the
image must have valid values. Negative and zero
values are not allowed.

 Description

Changes an image from undefined-resolution state (that is,
raw data) to defined-resolution state, and the converse.
If an image has a res attribute of 1, it has defined resolution.
If an image has a res attribute of 0, it has undefined resol-
ution.

When an image has defined resolution, the h-res and v-res
fields of the image specify the number of pixels per unit
length, and hence define real dimensions of the image.
When an image has undefined resolution, the h-res and
v-res fields of the image are not used by GDDM. In this
state, GDDM does not alter the values of h-res and v-res ,
except when requested using the IMARES call.

A scanner image can only have a defined resolution that it
supports. The supported resolutions can be queried with the
ISQRES call.

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3355 E IMAGE n1 RESOLUTION FLAG n2 IS INVALID

ADM3358 E IMAGE n DOES NOT EXIST

ADM3359 E IMAGE n HAS INVALID H-RES/V-RES

ADM3471 E SCANNER DOES NOT SUPPORT AN IMAGE n PIXELS

{DEEP|WIDE}

ADM3472 E SCANNER DOES NOT SUPPORT SPECIFIED

H-RES/V-RES

 IMARST

 Function

To restore image from auxiliary storage.

 Parameters

id (specified by user) (fullword integer)
The image to be loaded. A device image can be specified
(for example, id=0) provided it is writable, in which case the
projection can be evaluated in the device.

proj-id (specified by user) (fullword integer)
The projection to be applied.

name (specified by user) (8-byte character string)
The name (left-justified) of the image to be loaded from
auxiliary storage.

count (specified by user) (fullword integer)
The number of characters in the descr parameter to be
used to receive the descriptive record. This must not
exceed 253.

descr (returned by GDDM) (character)
A character string, of at least count bytes, the first count of
which are to receive, left justified, the descriptive record
that was saved with the image. If the length of the
descriptor is greater than count , it is truncated on the right.
If it is less, it is padded on the right with blanks.

 Description

Restores an image from the GDDM object library. IMARST
is a transfer operation call, and therefore, if the image does
not exist before the IMARST call, a new one is created. If
the image does exist before the IMARST call, the incoming
data is merged with the existing image, according to the
usual transfer operation rules.

If the value of id is explicitly given, it should be in the range
0 through 230–1, so as not to conflict with values reserved by
IMAGID, which are in the range 230 through 231–1. If id was
returned by IMAGID, it is not reserved after a call to
IMARST.

 Principal errors

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð313 E FILE 'a' HAS INVALID RECORD CONTENT

ADM3364 E INVALID DESCRIPTOR COUNT VALUE

ADM337ð E INVALID TARGET IMAGE IDENTIFIER

ADM3371 E TARGET IMAGE NOT WRITEABLE

ADM3372 E PROJECTION USES IMRPLR WITH FRACTIONAL

COORDINATES. TARGET MUST EXIST

ADM3387 E PROJECTION USES INCHES/METERS FOR TARGET

WITH NO RESOLUTION

ADM3391 W ONLY n1 OUT OF n2 TRANSFORMS WILL BE

PROCESSED

ADM3392 I OVERLAPPED TARGET RECTANGLES MAY GIVE

INCORRECT RESULTS

ADM3393 I SCALE FACTOR n1 APPROXIMATED TO n2

ADM3394 I SCALING ALGORITHM n1 APPROXIMATED TO n2

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð3 W NO IMAGE DATA TRANSFERRED

IMARST (id, proj-id, name, count, descr)

APL code 1608
GDDM RCP code X'3C01000B' (1006698507)

 Chapter 3. The GDDM calls 187

 IMASAV

 IMASAV

 Function

To save image on auxiliary storage.

 Parameters

id (specified by user) (fullword integer)
The image to be saved. A device image can be specified if
it is readable.

proj-id (specified by user) (fullword integer)
The projection to be applied.

name (specified by user) (8-byte character string)
The name (left-justified) to be given to the image object on
auxiliary storage. This must be a valid external object
name for the subsystem being used; see Chapter 11,
“Image file formats” on page 311.

count (specified by user) (fullword integer)
The number of characters in the descr parameter to be
saved. This must not exceed 253.

descr (specified by user) (character)
A character string, of at least count bytes, the first count
bytes of which are to be saved with the image as a descrip-
tive record.

protect-flag (specified by user) (fullword integer)
Specifies whether or not to protect an existing file from
being overwritten. Possible values are:
0 Do not protect an existing file (allow overwriting).
1 Protect an existing file (do not allow overwriting).

 Description

Saves the specified image on auxiliary storage, and also a
description of up to 253 characters. The image is saved in
the GDDM object library, with the specified name. The
image is unchanged by this operation.

 Principal errors

ADMð324 E FILE 'a' ALREADY EXISTS

ADM3364 E INVALID DESCRIPTOR COUNT VALUE

ADM3365 E INVALID PROTECT-FLAG VALUE

ADM3366 E INVALID SOURCE IMAGE IDENTIFIER

ADM3367 E SOURCE IMAGE DOES NOT EXIST

ADM3368 E SOURCE IMAGE NOT READABLE

ADM3369 E PROJECTION USES INCHES/METERS FOR SOURCE

WITH NO RESOLUTION

ADM3391 W ONLY n1 OUT OF n2 TRANSFORMS WILL BE

PROCESSED

ADM3392 I OVERLAPPED TARGET RECTANGLES MAY GIVE

INCORRECT RESULTS

ADM3393 I SCALE FACTOR n1 APPROXIMATED TO n2

ADM3394 I SCALING ALGORITHM n1 APPROXIMATED TO n2

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð3 W NO IMAGE DATA TRANSFERRED

ADM3477 E SCANNER NOT READY. MAY BE SWITCHED OFF

ADM3478 E NO PAPER IN SCANNER

ADM3479 E SCANNER LAMP INTENSITY IS TOO LOW

ADM348ð E SCANNER PAPER JAM

ADM3481 E UNRECOVERABLE SCANNER ERROR OCCURRED

ADM3482 E PROJECTION WOULD REQUIRE SCANNER TO RESCAN

ADM3483 E SCANNER DISCONNECTED

ADM3484 W GRAY-SCALE TRANSFORMS MAY BE SIMPLIFIED TO

MEET SCANNER CAPABILITIES

 IMATRM

 Function

To trim an image down to the specified rectangle.

 Parameters

id (specified by user) (fullword integer)
The image to be trimmed.

left-edge (specified by user) (fullword integer)
right-edge (specified by user) (fullword integer)

The columns of pixels that form the left and right edges of
the rectangle. The columns are included in the rectangle.
The left-edge parameter must be in the range 0 through
229−2 and right-edge must be in the range –1 through
229−2.

top-edge (specified by user) (fullword integer)
bottom-edge (specified by user) (fullword integer)

The rows of pixels that form the top and bottom edges of
the rectangle. The rows are included in the rectangle. The
top-edge parameter must be in the range 0 through 229−2
and bottom-edge must be in the range −1 through 229−2.

Note: If left-edge is set to “n” and right-edge is set to
“n−1,” zero width is implied, and, if top-edge is set to “n” and
bottom-edge is set to “n−1,” zero depth is implied.

 Description

Trims the specified image to the size of the rectangle defined
by the parameters left-edge , right-edge , top-edge , and
bottom-edge . All data lying outside the rectangle is lost.
The h-pixels and v-pixels attributes of the image are altered
to reflect the change in size. (It follows, therefore, that
IMATRM is not the complement of IMACLR).

IMASAV (id, proj-id, name, count, descr, protect-flag)

APL code 1607
GDDM RCP code X'3C01000A' (1006698506)

IMATRM (id, left-edge, right-edge, top-edge, bottom-
edge)

APL code 1605
GDDM RCP code X'3C010009' (1006698505)

188 GDDM Base Application Programming Reference

 IMPCRT

The IMATRM call can be used with a writeable device image,
in which case all pixels outside the rectangle are reset to
their default value (all zero for bi-level image). However, the
h-pixels and v-pixels values of the image are not altered by
the call.

The IMATRM call can be used with a 3117 or 3118 scanner
(image −1).

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3358 E IMAGE n DOES NOT EXIST

ADM3361 E IMAGE NOT WRITEABLE

ADM3362 E INVALID RECTANGLE COORDINATE VALUE

ADM3363 W RIGHT/BOTTOM EDGE EXCEEDS H-PIXELS/V-PIXELS

 IMPCRT

 Function

To create an empty projection.

 Parameters

proj-id (specified by user) (fullword integer)
The projection to be created. Proj-id 0, the identity
projection, cannot be specified.

 Description

Creates an empty projection with the specified identifier, to
which transforms can be added. If a projection to which no
transforms have been added is used on a transfer, no data is
transferred, and the source and target images are
unchanged.

The proj-id parameter can be any value that does not corre-
spond to an already existing projection.

If the value of proj-id was not obtained using an IMPGID
call, it should be in the range 0 through 230−1, so as not to
conflict with values reserved by IMPGID, which are in the
range 230 through 231−1; see IMPGID.

If proj-id was returned by IMPGID, it is no longer reserved
after an IMPCRT call.

 Principal errors

ADM34ðð E PROJECTION ALREADY EXISTS

ADM34ð1 E INVALID PROJECTION IDENTIFIER

 IMPDEL

 Function

To delete projection.

 Parameters

proj-id (specified by user) (fullword integer)
The projection to be deleted. Proj-id 0, the identity
projection, cannot be deleted.

 Description

Deletes the projection associated with the given identifier.
The identifier returns to its initial state, that is, its state before
it was associated with the projection.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

 IMPGID

 Function

To get and reserve a unique projection identifier.

 Parameters

proj-id (returned by GDDM) (fullword integer)
An identifier for which no projection exists and which is not
reserved.

IMPDEL (proj-id)

APL code 1652
GDDM RCP code X'3C030004' (1006829572)

IMPCRT (proj-id)

APL code 1650
GDDM RCP code X'3C030003' (1006829571)

IMPGID (proj-id)

APL code 1651
GDDM RCP code X'3C030001' (1006829569)

 Chapter 3. The GDDM calls 189

 IMPRST

 Description

Reserves a free projection identifier with a value in the range
230 through 231−1, and returns this value in proj-id . A free
identifier is one that does not currently have a projection
associated with it and is not currently reserved. The identi-
fier remains reserved until an image is created specifying
that identifier, or until a call to FSTERM.

The IMPGID call can be used to obtain identifiers that do not
conflict with those used by other parts of the application.

Projection identifiers in the range 230 through 231−1 should
only be used when obtained using the IMPGID call, as
GDDM internally-generated projections (such as for device
emulation) also have projection identifiers in this range.

 Principal errors

None.

 IMPRST

 Function

To restore projection from auxiliary storage.

 Parameters

proj-id (specified by user) (fullword integer)
An identifier for the projection being restored. Proj-id 0, the
identity projection, cannot be specified.

name (specified by user) (8-byte character string)
The name (left-justified) of the projection to be restored
from auxiliary storage.

count (specified by user) (fullword integer)
The number of characters in the descr parameter to be
used to receive the descriptive record. This must not
exceed 253.

descr (returned by GDDM) (character)
A character string, of at least count bytes, the first count of
which are to receive, left justified, the descriptive record
that was saved with the projection. If the length of the
descriptor is greater than count , it is truncated on the right.
If it is less, it is padded on the right with blanks.

 Description

Restores a projection from the GDDM object library, and
loads it with the specified projection identifier. If a projection
with that identifier already exists, it is replaced by the
incoming projection. If the projection does not exist, a new
one is created. The projection on auxiliary storage is
unchanged by this operation.

If the value of proj-id was not obtained using an IMPGID
call, it should be in the range 0 through 230−1, so as not to
conflict with values reserved by IMPGID, which are in the
range 230 through 231−1.

If proj-id was returned by IMPGID, it is no longer reserved
after an IMPRST call.

 Principal errors

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð313 E FILE 'a' HAS INVALID RECORD CONTENT

ADM3364 E INVALID DESCRIPTOR COUNT VALUE

ADM34ð2 E PROJECTION DOES NOT EXIST

 IMPSAV

 Function

To save projection on auxiliary storage.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of the projection to be saved. The projection
is unchanged as a result of this operation. Proj-id 0, the
identity projection, cannot be specified.

name (specified by user) (8-byte character string)
The name (left-justified) of the projection to be saved to
auxiliary storage. This must be a valid external object
name for the subsystem being used; see Chapter 11,
“Image file formats” on page 311.

count (specified by user) (fullword integer)
The number of characters in the descr parameter to be
saved. This must not exceed 253.

descr (specified by user) (character)
A character string, of at least count bytes, the first count
bytes of which are to be saved with the projection as a
descriptive record.

protect-flag (specified by user) (fullword integer)
Specifies whether or not to protect an existing file from
being overwritten. Possible values are:
0 Do not protect an existing file (allow overwriting).

IMPRST (proj-id, name, count, descr)

APL code 1654
GDDM RCP code X'3C030006' (1006829574) IMPSAV (proj-id, name, count, descr, protect-flag)

APL code 1653
GDDM RCP code X'3C030005' (1006829573)

190 GDDM Base Application Programming Reference

 IMRBRI

1 Protect an existing file (do not allow overwriting).

 Description

Saves the specified projection on auxiliary storage, together
with a description of up to 253 characters. The projection is
saved as a GDDM projection in the GDDM object library,
with the specified name. The projection is unchanged by this
operation.

 Principal errors

ADMð324 E FILE 'a' ALREADY EXISTS

ADM3364 E INVALID DESCRIPTOR COUNT VALUE

ADM3365 E INVALID PROTECT-FLAG VALUE

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

 IMRBRI

 Function

To define brightness conversion algorithm.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of a projection with an incomplete transform,
to which this transform element is to be added.

alg (specified by user) (fullword integer)
The algorithm to be used for brightness conversion. Pos-
sible values are:

0 The default algorithm; this is device-dependent. For
scanners this is the same as 1.

1 A simple linear brightness conversion.
new = old + (ALG−DATA(1) ñ white)

where white is the maximum gray level, and
ALG-DATA(1) specifies the required brightness as a
number in the range −1.0 through +1.0 such that:

−1.0 Totally dark,
0.0 No change,
1.0 Totally light.

The image scanners provide three brightness values,
the one used depends on the value of ALG-DATA(1) as
follows:

−1.0 through −0.5 Light original; darken the
image.

>−0.5 through <0.5 Normal original; no change.

0.5 through 1.0 Dark original; lighten the image.

count (specified by user) (fullword integer)
The number of parameters specified in the alg-data array.

alg-data (specified by user) (array of short floating-point
numbers)
An array of numbers that are the data required by the spec-
ified algorithm. For information, see the description of the
alg parameter.

 Description

Defines the brightness conversion algorithm to be applied to
a gray-scale sub-image.

The IMRBRI call has no effect if the sub-image is bi-level.

Only one IMRBRI call is allowed for a given transform; sub-
sequent IMRBRI calls are an error.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM3413 E INVALID ALGORITHM

ADM3414 E INVALID COUNT

ADM3415 E INVALID ALGORITHM DATA VALUE

 IMRCON

 Function

To define contrast conversion algorithm.

 Parameters

proj-id (specified by user) (fullword integer)
A projection with an incomplete transform, to which this
transform element is to be added.

alg (specified by user) (fullword integer)
The algorithm to be used for contrast conversion. Possible
values are:

0 The default algorithm; this is device-dependent. For
scanners this is the same as 1.

1 A simple linear contrast conversion.
new=((old−mean) \ alg-data(1))+mean.

where mean is the mid-point between black and white,

IMRBRI (proj-id, alg, count, alg-data)

APL code 1665
GDDM RCP code X'3C030202' (1006830082)

IMRCON (proj-id, alg, count, alg-data)

APL code 1666
GDDM RCP code X'3C030203' (1006830083)

 Chapter 3. The GDDM calls 191

 IMRCVB

and alg-data(1) specifies the required contrast as a
positive number such that:

0.5 is half the contrast,
1.0 is normal contrast,
2.0 is double the contrast, and so on.

The image scanners provide three contrast values; the
one used depends on the value of alg-data(1) as
follows:

0.0 through 0.5 Decreased contrast
>0.5 through <2.0 No change
≥2.0 Increased contrast.

count (specified by user) (fullword integer)
The number of parameters specified in the alg-data array.

alg-data (specified by user) (array of short floating-point
numbers)
An array of numbers that are the data required by the spec-
ified algorithm. For information, see the description of the
alg parameter.

 Description

Defines the contrast conversion algorithm to be applied to a
gray-scale sub-image.

The IMRCON call has no effect if the sub-image is bi-level.

Only one IMRCON call is allowed for a given transform; sub-
sequent IMRCON calls are an error.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM3413 E INVALID ALGORITHM

ADM3414 E INVALID COUNT

ADM3415 E INVALID ALGORITHM DATA VALUE

 IMRCVB

 Function

To define bi-level conversion algorithm.

 Parameters

proj-id (specified by user) (fullword integer)
A projection with an incomplete transform, to which this
transform element is to be added.

alg (specified by user) (fullword integer)
The algorithm to be used for conversion to bi-level. Pos-
sible values are:

0 The default algorithm; this is device-dependent. For
image scanners this is the same as 1.

Note: When writing device-independent code, it is
recommended that a count parameter of zero is used
when specifying the default algorithm.

1 Threshold.
A threshold is defined for comparison with each source
pixel. Pixels above the threshold specified by
alg-data(1) become white and below it become black.

alg-data(1) specifies the required threshold in the
range 0.0 through 1.0 where 0.0 is black and 1.0 is
white. The default threshold is 0.5.

The image scanners provide three threshold levels, the
level used depends on the value of alg-data(1) as
follows:

0.0 through 0.25 Dark original
>0.25 through <0.75 Normal original
0.75 through 1.0 Light original.

10 Halftoning type A
This is best for intricate pictures.

The alg-data array is not used.

11 Halftoning type B
This is best for images in which the gray levels vary
gradually.

The alg-data array is not used.

12 Compressed data stream
This is best for pure gray-scale documents such as
photographs.

The alg-data array is not used.

count (specified by user) (fullword integer)
The number of parameters defined in the alg-data array.

alg-data (specified by user) (array of short floating-point
numbers)
An array of numbers that are the data required by the spec-
ified algorithm. For information, see the alg parameter
description.IMRCVB (proj-id, alg, count, alg-data)

APL code 1664
GDDM RCP code X'3C030201' (1006830081)

192 GDDM Base Application Programming Reference

 IMREX

 Description

Defines the algorithm to be used during conversion to bi-level
in a sub-image. “Thresholding” or “halftoning” are the two
types of conversion allowed.

The result of this call is a bi-level sub-image, and so any
subsequent gray-scale transform element calls have no
effect.

The IMRCVB call has no effect if the sub-image is bi-level.

Only one IMRCVB call is allowed for a given transform; sub-
sequent IMRCVB calls are an error.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM3413 E INVALID ALGORITHM

ADM3414 E INVALID COUNT

ADM3415 E INVALID ALGORITHM DATA VALUE

 IMREX

 Function

To define rectangular sub-image in pixel coordinates.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of a projection to which this transform element
is to be added.

left-edge (specified by user) (fullword integer)
right-edge (specified by user) (fullword integer)

The columns of pixels that form the left and right edges of
the rectangle to be extracted. The left-edge parameter
must be in the range 0 through 229−2 and right-edge must
be in the range −1 through 229−2.

top-edge (specified by user) (fullword integer)
bottom-edge (specified by user) (fullword integer)

The rows of pixels that form the top and bottom edges of
the rectangle to be extracted. The top-edge parameter
must be in the range 0 through 229−2 and bottom-edge
must be in the range −1 through 229−2.

 Description

Selects a rectangular sub-image, in pixel coordinates.
IMREX is a normal transform element call except that when it
is used it must be the first transform element in the trans-
form, and it cannot be used in the same transform as an
IMREXR call.

For a description of transforms and projections, see the
GDDM Base Application Programming Guide.

Transforms contain transform element calls (IMREX,
IMREXR, IMRSCL, IMRORN, IMRREF, IMRNEG, IMRBRI,
IMRCON, and IMRCVB), and are started by the first such
call. They are completed by an IMRPL or IMRPLR call, at
which time they become available for transfer using the spec-
ified projection.

If any part of the specified rectangle falls outside the source
image, that part is filled with default values (zeros for bi-level
image).

 Principal errors
ADM3362 E INVALID RECTANGLE COORDINATE VALUE

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM34ð5 E IMREX, WHEN CALLED, MUST BE FIRST CALL IN A

TRANSFORM

 IMREXR

 Function

To define rectangular sub-image in real coordinates.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of the projection to which this transform
element is to be added.

coord-type (specified by user) (fullword integer)
The coordinate type of the rectangle defined by the fol-
lowing edge parameters:

0 Inches
The edges of the rectangle are defined in inches. For this
coordinate type, the source image must have a defined
resolution.

IMREX (proj-id, left-edge, right-edge, top-edge, bottom-
edge)

APL code 1655
GDDM RCP code X'3C030101' (1006829825)

IMREXR (proj-id, coord-type, left-edge, right-edge, top-
edge, bottom-edge)

APL code 1656
GDDM RCP code X'3C030102' (1006829826)

 Chapter 3. The GDDM calls 193

 IMRNEG

Note: Negative edge coordinates are not allowed.
1 Meters
The edges of the rectangle are defined in meters. For this
coordinate type, the source image must have a defined
resolution.

Note: Negative edge coordinates are not allowed.
2 Fractional
The edges of the rectangle are defined as fractions of the
h-pixels and v-pixels dimensions of the source image in
the range 0.0 through 1.0.

left-edge (specified by user) (short floating point)
right-edge (specified by user) (short floating point)

The left and right edges of the rectangle as a distance from
the left edge of the image in the units specified by coord-
type . The values are first converted to a floating-point
value in the pixel coordinate range, then left-edge is
rounded up to the nearest integer and the right-edge
rounded down, to address the image.

top-edge (specified by user) (short floating point)
bottom-edge (specified by user) (short floating point)

The top and bottom edges of the rectangle as a distance
from the top edge of the image, in the units specified by
coord-type . The values are first converted to a floating-
point value in the pixel coordinate range, then top-edge is
rounded up to the nearest integer and the bottom-edge
rounded down, to address the image.

 Description

Selects a rectangular subimage, in real coordinates.
IMREXR is a normal transform element call except that when
it is used it must be the first transform element in the trans-
form, and it cannot be used in the same transform as an
IMREX call.

For a description of transforms and projections, see the
GDDM Base Application Programming Guide.

Transforms contain transform element calls (IMREX,
IMREXR, IMRSCL, IMRORN, IMRREF, IMRNEG, IMRBRI,
IMRCON, and IMRCVB), are started by the first such call.
They are completed by an IMRPL or IMRPLR call, at which
time they become available for transfer using the specified
projection.

If any part of the specified rectangle falls outside the source
image, that part is filled with default values (zeros for bi-level
image).

 Principal errors
ADM3362 E INVALID RECTANGLE COORDINATE VALUE

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM34ð6 E IMREXR, WHEN CALLED, MUST BE FIRST CALL IN A

TRANSFORM

ADM34ð7 E INVALID COORD-TYPE VALUE

 IMRNEG

 Function

To negate the pixels of an extracted image.

 Parameters

proj-id (specified by user) (fullword integer)
A projection with an incomplete transform, to which this
transform element is to be added.

 Description

Negates (inverts) the pixels in an extracted image (for bi-
level images, white becomes black and black becomes
white). The effect of this call is to convert an image into its
photographic negative.

Only one IMRNEG call is allowed for a given transform.
Subsequent IMRNEG calls are an error.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

 IMRORN

 Function

To turn an extracted image clockwise through a number of
right angles.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of a projection with an incomplete transform,
to which this transform element is to be added.

IMRNEG (proj-id)

APL code 1663
GDDM RCP code X'3C030109' (1006829833)

IMRORN (proj-id, orientation)

APL code 1661
GDDM RCP code X'3C030107' (1006829831)

194 GDDM Base Application Programming Reference

 IMRPL

orientation (specified by user) (fullword integer)
The number of right angles through which the extracted
image is rotated, in the clockwise direction. Possible
values are:
0 No rotation.
1 Rotation by 90 degrees clockwise.
2 Rotation by 180 degrees (clockwise or counterclock-

wise).
3 Rotation by 270 degrees clockwise (90 degrees

counterclockwise).

 Description

This call rotates an extracted image clockwise through a
specified number of right angles.

Only one IMRORN call is allowed for a given transform.
Subsequent IMRORN calls are an error.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM3411 E INVALID ORIENTATION VALUE

 IMRPL

 Function

To define place position in pixel coordinates.

 Parameters

proj-id (specified by user) (fullword integer)
The projection to which the transform completed by this call
is to be added.

h-pos (specified by user) (fullword integer)
v-pos (specified by user) (fullword integer)

Where the top-left corner of the transformed image is to be
placed in the target image. Negative coordinates are not
allowed.

mix (specified by user) (fullword integer)
The mode for mixing the pixels of the transformed image
into the target image:

0 The default value: same as 1.

1 “Overpaint” mode.
Sets each pixel in the target image to the value of the
corresponding pixel in the extracted image.

2 “Merge” mode.
Performs a logical “Or” on each pixel in the target
image with the corresponding pixel in the extracted
image.

3 “Difference” mode.
Performs a logical “Exclusive-Or” on each pixel in the
target image with the corresponding pixel in the
extracted image.

4 “And” mode.
Performs a logical “And” on each pixel in the target
image with the corresponding pixel in the extracted
image.

5 “Subtract” mode.
Performs a logical “And” on each pixel in the target
image with the complement of the corresponding pixel
in the extracted image.

 Description

Completes a transform, defines the position in the target
image in pixel coordinates at which the transformed image is
placed on a transfer operation, and specifies the mixing algo-
rithm to be used when merging the transformed image into
the target image. This call completes a transform and makes
it available for use in transfer operations using the specified
projection.

If any part of the transformed image falls outside of the target
image, clipping occurs such that the image data that falls
outside the image is discarded.

Note: See also IMRPLR.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð8 E INVALID H-POS OR V-POS VALUE

ADM34ð9 E INVALID MIX OPTION VALUE

 IMRPLR

 Function

To define place position in real coordinates.

IMRPL (proj-id, h-pos, v-pos, mix)

APL code 1657
GDDM RCP code X'3C030103' (1006829827)

IMRPLR (proj-id, coord-type, h-pos, v-pos, mix)

APL code 1658
GDDM RCP code X'3C030204' (1006830084)

 Chapter 3. The GDDM calls 195

 IMRRAL

 Parameters

proj-id (specified by user) (fullword integer)
The projection to which the transform completed by this call
is to be added.

coord-type (specified by user) (fullword integer)
The coordinate type of the following h-pos and v-pos
parameters. Possible values are:

0 inches
The location is defined in inches. Negative h-pos and
v-pos parameters are not allowed. For this coordinate
type, the target image must have a defined resolution, or be
a new target (that is, one that does not exist prior to the
transfer operation). A new target inherits the resolution of
the first transformed image.

1 meters
The location is defined in meters. Negative h-pos and
v-pos parameters are not allowed. For this coordinate
type, the target image must have a defined resolution, or be
a new target (that is, one that does not exist prior to the
transfer operation). A new target inherits the resolution of
the first transformed image.

2 fractional
The location is defined as a fraction of the h-pixels and
v-pixels dimensions of the target image in the range 0.0
through 1.0. For this coordinate type, the target image
must exist prior to the transfer operation.

h-pos (specified by user) (short floating point)
v-pos (specified by user) (short floating point)

Where the top-left corner of the transformed image is to be
placed in the target image, in the units specified by the
coord-type parameter. The values are first converted to a
floating-point value in the pixel coordinate range, then
rounded up to the nearest integer to address the image.

mix (specified by user) (fullword integer)
The mode for mixing the pixels of the transformed image
into the target image. Possible values are:

0 The default value; same as 1.

1 “Overpaint” mode.
Sets each pixel in the target image to the value of the
corresponding pixel in the extracted image.

2 “Merge” mode.
Performs a logical “Or” on each pixel in the target
image with the corresponding pixel in the extracted
image.

3 “Difference” mode.
Performs a logical “Exclusive-Or” on each pixel in the
target image with the corresponding pixel in the
extracted image.

4 “And” mode.
Performs a logical “And” on each pixel in the target
image with the corresponding pixel in the extracted
image.

5 “Subtract” mode.
Performs a logical “And” on each pixel in the target
image with the complement of the corresponding pixel
in the extracted image.

 Description

Completes a transform, defines the position in the target
image in real coordinates at which the transformed image is
placed on a transfer operation, and specifies the mixing algo-
rithm to be used when merging the transformed image into
the target image. This call completes a transform and makes
it available for use in transfer operations using the specified
projection.

If any part of the transformed image falls outside of the target
image, clipping occurs such that the image data that falls
outside the image is discarded.

Note: See also IMRPL.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð7 E INVALID COORD-TYPE VALUE

ADM34ð8 E INVALID H-POS OR V-POS VALUE

ADM34ð9 E INVALID MIX OPTION VALUE

 IMRRAL

 Function

To set current resolution/scaling algorithm.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of a projection with an incomplete transform,
to which this transform element is to be added.

res-alg (specified by user) (fullword integer)
The resolution-conversion/scaling algorithm to be used
when scaling or resolution conversion is performed on the
extracted image. Possible values are:

0 Default, same as 1.

1 Pixel replication.
Pixels are replicated when new pixels are required on
scaling up, and are deleted when scaling down.

IMRRAL (proj-id, res-alg)

APL code 1660
GDDM RCP code X'3C030106' (1006829830)

196 GDDM Base Application Programming Reference

 IMRREF

2 Black pixel retention.
Pixels are replicated when new pixels are required on
scaling up, but when scaling down, white pixels are
deleted in preference to adjacent black pixels. This
algorithm is an improvement over pixel replication for
images containing black on white text or graphics.

3 White pixel retention.
Pixels are replicated when new pixels are required on
scaling up, but when scaling down, black pixels are
deleted in preference to adjacent white pixels. This
algorithm is an improvement over pixel replication for
images containing white on black text or graphics.

 Description

Defines the resolution/scaling algorithm to be used for any
resolution conversion or scaling operation performed in the
transform in which the IMRRAL call appears. For transforms
in which no algorithm is specified, scaling and resolution con-
version are performed using the default algorithm.

Only one IMRRAL call is allowed for a given transform. Sub-
sequent IMRRAL calls are an error.

 Principal errors

ADM336ð E INVALID RESOLUTION/SCALING ALGORITHM

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

 IMRREF

 Function

To reflect extracted image.

 Parameters

proj-id (specified by user) (fullword integer)
The identifier of a projection with an incomplete transform,
to which this transform element is to be added.

reflection (specified by user) (fullword integer)
Specifies how the extracted image is to be reflected. Pos-
sible values are:
1 Left-to-right (horizontal)
2 Top-to-bottom (vertical)
3 Top-to-left (major diagonal)

4 Right-to-top (minor diagonal)

 Description

Reflects the extracted image.

Only one IMRREF call is allowed for a given transform. Sub-
sequent IMRREF calls are an error.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM3412 E INVALID REFLECTION VALUE

 IMRSCL

 Function

To scale extracted image.

 Parameters

proj-id (specified by user) (fullword integer)
A projection with an incomplete transform, to which this
transform element is to be added.

h-scale (specified by user) (short floating point)
The horizontal scale factor by which the h-pixels value of
the extracted image are to be multiplied. Negative values
are not allowed.

v-scale (specified by user) (short floating point)
The vertical scale factor by which the v-pixels value of the
extracted image are to be multiplied. Negative values are
not allowed.

 Description

Scales the extracted image in the horizontal direction, or ver-
tical direction, or both of these. The scaling factors h-scale
and v-scale are multipliers for h-pixels and v-pixels .

Note: Negative h-scale and v-scale values are not allowed,
and cause an error message to be issued.

The parameters h-pixels and v-pixels for the extracted
image become h-pixels ñh-scale and v-pixels ñv-scale ,
rounded to the nearest integer.

Only one IMRSCL call is allowed for a given transform. Sub-
sequent IMRSCL calls are an error.

IMRSCL (proj-id, h-scale, v-scale)

APL code 1659
GDDM RCP code X'3C030105' (1006829829)

IMRREF (proj-id, reflection)

APL code 1662
GDDM RCP code X'3C030108' (1006829832)

 Chapter 3. The GDDM calls 197

 IMXFER

The scaling factors h-scale and v-scale refer to the
extracted image after it has been operated on by any calls
that were specified earlier. Therefore, a rotation by 90
degrees followed by a scale with an h-scale value of 2 and a
v-scale value of 1 corresponds to a scale with an h-scale
value of 1 and a v-scale value of 2 followed by a rotation by
90 degrees.

The scaling algorithm to be used can be specified with the
IMRRAL call.

 Principal errors

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð4 E TRANSFORM ALREADY CONTAINS A CALL TO THIS

ROUTINE

ADM341ð E INVALID H-SCALE OR V-SCALE VALUE

 IMXFER

 Function

To transfer data between two images, applying a projection.

 Parameters

source-id (specified by user) (fullword integer)
The source image. Device images can be specified; for
example:
−1 Identifies the scanner attached to the current primary

device.
0 Identifies the image on the current GDDM page.

>0 Identifies application images.
target-id (specified by user) (fullword integer)

The image into which the results of the transfer are placed.
Device images can be specified; for example:
0 Specifies the image on the current GDDM page, in

which case the projection may be evaluated in the
device.

>0 Specifies application images.
proj-id (specified by user) (fullword integer)

The projection used to extract, transform and place image
data.
0 Specifies the identity projection, which results in the

entire source image being copied into the target, with
its top left corner at the origin with the right and
bottom edges clipped if necessary.

>0 Specifies other projections.

 Description

Applies a projection to a source image and places the
result(s) in the target image. IMXFER is the explicit form of
the transfer operation. The following description summarizes
the main aspects of this operation.

During a transfer operation, images are extracted from the
source image using the definitions in the projection. These
extracted images are transformed by the projection, and the
results are placed in the target image. Their positioning
within the target image is also governed by the projection.

For more information, see the GDDM Base Application Pro-
gramming Guide.

If the target image does not exist before the call, one is
created with the following attributes: h-pixels and v-pixels
are the minimum required to contain the right edge of the
right-most transformed image, and the bottom-edge of the
bottom-most image, im-type , res , h-res , and v-res , are
those derived from the source image after applying the trans-
form elements.

If the target image already exists, the transformed images
are merged into it, using the mixing algorithm(s) specified in
the projection.

Resolution conversion of the incoming data take places
according to the following rules:

� If the source and target both have a defined resolution
(that is, the res attribute of the source and target images
are both 1) then resolution conversion is performed on
the incoming image data, using the resolution/scaling
algorithm specified in the projection.

� If either the source or target have undefined resolution
(that is, the res attribute of either the source or target
image is 0) then resolution conversion is not performed,
and the transformed data is merged using pixel-to-pixel
mapping.

The source and target can be the same image, but all
extractions are performed before any data is placed back into
the image.

The source or target image can be device images, with the
limitation that write-only images cannot be used as sources
and that read-only images cannot be used as targets.

IMXFER may cause I/O when device images are referenced.
It can be used to transfer image data from the attached
scanner by specifying −1 as the source identifier. I/O always
occurs when the source is a scanner.

Note that the scanner image must have been created using
IMACRT before IMXFER is used. More than one IMXFER
call can be issued for a particular sheet of paper (image) in
the scanner, if they do not require the scanner to “back up.”
When all transfers for a sheet are complete, the IMADEL call
is used to cause the sheet to be ejected ready for the next
sheet, or ISLDE can be used to load the next sheet.

IMXFER (source-id, target-id, proj-id)

APL code 1615
GDDM RCP code X'3C010017' (1006698519)

198 GDDM Base Application Programming Reference

 ISCTL

Whenever an IMXFER from a scanner is performed, an
image field is required on the current page. If one does not
already exist, a default image field is created. If the image
field create fails, it causes the IMXFER to fail.

When the source of the transfer operation is a scanner, an
implicit FSFRCE is performed to ensure that the contents of
the screen (to which the scanner is connected) is up-to-date
and ready for any echoing that may be done. All I/O is per-
formed for the current page. If there is no image field in the
current page, one is created. All echoing is to the current
image field. The effect of echoing is that the scanned image
is transferred to the image field with the same projection; that
is, as if the application had issued:

 IMXFER (−1,ð,proj-id)

followed by FSFRCE. Whenever possible, the echoing is
performed by the device. The ISCTL values are used to
determine the required quality of echoing, and thus whether
echoing is performed by the device, or by GDDM; for more
information, see the GDDM Base Application Programming
Guide.

 Principal errors

ADM3366 E INVALID SOURCE IMAGE IDENTIFIER

ADM3367 E SOURCE IMAGE DOES NOT EXIST

ADM3368 E SOURCE IMAGE NOT READABLE

ADM3369 E PROJECTION USES INCHES/METERS FOR SOURCE

WITH NO RESOLUTION

ADM337ð E INVALID TARGET IMAGE IDENTIFIER

ADM3371 E TARGET IMAGE NOT WRITEABLE

ADM3372 E PROJECTION USES IMRPLR WITH FRACTIONAL

COORDINATES. TARGET MUST EXIST

ADM3387 E PROJECTION USES INCHES/METERS FOR TARGET

WITH NO RESOLUTION

ADM34ð1 E INVALID PROJECTION IDENTIFIER

ADM34ð2 E PROJECTION DOES NOT EXIST

ADM34ð3 W NO IMAGE DATA TRANSFERRED

ADM3391 W ONLY n1 OUT OF n2 TRANSFORMS WILL BE

PROCESSED

ADM3392 I OVERLAPPED TARGET RECTANGLES MAY GIVE

INCORRECT RESULTS

ADM3393 I SCALE FACTOR n1 APPROXIMATED TO n2

ADM3394 I SCALING ALGORITHM n1 APPROXIMATED TO n2

ADM3477 E SCANNER NOT READY. MAY BE SWITCHED OFF

ADM3478 E NO PAPER IN SCANNER

ADM3479 E SCANNER LAMP INTENSITY IS TOO LOW

ADM348ð E SCANNER PAPER JAM

ADM3481 E UNRECOVERABLE SCANNER ERROR OCCURRED

ADM3482 E PROJECTION WOULD REQUIRE SCANNER TO RESCAN

ADM3483 E SCANNER DISCONNECTED

ADM3484 W GRAY-SCALE TRANSFORMS MAY BE SIMPLIFIED TO

MEET SCANNER CAPABILITIES

 ISCTL

 Function

To set image quality-control parameters.

 Parameters

device (specified by user) (fullword integer)
The image to which the call applies. Possible values are:
−1 Scanner
 0 Current page.

quality (specified by user) (fullword integer)
The limit(s) of approximation allowed for transforms.

0 Default, the same as 3.

n A number in the range 1 through 5, that has this
meaning:

n pae sfm hsa eor air

1 d/c any d/c d/c d/c
2 d/c 0.4 – 2.50 d/c d/c d/c
3 yes 0.8 – 1.25 d/c d/c d/c
4 yes 0.9 – 1.11 yes yes yes
5 yes 1.0 – 1.00 yes yes yes

Note: In the above table,

d/c means “don’t care”
pae means “process all extractions”
sfm means “scale factor multiplier”
hsa means “honor scaling algorithm”
eor means “emulate overlapped rectangles”
air means “avoid image-size rounding.”

For information on the effects of these values on the
different transfer elements, see the Description section
below.

 Description

Sets the picture quality acceptable to the application, for the
current page or scanner device.

Where image transforms can be off-loaded from the host to
the device, the ISCTL call can be used by the application to
control the trade-off between those host and device capabili-
ties that affect function and performance; for example, the
lower the quality requested, the less host manipulation is
required.

This call cannot be issued while image entry or retrieval is
initialized for the page or scanner specified.

ISCTL (device, quality)

APL code 182
GDDM RCP code X'0C300002' (204472322)

 Chapter 3. The GDDM calls 199

 ISENAB

If a given transform element cannot be performed exactly by
a device, then GDDM approximates or emulates the function,
within the limit(s) specified, to match the device’s capability.
For example, a scale factor of 2.4 may be approximated to 2.
When emulation occurs, the resulting quality is at least as
good as that requested.

If a transform element cannot be modified (within the limit(s))
to fall within the device’s capability, GDDM performs the
function in the host.

The effect of the quality parameter on transform elements is
as follows:

Extractions
“Don’t care” means that only the number of extractions
(transforms) supported by the device need be processed. A
warning message is issued on the IMXFER or IMAPT call if
one or more extractions is ignored.

The 3193 can perform four extractions.

“Yes” means that all extractions must be processed, with
extra processing in GDDM if there are more than the device
can process.

Scaling factor
The scale factors can be modified by a multiplier within the
range shown in the table above. For example, if a device
has scale factors of (1/4, 1/3, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 3,
4) then the (default) multiplier range of 0.8 through 1.25
allows any scale factor in the range 0.2 through 5.0 to be
approximated. An information message is issued on the
IMXFER, IMAGTx, or IMAPTx calls if approximation occurs.

If the scale factor cannot be approximated, GDDM emulates
the function.

Scaling algorithm
“Don’t care” means that a device algorithm can be used,
even if this is not the same as that requested by the trans-
forms. An information message is issued on the IMXFER or
IMAPT call if a different algorithm is used.

“Yes” means that the requested algorithm must be used, with
emulation in GDDM if it is not supported by the device.

Overlapped target rectangles
When target rectangles overlap, some devices do not always
give correct results in the overlapped parts. This is because
the processing of rectangles (possibly in parallel) may be
determined by the order the source rectangles occur in the
sequential image data, rather than the order the rectangles
are specified in the projection; that is, the incorrect result is
caused by mixing the (correct) pixels in a different order.
Even when overlap occurs, correct results are obtained for
those pixels mixed with “symmetric” mix modes, that is, if the
logical expression for the result is commutative and associa-
tive.

“Unexpected” target rectangle overlap can occur if scale
factors or resolutions are modified by approximation (see
above).

“Don’t care” means that overlapped target rectangles may be
processed by the device. An information message is issued

on the IMXFER or IMAPT call if overlap can cause incorrect
results.

“Yes” means that all extractions must be processed as if
they were sequentially in the correct order, with emulation in
GDDM if overlap could cause incorrect results.

Image-size rounding
The scanner can only scan an area of the paper that is a
multiple of 8 pixels wide. Also, the left edge of the scanned
area must be a multiple of 8 pixels from the left edge of the
scanner detector.

When the “avoid image-size rounding” quality value is “don’t
care,” GDDM may round the scanner image size, and the
extract sizes (specified in a projection) to suit the scanner
limitations. It is best to use the “don’t care” value if direct
transmission from the scanner is required.

When the “avoid image-size rounding” quality value is “yes,”
GDDM processes the scanned images to ensure that the
effects of the rounding are not noticeable by the application
or the user.

 Principal errors

ADM3386 E CALL NOT ALLOWED DURING GET/PUT SEQUENCE

ADM3455 E DEVICE n IS INVALID

ADM3456 E QUALITY n IS INVALID

 ISENAB

 Function

To enable or disable image cursor.

 Parameters

device (specified by user) (fullword integer)
The type of image cursor to be enabled or disabled. Pos-
sible values are:
1 Locator cursor
2 Box cursor

control (specified by user) (fullword integer)
The new state of the image cursor. Possible values are:
0 Disabled.

No input expected from the image cursor. If the cursor
cannot physically be disabled, any input is ignored by
GDDM. This is the initial state.

1 Enabled.
Input is expected from the cursor and is to be allowed
when subsequent ASREAD calls are issued.

ISENAB (device, control)

APL code 189
GDDM RCP code X'0C301200' (204476928)

200 GDDM Base Application Programming Reference

 ISESCA

 Description

Enables or disables an image cursor and associates it with
image 0, the image on the current GDDM page. While an
image cursor is enabled, the operator can manipulate it, and
its current value is updated on each ASREAD from the ter-
minal. The value can be queried by issuing the appropriate
image cursor query call.

Image input can be globally controlled by the FSENAB call.
Image cursor input is not possible unless a call of
FSENAB(3,1) has been issued to enable image input devices.

Initializing an image cursor does not enable it.

If a locator is enabled, the initial position, specified on
ISILOC is used to position the image cursor. If the locator
has not been initialized before being enabled, the default
cursor is used and its position set to the center of the image
field.

If a box cursor is enabled, the initial position and size, speci-
fied on ISIBOX is used to position the image cursor. If the
box cursor has not been initialized before being enabled, the
default cursor is used and its position set to the center of the
image field. The default box cursor size is one character
cell.

When an image cursor is enabled or disabled, the default
image field is created if it has not already been specified or
defaulted. When the image field is deleted or redefined, all
image cursors are reset to their default state; that is, disabled
with default initial values.

Enabled cursors can be manipulated by the operator, when-
ever the current page is displayed.

 Principal errors

ADM3453 E CONTROL VALUE n IS INVALID

ADM349ð W IMAGE CURSOR IS ALREADY ENABLED

ADM3498 E IMAGE LOCATOR CURSOR IS NOT AVAILABLE

ADM3499 E IMAGE BOX CURSOR IS NOT AVAILABLE

 ISESCA

 Function

To control echoing of scanner image.

 Parameters

control (specified by user) (fullword integer)
Specifies whether or not to echo scanner input. Possible
values are:
0 Do not echo.
1 Echo.

 Description

Defines whether input from the scanner is to be echoed (dis-
played) on the display device to which the scanner is
attached.

The default echo state (when ISESCA has not been called)
is no echo.

The effect of specifying control=1 (echo) is the same as per-
forming an IMXFER from image –1 to image 0 at the same
time as the transfer call (IMXFER, IMAGTx, IMASAV) that
causes scanner input; the same projection is used, and the
attributes of the image are not changed.

This call sets the echoing option for the current device only.

Echoing is done by the 3193 display unless the projection
contains transformations that the 3193 cannot process, within
the quality requirements specified in the ISCTL or ISXCTL
calls.

 Principal errors

ADM3453 E CONTROL VALUE n IS INVALID

ADM347ð E SCANNER DOES NOT EXIST

 ISFLD

 Function

To define image field.

 Parameters

row (specified by user) (fullword integer)
The row position on the page of the top left-hand corner of
the image field. Zero indicates that the image field is to be
deleted.

column (specified by user) (fullword integer)
The column position on the page of the top left-hand corner
of the image field. Zero indicates that the image field is to
be deleted.

ISFLD (row, column, depth, width, control)

APL code 180
GDDM RCP code X'0C300000' (204472320)

ISESCA (control)

APL code 185
GDDM RCP code X'0C300B00' (204475136)

 Chapter 3. The GDDM calls 201

 ISIBOX

depth (specified by user) (fullword integer)
The depth of the image field. This is specified in rows.
Zero indicates that the image field is to be deleted.

width (specified by user) (fullword integer)
The width of the image field. This is specified in columns.
Zero indicates that the image field is to be deleted.

control (specified by user) (fullword integer)
Specifies whether the application can read data from the
image. Possible values are:
0 Default. Read-write if User Control is enabled. Other-

wise, write-only.
1 Write-only; data cannot be read from the image.
2 Read-write; data can be read from the image.

 Description

Defines the position and size of an image field on the current
page, in row/column page coordinates, and specifies the
image field control.

The image field is used to display image data. It is an image
associated with a position on the current page.

The image field can coexist with, but not overlap, a graphics
field on the same page. Only one image field can be defined
per page. If there is a graphics field on the page and the
device does not accept image data streams, the image field
is not shown.

When hardware partitions are used (see PTSCRT), image
fields can only be defined in as many GDDM partitions as
there are hardware image partitions. GDDM assigns these
on a “first-come first-served” basis.

When hardware partitions are used and the device supports
hardware scrolling, the whole page must fit within the image
presentation space of the device – regardless of how small
the image field is.

If an image field already exists when a call is made to
ISFLD, the existing image field is deleted and its image data
is discarded. If no image field has been created when one is
required for a requested function, an image field covering the
entire page is automatically created.

If any of the position or size parameters is zero, any existing
image field is deleted.

Any panning and zooming that has been performed on the
picture is reset.

For family-4 devices, the row and column units that apply to
the ISFLD parameters depend on the device token in use:

� For AFPDS tokens which are cell-based, alphanumeric
rows and columns are used, just as for family-1 and
family-2 devices.

� For other family-4 device tokens (which do not specify
cell sizes), the row and column units are determined by

the FSPCRT call, which divides the available paper area
into a grid. If no FSPCRT call is issued, the row and
column units default to pixels.

On family-4 devices, the image field with a non-cell-based
device token is rounded down to a multiple of 32 pixels in
each direction.

If there is no current page when ISFLD is called to define an
image field, then a default page is automatically created.

The control parameter specifies whether the image is to be
write-only or read-write. If reading of image data for the
image field is not required, then write-only should be speci-
fied so that GDDM may off-load processing to devices that
support image processing functions in a write-only mode. If
reading is required, then read-write must be specified and
GDDM emulates image functions where necessary.

 Principal errors

ADM345ð E IMAGE FIELD ALREADY DEFINED IN PARTITION n

ADM3451 E IMAGE FIELD POSITION n IS INVALID

ADM3452 E IMAGE FIELD SIZE n IS INVALID

ADM3453 E CONTROL VALUE n IS INVALID

ADM3454 E IMAGE FIELD OVERLAPS GRAPHICS FIELD

ADM3462 E PAGE TOO LARGE FOR IMAGE. REASON CODE n1,

LIMIT n2

 ISIBOX

 Function

To initialize image box cursor.

 Parameters

echo (specified by user) (fullword integer)
An initial value for the echo characteristic of the image box
cursor. The only value supported is 0, specifying that the
default echo for the current device is used to show the box
cursor.

left-edge (specified by user) (fullword integer)
right-edge (specified by user) (fullword integer)

The columns of pixels which form the left and right edges of
the rectangle. The columns are included in the rectangle.
The left-edge parameter must be in the range 0 through
the image-field width, and right-edge must be in the range
–1 through the image-field width.

ISIBOX (echo, left-edge, right-edge, top-edge, bot-edge)

APL code 193
GDDM RCP code X'0C301600' (204477952)

202 GDDM Base Application Programming Reference

 ISILOC

top-edge (specified by user) (fullword integer)
bot-edge (specified by user) (fullword integer)

The rows of pixels which form the top and bottom edges of
the rectangle. The rows are included in the rectangle. The
top-edge parameter must be in the range 0 through the
image-field depth, and bottom-edge must be in the range
–1 through the image-field depth.

 Description

Provides an initial value and echo characteristics for an
image box cursor. The box is specified in the pixel coordi-
nate system of image 0, the image on the current GDDM
page.

An image box cursor is a device used by a terminal operator
for identifying a rectangular area of a displayed image. Typi-
cally, it consists of a group of keys used to move the box
around and change its shape, and an echo that is displayed
over the image to show the size, shape, and position of the
box.

The cursor can be initialized in the enabled or disabled
states – note that this is not the same as graphics.

Initializing the box cursor does not change its
enabled/disabled state.

When an image box cursor is initialized, and the image field
has not been defined, the default image field is created.
When the image field is deleted or redefined, the initial
values for the image box cursor are reset to the default.

The default image box cursor is positioned in the center of
the image field and has zero size. The default is used when
no ISIBOX call has been issued for the current image field.

Note: The initial default box is a box the size of one char-
acter cell, and is positioned with its center in the center of
the image field.

GDDM does not ensure positioning accuracy to within one
pixel on all devices.

Device variations: For the 3193 display , the echo is the
box outline.

For other 3270-family displays , the image box cursor is
not supported.

 Principal errors

ADM3499 E IMAGE BOX CURSOR IS NOT AVAILABLE

ADM3491 E ECHO TYPE n IS NOT SUPPORTED

ADM3362 E INVALID RECTANGLE COORDINATE VALUE

ADM3494 E LEFT/TOP EDGE n IS INVALID

ADM3493 E RIGHT/BOTTOM EDGE n IS INVALID

ADM3492 E RIGHT/BOTTOM EDGE n1 LESS THAN LEFT/TOP EDGE

n2

 ISILOC

 Function

To initialize image locator cursor.

 Parameters

echo (specified by user) (fullword integer)
An initial value for the echo characteristic of the image
locator cursor. The only value supported is 0, specifying
that the default echo for the current device is used to show
the locator cursor position.

For the 3193 display, this is a small cross.

For other 3270-family displays, this is the alphanumeric
cursor.

h-pos (specified by user) (fullword integer)
The initial horizontal position in pixels of the locator cursor.

v-pos (specified by user) (fullword integer)
The initial vertical position in pixels of the locator cursor.

 Description

Provides an initial value and echo characteristics for an
image locator cursor. The locator is specified in the pixel
coordinate system of image 0, the image on the current
GDDM page.

An image locator cursor is a device used by a terminal oper-
ator for locating a point on a displayed image. It typically
consists of a group of keys used to move the point around,
and an “echo” displayed over the image to show where the
point is located.

The cursor can be initialized in the enabled or disabled
states – note that this is not the same as graphics.

Initializing the image locator cursor does not change its
enabled/disabled state.

When an image locator cursor is initialized, and the image
field has not been defined, the default image field is created.
When the image field is deleted or redefined, the initial
values for the image locator cursor are reset to the default.

The default location is in the center of the image field. The
default position is used when an ISILOC call has not been
issued for the current image field.

GDDM does not ensure positioning accuracy to within one
pixel on all devices.

ISILOC (echo, h-pos, v-pos)

APL code 191
GDDM RCP code X'0C301400' (204477440)

 Chapter 3. The GDDM calls 203

 ISLDE

It is possible to define an image locator for a device that
cannot reasonably support one; for example, a printer or
plotter. If this is done, the locator position never changes
from the initial position.

 Principal errors

ADM3491 E ECHO TYPE n IS NOT SUPPORTED

ADM3497 E INITIAL CURSOR POSITION n1,n2 IS INVALID

ADM3498 E IMAGE LOCATOR CURSOR IS NOT AVAILABLE

 ISLDE

 Function

To load external read-only image.

 Parameters

id (specified by user) (fullword integer)
The image to be loaded; it must be –1.

 Description

Loads or updates an external read-only image. The only
read-only images supported are scanners. This call is used
to load a sheet of paper into the scanner. If the scanner is
already loaded, it causes the current sheet to be ejected, and
the next sheet loaded.

Notes:

1. If paper needs to be loaded when an IMXFER/IMAGTS
call is issued, GDDM does this automatically.

2. When this call is used with an IBM 3117 scanner, the
scanner is reset so that it is ready to scan from the top
of the document.

3. When this call is used with an IBM 3118 Model 2
scanner with an Automatic Document Feed attached, the
next sheet of paper is automatically loaded from the doc-
ument chute and no operator intervention is required.

 Principal errors

ADM3351 E IMAGE IDENTIFIER n IS INVALID

ADM3358 E IMAGE n DOES NOT EXIST

ADM347ð E SCANNER DOES NOT EXIST

ADM3477 E SCANNER NOT READY. MAY BE SWITCHED OFF

ADM3478 E NO PAPER IN SCANNER

ADM3479 E SCANNER LAMP INTENSITY IS TOO LOW

ADM348ð E SCANNER PAPER JAM

ADM3481 E UNRECOVERABLE SCANNER ERROR OCCURRED

ADM3483 E SCANNER DISCONNECTED

 ISQBOX

 Function

To query image box cursor.

 Parameters

echo (returned by GDDM) (fullword integer)
This field is reserved for future use and is always set to
zero.

0 The default echo for the current device is used to show
the box cursor.

For the 3193 display, it is the box outline.

For other 3270-family displays, the image box cursor is
not supported.

left-edge (returned by GDDM) (fullword integer)
right-edge (returned by GDDM) (fullword integer)

The coordinate of the columns of pixels that form the left
and right edges of the rectangle. The columns are included
in the rectangle.

top-edge (returned by GDDM) (fullword integer)
bot-edge (returned by GDDM) (fullword integer)

The coordinate of the rows of pixels that form the top and
bottom edges of the rectangle. The rows are included in
the rectangle.

in-image (returned by GDDM) (fullword integer)
Indicates whether all four corners of the box are within the
image on the current GDDM page. Coordinates that are
outside the image on the current GDDM page are given the
appropriate values extrapolated from the pixel coordinate
range of the image on the current GDDM page.

Possible values are:

0 All four corners of the box are outside the image on the
current GDDM page and none of the image on the
current GDDM page is inside the box.

1 All four corners of the box are inside the image on the
current GDDM page.

2 One or more corners of the box are outside the image
on the current GDDM page, and part or all of the
image on the current GDDM page is inside the box.

ISQBOX (echo, left-edge, right-edge, top-edge, bot-edge,
in-image, status)

APL code 192
GDDM RCP code X'0C301500' (204477696)

ISLDE (id)

APL code 186
GDDM RCP code X'0C300C00' (204475392)

204 GDDM Base Application Programming Reference

 ISQCOM

status (returned by GDDM) (fullword integer)
The current status of the image box cursor. Possible
values are:

0 Disabled.
The box returned is the last one received from the
device when the box cursor was enabled, or the default
box if the box cursor has not been enabled since it was
initialized.

1 Enabled.
The box returned is the one received from the device
on the last ASREAD call, or the default box if no
ASREAD call was issued since enabling the box
cursor.

 Description

The current value, echo characteristics, and status of an
image box cursor. The box is specified in the pixel coordi-
nate system of image 0, the image on the current GDDM
page.

 Principal errors

ADM3499 E IMAGE BOX CURSOR IS NOT AVAILABLE

 ISQCOM

 Function

To query image compressions supported by the device.

 Parameters

device (specified by user) (fullword integer)
The device whose supported image compressions are to be
returned. Possible values are:
-1 an attached scanner
 0 the current primary device (display, printer, or plotter)

count (specified by user) (fullword integer)
The number of elements in array . The number of image
compressions supported are given by FSQURY.

array (returned by GDDM) (an array of fullword integers)
An array of image compressions supported by the device.
Possible values are:
1 uncompressed
2 MMR (IBM 8815)
3 IBM 4250
4 IBM 3800

Note: MMR = modified-modified read.

 Description

Returns the image compressions supported by the current
primary device, or a scanner attached to it.

Note that this does not limit the compressions that can be
specified (on, for example, an IMAGTS(−1,...) call), but
defines which compressions can be used without requiring
GDDM to perform automatic conversion, with a subsequent
increase in host loading.

 Principal errors

ADM3455 E DEVICE n IS INVALID

ADM3459 E COUNT n IS INVALID

 ISQFLD

 Function

To query image field.

 Parameters

row (returned by GDDM) (fullword integer)
column (returned by GDDM) (fullword integer)

The row and column position on the page of the top left-
hand corner of the image field. Zeros indicate that no
image field exists.

depth (returned by GDDM) (fullword integer)
width (returned by GDDM) (fullword integer)

The size of the image field on the page in terms of rows
and columns. Zeros indicate that no image field exists.

control (returned by GDDM) (fullword integer)
A value that indicates whether the application can read data
from the image. Possible values are:
0 No image field exists.
1 Write-only; data cannot be read from the image.
2 Read-write; data can be read from the image.

 Description

Returns the position and size of the image field on the
current page, in row/column page coordinates, and returns
the image field control.

For a general description of the image field, see ISFLD.

If no image field exists, all parameters return zero values.

ISQFLD (row, column, depth, width, control)

APL code 181
GDDM RCP code X'0C300001' (204472321)

ISQCOM (device, count, array)

APL code 194
GDDM RCP code X'0C301800' (204478464)

 Chapter 3. The GDDM calls 205

 ISQFOR

 Principal errors

None.

 ISQFOR

 Function

To query image formats supported by the device.

 Parameters

device (specified by user) (fullword integer)
The device whose supported image formats are to be
returned. Possible values are:
−1 An attached scanner
0 The current primary device (display, printer, or plotter).

count (specified by user) (fullword integer)
The number of elements in array . The number of image
formats supported are given by FSQURY.

array (returned by GDDM) (an array of fullword integers)
An array of image formats supported by the device. Each
element has the value:
1 Unformatted
2 3193 data stream format
3 Page printer format.

 Description

Returns the image formats supported by the current primary
device, or a scanner attached to it.

Note that this does not limit the formats that can be specified
(on, for example, an IMAGTS(-1,...) call), but defines which
formats can be used without requiring GDDM to perform
automatic conversion, with a subsequent increase in host
loading.

 Principal errors

ADM3455 E DEVICE n IS INVALID

ADM3459 E COUNT n IS INVALID

 ISQLOC

 Function

To query image locator cursor position.

 Parameters

echo (returned by GDDM) (fullword integer)
This field is reserved for future use and always returns
zero.
0 The default echo for the current device is used to show

the image locator position.

For the 3193 display, this is a small cross.

For the other 3270-family displays, this is the alphanu-
meric cursor.

h-pos (returned by GDDM) (fullword integer)
The horizontal position in pixels of the locator cursor.

v-pos (returned by GDDM) (fullword integer)
The vertical position in pixels of the locator cursor.

in-image (returned by GDDM) (fullword integer)
Indicates whether the locator position is within image 0.
Coordinates that are outside image 0 are given the appro-
priate values extrapolated from the pixel coordinate range
of image 0. Possible values are:
0 The position is outside image 0
1 The position is inside image 0.

status (returned by GDDM) (fullword integer)
The current status of the image locator cursor. Possible
values are:
0 Disabled
The locator position is the last one received from the device
when the locator was enabled, or the default position if the
locator was not enabled since initializing the locator cursor.
1 Enabled
The locator returned is the one received from the device on
the last ASREAD call, or the default position if no ASREAD
call has been issued since enabling the locator cursor.

 Description

Returns the current value, echo characteristics, and status of
an image locator cursor. The locator is specified in the pixel
coordinate system of image 0, the image on the current
GDDM page.

 Principal errors

ADM3498 E IMAGE LOCATOR CURSOR IS NOT AVAILABLE

ISQLOC (echo, h-pos, v-pos, in-image, status)

APL code 190
GDDM RCP code X'0C301300' (204477184)

ISQFOR (device, count, array)

APL code 184
GDDM RCP code X'0C301700' (204478208)

206 GDDM Base Application Programming Reference

 ISQRES

 ISQRES

 Function

To query supported image resolutions.

 Parameters

device (specified by user) (fullword integer)
The device whose supported resolutions are to be returned.
Possible values are:
−1 An attached scanner
0 The display, printer, or plotter device.

res-unit (specified by user) (fullword integer)
The units of resolution for the ref values and for which
resolutions are to be returned. Possible values are:
 0 Inches
 1 Meters.

h-ctl (specified by user) (fullword integer)
The value that is to be returned in h-res . Possible values
are:
−2 Return the value nearest to and less than the ref-h-res

value.
−1 Return the value nearest to and less than or equal to

the ref-h-res value.
0 Return the value nearest to the ref-h-res value.
1 Return the value nearest to and greater than or equal

to the ref-h-res value.
2 Return the value nearest to and greater than the

ref-h-res value.
ref-h-res (specified by user) (short floating point)

The reference value for horizontal resolution. This value is
used together with h-ctl .

v-ctl (specified by user) (fullword integer)
The value that is to be returned in v-res . For a description
of the valid values, see h-ctl .

ref-v-res (specified by user) (short floating point)
The reference value for vertical resolution. This value is
used together with v-ctl .

h-res (returned by GDDM) (short floating point)
v-res (returned by GDDM) (short floating point)

Pairs of vertical and horizontal resolutions that meet the
requirements specified by h-ctl, v-ctl, ref-h-res , and
ref-v-res . If zeros are returned, this indicates that no sup-
ported resolution pair met the specification.

info (returned by GDDM) (fullword integer)
Gives more information about the resolutions returned in
h-res and v-res . Possible values are:
0 The returned values are a discrete pair of supported

resolutions.

1 Any resolution is supported. In this case, the returned
values is always equal to the ref values.

 Description

Returns the nearest supported resolution pair to the pair
specified in ref-h-res, ref-v-res .

The nearest supported resolution equal to or greater than the
ref value is returned when the ctl value is positive. The
nearest supported resolution less than the ref value is
returned when the ctl value is negative.

The aspect ratio (difference between h and v resolutions) is
taken into account when choosing the nearest supported
resolution pair. When several supported resolution pairs are
near the reference point, the pair chosen will give the
smallest change in aspect ratio.

Notes:

1. Images of an resolution value can be sent to output
devices; the ISQRES call defines those resolutions that
do not require conversion in the host.

2. Resolution conversion is subject to approximation as
defined by the ISCTL call.

 Principal errors

ADM3356 E IMAGE n1 RESOLUTION UNIT n2 IS INVALID

ADM3453 E CONTROL VALUE n IS INVALID

ADM3455 E DEVICE n IS INVALID

ADM347ð E SCANNER DOES NOT EXIST

 ISQSCA

 Function

To query image scanner device.

 Parameters

count (specified by user) (fullword integer)
The number of elements to be set in the attributes array.
This value can be zero, in which case, no attributes are
returned.

attributes (returned by GDDM) (an array of fullword integers)
Values defining scanner attributes.

1 Current scanner status
Returns a value indicating the current status of the scanner.
This value can be used after a failing ISLDE, IMAGTS, or
IMXFER call from the scanner to determine what caused

ISQRES (device, res-unit, h-ctl, ref-h-res, v-ctl, ref-v-res,
h-res, v-res, info)

APL code 188
GDDM RCP code X'0C300E00' (204475904)

ISQSCA (count, attributes)

APL code 187
GDDM RCP code X'0C300D00' (204475648)

 Chapter 3. The GDDM calls 207

 ISSE

the error. This may be simpler than querying the error
message itself. Possible values are:

0 Scanner is either not ready, powered off, or unplugged
1 Scanner is ready
2 Paper is jammed
3 Lamp intensity is too low (bulb needs changing)
4 Some other unexpected hardware error
5 No paper in scanner.

2 ADF (Automatic Document Feeder) Status.
Returns the status of the ADF feature if fitted to the
scanner. Possible values are:

0 Scanner does not have the ADF feature.
1 There is more paper in the ADF.
2 The ADF is empty.

 Description

Returns the current values of variable scanner attributes.

Notes:

1. The current resolution can be queried with the IMAQRY
call.

2. Fixed device characteristics are queried using the
FSQURY call.

3. Querying the current scanner status does not cause
communication with the scanner, it simply returns the
current known status that was set on any previous
scanner I/O call, such as IMXFER, for example.

 Principal errors

ADM3473 E ATTRIBUTE COUNT n IS INVALID

ADM347ð E SCANNER DOES NOT EXIST

 ISSE

 Function

To run the Image Symbol Editor.

 Parameters

symbol-set-name (specified by user) (8-byte character
string)
Either the name of a new or existing image symbol set, or
blanks (in which case the symbol set name will have to be
typed in by the operator after the first panel has been pre-
sented).

 Description

Run the GDDM Image Symbol Editor.

Note: When the Image Symbol Editor is invoked from an
application program, the ESLIB routine can be called before-
hand, to specify the libraries to be used for retrieving and
storing symbol sets and object decks.

 Principal errors

None.

 ISXCTL

 Function

To set extended image quality control parameters.

 Parameters

device (specified by user) (fullword integer)
The image to which the call applies. Possible values are:

−1 Scanner
 0 Current page

count-1 (specified by user) (fullword integer)
The number of elements in array-1 , from 0 through 4.

array-1 (specified by user) (an array of fullword integers)
The limit, or limits, of approximation allowed for transforms.
If a given transform element cannot be performed exactly
by a device, then GDDM may approximate the function,
within the limit, or limits, specified, to match the device’s
capability. The array elements have the following
meanings:

1 Process all extractions
Specifies whether all extractions are to be processed.
Possible values are:

−1 Unchanged (default if element not included)
0 Don’t care
1 Yes

2 Honor scaling algorithm
Specifies whether the scaling algorithm is to be used.
Possible values are:

−1 Unchanged (default if element not included)
0 Don’t care
1 Yes

ISXCTL (device, count-1, array-1, count-2, array-2)

APL code 183
GDDM RCP code X'0C300003' (204472323)

ISSE (symbol-set-name)

APL Code 1201
GDDM RCP code X'18000000' (402653184)

208 GDDM Base Application Programming Reference

 MSCPOS

3 Emulate overlapped rectangles
Specifies whether overlapped rectangles are to be emu-
lated. Possible values are:

−1 Unchanged (default if element not included)
0 Don’t care
1 Yes

4 Avoid image size rounding
Specifies whether the size of extractions are to be
rounded to meet the requirements of the source device
(scanner). Possible values are:

−1 Unchanged (default if element not included)
0 Don’t care
1 Yes

count-2 (specified by user) (fullword integer)
The number of elements in array-2 , from 0 through 2.

array-2 (specified by user) (array of short floating-point
numbers)
The limit, or limits, of approximation allowed for transforms.
If a given transform elements cannot be performed exactly
by a device, then GDDM may approximate the function,
within the limit, or limits, specified, to match the device’s
capability. The array elements have the following
meanings:

1 lower scaling limit

−1.0 Unchanged (default if element not included)
0.0–1.0 Scale factor lower multiplier

2 upper scaling limit

−1.0 Unchanged (default if element not included)
≥1.0 Scale factor upper multiplier

 Description

Specifies the picture quality acceptable to the application, for
the current page or scanner device.

This call allows individual setting of the quality control param-
eters described in ISCTL.

This call cannot be issued while image entry or retrieval is
initialized for the page or scanner specified.

ISXCTL and ISCTL set the same image control parameters.
ISXCTL partially or wholly updates values previously set by
ISCTL, or the default values. ISCTL sets all of the image
control parameters, and therefore overrides the effects of any
previous call to ISXCTL.

 Principal errors

ADM3386 E CALL NOT ALLOWED DURING GET/PUT SEQUENCE

ADM3455 E DEVICE n IS INVALID

ADM3457 E COUNT_n1 n2 IS INVALID

ADM3458 E INVALID VALUE f FOR ARRAY_n1, ELEMENT n2

 MSCPOS

 Function

To set cursor position.

 Parameters

position (specified by user) (fullword integer)
The position of the cursor within the field. A value of 1 indi-
cates the first position following the attribute byte, a value
of 2 the second, and so on. If the value is 0, the cursor is
set underneath the starting attribute-byte. If the value is
greater than the length of the field, the cursor is positioned
underneath the last character of the field.

Note: If, when the map was defined, the field in which the
cursor is to be positioned was designated as a double-byte
character string field (DBCS – used for Kanji and Hangeul),
the cursor position is interpreted in units of two-byte charac-
ters.

If, when the map was defined, the field in which the cursor
is to be positioned was designated as a mixed string field,
the cursor position is interpreted in one-byte units, including
any SO/SI characters inserted in the application data.
Thus, if a field is mixed-without-position, the value required
by MSCPOS (or returned by MSQPOS) may differ from the
character position of the cursor on the screen.

 Description

Positions the cursor in a field that is contained in a map.
The field in which the cursor is to be positioned must have its
cursor adjunct set in the application data structure for the
map. If none of the fields contained in the map has its
cursor adjunct set, MSCPOS has no effect.

The MSCPOS call affects only the next MSPUT operation. If
MSPUT is used without a preceding MSCPOS, the cursor is
positioned under the first character of the field with the cursor
adjunct set, if there is one.

 Principal errors

ADMð966 E PAGE n IS NOT MAPPED

ADMð984 E CURSOR POSITION IS NEGATIVE OR TOO LARGE

MSCPOS (position)

APL code 1112
GDDM RCP code X'0C280600' (203949568)

 Chapter 3. The GDDM calls 209

 MSDFLD

 MSDFLD

 Function

To create or delete a mapped field.

 Parameters

id (specified by user) (fullword integer)
The identifier of the mapped field. It must be a positive
integer greater than zero.

If there is an existing mapped field with the same identifier,
the existing mapped field is deleted (see the section below
about row or column with zero value).

row (specified by user) (fullword integer)
column (specified by user) (fullword integer)

The position on the page of the rectangle covered by the
mapped field. Usually, the position of the mapped field is
taken from the map definition by specifying row and
column as −1. The size of the mapped field is taken from
the map definition.

If the value of row or column is zero, any existing field with
the same identifier is deleted.

The field must not overlap any existing mapped field.

map-name (specified by user) (8-byte character string)
The name of the map that defines the properties of the
field. The maps of all the mapped fields within a page are
taken from the same mapgroup; see MSPCRT.

 Description

Creates a mapped field and positions it on the current page.
The map’s constant fields are put onto the page. If the
cursor has not previously been positioned and the map has
defined a static cursor-position, the cursor is placed at that
static cursor-position. The application data area associated
with the mapped field is set to its default value.

Notes:

1. The current page must have been created with the
MSPCRT call but it can also contain simple alphanu-
meric fields.

2. The size of the mapped field is found from the map defi-
nition. It cannot overlap any other mapped field.

3. A mapped field must not overlap a simple alphanumeric
field. Also, care must be taken when placing mapped

and alphanumeric fields next to each other, because of
the attribute bytes that enclose alphanumeric fields.
Undesirable results can occur if the attributes intrude
into a mapped field.

4. The area occupied by a mapped field can overlap a
graphics or image field. Where such overlaps occur, the
mapped data takes precedence, but the results are
device-dependent. For devices that support background
transparency, the mapped field is transparent, that is,
the underlying graphics or image are always visible. For
devices that do not support background transparency,
the mapped field is opaque, that is, no graphics or
image appears in the cells that are occupied by the
mapped field. However, the map definition can contain
a graphic area definition, for which a GSFLD call is
issued automatically for the appropriate area, and in
which the graphics is always visible.

5. The specification of the map position in the map defi-
nition can be overridden by the MSDFLD call.

6. Parts of the map that lie outside the page will not be
visible to the operator. A warning message is issued if
all the map is outside the page. An information
message is issued if part of the map is outside the page.

7. If the map is defined as a floating map and is not explic-
itly positioned, the call is rejected if the floating area is
full.

8. Any map can be explicitly positioned within the floating
area of the current page. Any attempt to float another
map into the same position is rejected.

9. If the page size was defaulted when the MSPCRT call
was issued and if the mapgroup associated with the
page does not match the current screen or partition, the
floating area of the map may extend outside the current
page. This can lead to a warning message being issued
by MSDFLD.

 Principal errors

ADMð966 E PAGE n IS NOT MAPPED

ADMð968 E ALPHANUMERIC FIELD a1 AND MAPPED FIELD a2

OVERLAP

ADMð97ð E MAP 'a1' IS NOT IN MAPGROUP 'a2'

ADMð971 E ROW OR COLUMN IS LESS THAN -1 OR TOO LARGE

ADMð972 E MAPPED FIELD a1 OVERLAPS MAPPED FIELD a2

ADMð973 E INSUFFICIENT SPACE LEFT IN FLOATING AREA FOR

MAPPED FIELD a

ADMð974 E MAP 'a' FLOATS HORIZONTALLY BUT VERTICALLY

FLOATING MAPS USED

ADMð975 E MAP 'a' FLOATS VERTICALLY BUT HORIZONTALLY

FLOATING MAPS USED

ADMð978 E MAPPED FIELD ID n IS NOT GREATER THAN ZERO

ADMð99ð W MAP-DEFINED GRAPHIC FIELD IS OUTSIDE PAGE

ADMð991 W MAPPED FIELD a IS POSITIONED OUTSIDE THE

PAGE

ADMð992 I MAPPED FIELD a IS PARTIALLY OUTSIDE THE PAGE

MSDFLD (id, row, column, map-name)

APL code 1108
GDDM RCP code X'0C280500' (203949312)

210 GDDM Base Application Programming Reference

 MSGET

 MSGET

 Function

To retrieve data from a mapped field.

 Parameters

id (specified by user) (fullword integer)
The identifier of the mapped field.

option (specified by user) (fullword integer)
The type of data to be returned. Possible values are:
0 The data record is returned.
1 Reserved.
2 Reserved.
3 The ADS for highlighting is returned.
4 The ADS for color is returned.
5 The ADS for programmed symbols is returned.

length (specified by user) (fullword integer)
The length of the ads parameter.

ads (returned by GDDM) (character)
The current value of the contents of the mapped field. The
length of the structure must be as least as great as the
length defined in the map for the field. The data beyond
the end of the map-defined length is unchanged by this
operation.

 Description

Returns the current value of the contents of a mapped field.

 Principal errors

ADMð95ð W INPUT FIELD TRUNCATED

ADMð966 E PAGE n IS NOT MAPPED

ADMð976 E MAPPED FIELD a DOES NOT EXIST

ADMð978 E MAPPED FIELD ID n IS NOT GREATER THAN ZERO

ADMð98ð E DATA LENGTH (n) IS SMALLER THAN LENGTH OF

ADS (a) OF MAP

 MSPCRT

 Function

To create a page for mapping.

 Parameters

id (specified by user) (fullword integer)
The identifier for the new page. It must be greater than
zero (zero is reserved for the default page, which is always
available) and unique within the current partition.

depth (specified by user) (fullword integer)
width (specified by user) (fullword integer)

The size of the page. Usually, the size is taken from the
mapgroup; in this case, the depth and width are specified
as –1.

If either is specified as zero, the appropriate depth and
width according to the area covered by the current partition
are used. See FSPCRT for depth and width limitations.

group-name (specified by user) (8-byte character string)
The mapgroup name, which is from one through eight char-
acters long, left-justified, and padded with blanks on the
right to a total length of 8. Either or both of the last two
nonblank characters may be a period (.). If they are,
GDDM substitutes code characters for them that are
selected according to the capability of the device and the
capacity of the screen. These two characters are the
device class as shown in Table 3 on page 212. The corre-
sponding generated mapgroup can be read from auxiliary
storage.

Note: Unless overridden, the size of the page is determined
by the mapgroup definition. The size can be found using the
MSPQRY call.

 Description

Creates a page in which mapped fields are to be defined,
and identifies the mapgroup in which the maps for those
mapped fields reside.

Notes:

1. If partitions are in use or if the mapgroup name is given
explicitly, the mapgroup may contain maps that are
larger than the page. If the page size is given explicitly,
the floating area of maps is reduced automatically to fit
the page. If, however, the page size is defaulted, the
floating area is unchanged and warning messages may
be issued by MSDFLD for floating maps.

2. Mapped alphanumerics are supported on family-4
devices if a cell-based AFPDS device token is used.

 Principal errors

ADMð122 E PS STORE NUMBER n IS INVALID

ADMð13ð E PAGE n ALREADY EXISTS

ADMð134 E PAGE IDENTIFIER n IS INVALID

MSPCRT (id, depth, width, group-name)

APL code 1102
GDDM RCP code X'0C280100' (203948288)

MSGET (id, option, length, ads)

APL code 1110
GDDM RCP code X'0C280502' (203949314)

 Chapter 3. The GDDM calls 211

 MSPQRY

Table 3. Device classes for GDDM Interactive Map Definition (MSPCRT)

Default
presentation
area size

Device
class

Typical devices (suitably configured)

6 x 20 D0 3290
6 x 40 D1 3290
12 x 40 D2 3277 3290
16 x 64 D3 3290
12 x 80 D4 3278 3290 8775
24 x 80 D5 3179 3277 3278 3279 3290 3270-PC,/G,/GX 5080 8775
32 x 80 D6 3179 3278 3279 3290 3270-PC,/G,/GX 5080 8775
43 x 80 D7 3278 3290 3270-PC,/G,/GX 5080 8775
27 x 132 D8 3278 3290 3270-PC,/G,/GX
62 x 132 D9 3290 3270-PC,/G,/GX
66 x 132 P1 Printers (excluding 3283)
24 x 80 K5 Kanji-Chinese devices: 3278-52, 5550
32 x 80 K6 Kanji-Chinese devices: 3278-52, 5550
43 x 80 K7 Kanji-Chinese devices: 3278-52, 5550
66 x 158 V1 3283-52

ADMð137 E PAGE SIZE n IS INVALID

ADMð138 E PAGE DEPTH n1 OR WIDTH n2 IS TOO LARGE

ADMð96ð E PAGE DEPTH OR WIDTH IS LESS THAN -1

ADMð962 E MAPGROUP 'a' NOT FOUND

ADMð963 E OBJECT 'a' IS NOT A MAPGROUP

ADMð964 S MAPGROUP 'a' IS CORRUPTED

 MSPQRY

 Function

To query specified page.

 Parameters

id (specified by user) (fullword integer)
The identifier of the page to be queried.

depth (returned by GDDM) (fullword integer)
The depth of the page.

width (returned by GDDM) (fullword integer)
The width of the page.

group-name (returned by GDDM) (8-byte character string)
The name of the mapgroup associated with the page, if
created by the MSPCRT call, or all blanks if created by the
FSPCRT call.

The name returned has any substitution characters
replaced by their actual values.

 Description

Returns information about a page.

 Principal errors

ADMð132 E PAGE n DOES NOT EXIST

 MSPUT

 Function

To place data into a mapped field.

 Parameters

id (specified by user) (fullword integer)
The identifier of the mapped field to be modified.

option (specified by user) (fullword integer)
Controls the parts of the map and the associated applica-
tion data structures to be modified. Possible values are:

0 All data is replaced with data from the application data
structure. Character attributes are set to their default
values. Any fields in the map that have selector
adjuncts indicating that the fields are to be absent, are
set to their defaults.

MSPQRY (id, depth, width, group-name)

MSPUT (id, option, length, ads)APL code 308
 GDDM RCP code X'0C040006' (201588742)
APL code 1109
GDDM RCP code X'0C280501' (203949313)

212 GDDM Base Application Programming Reference

 MSQADS

1 Part of the data is replaced. Any fields in the map that
have selector adjuncts indicating that the fields are to
be absent are unchanged. The selector adjuncts can
be used to set fields to their default values.

2 Part of the data is replaced in the same way as for an
option value of 1. Also, any fields that were modified
by the terminal operator during previous interactions
with the application program retain their modification
indication.

3 Parts of the shadow application data structure for high-
lighting are modified. Set the highlighting values
required for the characters in each field in the appro-
priate application data structure field.

4 Parts of the shadow application data structure for color
are modified. Set the color values required for the
characters in each field in the appropriate application
data structure field.

5 Parts of the shadow application data structure for pro-
grammed symbols are modified. Set the programmed
symbol values required for the characters in each field
in the appropriate application data structure field.

Note: For option values 3, 4, and 5, other field adjuncts
can be used in the map definition to control the modification
of the data. The selector adjunct can be used to indicate
that the character attributes for the field are not to be
changed or are to be set to the default. The length adjunct
can be used to indicate the length of character-attribute
data provided. If the field data is longer, the character attri-
butes are padded with default values.

If the field data is shorter, the character attributes are trun-
cated. The cursor adjunct can be used to position the
cursor.

length (specified by user) (fullword integer)
The length of the application data structure specified in the
ads parameter. The length can be 0, or it must be at least
as great as the length of the application data structure
defined to GDDM by the Interactive Map Definition
(GDDM-IMD). If the length is 0, the ads parameter is not
referenced. Instead, GDDM assumes an application data
structure of the correct length, filled with blanks.

ads (specified by user) (character)
The application data structure. This is a contiguous set of
bytes whose layout is determined by the map definer when
the map for the field is created.

 Description

Modifies the data associated with a map. The whole map, or
selected fields within the map, can be replaced with data
from the application data structure. The way in which the
data in the map appears on the screen can be altered by
modifying parts of the shadow application data structures
associated with the map. The shadow application data struc-
tures contain information about the character attributes that
apply to the data in each field of the map.

 Principal errors

ADMð966 E PAGE n IS NOT MAPPED

ADMð976 E MAPPED FIELD a DOES NOT EXIST

ADMð977 E OPTION IS NOT IN RANGE ð THROUGH 5

ADMð98ð E DATA LENGTH (n) IS SMALLER THAN LENGTH OF

ADS (a) OF MAP

ADMð981 E type ATTRIBUTE SELECTOR FOR '{FIELD

n|xxxxxx|xxxxxx(m)}' IS NOT BLANK, 1, 2, OR

3

ADMð982 E CURSOR SELECTOR FOR '{FIELD

n|xxxxxx|xxxxxx(m)}' IS NOT BLANK OR 1

ADMð983 E type ATTRIBUTE FOR '{FIELD

n|xxxxxx|xxxxxx(m)}' IS INVALID

 MSQADS

 Function

To query application data structure definition.

 Parameters

group-name (specified by user) (8-byte character string)
The name of a mapgroup. It is in the same format as for
the MSPCRT call. The mapgroup is not necessarily related
to an existing mapped page. The corresponding generated
mapgroup may be read from auxiliary storage.

map-name (specified by user) (8-byte character string)
The name of a map within the mapgroup. The map is not
necessarily related to any existing mapped field.

format (specified by user) (fullword integer)
A code indicating the required format of the ADS descriptor.
This value must be 1.

length (specified by user) (fullword integer)
The number of bytes in the string parameter. It must at
least equal the ADS descriptor length returned by
MSQMAP.

string (returned by GDDM) (character)
A byte array into which the ADS descriptor is placed. The
format of the descriptor is shown in Figure 13 on page 214
and a detailed description of each section is given below.

 Description

Returns a description of the fields that make up the applica-
tion data structure (ADS) for a specified map. The
description includes the names of the fields only if the
mapgroup was generated with field names included.

MSQADS (group-name, map-name, format, length, string)

APL code 1105
GDDM RCP code X'0C280302' (203948802)

 Chapter 3. The GDDM calls 213

 MSQADS

map-nameformatL

2 2 8

Lh lrecl #fields language reserved #adjs xxx

2 2 2 1 1 2

Lh

La Le Ne

2 1 1

T1 T2 Ls L4 suffix xxx

L4

Le

1 1 1 1

Lf

Le

2

2

L1 Tf offset size index xxx

1 1 2 2 2

L1

L2 name

1

L2

L3 Ta offset Ta offset Ta offset

1 1 2 1 2 1 2

L3

(Array of 3-byte entries

each describing an

adjunct of field.)

Le

La

Lf

L

Request Section

Header Section

Adjunct Section

Field Section

(Array of

equal-length

entries each

describing

a type

of adjunct.)

(List of variable-length

entries each describing

a field.)

First Field Entry

General field data

Field's name

Further Field Entries

xxx

Adjunct information

Other items

Other Sections

xxx

Figure 13. Structure returned from MSQADS

Description of sections: This structure is designed to
accommodate more information without impacting an existing
application, if the application is written to take account of the
following rules:

1. The descriptor is divided into a number of sections and
the sections may be divided into sub-sections. Each
part is preceded by a length.

2. The meaning and content of a part is defined by its
order in the list of parts.

3. New sections may be added in the future, at the end of
the list. Applications must be prepared to ignore such
parts by using the length of the enclosing section.

4. All lengths always include the length of the length field.

214 GDDM Base Application Programming Reference

 MSQADS

5. New fields may be defined in the future, at the end of
the currently defined fields. Applications must be pre-
pared to ignore such parts by using the length of the
part.

6. All defined parts and all defined fields in the parts are
always present, unless explicitly stated below. There-
fore, applications need not cope with the possibility of
length fields indicating less data than is expected, unless
they need to run on back-levels of GDDM (if, in the
future, extensions have been defined).

However, where the specification allows variable
amounts of data, applications must respect the lengths
and so on, including the special case of no data.

The sections are:

1. A Request section that reflects the information specified
by the application. It contains:

L This field contains the length of the entire
structure returned.

format This indicates the format in which the appli-
cation is expecting the returned informa-
tion. The only value supported by GDDM
is 1.

map-name The name of the map, the ADS of which is
described.

2. A Header section containing general information about
the map:

Lh The length of this section.

lrecl The length of the ADS for this map.

#fields The number of data-level fields in the map.
This is the number of field entries in the
field section of the returned ADS
descriptor.

language A code indicating the programming lan-
guage for which the ADS was generated.

0 No language specified
4 PL/DS (for the IBM 8100)
32 PL/I
64 COBOL
128 Assembler.

reserved A one-byte reserved field.

#adjs The total number of adjunct fields in the
ADS. Thus, the number of fields of any
type in the ADS is: #fields +#adjs.

xxx Any other fields that may be added from
time to time. Applications should be pre-
pared to ignore such fields by using the
length Lh.

3. An Adjunct section containing general descriptions of
adjuncts. This is information that has been factored out
of the field descriptions, to reduce the size of the
description. It is formatted as an array (that is, equal-
length entries) to allow direct addressing, and is refer-

enced by the (zero-origined) array index. The adjunct
section is preceded by a header:

La The length of this section
Le The length of each entry
Ne The number of entries.

Each entry contains:

T1 A one-byte type-code indicating the data type
of the adjunct:

1 Binary
2 Character
3 Two-byte encoded characters.

T2 A one-byte type-code indicating the type of the
adjunct:

 2 Selector
 4 Cursor
 6 Length
 8 Base-attribute selector
 9 Base attribute
10 Highlight-attribute selector
11 Highlight attribute
12 Color-attribute selector
13 Color attribute
14 Programmed symbols attribute selector
15 Programmed symbols attribute
16 Validation attribute selector
17 Validation attribute
18 Outlining attribute selector
19 Outlining attribute.

Ls The number of bytes of ADS occupied by the
adjunct. If this length is specified as zero, the
adjunct has the same length as the field to
which it applies.

L4 The length of the adjunct suffix, including the
one-byte length field.

suffix The adjunct suffix, that is, those characters
that should be appended to the right of the
field’s name to form the adjunct field’s name.
This value is dependent on the programming
language used and is absent (L4=1) if the
mapgroup was generated without a name dic-
tionary.

xxx Any other fields that may be added from time
to time. Applications should be prepared to
ignore such fields by using the length Le.

4. A Field section, consisting of a two-byte section length
(Lf) followed by a series of entries, each entry describing
a “real” field. The fields are described in screen order.
Each entry consists of a two-byte entry length (Le) fol-
lowed by a number of items, each item preceded by a
one-byte count of the length of that item. The items are:

 a. General information:

L1 One-byte length of general information.

Tf A one-byte type-code indicating the data
type of the field:

 Chapter 3. The GDDM calls 215

 MSQFIT

1 Binary
2 Character
3 Two-byte encoded character
4 Mixed data with position
5 Mixed data without position.

offset The offset in the ADS of the field.

size The number of bytes in the ADS of the
field.

index The array index, or 0 if not an array.

xxx Any other fields that may be added from
time to time. Applications should be pre-
pared to ignore such fields by using the
length L1.

b. The field’s name:

L2 One-byte length of field name item.

name Name of field. This is absent (L2=1) if the
mapgroup was generated without field
names.

c. Adjunct information (a series of three-byte entries
each defining an adjunct of the field):

L3 A one-byte field containing the length of
the adjunct information. The number of
adjunct entries is (L3−1)/3.

Ta The type of the adjunct; that is, an index
(zero-origined) into the array of adjunct
definitions in the adjunct section.

offset The offset in the ADS of the adjunct.

d. Any other items (xxx) that may be added from time
to time. Applications should be prepared to ignore
such fields by using the length Le.

5. Any other sections (xxx) that may be added from time to
time. Applications should be prepared to ignore such
fields by using the length L.

 Principal errors

ADMð962 E MAPGROUP 'a' NOT FOUND

ADMð963 E OBJECT 'a' IS NOT A MAPGROUP

ADMð97ð E MAP 'a1' IS NOT IN MAPGROUP 'a2'

ADM3ð9ð E ADS DESCRIPTOR FORMAT IDENTIFIER (n) MUST BE

1

ADM3ð91 E DATA LENGTH (n) IS TOO SMALL FOR ADS

DESCRIPTOR HEADER

ADM3ð92 W DATA LENGTH (n) IS TOO SMALL FOR ADS

DESCRIPTOR. IT IS TRUNCATED

 MSQFIT

 Function

To query map fit.

 Parameters

map-name (specified by user) (8-byte character string)
The name of a map within the mapgroup associated with
the current page. The map does not necessarily belong to
any defined mapped field.

count (returned by GDDM) (fullword integer)
The number of times the specified map could be created,
using its default position, before the floating area becomes
full or the map overlaps an existing map.

For a fixed map the count is zero if its default position is
occupied, or one if it is not.

For a floating map, the count is zero or more depending on
the size of the floating area that remains, and whether fixed
maps are overlapping part of the floating area.

 Description

Returns the number of times the map fits in the floating area
of the mapgroup associated with the page.

Note: If the mapped page created by the MSPCRT call has
the default size taken from the mapgroup (but reduced to fit
the device or partition), the floating area of the map may
extend outside the page. In this case, the MSQFIT call still
refers to the floating area, but floating maps created by the
MSDFLD call may be totally or partially outside the page.

 Principal errors

ADMð97ð E MAP 'a1' IS NOT IN MAPGROUP 'a2'

 MSQFLD

 Function

To query mapped field characteristics.

MSQFIT (map-name, count)

APL code 1106
GDDM RCP code X'0C280303' (203948803)

MSQFLD (id, row, column, depth, width, map-name)

APL code 1111
GDDM RCP code X'0C280503' (203949315)

216 GDDM Base Application Programming Reference

 MSQGRP

 Parameters

id (specified by user) (fullword integer)
The identifier of the mapped field to be queried.

row (returned by GDDM) (fullword integer)
The row position of the mapped field.

column (returned by GDDM) (fullword integer)
The column position of the mapped field.

depth (returned by GDDM) (fullword integer)
The depth of the mapped field.

width (returned by GDDM) (fullword integer)
The width of the mapped field.

map-name (returned by GDDM) (8-byte character string)
The name associated with the mapped field.

 Description

Returns the properties of a mapped field.

 Principal errors

ADMð966 E PAGE n IS NOT MAPPED

ADMð976 E MAPPED FIELD a DOES NOT EXIST

ADMð978 E MAPPED FIELD ID n IS NOT GREATER THAN ZERO

 MSQGRP

 Function

To query mapgroup characteristics.

 Parameters

group-name (specified by user) (8-byte character string)
The name of a mapgroup. It is in the same format as for
the MSPCRT call. The corresponding generated mapgroup
may be read from auxiliary storage.

actual (returned by GDDM) (8-byte character string)
The name of the mapgroup, with substitutions made for any
“�” characters at the end of the group-name parameter.

element-no (specified by user) (fullword integer)
The number of the first element in the returned array. It
must have a value in the range 1 through 6.

count (specified by user) (fullword integer)
The number of fullwords to be returned in the array. It
must have a value in the range 1 through 6.

array (returned by GDDM) (an array of fullword integers)
A list of fullword values returned by this call.

1, 2 The depth and width of the page that is created if this
mapgroup is used as an operand to the MSPCRT
call.

3, 4 The position relative to the top of the page of the
floating area in the mapgroup. They are set to 0,0 if
no floating area is defined. The row and column
values are returned in that order.

5, 6 The size of the floating area of the mapgroup. They
are set to 0,0 if no floating area is defined.

Note: The values returned are those in the mapgroup defi-
nition. If a mapped page is created using this mapgroup,
the sizes might be modified because of the size of the parti-
tion in which the page is created.

The maximum number of fullwords returned in the array is
given by the value of the count parameter.

 Description

Returns the properties of a mapgroup. The mapgroup need
not be in use by a page.

 Principal errors

ADMð962 E MAPGROUP 'a' NOT FOUND

ADMð963 E OBJECT 'a' IS NOT A MAPGROUP

ADMð964 S MAPGROUP 'a' IS CORRUPTED

 MSQMAP

 Function

To query map characteristics.

 Parameters

group-name (specified by user) (8-byte character string)
The name of a mapgroup. It is in the same format as for
the MSPCRT call. The corresponding generated mapgroup
can be read from auxiliary storage.

map-name (specified by user) (8-byte character string)
The name of a map within the mapgroup.

element-no (specified by user) (fullword integer)
The number of the first element in the returned array. It
must have a value in the range 1 through 6.

count (specified by user) (fullword integer)
The number of fullwords in the returned array.

MSQGRP (group-name, actual, element-no, count, array)

APL code 1103
GDDM RCP code X'0C280300' (203948800)
 MSQMAP (group-name, map-name, element-no, count,

array)

APL code 1104
GDDM RCP code X'0C280301' (203948801)

 Chapter 3. The GDDM calls 217

 MSQMOD

array (returned by GDDM) (an array of fullword integers)
A list of fullword values returned by this call.

1, 2 The origin of the map with respect to the page.
These have values of –1 for the SAME floating option
and 0 for the NEXT floating option. (SAME and
NEXT are the line, or column, or both of these
options specified when the map was defined under
the Interactive Map Definition).

3, 4 The depth and width of the map.

5 The length of the ADS as defined in the map.

6 The length of the ADS descriptor as returned by the
MSQADS call.

 Description

Returns information about a map within a mapgroup. Neither
the map nor the mapgroup need be in use by a page.

 Principal errors

ADMð962 E MAPGROUP 'a' NOT FOUND

ADMð963 E OBJECT 'a' IS NOT A MAPGROUP

ADMð964 S MAPGROUP 'a' IS CORRUPTED

ADMð97ð E MAP 'a1' IS NOT IN MAPGROUP 'a2'

 MSQMOD

 Function

To query modified fields.

 Parameters

count (specified by user) (fullword integer)
The number of mapped fields for which information is to be
returned. This is also the number of elements in the
returned arrays. If this number is greater than the number
of modified mapped fields, the unused elements of the
returned arrays are set to zero.

ids (returned by GDDM) (an array of fullword integers)
The identifiers of the mapped fields that have been
changed during the last ASREAD or GSREAD call. The
order of the identifiers is the same as that in which the
MSDFLD calls that created the mapped fields were exe-
cuted.

lengths (returned by GDDM) (an array of fullword integers)
The lengths of the application data structures associated
with each mapped field. Each element in this array corre-

sponds to the same element in the array of mapped field
identifiers returned as the ids parameter.

 Description

Returns the identifiers of the mapped fields that have been
changed after an ASREAD call or a GSREAD call. It also
returns the lengths of their application data structures.

When modified fields are returned, they become unmodified.
For example, if ASREAD indicates that there are ten modi-
fied fields, and subsequently two calls are made to
MSQMOD, each requesting seven fields, the first returns
seven, and the second returns the remaining three (and four
zero entries), after which there would be no modified fields
on the current page.

 Principal errors

None.

 MSQPOS

 Function

To query cursor position.

 Parameters

position (returned by GDDM) (fullword integer)
The position of the cursor in a field that is part of a map,
see MSCPOS.

A value of −1 means that the cursor does not lie within a
map, or it is within a map but not in a field with a cursor
adjunct, or the map is not a cursor receiver; see the GDDM
Interactive Map Definition manual.

Note: If an ASREAD call was used, the position of the
cursor can be found by using the ASQCUR call.

 Description

Returns the position of the cursor in a map.

If the cursor lies within a field of the map that has a cursor
adjunct in the application data structure, the value returned
by the MSQPOS call is set to the position of the cursor and
the cursor adjunct is set. To find the cursor position, the
application program must issue an MSGET call, inspect the
cursor adjuncts, and if one is set, issue an MSQPOS call.

MSQPOS (position)

APL code 1113
GDDM RCP code X'0C280601' (203949569)

MSQMOD (count, ids, lengths)

APL code 1107
GDDM RCP code X'0C280400' (203949056)

218 GDDM Base Application Programming Reference

 MSREAD

The value returned by MSQPOS is reset by each MSGET
call.

 Principal errors

None.

 MSREAD

 Function

To present mapped data.

 Parameters

group-name (specified by user) (8-byte character string)
The name of a mapgroup. It is in the same format as for
the MSPCRT call. The corresponding generated mapgroup
may be read from auxiliary storage.

map-name (specified by user) (8-byte character string)
The name of a map within the mapgroup.

length (specified by user) (fullword integer)
The length of the application data structure for the map.

ads (specified by user and returned by GDDM) (character)
The application data structure for the map. Values to be
displayed with the map are taken from it and, after the ter-
minal interrupt, values from the map are returned into it.

attype (returned by GDDM) (fullword integer)
The type of attention interrupt received. See ASREAD for a
description of this parameter.

attval (returned by GDDM) (fullword integer)
The value, if any, associated with the attype parameter.
See ASREAD for a description of this parameter.

Note: If MSREAD is issued for a partitioned device, and the
input is not in the same partition as that in which the map
was output, no data is returned to the application program in
the ads parameter.

 Description

Displays a map, waits for an interrupt from the terminal, and
returns data from the map. MSREAD provides a convenient
combination of operations to perform simple mapping input
and output. It operates within the current partition, but
creates its own temporary page, leaving the current page
status unchanged. MSREAD is essentially equivalent to the
sequence: MSPCRT, MSDFLD, MSPUT, ASREAD, MSGET,
and FSPDEL.

 Principal errors

ADMð962 E MAPGROUP 'a' NOT FOUND

ADMð963 E OBJECT 'a' IS NOT A MAPGROUP

ADMð964 S MAPGROUP 'a' IS CORRUPTED

ADMð97ð E MAP 'a1' IS NOT IN MAPGROUP 'a2'

ADMð973 E INSUFFICIENT SPACE LEFT IN FLOATING AREA FOR

MAPPED FIELD a

ADMð98ð E DATA LENGTH (n) IS SMALLER THAN LENGTH OF

ADS (a) OF MAP

ADMð981 E type ATTRIBUTE SELECTOR FOR '{FIELD

n|xxxxxx|xxxxxx(m)}' IS NOT BLANK, 1, 2, OR

3

ADMð982 E CURSOR SELECTOR FOR '{FIELD

n|xxxxxx|xxxxxx(m)}' IS NOT BLANK OR 1

ADMð983 E type ATTRIBUTE FOR '{FIELD

n|xxxxxx|xxxxxx(m)}' IS INVALID

ADMð99ð W MAP-DEFINED GRAPHIC FIELD IS OUTSIDE PAGE

ADMð991 W MAPPED FIELD a IS POSITIONED OUTSIDE THE

PAGE

ADMð992 I MAPPED FIELD a IS PARTIALLY OUTSIDE THE PAGE

 PSDSS

 Function

To load a symbol set into a PS store from the application
program.

 Parameters

store-number (specified by user) (fullword integer)
Designates the device PS store into which the symbol set is
to be loaded. If the specified PS store is already in use for
another symbol set, the new definitions replace the pre-
vious ones. The number refers to a PS store previously
reserved by PSRSV. If it is specified as zero, GDDM
selects a suitable PS store not currently in use or reserved.
Other valid values of this parameter are 2 through 7 (if the
device is a terminal with the maximum of six PS stores).

symbol-set-name (specified by user) (8-byte character
string)
Contains the name (left-justified) of the symbol set. This
serves only to name the symbol set; no file operations are
performed. The name is returned on calls to query loaded
symbol sets, and is also used to locate an equivalent set if
a copy is made to a printer. If neither of these operations
is to be performed, the name can be left blank.

symbol-set-id (specified by user) (fullword integer)
Gives the identifier by which the symbol set is to be refer-
enced in subsequent calls using the set. The identifier is

MSREAD (group-name, map-name, length, ads, attype,
attval)

APL code 1101
GDDM RCP code X'0C280000' (203948032)

PSDSS (store-number, symbol-set-name, symbol-set-id,
length, data)

APL code 203
GDDM RCP code X'0C040202' (201589250)

 Chapter 3. The GDDM calls 219

 PSLSS

passed to GSCS to select the symbol set for graphics text,
or to ASFPSS to select it for alphanumerics text. Allowable
symbol-set identifiers are 65 through 223.

Each loaded symbol set should have a unique identifier
with respect to all other symbol sets loaded by means of
GSDSS, GSLSS, PSDSS, PSLSS, or PSLSSC calls. This
avoids any uncertainty that might arise from a device
treating different types of symbol sets as equal candidates
for displaying a character string. If, however, a symbol-set
identifier is the same as one that has previously been
issued for the same type, the new definitions replace the
previous ones.

Note: When using segments, remember that the symbol
set belongs to the device and not the segments. Therefore,
it is advisable to load symbol sets outside of segments; if a
symbol set is loaded within a segment, and that symbol set
has already been loaded in a previous segment using the
same symbol-set identifier, unexpected output may occur
when printing the page.

length (specified by user) (fullword integer)
The length of data storage provided for the data parameter.

data (specified by user) (character)
Contains the symbol-set definitions to be loaded.

 Description

Loads a set of symbol definitions from data passed by the
application program into a PS store in the device. The defi-
nitions are transmitted to the device on the next device
update operation.

This call should be issued only when a PS store is available.
When used with graphics operations, the call should be
issued before any graphics drawing calls, or after any pages
containing graphics have been deleted. Alternatively, a call
to PSRSV can be used to reserve a PS store for later
loading.

Note: The information returned for code=0 (element 10) in
the FSQURY call indicates whether the primary device sup-
ports PS stores.

 Principal errors

ADMð115 E SYMBOL SET 'a' LENGTH n IS INVALID

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð119 E SYMBOL SET 'a' HAS INCONSISTENT

{IMAGE|VECTOR} TYPE

ADMð121 E PS STORE n UNAVAILABLE

ADMð122 E PS STORE NUMBER n IS INVALID

ADMð123 E SYMBOL SET n1 HAS INVALID FORMAT. REASON

CODE n2

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð9ð4 E a ARE NOT SUPPORTED FOR THIS DEVICE

 PSLSS

 Function

To load a symbol set into a PS store from auxiliary storage.

 Parameters

store-number (specified by user) (fullword integer)
Defines the device PS store into which the symbol set is to
be loaded. If the specified PS store is already in use for
another symbol set, the new definitions replace the pre-
vious ones. The number refers to a PS store previously
reserved by PSRSV. If it is specified as zero, GDDM
selects a suitable PS store not currently in use or reserved.
Other valid values of this parameter are 2 through 7 (if the
device is a terminal with the maximum of six PS stores).

symbol-set-name (specified by user) (8-byte character
string)
Contains the name (left-justified) of the symbol set to be
read from auxiliary storage. If the symbol set name ends
with the period character “�”, the period is replaced by
another character, depending upon the device family, the
alphanumerics cell size, or the pixel resolution of the
current device. The information returned in the FSQURY
call for code=0 can be used to find the device’s alphanu-
merics cell size; see FSQURY. For information on the
character that replaces the period, refer to the symbol set
naming convention described in Chapter 8, “Symbol set
formats” on page 275.

Symbol sets to be loaded must be of the type that matches
the hardware cell size.

symbol-set-id (specified by user) (fullword integer)
Gives the identifier by which the symbol set is to be refer-
enced in subsequent calls using the set. The identifier is
passed to GSCS to select the symbol set for graphics text,
or to ASFPSS to select it for alphanumerics text. Allowable
symbol-set identifiers are 65 through 223.

Each loaded symbol set should have a unique identifier
with respect to all other symbol sets loaded by means of
GSDSS, GSLSS, PSDSS, PSLSS, or PSLSSC calls. This
avoids any uncertainty that might arise from a device
treating different types of symbol sets as equal candidates
for displaying a character string. If, however, a symbol set
identifier is the same as one that has previously been
issued for the same type, the new definitions replace the
previous ones.

Note: When using segments, remember that the symbol set
belongs to the device and not the segments. Therefore, it is
advisable to load symbol sets outside of segments; if a

PSLSS (store-number, symbol-set-name, symbol-set-id)

APL code 204
GDDM RCP code X'0C040200' (201589248)

220 GDDM Base Application Programming Reference

 PSLSSC

symbol set is loaded within a segment, and that symbol set
has already been loaded in a previous segment using the
same symbol-set identifier, unexpected output may occur
when printing the page.

 Description

Loads a set of symbol definitions from auxiliary storage into a
PS store in the device. The definitions are transmitted to the
device in the next device update operation.

This call should be issued only when a PS store is available.
When used with graphics operations, the call should be
issued before any graphics drawing calls, or after any pages
containing graphics have been deleted. Alternatively, a call
to PSRSV can be used to reserve a PS store for later
loading.

Note: The information returned for code=0 (element 10) in
the FSQURY call indicates whether the primary device sup-
ports PS stores.

 Principal errors

ADMð115 E SYMBOL SET 'a' LENGTH n IS INVALID

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð119 E SYMBOL SET 'a' HAS INCONSISTENT

{IMAGE|VECTOR} TYPE

ADMð121 E PS STORE n UNAVAILABLE

ADMð122 E PS STORE NUMBER n IS INVALID

ADMð123 E SYMBOL SET n1 HAS INVALID FORMAT. REASON

CODE n2

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð9ð4 E a ARE NOT SUPPORTED FOR THIS DEVICE

 PSLSSC

 Function

To conditionally load a symbol set into a PS store from auxil-
iary storage.

 Parameters

store-number (specified by user) (fullword integer)
Defines the device PS store into which the symbol set is to
be loaded. If the specified PS store is already in use for
another symbol set, the new definitions replace the pre-
vious ones. The number refers to a PS store previously

reserved by PSRSV. If it is specified as zero, GDDM
selects a suitable PS store not currently in use or reserved.
Other valid values of this parameter are 2 through 7 (if the
device is a terminal with the maximum of six PS stores).

symbol-set-name (specified by user) (8-byte character
string)
Contains the name (left-justified) of the symbol set to be
read from auxiliary storage. If the symbol-set name ends
with the substitution character (period), the “�” is replaced
by another character, depending upon the device family,
alphanumerics cell size, or pixel resolution of the current
device. The information returned in the FSQURY call for
code=0 can be used to find the device’s alphanumerics cell
size. For information on the character that replaces the “�”,
see the symbols set naming convention described in
Chapter 8, “Symbol set formats” on page 275.

symbol-set-id (specified by user) (fullword integer)
Gives the identifier by which the symbol set is to be refer-
enced in subsequent calls using the set. The identifier is
passed to GSCS to select the symbol set for graphics text,
or to ASFPSS to select it for alphanumerics text. Allowable
symbol-set identifiers are 65 through 223.

Each loaded symbol set should have a unique identifier
with respect to all other symbol sets loaded by means of
GSDSS, GSLSS, PSDSS, PSLSS, or PSLSSC calls. This
avoids any uncertainty that might arise from a device
treating different types of symbol sets as equal candidates
for displaying a character string. If, however, a symbol-set
identifier is the same as one that has previously been
issued for the same type, the new definitions replace the
previous ones.

 Description

This is similar to the PSLSS call, except that the loading is
conditional. The PS store is loaded only if it does not
already contain a symbol set with the specified symbol-set
identifier. This function is intended for use when a conven-
tion exists associating a unique symbol set with a symbol-set
identifier on the device. An application program requiring
that a PS store be loaded with a particular symbol set can
issue a call to PSLSSC immediately after initialization of
GDDM. This loads the symbol set only if it is not already
present in the device. This can save transmissions if a given
symbol-set identifier is always associated with a particular set
of symbols.

Note: The information returned for code=0 (element 10) in
the FSQURY call indicates whether the primary device sup-
ports PS stores.

 Principal errors

ADMð115 E SYMBOL SET 'a' LENGTH n IS INVALID

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð119 E SYMBOL SET 'a' HAS INCONSISTENT

{IMAGE|VECTOR} TYPE

ADMð121 E PS STORE n UNAVAILABLE

ADMð122 E PS STORE NUMBER n IS INVALID

PSLSSC (store-number, symbol-set-name, symbol-set-id)

APL code 205
GDDM RCP code X'0C040201' (201589249)

 Chapter 3. The GDDM calls 221

 PSQSS

ADMð123 E SYMBOL SET n1 HAS INVALID FORMAT. REASON

CODE n2

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

ADMð125 E SYMBOL SET n CODE POINT X'xx' IS INVALID

ADMð3ð7 E FILE 'a' NOT FOUND

ADMð9ð4 E a ARE NOT SUPPORTED FOR THIS DEVICE

 PSQSS

 Function

To query status of device stores.

 Parameters

n (specified by user) (fullword integer)
The number of stores to be queried.

types (returned by GDDM) (an array of fullword integers)
Identifies the PS store types. Possible values are:

 −1 Not present on the device
0 Nonloadable character set
1 Single-plane PS store (for monochrome sets)
2 Triple-plane PS store (for monochrome or multicolor

sets).

states (returned by GDDM) (an array of fullword integers)
Identifies the allocation states of the sets. Possible values
are:

0 Not in use, allocated, or reserved
1 Allocated by GDDM, either for a symbol set or for

graphics
2 Reserved by PSRSV.

symbol-set-names (returned by GDDM) (array of 8-byte
character tokens)
Identifies the files from which the symbol sets were loaded,
or the names specified in calls to GSDSS. If the PS store
was not loaded by GDDM, the name is blank. If the symbol
set was loaded by means of PSLSS, and the substitution
character was specified, the name returned is the one after
the “�” was substituted.

symbol-set-ids (returned by GDDM) (an array of fullword
integers)
Contains the identifiers associated with the symbol sets.

The meaning of each identifier depends on the corre-
sponding value of the states parameter, as follows:

0 The identifier reflects the most recent use of the
symbol set. In particular, immediately after GDDM
initialization, the identifiers reflect the terminal status at
initialization. Unused PS stores have an identifier of
255 at initialization.

1 If the symbol set has been loaded by PSDSS, PSLSS,
or PSLSSC, the identifier is that specified in one of
those calls. If the PS store is in use for graphics, the
identifier is in the range 224 through 239.

2 The store is reserved, and the validity of the
symbol-set identifier is not ensured, because the store
is under control of the application program.

 Description

Requests information about the contents of stores (both
nonloadable and PS).

Each of the parameters (excluding n) is an array with n ele-
ments. Information about the first n symbol sets on the
device is returned in order, starting with symbol set 1. Infor-
mation about the base set (symbol store 0) is not returned.

Note: The information returned for code=0 (element 10) in
the FSQURY call indicates whether the primary device sup-
ports PS stores.

 Principal errors

ADMð116 E NUMBER OF SYMBOL SETS n IS INVALID

 PSRSS

 Function

To release a symbol set from a PS store.

 Parameters

symbol-set-id (specified by user) (fullword integer)
The identifier of the symbol set to be released from a PS
store in the device.

PSQSS (n, types, states, symbol-set-names, symbol-
set-ids)

APL code 211
GDDM RCP code X'0C040101' (201588993)

PSRSS (symbol-set-id)

APL code 208
GDDM RCP code X'0C040400' (201589760)

222 GDDM Base Application Programming Reference

 PSRSV

 Description

Releases the designated symbol set from a PS store. A
symbol set should not be released until it is no longer
needed for alphanumerics or graphics. Note that a symbol
set can be released from a PS store even if the store is cur-
rently reserved.

Note: The information returned for code=0 (element 10) in
the FSQURY call indicates whether the primary device sup-
ports PS stores.

 Principal errors

ADMð117 E SYMBOL SET IDENTIFIER n IS INVALID

ADMð12ð E SYMBOL SET n NOT LOADED

 PSRSV

 Function

To reserve or release a PS store.

 Parameters

control (specified by user) (fullword integer)
Specifies the new status of the PS store. Possible values
are:

0 The store is to be released and made available for
subsequent allocation by GDDM

1 The store is to be reserved.

store-number (specified by user) (fullword integer)
The number of the PS store affected. Valid values are 2
through 7.

 Description

Reserves or releases a PS store for explicit control and use
by the application program. This function serves two pur-
poses:

� It can be used to reserve a PS store in the device for
explicit control by the application program, except that a
PS store cannot be reserved when it is in use for
graphics construction. A reserved store is used by
GDDM only if it is explicitly referred to in calls to
PSDSS, PSLSS, or PSLSSC. (A call to PSRSS to
release a symbol set in a reserved PS store is also
valid.)

� The function can also be used to release a previously
reserved PS store

Notes:

1. When a PS store is released, GDDM erases from its
tables all memory of which symbol set was loaded in
that store. This is because the assumption is made that
PS store reservation may imply that an application
program is loading the store by some means other than
using GDDM.

2. The information returned for code=0 (element 10) in the
FSQURY call indicates whether the primary device sup-
ports PS stores.

 Principal errors

ADMð121 E PS STORE n UNAVAILABLE

ADMð122 E PS STORE NUMBER n IS INVALID

ADMð126 E CONTROL n IS INVALID

 PTNCRT

 Function

To create a partition.

 Parameters

partition-id (specified by user) (fullword integer)
The identifier of the new partition. It must be greater than 0
(0 is reserved for the default partition), and unique within
the current partition set.

no-of-elements (specified by user) (fullword integer)
The number of attributes defined for the new partition. It
must be in the range 4 through 6.

array (specified by user) (an array of fullword integers)
The attributes for the new partition. Possible values are:

1 The row position of the top left-hand corner of the new
partition in partition-set grid units.

2 The column position of the top left-hand corner of the
new partition in partition-set grid units.

3 The number of rows in partition-set grid units.

4 The number of columns in partition-set grid units.

5 The device partition identifier to be used, or –1 (in
which case the partition identifier is allocated by
GDDM). If specified, this value must correspond to a
value supported by the primary device.

A value of –1 can be used if this value is of no concern
to the application. In this instance, GDDM tries to

PSRSV (control, store-number)
 PTNCRT (partition-id, no-of-elements, array)
APL code 206

GDDM RCP code X'0C040203' (201589251)

APL code 1021

GDDM RCP code X'0C240000' (203685888)

 Chapter 3. The GDDM calls 223

 PTNDEL

ensure that increasing values are assigned in an order
corresponding to the order in which the partitions are
created. The device partition identifier values deter-
mine the order in which partitions can be selected by
the operator on an appropriate device.

Note: This value is ignored for emulated partitions.

6 Visibility, selected as follows:

0 Not visible.
1 Visible (the default).
2 Protected

A partition with a visibility attribute of protected is
visible and all alphanumeric fields in the partition are
displayed protected, regardless of whether they are
defined as protected or unprotected.

 Description

Creates a new partition within the current partition set. The
new partition becomes the current partition.

Partitions must always be positioned within the partition-set
boundaries.

More than one partition may be visible within the boundaries
of the partition-set grid at the same time. Each has its own
position and size. The default partition size is determined by
the partition set grid; for more information, see FSQURY and
PTSCRT.

Partitions can overlap, if the partition-set overlap control
value allows it. Partitions are opaque, so the part of a parti-
tion that is overlapped by another partition is completely
obscured by the top partition.

Each partition has its own set of pages. Any of these pages
can be displayed within the partition, but only one at a time.
Either pages are created using FSPCRT or a default page 0
is created implicitly as required.

Priority is not listed as one of the partition attributes, but the
priority of groups of partitions can be set and queried collec-
tively with the following calls:

 � PTSSPP
 � PTSQPI
 � PTSQPN
 � PTSQPP.

A newly created partition has priority of viewing over all
existing partitions within the current partition set.

The new partition becomes the current partition. The parti-
tion has a new set of pages, including a default page 0,
which is the current page.

If the device partition identifier is not specified, GDDM tries to
ensure that increasing values are assigned in an order corre-
sponding to the order in which partitions are created. The

device partition identifiers determine the order in which parti-
tions can be selected by the operator.

The current partition should always be visible when the
screen is updated, for instance, by an ASREAD call. If an
invisible partition is current, GDDM changes it to visible.

For information about variations in device support for parti-
tions, see “Partitions” on page 241.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM312ð E PARTITION n ALREADY EXISTS

ADM3122 E PARTITION ID (n) IS INVALID

ADM3123 E PARTITION n1 PARTITION SET GRID ROW NUMBER

(n2) IS INVALID

ADM3124 E PARTITION n1 PARTITION SET GRID COLUMN

NUMBER (n2) IS INVALID

ADM3125 E PARTITION n1 DEPTH ON PARTITION SET GRID

(n2) IS INVALID

ADM3126 E PARTITION n1 WIDTH ON PARTITION SET GRID

(n2) IS INVALID

ADM3127 E PARTITION n PARTITION SET GRID AREA IS NOT

AVAILABLE

ADM3128 E PARTITION n1 DEVICE PARTITION ID (n2) IS

INVALID

ADM3129 E PARTITION n1 DEVICE PARTITION ID (n2) IS

ALREADY IN USE

ADM313ð E PARTITION n1 MAXIMUM NUMBER OF PARTITIONS

(n2) EXCEEDED

ADM3131 E PARTITION n1 MAXIMUM NUMBER OF CHARACTERS

(n2) EXCEEDED

ADM3134 E PARTITION n1 VISIBILITY (n2) IS INVALID

 PTNDEL

 Function

To delete a partition.

 Parameters

partition-id (specified by user) (fullword integer)
The identifier of the partition to be deleted.
−1 Delete the current partition
0 Delete the default partition.

If the current partition is deleted, the most recently created
partition becomes the current partition. If there is no such
partition, the default partition becomes the current partition.

PTNDEL (partition-id)

APL code 1025
GDDM RCP code X'0C240101' (203686145)

224 GDDM Base Application Programming Reference

 PTNMOD

 Description

Deletes a partition within the current partition set.

 Principal errors

ADM3121 E PARTITION n DOES NOT EXIST

ADM3122 E PARTITION ID (n) IS INVALID

 PTNMOD

 Function

To modify the current partition.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the array. It must be in
the range 1 through 6. For example, if it is 3, the number
of rows is the first element in the array.

no-of-elements (specified by user) (fullword integer)
The number of attributes to be modified on the current par-
tition. It is the number of elements in the array and must
have a value in the range 1 through 6.

array (specified by user) (an array of fullword integers)
The new attributes for the current partition. Possible values
are:
1 The new row position of the top left-hand corner of the

current partition in partition-set grid units. A value of
−1 leaves the present position unchanged.

2 The new column position of the top left-hand corner of
the current partition in partition-set grid units. A value
of −1 leaves the present position unchanged.

3 The new depth of the partition in partition-set grid units.
A value of −1 leaves the existing value unchanged.

4 The new width of the partition in partition-set grid units.
A value of −1 leaves the existing value unchanged.

5 The device partition identifier cannot be changed. Only
a value of −1 or the real identifier, as returned by
PTNQRY can be used.

6 The new visibility for the partition. A value of −1 leaves
the existing value unchanged.

 Description

Modifies the properties of the current partition within the
current partition set.

The number of rows seen for any given page displayed in a
partition changes according to the new partition depth and
width. The page window depth and width for each page
belonging to the partition is altered accordingly.

Note: The character-box size for each page belonging to
the partition does not change .

The current partition should always be visible when the
screen is updated, for instance, by an ASREAD call. If an
invisible partition is current, GDDM changes it to visible.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

ADM3123 E PARTITION n1 PARTITION SET GRID ROW NUMBER

(n2) IS INVALID

ADM3124 E PARTITION n1 PARTITION SET GRID COLUMN

NUMBER (n2) IS INVALID

ADM3125 E PARTITION n1 DEPTH ON PARTITION SET GRID

(n2) IS INVALID

ADM3127 E PARTITION n PARTITION SET GRID AREA IS NOT

AVAILABLE

ADM3131 E PARTITION n1 MAXIMUM NUMBER OF CHARACTERS

(n2) EXCEEDED

ADM3132 E THE DEFAULT PARTITION MAY NOT BE MODIFIED

ADM3134 E PARTITION n1 VISIBILITY (n2) IS INVALID

ADM3156 I PAGE n1 WINDOW ROW ALTERED TO n2 AND COLUMN

TO n3

 PTNQRY

 Function

To query the current partition.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the returned array. It
must be in the range 1 through 7. For example, if it is 5,
the first element in the returned array is the width.

no-of-elements (specified by user) (fullword integer)
The number of attributes to be returned for the current par-
tition. It is also the number of elements in the returned
array.

PTNMOD (element-no, no-of-elements, array)

APL code 1023
GDDM RCP code X'0C240002' (203685890)

PTNQRY (element-no, no-of-elements, array)

APL code 1022
GDDM RCP code X'0C240001' (203685889)

 Chapter 3. The GDDM calls 225

 PTNQUN

array (returned by GDDM) (an array of fullword integers)
An array containing the no-of-elements attributes for the
current partition. The array elements are:

1 The identifier of the current partition.

2 The row position of the top left-hand corner of the
current partition in partition-set grid units.

3 The column position of the top left-hand corner of the
current partition in partition-set grid units.

4 The depth of the current partition in partition-set grid
units.

5 The width of the current partition in partition-set grid
units.

6 The device partition identifier used for the current parti-
tion. A value of −1 indicates that none was specified.

7 The visibility of the current partition:

0 Not visible
1 Visible (the default)
2 Protected.

 Description

Returns information about the current partition within the
current partition set.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

 PTNQUN

 Function

To query unique partition identifier.

 Parameters

partition-id (returned by GDDM) (fullword integer)
An identifier for which no partition exists in the current parti-
tion set.

 Description

Returns a value that has not so far been used for a partition
identifier. The application program can then use this value
as the identifier for a new partition set.

 Principal errors

None.

 PTNSEL

 Function

To select a partition.

 Parameters

partition-id (specified by user) (fullword integer)
The identifier of the partition that is to become the current
partition. It must be a partition from within the current parti-
tion set. A value of –1 does not change the current parti-
tion, but it forces the partition that is current at the time of
the next output to become the active partition.

 Description

Selects a partition from within the current partition-set to be
the current partition.

The active partition is the one in which the cursor appears.
When using real partitions, GDDM receives data only from
the active partition. After input from the terminal, GDDM
makes the partition that was active become the current parti-
tion. The operator may subsequently enter data into another
partition, and, at the time of the next output, GDDM does not
force the cursor back into the current partition unless :

� PTNSEL(–1) has been called, or
� A different partition is now current, or
� A screen refresh, for example, is required.

The current partition should always be visible when the
screen is updated, for instance, by an ASREAD call. If an
invisible partition is current, GDDM changes it to visible.

Note: For further information about current partitions, see
the GDDM Base Application Programming Guide.

 Principal errors

ADM3121 E PARTITION n DOES NOT EXIST

ADM3122 E PARTITION ID (n) IS INVALID

PTNSEL (partition-id)

APL code 1024
GDDM RCP code X'0C240100' (203686144)

PTNQUN (partition-id)

APL code 1026
GDDM RCP code X'0C240102' (203686146)

226 GDDM Base Application Programming Reference

 PTSCRT

 PTSCRT

 Function

To create a partition set.

 Parameters

partition-set-id (specified by user) (fullword integer)
The identifier for the new partition set. It must be unique
and greater than zero (zero is reserved for the default parti-
tion set).

no-of-elements (specified by user) (fullword integer)
The number of attributes defined for the new partition set in
array . It must be in the range 0 through 4.

array (specified by user) (an array of fullword integers)
The attributes for the new partition set. Possible values
are:

1 The number of rows in the partition-set grid. If this is
0, the number of rows in the default partition set grid is
used.

2 The number of columns in the partition-set grid. If this
is 0, the number of columns in the default partition set
grid is used.

3 A partition-control value defines the type of partition
that can be created within the new partition set. The
possible values are:

0 Real partitions on a device supporting hardware
partitions, otherwise emulated partitions.

This is the default if this element is not specified
explicitly.

1 Emulated partitions, with emulated partition
scrolling.

This partition-control value is used for the default
partition set.

2 Default partition only, with emulated partition
scrolling.

4 Overlap control:

0 Partitions do not overlap (the default).
1 Partitions can overlap.

Specifying that partitions can overlap always results in
emulated partitions (even when the partitions do not
actually overlap) on all devices including those that
support real partitions.

 Description

Creates a new partition set that also becomes the current
partition set. This defines a grid of rows and columns to be
used for specifying the size and position of all the partitions
in the partition set. For details of the default partition set grid
size, see FSQURY.

Only one partition set can be displayed at a time. Each par-
tition set has its own set of partitions and pages. All parti-
tions must belong to a partition set. Partitions can be
created using the PTNCRT call, unless the partition control
value is set to 2, in which case a default partition is implicitly
created.

Once the size of the partition-set grid has been set, it cannot
be changed.

Notes:

1. Information on the creation of partition sets, partitions,
and pages can be found by using the call FSQURY.

| 2. A grid of 3 rows and 5 columns on a 24x80 display
| creates a grid size of 24/3 = 8 screen rows and 80/5 =
| 16 screen columns. The smallest partition (1x1 grid
| units) in this case is therefore 8 screen rows by 16
| screen columns. Nonexact divisions of the screen cause
| an uneven grid, but the grid set always fills the screen.

| 3. The call PTNCRT (see “PTNCRT – Create a partition”
| on page 223) defines one of several partitions in the
| current partition set, using the partition set grid units,
| where (1,1) is the top left corner. The default partition is
| the whole grid area.

4. For information about variations in device support for
partitions, see “Partitions” on page 241.

 Principal errors

ADM31ðð E PARTITION SET n ALREADY EXISTS

ADM31ð2 E PARTITION SET IDENTIFIER (n) IS INVALID

ADM31ð3 E PARTITION SET n1 GRID DEPTH (n2) IS INVALID

ADM31ð4 E PARTITION SET n1 GRID WIDTH (n2) IS INVALID

ADM31ð5 E PARTITION SET n1 PARTITION CONTROL VALUE

(n2) IS INVALID

ADM31ð6 E PARTITION SET n1 OVERLAP CONTROL VALUE (n2)

IS INVALID

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

PTSCRT (partition-set-id, no-of-elements, array)

APL code 1001
GDDM RCP code X'0C200000' (203423744)

 Chapter 3. The GDDM calls 227

 PTSDEL

 PTSDEL

 Function

To delete a partition set.

 Parameters

partition-set-id (specified by user) (fullword integer)
The partition set to be deleted. Possible values are:
−1 Delete the current partition set.
0 Delete the default partition set.

 Description

Deletes a partition set and, consequently, any partitions
within it.

If the current partition set is deleted, the most recently
created partition set becomes current. If there is no such
partition set, the default partition set becomes current.

 Principal errors

ADM31ð1 E PARTITION SET n DOES NOT EXIST

ADM31ð2 E PARTITION SET IDENTIFIER (n) IS INVALID

 PTSQPI

 Function

To query partition identifiers.

 Parameters

type (specified by user) (fullword integer)
The category of partition. Possible values are:

1 All partitions
The identifiers of all the partitions for the current partition
set returned in viewing priority order.

2 All invisible partitions
The identifiers of all the partitions for the current partition
set, that are set to invisible, returned in viewing priority
order.

no-of-elements (specified by user) (fullword integer)
The number of partition identifiers to be queried.

array (returned by GDDM) (an array of fullword integers)
An array of partition identifiers. If there are more elements
in array than partitions in the specified category, the
remaining elements are set to –1.

 Description

Returns the identifiers of the partitions that fall into the cate-
gory defined by the type parameter.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3196 E TYPE n IS INVALID

 PTSQPN

 Function

To query partition numbers.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the array. It must be in
the range 1 through 2. For example, if the value is 2, the
first element in the array is the number of invisible parti-
tions.

no-of-elements (specified by user) (fullword integer)
The number of classifications to be returned in the array.

array (returned by GDDM) (an array of fullword integers)
An array of numbers of partitions, by category. Possible
values are:
1 The number of partitions.
2 The number of invisible partitions.

 Description

Returns the number of partitions, by category, in the current
partition set.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

PTSDEL (partition-set-id)

APL code 1004
GDDM RCP code X'0C200101' (203424001)

PTSQPN (element-no, no-of-elements, array)

APL code 1009
GDDM RCP code X'0C200401' (203424769)

PTSQPI (type, no-of-elements, array)

APL code 1008
GDDM RCP code X'0C200400' (203424768)

228 GDDM Base Application Programming Reference

 PTSQPP

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

 PTSQPP

 Function

To query partition viewing priorities.

 Parameters

order (specified by user) (fullword integer)
The order of viewing priority. Possible values are:
−1 Descending order of viewing priority.
1 Ascending order of viewing priority.

partition-id (specified by user) (fullword integer)
The identifier of the partition relative to which the query is
to take place.

A value of −1 can be used to return, within array , the iden-
tifiers of all partitions in descending (or ascending) order of
priority.

no-of-elements (specified by user) (fullword integer)
The number of partition identifiers to be returned in the
array parameter. It is the number of elements in array .

array (returned by GDDM) (an array of fullword integers)
The identifiers of the partitions.

The array is arranged as follows:

� The identifier of the partition that appears behind
partition-id (if descending order), or in front of
partition-id (if ascending order) is placed in the first
element of the array. If partition-id =−1, this element
contains the identifier of the partition with the highest
viewing priority (if descending order), or the lowest
viewing priority (if ascending order).

� The identifier of the partition that appears behind (or in
front of) the partition identified in the first element is
placed in the second element of the array.

� This is repeated until the identities of all the remaining
partitions have been entered in the array.

� If there are more elements than partition identifiers to
return, the remaining elements are set to a value of –1.

 Description

Returns the identifiers of partitions in order of descending or
ascending viewing priority, starting from a specified partition.

If descending order of viewing priority is specified, the identi-
fiers of the lower-priority partitions that appear behind the
specified partition are returned; if ascending order of viewing
priority is specified, the identifiers of the higher priority parti-
tions that appear in front of the specified partition are
returned.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3121 E PARTITION n DOES NOT EXIST

ADM3122 E PARTITION ID (n) IS INVALID

ADM3193 E ORDER n IS INVALID

 PTSQRY

 Function

To query partition set attributes.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the returned array. It
must be in the range 1 through 5. For example, if it is 2,
the first element of the returned array contains the number
of rows in the partition-set grid.

no-of-elements (specified by user) (fullword integer)
The number of attributes of the current partition set to be
returned in array . It is also the number of elements in the
returned array and must be in the range 1 through 5.

array (returned by GDDM) (an array of fullword integers)
The attributes of the current partition set. The elements
that can be returned are the:
1 Identifier of the current partition set.
2 Number of rows in the partition-set grid (depth).
3 Number of columns in the partition-set grid (width).
4 Partition control value.
5 Overlap control value.

 Description

Returns the identifier of the current partition set, the size of
its partition-set grid and the partition and overlap control
values.

PTSQPP (order, partition-id, no-of-elements, array)

APL code 1007
GDDM RCP code X'0C200301' (203424513)

PTSQRY (element-no, no-of-elements, array)

APL code 1002
GDDM RCP code X'0C200001' (203423745)

 Chapter 3. The GDDM calls 229

 PTSQUN

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

 PTSQUN

 Function

To query unique partition set identifier.

 Parameters

partition-set-id (returned by GDDM) (fullword integer)
A value that has not been used for a partition-set identifier.

 Description

Returns a value that has not so far been used for a
partition-set identifier. The application program can then use
this value as the identifier for a new partition set.

 Principal errors

None.

 PTSSEL

 Function

To select a partition set.

 Parameters

partition-set-id (specified by user) (fullword integer)
The identifier of the partition set that is to become current.
A value of zero makes the default partition set current.

The current partition for this partition set is the one that was
current when this partition set was last selected.

 Description

Makes a partition set the current partition set.

 Principal errors

ADM31ð1 E PARTITION SET n DOES NOT EXIST

ADM31ð2 E PARTITION SET IDENTIFIER (n) IS INVALID

 PTSSPP

 Function

To set or reset partition viewing priorities.

 Parameters

order (specified by user) (fullword integer)
The order of viewing priority. Possible values are:

−1 Descending order of viewing priority.
1 Ascending order of viewing priority.

partition-id (specified by user) (fullword integer)
The identifier of the partition relative to which the reordering
is to take place.

A value of −1 can be used to set the first partition in array
as either the highest in viewing priority (if descending
order), or lowest in viewing priority (if ascending order).

no-of-elements (specified by user) (fullword integer)
The number of partitions to be reordered in viewing priority.
It is the number of elements in array .

array (specified by user) (an array of fullword integers)
The identifiers of the partitions to be reordered in viewing
priority. A value of −1 in any element terminates the reor-
dering process.

 Description

Sets the relative viewing priorities of the specified partitions.

The partitions whose identifiers are specified in array are
reordered in viewing priority relative to the specified partition,
partition-id .

The reordering process is as follows:

� The elements of the array parameter are processed one
at a time.

PTSQUN (partition-set-id)

APL code 1005
GDDM RCP code X'0C200102' (203424002)

PTSSPP (order, partition-id, no-of-elements, array)

APL code 1006
GDDM RCP code X'0C200300' (203424512)

PTSSEL (partition-set-id)

APL code 1003
GDDM RCP code X'0C200100' (203424000)

230 GDDM Base Application Programming Reference

 SPINIT

� The partition identified by the first element is placed
behind (if descending order) or in front of (if ascending
order) the specified partition, partition-id .

� The partition identified by the second element is placed
behind (or in front of) the partition identified in the first
element.

� This process is repeated until all the elements of the
array parameter are processed, or until a −1 element is
found.

� The priorities of partitions that are not specified in array
remain unchanged with respect to partition-id and each
other. Unspecified partitions with a higher priority than
partition-id retain viewing priorities higher than both
partition-id and all reordered partitions. Unspecified
partitions with a lower priority than partition-id retain
viewing priorities lower than both partition-id and all
reordered partitions.

Example: Eight partitions are arranged in descending order
of priority:

1 2 3 4 5 6 7 8

A call to PTSSPP is made with order =−1, partition-id =4,
no-of-elements =4, and array containing {2 7 5 -1}.

The priorities are reordered thus:

1 3 4 2 7 5 6 8

& & & & & & & &

└──┬──┘ │ └──────┼──────┘ └──┬──┘

 │ │ │ │

 Unspecified │ Specified in array │

 │ │

 Partition-id Unspecified

 Principal errors

ADM3116 E PARTITION n ALREADY PROCESSED

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3121 E PARTITION n DOES NOT EXIST

ADM3122 E PARTITION ID (n) IS INVALID

ADM3193 E ORDER n IS INVALID

 SPINIT

 Function

To initialize GDDM with SPIB.

Note: SPINIT is an alternative to FSINIT and if used, it
must be the first GDDM statement to be executed. It can be
invoked only by means of the system programmer interface
(SPI).

 Parameters

spib-block (specified by user) (32-byte character string)
A table giving control information. The contents of this
table are processed by GDDM during initialization. Sub-
sequent changes to the contents do not affect GDDM
processing. The storage containing the table can be
released after initialization has been completed. For
details of the system programmer interface block (SPIB),
see “The system programmer interface block” on
page 432.

 Description

Initialize GDDM processing using the System Programmer
Interface.

The SPINIT call allows parameters to be passed by a SPIB
(SPI Initialization Block). The SPIB contains a number of
address words that can be set by an application program.

If the SPINIT call is actually issued in 24-bit mode, GDDM
clears the top byte (minus the top bit) of each address word
that it processes.

 Principal errors

None.

 SPMXMP

 Function

To control the use of mixed fields by mapping.

Note: This function can only be invoked by the system pro-
gramming interface (SPI) and should not be used in new
application programs. It is included only for compatibility with
releases of GDDM before Version 2 Release 2, and is liable
to be withdrawn at any time after Version 2 Release 3. The
mapping calls, MSCPOS through MSREAD, support mixed
fields, and the support they provide should be used rather
than this call.

SPINIT (spib-block)

APL code 115
GDDM RCP code X'00050000' (327680)

SPMXMP (mixed)

APL code 438
GDDM RCP code X'0C081401' (201856001)

 Chapter 3. The GDDM calls 231

 SSQF

 Parameters

mixed (specified by user) (fullword integer)
The status of the mixed fields. Possible values are:
0 Alphanumeric fields not mixed.
1 Alphanumeric fields mixed.

 Description

Controls the use of mixed fields in maps when using a
primary device that supports them – for example, an IBM
5550-family Multistation.

This control affects all mapped alphanumeric fields; the appli-
cation is responsible for checking that mixed data placed in
the fields, that has not been generated using an IBM
5550-family work station, meets the mixed field requirements.

 Principal errors

None.

 SSQF

 Function

To query a symbol set on auxiliary storage.

 Parameters

symbol-set-name (specified by user and returned by
GDDM) (8-byte character string)
The name (left-justified) of the symbol set or DBCS ward to
be queried. If the name ends with the substitution char-
acter “�” (for a DBCS ward name, the substitution character
is just before the ward digits), GDDM tries to locate the
symbol-set file with a name formed by changing the “�” to
one appropriate to the current device.

GDDM first tries to locate a symbol set whose name is
formed by replacing the substitution character with that
appropriate for the current alphanumerics cell size. (See
the information for code=0 under FSQURY and also see
the symbol set naming convention described in Chapter 7,
“Symbol sets” on page 261).

If GDDM cannot find such a symbol set, it then looks for
one whose name is formed by replacing its substitution
character with the one that is appropriate for the current
graphics cell size. (See the information for code=2 under
FSQURY and also see symbol set naming convention
described in Chapter 7, “Symbol sets” on page 261.

If a symbol set with a substituted name is located, this
parameter contains the changed name (which is returned
by GDDM).

length (returned by GDDM) (fullword integer)
The length of storage required to contain the symbol-set
definitions.

type (returned by GDDM) (fullword integer)
The type of symbol definitions. Possible values are:

0 An image symbol set that can be loaded into the
device.

1 An image symbol set that cannot be loaded at the
device, because the device does not support symbol
sets in this format.

2 A vector symbol set.

 Description

Returns the length of the definitions and the type of a named
symbol set.

This function is provided to allow the application program to
find out how much storage is needed to perform a subse-
quent SSREAD request, and also to find out whether the
definitions are for an image symbol set or a vector symbol
set.

 Principal errors

ADMð113 E SYMBOL SET 'a' HAS UNIDENTIFIABLE TYPE

ADMð124 E FOR SYMBOL SET 'a' THE DEFINITION LENGTH n

IS TOO SHORT

 SSREAD

 Function

To read a symbol set from auxiliary storage.

 Parameters

symbol-set-name (specified by user) (8-byte character
string)
The name (left-justified) of the symbol set or DBCS ward to
be read from auxiliary storage.

If the name ends with the substitution character “�” (for a
DBCS ward name, the substitution character is just before
the ward digits), GDDM tries to locate the symbol set file

SSQF (symbol-set-name, length, type)

APL code 212
GDDM RCP code X'0C040100' (201588992)

SSREAD (symbol-set-name, length, data)

APL code 213
GDDM RCP code X'0C040B00' (201591552)

232 GDDM Base Application Programming Reference

 SSWRT

with a name formed by changing the “�” to one appropriate
to the current device. The symbol-set-name parameter is
not itself changed upon return. For information on the char-
acter that is substituted, see Chapter 7, “Symbol sets” on
page 261.

GDDM first tries to locate a symbol set whose name is
formed by replacing the substitution character with that
appropriate for the current alphanumerics cell size. (See
the information for code=0 under FSQURY and also see
the symbol set naming convention described in Chapter 7,
“Symbol sets” on page 261.

If GDDM cannot find such a symbol set, it then looks for
one whose name is formed by replacing its substitution
character with the one that is appropriate for the current
graphics cell size. (See the information for code=2 under
FSQURY and also see the symbol set naming convention
described in Chapter 7, “Symbol sets” on page 261).

length (specified by user) (fullword integer)
The length of storage provided for the data parameter. The
SSQF call can be used to determine how much storage is
needed for the symbol set.

data (returned by GDDM) (character)
Contains the symbol set as read from auxiliary storage.

 Description

Reads a set of symbol definitions from auxiliary storage. The
symbol set can be either an image symbol set or a vector
symbol set.

The symbol set does not remain in GDDM storage, and is
not available for use by it.

 Principal errors

ADMð114 E LENGTH n IS INSUFFICIENT FOR SYMBOL SET 'a'

ADMð115 E SYMBOL SET 'a' LENGTH n IS INVALID

 SSWRT

 Function

To write a symbol set to auxiliary storage.

 Parameters

symbol-set-name (specified by user) (8-byte character
string)
The name (left-justified) to be assigned to the symbol set or
DBCS ward when written to auxiliary storage. No attempt

is made to change the name, so it must not include the
substitution character “�”, either at the end (for SBCS) or
just before the ward digits (for DBCS ward).

length (specified by user) (fullword integer)
The length of storage provided for data .

data (specified by user) (character)
Contains the symbol set definitions to be written.

 Description

Writes a set of symbol definitions to auxiliary storage. The
symbol set can be either an image symbol set or a vector
symbol set.

The symbol set does not remain in GDDM storage, and is
not available for use by it.

 Principal errors
ADMð127 E SYMBOL SET NAME 'a' IS INVALID

 WSCRT

 Function

To create an operator window.

 Parameters

operator-window-id (specified by user) (fullword integer)
The identifier of the new operator window. It must be
greater than 0 (0 is reserved for the parent operator
window) and unique for the primary device.

no-of-elements (specified by user) (fullword integer)
The number of attributes defined for the new operator
window. It must be in the range 0 through 10.

array (specified by user) (an array of fullword integers)
The attributes for the new operator window. If any attribute
is not specified, or is specified as 0, the default value is
used. The attributes are:
1 The address of the coordination exit routine. The

default value is zero. Specifying a 0 for this element
indicates that the window can only be used to window
a virtual device created by this instance of GDDM; it
cannot be used to window devices opened with
DSOPEN during other instances of GDDM.

2 Exit token. A parameter to be passed to the coordi-
nation exit in the UXTOKEN field of UXBLOCK. The
default value is zero.

3 The number of rows in the virtual screen. The default
is the real screen depth.

WSCRT (operator-window-id, no-of-elements, array,
length, string)

APL code 1040
GDDM RCP code X'0C2C0000' (204210176)

SSWRT (symbol-set-name, length, data)

APL code 214
GDDM RCP code X'0C040B01' (201591553)

 Chapter 3. The GDDM calls 233

 WSDEL

4 The number of columns in the virtual screen. The
default is the real screen width.

5 The row position of the top left-hand corner of the new
operator window on the real screen. This is the posi-
tion of the top left-hand corner of the window contents,
not the position of the window border. The default
position is row 1.

6 The column position of the top left-hand corner of the
new operator window on the real screen. This is the
position of the top left-hand corner of the window con-
tents, not the position of the window border. The
default position is column 1.

7 The number of rows in the new operator window. This
does not include any rows occupied by the window
border. The default is the smaller of the number of
rows on the real device, and the number of rows on
the virtual screen.

8 The number of columns in the new operator window.
This does not include any columns occupied by the
window border. The default is the smaller of the
number of columns on the real device, and the number
of columns on the virtual screen.

9 The row position of the top left-hand corner of the new
operator window on the virtual screen. The default
position is row 1.

10 The column position of the top left-hand corner of the
new operator window on the virtual screen. The
default position is column 1.

length (specified by user) (fullword integer)
The length of string in bytes. It must be in the range 0
through 32, and must not be greater than the width of the
real screen or the virtual screen.

string (specified by user) (character)
The title to be incorporated into the border of the new oper-
ator window. If a length of 0 is specified, the default title is
used, namely “XXXXXX”.

 Description

Creates a new operator window to be used to window the
primary device. Operator windows can only be created for
devices opened with the DSOPEN processing option
WINDOW.

The new operator window becomes the current operator
window, and the candidate operator window.

Subsequent requests to open this (same device name list)
device, made from this or any other instance of GDDM,
results in the opening of a virtual device, which appears in
the candidate operator window.

The rules governing virtual screen and operator window size
and position are:

� The virtual screen can be from 1 through 255 columns
wide, and from 1 through 255 rows deep.

� When a device is opened with the WINDOW processing
option, the real screen size used is the alternate screen
size, if there is one, otherwise the default screen size is
used.

� The maximum width of the operator window is the
smaller of the virtual screen width and the real screen
width. The maximum depth of the operator window is
the smaller of the virtual screen depth and the real
screen depth.

� The operator window must always be positioned so that
it is completely on the real screen, although part or all of
the window border can be off the screen.

� The operator window must always be scrolled so that it
is completely on the virtual screen.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3181 E OPERATOR WINDOW n ALREADY EXISTS

ADM3182 E OPERATOR WINDOW ID n IS INVALID

ADM3183 E OPERATOR WINDOW SCREEN ROW NUMBER n IS

INVALID

ADM3184 E OPERATOR WINDOW SCREEN COLUMN NUMBER n IS

INVALID

ADM3185 E OPERATOR WINDOW DEPTH n IS INVALID

ADM3186 E OPERATOR WINDOW WIDTH n IS INVALID

ADM3187 E OPERATOR WINDOW VIRTUAL SCREEN ROW NUMBER n

IS INVALID

ADM3188 E OPERATOR WINDOW VIRTUAL SCREEN COLUMN NUMBER

n IS INVALID

ADM3189 E VIRTUAL SCREEN DEPTH n IS INVALID

ADM319ð E VIRTUAL SCREEN WIDTH n IS INVALID

ADM3191 E TITLE LENGTH n IS INVALID

 WSDEL

 Function

To delete operator window.

 Parameters

operator-window-id (specified by user) (fullword integer)
The identifier of the operator window to be deleted. A
value of –1 deletes the current operator window. The
parent operator window, which has an identifier of zero,
cannot be deleted.

WSDEL (operator-window-id)

APL code 1041
GDDM RCP code X'0C2C0100' (204210432)

234 GDDM Base Application Programming Reference

 WSIO

 Description

Deletes an operator window and, consequently, closes any
virtual devices associated with it.

If the current operator window is deleted, the highest viewing
priority operator window becomes current.

If the candidate operator window is deleted, the parent oper-
ator window becomes the candidate operator window.

Virtual devices in another instance of GDDM which have
been associated with the operator window are not closed.
They must be closed before deleting the operator window. If
they are not closed, the results of subsequent operations on
these virtual devices are not defined.

 Principal errors

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3182 E OPERATOR WINDOW ID n IS INVALID

ADM3192 E OPERATOR WINDOW n DOES NOT EXIST

ADM3195 E THE PARENT OPERATOR WINDOW CANNOT BE DELETED

 WSIO

 Function

To control windowed device input/output.

 Parameters

operator-window-id (returned by GDDM) (fullword integer)
The identifier of the operator window that satisfied the I/O
request. If hierarchies of operator windows and virtual
devices are being used, and the operator window that satis-
fied the I/O request is at a lower level in the hierarchy than
the primary device, the identifier of its ancestor operator
window belonging to this device is returned.

 Description

Performs output and possibly input for a windowed device.

If any operator window is requesting FSFRCE (either explic-
itly or implicitly), WSIO performs output but does not wait for
input, and returns the identifier of the operator window for
which I/O was completed, or its parent operator window iden-
tifier, according to the operator window hierarchy.

If no operator windows are requesting FSFRCE, the WSIO
call performs the type of I/O requested by the highest
viewing priority operator window, and returns the identifier of
the operator window for which I/O was completed, or its
parent operator window identifier depending upon the oper-
ator window hierarchy.

If user control is used to change the highest viewing priority
operator window, the type of I/O requested by this window is
performed.

WSIO performs an implicit WSSEL for all the parent windows
of the operator window that satisfied the I/O request, and
also for the operator window that satisfied the I/O request.

 Principal errors

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

 WSMOD

 Function

To modify the current operator window.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the array. It must be in
the range 1 through 6.

no-of-elements (specified by user) (fullword integer)
The number of attributes to be modified for the current
operator window. It is the number of elements in the array
and must be in the range 0 through 6.

array (specified by user) (an array of fullword integers)
The new attributes for the current operator window. If any
attribute is not specified, or is specified as –1, the existing
value is unchanged. If any attribute is specified as 0, the
default value is used. The attributes are:
1 The row position of the top left-hand corner of the

current operator window on the real screen.
2 The column position of the top left-hand corner of the

current operator window on the real screen.
3 The number of rows in the current operator window.

This does not include any rows occupied by the
window border.

4 The number of columns in the current operator window.
This does not include any columns occupied by the
window border.

WSMOD (element-no, no-of-elements, array, length,
string)

APL code 1043
GDDM RCP code X'0C2C0200' (204210688)

WSIO (operator-window-id)

APL code 151
GDDM RCP code X'0C100008' (202375176)

 Chapter 3. The GDDM calls 235

 WSQRY

5 The row position of the top left-hand corner of the
current operator window on the virtual screen.

6 The column position of the top left-hand corner of the
current operator window on the virtual screen.

length (specified by user) (fullword integer)
The length of string in bytes. A value of zero leaves the
existing string unchanged.

string (specified by user) (character)
The title to be incorporated into the border of the current
operator window.

 Description

Modifies the attributes of the current operator window.

The coordination exit address, exit token, and virtual screen
size cannot be modified. Modifications to the other attributes
and the window title changes the appearance of the operator
window on the device at the next device I/O.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3183 E OPERATOR WINDOW SCREEN ROW NUMBER n IS

INVALID

ADM3184 E OPERATOR WINDOW SCREEN COLUMN NUMBER n IS

INVALID

ADM3185 E OPERATOR WINDOW DEPTH n IS INVALID

ADM3186 E OPERATOR WINDOW WIDTH n IS INVALID

ADM3187 E OPERATOR WINDOW VIRTUAL SCREEN ROW NUMBER n

IS INVALID

ADM3188 E OPERATOR WINDOW VIRTUAL SCREEN COLUMN NUMBER

n IS INVALID

ADM3191 E TITLE LENGTH n IS INVALID

 WSQRY

 Function

To query the current operator window.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the returned array. It
must be in the range 1 through 11.

no-of-elements (specified by user) (fullword integer)
The number of attributes of the current operator window to
be returned in the array. It must be in the range 0 through
11.

array (returned by GDDM) (an array of fullword integers)
The attributes of the current operator window. They are:
1 The identifier of the operator window.
2 The address of the coordination exit routine.
3 Exit token.
4 The number of rows in the virtual screen.
5 The number of columns in the virtual screen.
6 The row position of the top left-hand corner of the

operator window on the screen.
7 The column position of the top left-hand corner of the

operator window on the screen.
8 The number of rows in the operator window. This does

not include any rows occupied by the window border.
9 The number of columns in the operator window. This

does not include any columns occupied by the window
border.

10 The row position of the top left-hand corner of the
operator window on the virtual screen.

11 The column position of the top left-hand corner of the
operator window on the virtual screen.

actual-length (returned by GDDM) (fullword integer)
The length of the operator window title in bytes.

length (specified by user) (fullword integer)
The length of string in bytes.

string (returned by GDDM) (character)
The title incorporated into the border of the operator
window.

If the actual length is greater than the string length, the
returned title is truncated, and if the string length is greater
than the actual length, the returned title is padded with
blanks (X'40').

 Description

Returns the identifier and attributes of the current operator
window.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3191 E TITLE LENGTH n IS INVALID

WSQRY (element-no, no-of-elements, array, actual-
length, length, string)

APL code 1044
GDDM RCP code X'0C2C0300' (204210944)

236 GDDM Base Application Programming Reference

 WSQUN

 WSQUN

 Function

To query unique operator window identifier.

 Parameters

operator-window-id (returned by GDDM) (fullword integer)
A value that is not currently in use for an operator window
identifier.

 Description

Returns a value that is not currently in use for an operator
window identifier.

 Principal errors

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

 WSQWI

 Function

To query operator window identifiers.

 Parameters

type (specified by user) (fullword integer)
The category of operator window:
1 All operator windows
The identifiers of all the operator windows for the primary
device are returned in viewing priority order.

no-of-elements (specified by user) (fullword integer)
The number of operator window identifiers to be queried.

array (returned by GDDM) (an array of fullword integers)
An array of operator window identifiers. If there are more
elements in array than operator windows in the specified
category, the remaining elements are set to –1.

 Description

Returns the identifiers of the operator windows that fall into
the category defined by the type parameter.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3196 E TYPE n IS INVALID

 WSQWN

 Function

To query operator window numbers.

 Parameters

element-no (specified by user) (fullword integer)
The number of the first element in the array. It must be 1.

no-of-elements (specified by user) (fullword integer)
The number of numbers to be returned. It is also the
number of elements in the returned array. It must be 0 or
1.

array (returned by GDDM) (an array of fullword integers)
An array of numbers of operator windows, by category:
1 All operator windows
The number of operator windows for the primary device is
returned.

 Description

Returns the number of operator windows, by category, on the
primary device.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3119 E ELEMENT NUMBER (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

WSQUN (operator-window-id)

APL code 1045
GDDM RCP code X'0C2C0400' (204211200)

WSQWN (element-no, no-of-elements, array)

APL code 1050
GDDM RCP code X'0C2C0600' (204211712)

WSQWI (type, no-of-elements, array)

APL code 1046
GDDM RCP code X'0C2C0500' (204211456)

 Chapter 3. The GDDM calls 237

 WSQWP

 WSQWP

 Function

To query operator window viewing priorities.

 Parameters

order (specified by user) (fullword integer)
The order of viewing priority. Possible values are:
−1 Descending order of viewing priority.
1 Ascending order of viewing priority.

operator-window-id (specified by user) (fullword integer)
The identifier of the operator window relative to which the
query is to take place.

A value of −1 can be used to return, within array , the iden-
tifiers of all operator windows in descending or ascending
order of viewing priority.

no-of-elements (specified by user) (fullword integer)
The number of operator window identifiers to be returned in
the array parameter. It is the number of elements in array .

array (returned by GDDM) (an array of fullword integers)
The identifiers of the operator windows.

The array is arranged as follows:

� The identifier of the operator window that appears
behind operator-window-id (if descending order), or in
front of operator-window-id (if ascending order) is
placed in the first element of the array. If
operator-window-id =−1, this element contains the
identifier of the operator window with the highest
viewing priority (if descending order), or the lowest
viewing priority (if ascending order).

� The identifier of the operator window that appears
behind (or in front of) the operator window identified in
the first element is placed in the second element of the
array.

� This is repeated until the identities of all the remaining
operator windows have been entered in the array.

� If there are more elements than operator window iden-
tifiers to return, the remaining elements are set to a
value of –1.

 Description

Returns the identifiers of operator windows in order of
descending or ascending viewing priority, starting from a
specified operator window.

If descending order of viewing priority is specified, the identi-
fiers of the lower-priority operator windows that appear
behind the specified operator window are returned; if
ascending order of viewing priority is specified, the identifiers
of the higher priority operator windows that appear in front
of the specified operator window are returned.

 Principal errors

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3182 E OPERATOR WINDOW ID n IS INVALID

ADM3192 E OPERATOR WINDOW n DOES NOT EXIST

ADM3193 E ORDER n IS INVALID

 WSSEL

 Function

To select an operator window.

 Parameters

operator-window-id (specified by user) (fullword integer)
The identifier of the operator window to be made current.

 Description

Selects an operator window from the primary device to be
the current operator window.

The current operator window is the one to which WSQRY
calls and WSMOD calls apply. The operator window that is
most recently selected, across all devices, is the candidate
window for windowing the device.

 Principal errors

ADM318ð E PRIMARY DEVICE NOT OPENED WITH THE WINDOW

PROCOPT

ADM3182 E OPERATOR WINDOW ID n IS INVALID

ADM3192 E OPERATOR WINDOW n DOES NOT EXIST

WSQWP (order, operator-window-id, no-of-elements,
array)

APL code 1049
GDDM RCP code X'0C2C0700' (204211968)

WSSEL (operator-window-id)

APL code 1051
GDDM RCP code X'0C2C0800' (204212224)

238 GDDM Base Application Programming Reference

 WSSWP

 WSSWP

 Function

To set or reset operator window viewing priorities.

 Parameters

order (specified by user) (fullword integer)
The order of viewing priority. Possible values are:

−1 Descending order of viewing priority.
1 Ascending order of viewing priority.

operator-window-id (specified by user) (fullword integer)
The identifier of the operator window relative to which the
reordering is to take place.

A value of −1 can be used to set the first operator window
in array as either the highest in viewing priority (if
descending order), or lowest in viewing priority (if ascending
order).

no-of-elements (specified by user) (fullword integer)
The number of operator windows to be reordered in viewing
priority. It is the number of elements in array .

array (specified by user) (an array of fullword integers)
The identifiers of the operator windows to be reordered in
viewing priority. A value of −1 in any element terminates
the reordering process.

 Description

Sets the relative viewing priorities of the specified operator
windows.

The operator windows whose identifiers are specified in
array are reordered in viewing priority relative to the speci-
fied operator window, operator-window-id .

The reordering process is as follows:

� The elements of the array parameter are processed one
at a time.

� The operator window identified by the first element is
placed behind (if descending order) or in front of (if
ascending order) the specified operator window,
operator-window-id .

� The operator window identified by the second element is
placed behind (or in front of) the operator window identi-
fied in the first element.

� This process is repeated until all the elements of the
array parameter are processed, or until a −1 element is
found.

� The priorities of operator windows that are not specified
in array remain unchanged with respect to operator-
window-id and each other. Unspecified operator
windows with a higher priority than operator-window-id
will retain viewing priorities higher than both operator-
window-id and all reordered operator windows.
Unspecified operator windows with a lower priority than
operator-window-id will retain viewing priorities lower
than both operator-window-id and all reordered oper-
ator windows.

Example: Eight operator windows are arranged in
descending order of priority:

1 2 3 4 5 6 7 8

A call to WSSWP is made with order =−1,
operator-window-id =4, no-of-elements =4, and array con-
taining {2 7 5 -1}.

The priorities are reordered thus:

1 3 4 2 7 5 6 8

& & & & & & & &

└──┬──┘ │ └──────┼──────┘ └──┬──┘

 │ │ │ │

 Unspecified │ Specified in array │

 │ │

 Operator-window-id Unspecified

 Principal errors

ADM3116 E PARTITION n ALREADY PROCESSED

ADM3118 E NUMBER OF ELEMENTS (n) IS INVALID

ADM3121 E PARTITION n DOES NOT EXIST

ADM3122 E PARTITION ID (n) IS INVALID

ADM3193 E ORDER n IS INVALID

WSSWP (order, operator-window-id, no-of-elements,
array)

APL code 1052
GDDM RCP code X'0C200900' (204212480)

 Chapter 3. The GDDM calls 239

240 GDDM Base Application Programming Reference

 device variations

 Chapter 4. Device variations

The input and output devices supported by GDDM vary
widely in their capabilities and in the datastreams required to
drive them. The GDDM programming interface shields appli-
cation programs from many of these device variations. This
permits application programs to be written with a degree of
device independence, which in turn permits these programs
to use a range of different devices without modification to the
programs.

The degree of device independence provided by GDDM
varies, as follows:
� In some cases GDDM provides complete independence

by emulating a function which a device may not have.
For example, GDDM emulates graphics data on a 3279
display and image data on a 3472G display.

� In other cases, GDDM effectively ignores an
application’s requests for functions not available in the
device, without rejecting the application calls. In
general, it does this for functions that it cannot emulate
and which, if ignored, would not normally affect a typical
application program. For example, GDDM ignores
requests for alphanumeric field highlighting on devices
that do not support it.

� In other cases, GDDM is unable to emulate a function
not available in a device. However, to ignore requests
for the function would probably affect a typical applica-
tion program adversely. In such a situation, GDDM
responds to the function call with an error message. An
example of this is a request to enable input from a
mouse when the display device does not have one.

For an application program to be able to exploit the full capa-
bility of all devices available through GDDM, the program
must request different functions, depending upon what func-
tions are available. To support this, GDDM provides a
number of query calls, notably FSQURY, which tell the appli-
cation what function is available.

This chapter describes, for each broad group of GDDM func-
tions, the devices or groups of devices that do not conform to
the general description of the function.

Where a function call is subject to device variations, a refer-
ence to the appropriate section of this chapter is included in
the description of that function call in chapter 3.

Operator windows, partitions, primary,
alternate, and dual screens

 Operator windows

GDDM operator windows are available only on display
devices. They are not available on the 5080 or 6090
graphics system.

 Partitions
� On the 5080 or 6090 Graphics System , there is a

maximum of 15 partitions visible at any one time. The
ones that are visible are the 15 most current; that is, the
lowest priority partition disappears as each new partition
is created, over a value of 15. If partitions are then
deleted, the low priority partitions reappear in the
reverse order; that is “last out, first in”.

� On all other display devices, GDDM can show a
maximum of 254 emulated partitions.

� The 3193, 3290, and 8775 displays support a number
of real nonoverlapping partitions.

Primary and alternate screen sizes

If you use a device with primary and alternate screen sizes
(for example, the 3278 Model 5), you can select the required
size in the FSPCRT call. Note that in order to obtain the
primary screen size, you must suppress User Control, using
the CTLMODE procopt, for example, with the nickname:

ADMMNICK PROCOPT=((CTLMODE,NO))

In order to obtain the primary screen size, use of the
WINDOW procopt, partition calls and partition set calls must
also be avoided.

Dual screen devices

GDDM alphanumerics are shown separately from graphics,
either on a separate 3270-family display unit, or on the 5080
or 6090 screen switched into 3270 mode by the user.

These restrictions apply to the 5080 Graphics System :

� The 5080 or 6090 is only supported on VM/CMS or
MVS/TSO systems. When using the GDDM image inter-
face, there are no restrictions other than that imposed by
the 5080 or 6090 buffer size, which may limit the size of
the image data.

� When a 5080 or 6090 Graphics System is queried, the
graphics characteristics (code=2) refers to the 5080 or
6090 display, and the other information refers to the
associated 3270 device.

Dual screen size

On a dual-screen 3270-PC/GX workstation , or device
running under GDDM-PCLK and GDDM-OS/2 Link , or on
the 5080 or 6090 Graphics System , the graphics field is
defined in row and column coordinates with respect to the
alphanumerics screen. The portion of the graphics screen
that is used to display graphics is given by defining a “virtual”
grid on the graphics screen, the width and depth of which are
the same as the number of columns and rows on the alpha-

 Copyright IBM Corp. 1980, 1996 241

 device variations

numerics screen, and then the placing of the graphics field
with respect to this “virtual” grid.

Device-specific saved pictures

GDF saved as 2-byte integers

GDF can be saved as 2-byte integers using the GSSAVE
call. Coordinate data cannot be saved as 2-byte integers
from the 5080 or 6090 Graphics Systems , or ASCII
graphics devices. Coordinate data can only be saved as
2-byte integers from family 4 page printers if the device
token or processing option specifies GOCA output.

 ADMSAVE files

ADMSAVE files can only be created by the FSSAVE call and
shown by the FSSHOW or FSSHOR calls on family 1
devices. Furthermore, they cannot be created from, or
shown on, the 5080 or 6090 Graphics Systems , or ASCII
graphics devices.

To show an ADMSAVE file, the picture must have been
created and saved on a device that is compatible with the
device on which the picture is to be shown.

If a picture is saved when running against a device for which
compressed data streams are being generated, and an
attempt is made to reshow this picture when running against
a device for which noncompressed data streams are neces-
sary, undefined results occur.

On the 3270-PC/G and 3270-PC/GX workstations , if
FSSHOW is called, a device that is customized differently
(for example, with different screen sizes) is treated as an
incompatible device.

The data stream displayed is always in unretained mode, so
the amount of segment storage available is not a factor when
saving pictures. However, if user pattern sets are used by
the saved-data stream, there must be enough symbol-set
storage in the device to load these pattern sets; otherwise,
undefined results occur.

Note: Because the displayed segments are not retained,
local functions (such as local scrolling or change screen) can
lead to a loss of the graphics data from the screen.

 Screen redraw

The picture is wholly, or partly, reconstructed (and graphics
primitives outside segments may be lost) under these device-
dependent conditions:

� On 3270-PC/G, /GX, and /AT workstations and
5550-family workstations , when local workstation func-
tions are used.

� On 3270-PC/G, /GX, and /AT workstations, IBM
3179-G, 3192-G, and 3472-G color graphics displays ,
and 5550-family workstations :

– When the screen has to be refreshed (for example,
after the subsystem has taken over the screen to
display a message, or after PA3 has been pressed).

– If the visibility or highlighting attribute of a segment
is changed by the GSSATS call.

� On 3270-PC/G, /GX, and /AT workstations, when
changing to and from unretained mode, where the work-
station has been customized with insufficient segment
storage for the displayed picture.

� On the 5080 Graphics System , when the picture is too
large for the 5080 Graphics System display buffer, all
data not contained in segments is deleted.

Graphics primitives outside segments

On 3179-G, 3192-G, and 3472-G color graphics displays ,
3270-PC/G, /GX, or AT workstations , and 5550-family
multistations , it is recommended that GDDM primitives
(graphics calls) be used only after a segment has been
opened. This is because, on these devices, the primitives
are discarded after they have been displayed on the screen.
Therefore, when any local operation takes place at the
device (for example, if the screen is scrolled or if a system-
issued message is displayed), GDDM does not refresh the
primitives, which are consequently lost. Also, when an over-
lapping partition is deleted or moved, temporary data that
was overlapped by the partition is lost.

To avoid these situations, use a GSSEG call to open a
segment before using GDDM primitives calls.

Programmed symbol sets (PS) and
graphics text

Character mode 1 (hardware character
sets)

Hardware character sets are subject to the following device-
dependent considerations:

� On a devices such as a 3279, it must have been loaded
previously as a PS set.

� On 3179-G, 3192-G, and 3472-G color graphics dis-
plays and on 3270-PC/G or 3270-PC/GX workstations ,
the symbol-set identifier is used to select an image
symbol set that has been loaded previously by a GSLSS
or GSDSS call, or a PS set that has been loaded previ-
ously as a PS set by a PSDSS, PSLSS, or PSRSV call.

� For plotters, 3800-3 printers , and 3820 printers ,
mode-1 character strings are drawn using the default
vector character set.

242 GDDM Base Application Programming Reference

 device variations

� For 4250 printers , mode-1 character strings are drawn
using either the default vector character set or the
selected printer font.

Character mode 2 (image symbol sets)

Image symbol sets are subject to the following device-
dependent considerations:

� On 3179-G, 3192-G, and 3472-G color graphics dis-
plays , and on 3270-PC/G and 3270-PC/GX work-
stations , the device itself controls which symbol set is
used to display the string if both a PS set (loaded by a
PSDSS, PSLSS, or PSLSSC call) and an image symbol
set (loaded by a GSLSS or GSDSS call) with the
required identifier have been loaded previously. Equally,
the workstation controls which symbol set is used if only
a PS set with the required identifier is loaded.

� For plotters , character set 0 characters are scaled,
using hardware, to best fit the character box.

PS stores and device cell-size dimensions

Symbol sets that are to be loaded into PS stores must have
the same matrix dimensions as the device character cell.
These are shown in Table 4.

 FSCHEK call

Support for the FSCHEK call is subject to the following
device-dependent limitations:

� On the 5080 Graphics System , The FSCHEK call is
ignored. The amount of data that can be displayed is
limited by the size of the display-list buffer in the 5080
system. If the buffer overflows, then the operation is
tried once more. If the condition persists, a warning
message is returned to the application.

� On 3179-G, 3192-G, and 3472-G colour graphics dis-
plays , and 3270-PC/G and 3270-PC/GX workstations ,
the FSCHEK call is ignored because PS overflow cannot
occur on these devices.

� On 5550-family Multistations and devices running
under GDDM-PCLK or GDDM-OS/2 Link , the FSCHEK
call is ignored.

Table 4 (Page 1 of 2). Device cell-size dimensions

Device Models Character
cell width

Character
cell height

3179-G and 3192-G color display All 9 12 (see note
1)

3472-G color display 24 row screen 9 21

3472-G color display 32 row screen 9 16

3268 printer 2C 10 8

3270-PC display All 9 14

3270-PC/G workstation All 9 10 or 16

3270-PC/GX workstation All 12 20

3278 display 2, 3 9 16

3278 display 4 9 12

3279 display 2B, 3B 9 12

3287 printer All 10 8

3290 information panel display All 9 16

3812 printer model 2 All 24 30

3816 printer All 24 30

| 3112, 3116, 3912, 3916, and 4028 printers| All| 30| 37 (see note
| 2)

4224 and all 4230 printers All 20 18

4234 printer 11 12 16

PCLK adapter with CGA card 24-row screen 8 8

PCLK adapter with EGA card (64 K) 24-row screen 8 8

PCLK adapter with EGA card (128+ K) 24-row screen 8 14

PCLK adapter with EGA card (128+ K) 32-row screen 8 11

PCLK adapter with MCGA card 24-row screen 8 19

 Chapter 4. Device variations 243

 device variations

Table 4 (Page 2 of 2). Device cell-size dimensions

Device Models Character
cell width

Character
cell height

PCLK adapter with MCGA card 32-row screen 8 14

PCLK adapter with MCGA card 43-row screen 8 10

PCLK adapter with VGA card 24-row screen 8 19

PCLK adapter with VGA card 32-row screen 8 14

PCLK adapter with VGA card 43-row screen 8 10

PCLK with 8514/A + 8503, 8504, 8512, 8513, 8516, or 8518 24-row screen 8 19

PCLK with 8514/A + 8503, 8504, 8512, 8513, 8516, or 8518 32-row screen 8 14

PCLK with 8514/A + 8503, 8504, 8512, 8513, 8516, or 8518 43-row screen 8 10

PCLK with 8514/A + 8507, 8514, or 8515 24-row screen 12 30

PCLK with 8514/A + 8507, 8514, or 8515 32-row screen 12 23

PCLK with 8514/A + 8507, 8514, or 8515 43-row screen 12 17

PCLK with 8514/A + 8507, 8514, or 8515 27-row x 132-col screen 7 24

PCLK adapter with XGA card + 8503, 8504, 8512, 8513, 8516, or
8518

24-row screen 8 19

PCLK adapter with XGA card + 8503, 8504, 8512, 8513, 8516, or
8518

32-row screen 8 14

PCLK adapter with XGA card + 8503, 8504, 8512, 8513, 8516, or
8518

43-row screen 8 10

PCLK adapter with XGA card + 8507, 8514, or 8515 24-row screen 12 30

PCLK adapter with XGA card + 8507, 8514, or 8515 32-row screen 12 23

PCLK adapter with XGA card + 8507, 8514, or 8515 43-row screen 12 17

PCLK adapter with XGA card + 8507, 8514, or 8515 27-row x 132-col screen 7 24

PCLK with Image Adapter/A + 8503, 8504, 8512, 8513, 8516, or
8518

24-row screen 8 19

PCLK with Image Adapter/A + 8503, 8504, 8512, 8513, 8516, or
8518

32-row screen 8 14

PCLK with Image Adapter/A + 8503, 8504, 8512, 8513, 8516, or
8518

43-row screen 8 10

PCLK with Image Adapter/A + 8506, 8507, 8508, 8514, 8515, or
6091

24-row screen 12 30

PCLK with Image Adapter/A + 8506, 8507, 8508, 8514, 8515, or
6091

32-row screen 12 23

PCLK with Image Adapter/A + 8506, 8507, 8508, 8514, 8515, or
6091

43-row screen 12 17

PCLK with Image Adapter/A + 8506, 8507, 8508, 8514, 8515, or
6091

27-row x 132-col screen 7 24

8775 display 1, 11 9 16

8775 display 1, 12 9 12 or 16

Notes:

1. The alphanumeric cell-size on a 3179-G or 3192-G can be either 9 by 12, or 9 by 16. The actual cell-size is governed by the depth of
the GDDM page and subsystem-related factors. Usually, any page with 24 rows or less causes a cell-size of 9 by 16, with other page
sizes receiving a cell-size of 9 by 12. The substitution character for a 3179-G or 3192-G is independent of the page size, and always
corresponds to the 9 by 12 cell.

2. This is an approximate figure. The actual height is calculated internally by GDDM.

244 GDDM Base Application Programming Reference

 device variations

 Alphanumerics

Alphanumerics cannot be plotted, nor can they be defined on
non-cell-based family-4 devices.

Alphanumeric field attributes

All alphanumeric field attributes may be specified on all
devices that support alphanumerics. Attributes not supported
on a particular device are ignored. The information returned
for “Code=0” in the FSQURY call indicates which attributes
are supported by the primary device.

Double-byte character sets (DBCS)

Alphanumeric DBCS characters are supported on the
3278-52, 3283-52, 5550 family multistations , and PS/55.

Cursor position within mixed fields For a cursor posi-
tion within a mixed field, the column indicates the byte posi-
tion. If this is at a DBCS character position and the device is
a DBCS device, the cursor position coincides with the start of
the DBCS character.

 3278–52

If a field containing DBCS characters is positioned at an
even column on the screen, and the device is a 3278-52, the
DBCS field is protected and filled with the DUP character.

 Alphanumeric colors

The standard default color varies according to the device
being used:

� For monochrome displays , the default is green (orange
on a 3290, white on a 3193).

� For monochrome and most color printers , the default
is black.

� For 3268 or 3287 printers , the default is black or green,
depending on the Base Color Specify feature.

� For 3179-G, 3192-G, 3472-G, and 3279 color display
stations , and 3270-PC, 3270-PC/G, and 3270-PC/GX
workstations , 5550-family displays , and devices
using the GDDM-PCLK or GDDM-OS/2 Link program ,
the default color varies according to the application:

– In Extended Color mode, where the screen has
defined nondefault colors, or Character Reply Mode
has been requested, the default color is green,
except for a high-intensity field, which is white.
(High intensity has no effect on nondefault color
fields.)

– In Base Color mode, where the screen has not
requested any nondefault colors and Field Reply
Mode is in operation, the default color depends on
the field type, field intensity, and the setting of the

operator control (if any). This table summarizes the
variations:

Operator control setting: Base Color

Field type Intensity Default color

 Protected High White
 Protected Normal Blue
 Unprotected High Red
 Unprotected Normal Green

Operator control setting: Monochrome

The default color is green for normal-intensity fields,
and white for high-intensity fields.

 Graphics colors

The following device-dependent variations on the colors dis-
played by the GSCOL call are observed. The result depends
on the color capability of the device.

� On eight-color displays (for example, 3279, 3270-PC/G
workstations) and 5550-family Multistation , colors 9
through 15 map to colors 1 through 7. Color 16 maps to
the default color for the device.

� On four-color printers , the primary colors (red, green,
and blue) are interpreted correctly. Other colors in the
range 1 through 7 print as black. Colors in the range 9
through 15 are first mapped to colors 1 through 7, color
16 being mapped to default (as for an 8-color display),
and are then interpreted as above.

� On monochrome 3270-PC/GX workstations , colors 1
through 7 provide different intensities, as follows:

– Color 1 displays at one-third intensity
– Color 7 displays at full intensity
– All other colors display at two-thirds intensity.

� On monochrome displays , all colors except colors 8
and −1 display identically. Colors 8 and −1 both appear
identically as background.

� For a monochrome printer , all colors except colors 8
and −2 display identically. Colors 8 and −2 both appear
identically as background.

� On family-4 devices , if color separation is required,
colors in excess of the highest color in the selected color
table, map to entries in the table. Color −2 (explicit
white) maps to the seventh entry in the selected table,
and color −1 (explicit black) maps to the eighth entry.
Color 8 is always treated as background, even if the
eighth entry in the selected table is not defined as back-
ground. Color −1 maps to the actual eighth entry, which
is not necessarily background. If color separation is not
required, all colors except colors 8 and −2 (background
and explicit white) appear identically.

If procopt OFFORMAT is set to GRIMAGE or
GRCIMAGE, color wrapping occurs above color 16.

 Chapter 4. Device variations 245

 device variations

� On plotters , the color numbers map to a pen stall, as
follows:

If the color number is greater than the highest pen
number, GDDM wraps around the set of numbers after
the lowest power of 2 that is greater than or equal to the
highest pen number (after 8 on a six-pen plotter or after
2 on a two-pen plotter). Numbers between the highest
pen number and the next power of two use the highest
pen number, so on a six-pen plotter both color 7, and
color 6, use pen 6. Color 8 is an exception as it always
means “background.”

Note.This color mapping does not apply to plotters connected
through GDDM-OS/2 Link In this case, the color mapping
depends on how the plotter is configured to OS/2.

 Color mixing

The following device-dependent restrictions on foreground
(GSMIX) and background (GSBMIX) color mix modes should
be noted.

Foreground color mix mode

“Mix” mode: The 3270-PC/GX workstations support 16
colors. The results of mixing these colors are device-
dependent, and therefore cannot be shown here.

“Underpaint” mode: On 3270-PC/G and 3270-PC/GX
workstations , 5550-family Multistations , and 5080 or 6090
Graphics Systems , “underpaint” mode is not supported.
The device itself causes the results to appear in “overpaint”
mode.

“Exclusive-OR” mode: On the 3279, arcs drawn with
line width greater than 1 will be drawn as 2 lines.

On the 5080 Graphics System , “exclusive-OR” mode is
treated as “overpaint” mode.

On IPDS printers , “exclusive-OR” mode is not supported.

“Transparent” mode: On 5080 or 6090 Graphics
Systems , “transparent” mode is not supported.

“Mix” mode: On GDDM-PCLK printers, the color white
produces no output.

Combinations of foreground and
background mix modes

On many devices, only certain combinations of foreground
and background mix modes are supported.

If a combination of foreground and background mix modes is
requested that is not allowed, the call specifying this combi-
nation (GSMIX or GSBMIX) issues a warning message. In
this case the requested mode is recorded, but while this
combination exists results are device dependent; normally all
primitives are drawn with a background mix mode of trans-
parent and with the requested foreground mix mode. If a
subsequent change to the foreground mix mode results in
the requested combination of modes becoming valid, the
requested background mix mode is used.

� On IBM devices that do not support background mix
orders , the following combinations of foreground and
background color-mix modes are supported:

� When displaying images on Tektronix displays , the fol-
lowing combinations of foreground and background
color-mix modes are supported:

� When displaying images on DEC displays , the following
combinations of foreground and background color-mix
modes are supported:

� When displaying lines, shaded areas, and characters on
Tektronix and DEC displays , the following combina-
tions of foreground and background color-mix modes are
supported:

GSCOL
color number

2-pen plotter
pen number

6-pen plotter
pen number

8-pen plotter
pen number

-2 no pen used no pen used no pen used
-1 1 6 7
0 2 6 8
1 1 1 1
2 2 2 2
3 1 3 3
4 2 4 4
5 1 5 5
6 2 6 6
7 1 6 7
8 no pen used no pen used no pen used
9 1 1 1
10 2 2 2
12 2 4 4
13 1 5 5
14 2 6 6
15 1 6 7
16 2 6 8

Foreground Background
Any Transparent
Overpaint Opaque and transparent

Foreground Background
Overpaint Opaque
Mix Transparent
XOR Transparent
Transparent Transparent

Foreground Background
Overpaint Transparent
Transparent Transparent

246 GDDM Base Application Programming Reference

 device variations

Note: When displaying shaded areas on Tektronix
42xx series displays with microcode level 11 , opaque
is the only background mix mode available. When dis-
playing shaded areas on Tektronix 4105 and 42xx
series displays with microcode earlier than level 11 ,
transparent is the only background mix mode available.

Graphics line types and widths

Line types (GSLT)

On family-4 printers , the same value of the line-type param-
eter may produce different results on different types of
printer. The results on family-4 printers may also differ from
the results on displays and family-2 printers .

Line widths (GSFLW and GSLW)

The standard width (to which the line-width multiplier is
applied), together with the minimum and maximum line
widths on various devices, is listed below:

 Min. Std. Max.

IBM 3270 displays, printers , plotters 1 1 2
IBM 3800-3 Printer 1 3 300
IBM 4250 Printer 1 6 600
IBM 5080 and 6090 Graphics System 1 1 1
ASCII graphics devices 1 1 1

Graphics area shading

The following device-dependent limitations in the implemen-
tation of graphics area shading should be noted:

� On 3270-PC/GX workstations , when a large area is
drawn and there is not enough segment storage config-
ured, the device may not perform the shading. When
this happens, the 3270-PC/GX issues an unformatted
message to this effect.

� On 3270-PC/G and 3270-PC/GX workstations , the
shading pattern must be less than or equal to 8 pixels
wide and less than or equal to 15 pixels deep to ensure
the correct shading. An area is shaded by repeating the
pattern every 8 pixels horizontally and is repeated verti-
cally so that if the pattern is less than or equal to 15
rows deep, successive cells are adjacent without blank
lines. If the depth is greater than 15 pixels, shading pat-
terns may be truncated to 15.

� On devices running under GDDM-PCLK or
GDDM-OS/2 Link , shading patterns are not loadable.

Foreground Background � On the IBM 5080 Graphics System , only the
GDDM-defined patterns (patterns 0 through 16) are sup-
ported. All shading patterns except 15 (hollow) are
opaque; that is the spaces between the shading marks
are not transparent.

� Some devices such as:

 – IPDS printers
– ASCII graphics displays
– Personal computer systems running

GDDM-PCLK and GDDM-OS/2 Link

may not support the shading patterns you have defined.

On some ASCII graphics displays, complex areas – or areas
with more than 255 vertices may be shaded incorrectly.
Some of the characters in the high quality DBCS symbol sets
may be affected by this device limitation.

 Graphics image

When processing the GSIMG call, on the 5080 Graphics
System , the bits set to zero are black; that is, they are not
transparent. Therefore, any image completely replaces the
existing data. This means that multicolored images cannot
be supported as only the last color is visible.

Graphics logical input devices
String and stroke devices are only supported on the IBM
3270-PC/G and 3270-PC/GX workstations , and IBM 5080
Graphics System .

 Choice devices
The following limitations on choice devices should be noted:

� Mice are not supported on all devices.

� Tablets (and therefore puck buttons) and data keys are
only supported on the IBM 3270-PC/G and 3270-PC/GX
workstations , and IBM 5080 Graphics Systems .

� On any one device, either a mouse or a tablet may be
supported, but not both.

� Mice or tablets are only supported when configured on
the particular device in use.

� Light pens are only supported on a limited range of
devices.

Locator devices (GSILOC)
� For 3179-G, 3192-G, and 3472-G color graphics dis-

plays , 5550-family Multistations , and workstations
running under GDDM-PCLK or GDDM-OS/2 Link , the
locator device is a mouse if one is configured.

� For 3270-PC/G and 3270-PC/GX workstations , the
locator device is a mouse or tablet if one is configured.
Tablet and mouse are mutually exclusive.

Overpaint Opaque
Overpaint Transparent
Transparent Transparent

 Chapter 4. Device variations 247

 device variations

Echo types: The echo is what the operator sees on the
screen when using the locator. Six different echo types may
be specified.

Echo type 0 (default echo)

� For 3179-G, 3192-G, and 3472-G color graphics dis-
plays , 3270-PC family workstations , and workstations
using the GDDM-PCLK or GDDM-OS/2 Link program ,
the locator can be changed by the device; for more infor-
mation on how this is done, refer to the appropriate user
guide.

� For other 3270 family displays , the locator echo is the
alphanumeric cursor.

� For the 5080 Graphics System , the locator echo is a
small cross.

� For the 5550-family Multistations , the locator echo is a
cross-hair cursor.

Echo type 1 (null echo)

� For 3179-G, 3192-G, and 3472-G color graphics dis-
plays , 3270-PC/G and 3270-PC/GX workstations ,
5550-family workstations , and workstations using the
GDDM-PCLK or GDDM-OS/2 Link program , the echo
is invisible and the locator position is not shown.

� For other 3270-family displays , the alphanumeric
cursor is used. The initial position is described by the
x-coord and y-coord parameters.

� For the 5080 Graphics System , the locator echo is a
small cross.

Echo type 2

� For the 3179-G, 3192-G, and 3472-G color graphics
displays , 3270-PC family workstations , and work-
stations running under GDDM-PCLK or
GDDM-OS/2 Link , the locator can be changed by the
device; for more information on how this is done, refer to
the appropriate user guide.

� For the 5080 Graphics System , the locator is a cross-
hair.

� For the 5550-family Multistation , the locator is a cross-
hair cursor.

Echo types 4 (rubber band) and 5 (rubber box) For the
5080 Graphics System , when using rubber-band and
rubber-box echo types, if the position of the fixed end or
corner is not visible at the time of a GSREAD call, GDDM
does not ensure that the initial position and type of the
locator echo are correct.

Echo type 6 (transformable graphics segment) For the
3270-PC/G and 3270-PC/GX workstations , the copy of the
segment is displayed in a form that facilitates drawing by the
devices (exclusive-OR mode), and the mixing of the colors of
the segment can be different from that for the original
segment. This color mixing applies to the mixing with other
segments on the screen as well as the primitives of the
echoed segment itself.

Trigger keys: Examples of trigger keys are:

Pick devices (GSIPIK)

� For 3179-G, 3192-G, and 3472-G color graphics dis-
plays , 5550-family Multistations , and workstations
running under GDDM-PCLK or GDDM-OS/2 Link , the
locator device is a mouse if one is configured.

� For 3270-PC/G and 3270-PC/GX workstations , the
locator device is a mouse or tablet if one is configured.
Tablet and mouse are mutually exclusive.

 Echo

� For 3270-PC/G or 3270-PC/GX workstations , the echo
is a square that shows the pick aperture. This square is
centered on the pick position and superimposed over the
echo selected for an enabled locator device. If no
locator is enabled, the square is superimposed over a
cross-hair cursor. The size of the aperture may be set
using the GSIDVF call before enabling the pick device.

� For a 3279, the feedback is the position of the alphanu-
meric cursor.

� For 3179-G, 3192-G, and 3472-G color graphics dis-
plays , 5550-family Multistations , and workstations
using the GDDM-PCLK or GDDM-OS/2 Link program ,
the feedback is the position of the graphics cursor,
unless a null locator echo has been selected.

Trigger keys: For examples of trigger keys on different
devices, see Table 5.

Stroke devices (GSISTK)

The following device-dependent variations should be noted.

� On 3270-PC/G and PC/GX workstations , echoing, the
mouse or tablet buttons can be used to suspend the
stream, move the locator to a new position, and restart
the stream if this is desired.

� On the 5080 Graphics System , the input is completed
the first time the button is released. The value of the
count parameter may be reduced when the GSREAD

Table 5. Triggering keys for locator and pick devices
Display Triggering keys

3179-G, 3192-G,
3472-G, and
5550-family

ENTER key
PF keys
Mouse buttons

3270-PC/G and
3270-PC/GX

ENTER key
PF keys
Mouse or puck buttons

3279 ENTER key
PF keys
Alphanumeric light pen detect

5080 Data keys (if they are enabled and a string
device is not enabled)
The mouse or puck buttons (if used for the
locator).

248 GDDM Base Application Programming Reference

 device variations

call is made, according to the processing conditions
applying at that time.

String devices (GSISTR)
� On the 5080 or 6090 Graphics System , only the

ENTER key is effective for putting the string data into
the input queue. The maximum length of a string on
these devices is 80.

The echo is clipped to the right edge of the screen. If
the start of the string is not visible, the string appears
with echo-type 2.

The string device is not triggered by PF keys or data
keys.

� On the 3270-PC/G and PC/GX , the echo is clipped at
the graphics field boundary.

� On 3270-PC/G and 3270-PC/GX workstations, and
5550-family Multistations , PA3 is reserved by GDDM

(to perform local-mode processing or to redraw the
screen).

 Image

The following device-dependent variations should be noted.

� Echoing is done by the 3193 display unless the
projection contains transformations that the 3193 cannot
process, within the quality requirements specified in the
ISCTL or ISXCTL calls.

� On 3270-family displays other than the 3193 , the
image box cursor is not supported.

� When using the GDDM image interface on the 5080
Graphics System , there are no restrictions other than
that imposed by the 5080 buffer size, which may limit
the size of the image data.

 Chapter 4. Device variations 249

 device variations

250 GDDM Base Application Programming Reference

 APL request codes

Chapter 5. APL request codes module

An APL request codes module, which is independent of the
subsystem under which GDDM is running, is provided with
GDDM. The module defines for each GDDM call statement,
the associated APL request code to be used by an APL func-
tion when requesting services of GDDM through the APL
Auxiliary Processor AP 126.

Although all GDDM call statements have an equivalent APL
code assigned, not all codes are supported through AP 126.
The APL manuals listed below identify the supported codes
for each of the subsystems for which APL is available.

� VS APL for CICS: Terminal User’s Guide,
� VS APL for CMS: Terminal User’s Guide,
� VS APL for TSO: Terminal User’s Guide,
� APL2 Programming: System Services Reference

manual.

The address of the APL Request Codes Module can be
acquired by an application program by using the CALLINF
external default option in the SPINIT call; see “Initialization”
on page 431.

The APL Request Codes Module is in two sections. The first
provides an address table locating the descriptors for a spe-
cific range of APL codes. The second section defines the
equivalence between APL request codes and GDDM calls for
all codes within a specific range.

Note: The APL request codes module may be subject to
change between different releases of GDDM, or, as a result
of maintenance.

The address table

The address table is located at offset 0 from the entry point
of the module. The format of the address table is as follows:

RCPAIDEN
Module identifier containing the character string
“ADMADAP.”

RCPAVERS
A fullword integer identifying the version number of the
APL Request Codes Module. The field is currently set
to zero.

RCPATNUM
A fullword integer containing the number of assigned
APL codes defined in the following tables.

RCPAENUM
A fullword integer containing the number of table indexes
to follow. One table index exists for each block of APL
codes in the range:

1ðð\n : 1ðð\(n+1)-1

where n is greater than or equal to 0. Thus, the
maximum APL code is:

RCPAENUM\1ðð-1

RCPALOW(n)
A two-byte integer identifying the lowest value in the
APL index table pointed to by RCPAPTR(n). The value
is currently always set to 100ñ(n-1).

RCPAHIGH(n)
A two-byte integer identifying the highest value in the
APL index table pointed to by RCPAPTR(n). The value
is always less than 100ñn.

RCPAPTR(n)
The address of the request code table for those APL
codes in the range RCPALOW(n) through
RCPAHIGH(n). If the value of the pointer is zero, there
are no codes assigned within the range.

The request code table

The Request Code Table is addressed from the address
table described in “The address table.” There is one entry in
the table for each potential APL code in the range
RCPALOW(n) through RCPAHIGH(n). The format of the
request code table is:

RCPAPLN(i)
A two-byte integer containing the APL request code. A
code of zero indicates that there is no GDDM function
assigned to that code.

Table 6. APL request codes module – address table

Field name Field offset Field length

RCPAIDEN 0 8
RCPAVERS 8 4
RCPATNUM C 4 Table 7. APL request codes module – request code table
RCPAENUM 10 4

Field name Field offset Field lengthRCPATABP(1) 14 8
 RCPALOW(1) 0 2 RCPAAPLC(1) 0 8
 RCPAHIGH(1) 2 2 RCPAAPLN(1) 0 2
 RCPAPTR(1) 4 4 RCPAAPLG(1) 2 6
RCPATABP(2) 1C 8 RCPAAPLC(2) 8 8...

...
... ...

...
...

RCPATABP(n) 14+(n-1)×8 8 RCPAAPLC(m) 8×(m-1) 8

 Copyright IBM Corp. 1980, 1996 251

 APL request codes

RCPAAPLG(i)
A six-byte character string containing the name of the
GDDM call (for example “ASREAD”) corresponding to
the APL function code in RCPAPLN(i).

GDDM Base APL codes, in numeric order

The remainder of this chapter lists APL codes for the GDDM
Base calls in numeric order.

Table 8 (Page 1 of 3). GDDM Base APL codes, in numeric
order

APL
code

Call
name

Description

 2ð1 GSDSS Load a graphics symbol set from the applica-
tion program

 2ð2 GSLSS Load a graphics symbol set from auxiliary
storage

 2ð3 PSDSS Load a symbol set into a PS store from the
application program

 2ð4 PSLSS Load a symbol set into a PS store from auxil-
iary storage

 2ð5 PSLSSC Conditionally load a symbol set into a PS store
from auxiliary storageTable 8 (Page 1 of 3). GDDM Base APL codes, in numeric

order 2ð6 PSRSV Reserving or releasing a PS store
 2ð7 GSRSS Release a graphics symbol setAPL

code
Call
name

Description
 2ð8 PSRSS Release a symbol set from a PS store
 2ð9 GSQNSS Query the number of loaded symbol sets

 1ð1 ASREAD Device output/input 21ð GSQSS Query loaded symbol sets
 1ð2 FSFRCE Update the display 211 PSQSS Query status of device stores
 1ð3 FSREST Retransmit data 212 SSQF Query a symbol set on auxiliary storage
 1ð4 FSSAVE Save current page contents 213 SSREAD Read a symbol set from auxiliary storage
 1ð5 FSSHOW Display a saved picture 214 SSWRT Write a symbol set to auxiliary storage
 1ð6 FSCHEK Check picture complexity before output 215 GSCPG Set current code page
 1ð7 FSQERR Query last error 216 GSQCPG Query code page
 1ð8 FSTRCE Control internal trace 28ð APDEF Define a field list
 1ð9 FSALRM Sound the terminal alarm 281 APDEL Delete a field list
 11ð FSQDEV Query device characteristics 282 APMOD Modify a field list
 111 ASTYPE Override alphanumeric character-code assign-

ments
 283 APQIDS Query field list identifiers
 284 APQNUM Query field list numbers

 112 ESLIB Library management 285 APQRY Query a field list
 113 ESPCB Identify program communication block 286 APQSIZ Query a field list size
 114 FSEXIT Specify an error exit, or error threshold, or both 287 APQUID Query unique field list identifier
 115 SPINIT Initialize GDDM with SPIB 3ð1 FSPCLR Clear the current page
 116 FSTERM Terminate GDDM processing 3ð2 FSPCRT Create a page
 117 FSINIT Initialize GDDM processing 3ð3 FSPDEL Delete a page
 118 FSRNIT Reinitialize GDDM 3ð4 FSPQRY Query specified page
 119 FSSHOR Extended FSSHOW 3ð5 FSPSEL Select a page
 12ð GSREAD Await graphics input 3ð6 FSQCPG Query current page identifier
 121 FSQURY Query device characteristics 3ð7 FSQUPG Query unique page identifier
 122 FSQSYS Query systems environment 3ð8 MSPQRY Query current page
 123 ESSUDS Specify source-format user default specification 3ð9 FSPWIN Set page window
 124 ESEUDS Specify encoded user default specification 31ð FSQWIN Query page window
 127 ESACRT Create application group 313 FSENAB Enable/disable device input
 128 ESADEL Delete application group 4ð1 ASDFLD Define or delete a single field
 129 ESAQRY Query the current application group 4ð2 ASDFMT Define alphanumeric fields, deleting all existing

fields 13ð ESASEL Select an application group
 132 FSTRAN Translate character string 4ð3 ASDTRN Define I/O translation tables
 133 ESQCPG Query code page of a GDDM object 4ð4 ASFCLR Clear fields
 134 ESSCPG Set code page of a GDDM object 4ð5 ASRFMT Define multiple fields without deleting existing

fields 135 ESQEUD Query encoded user default specification
 136 ESQUNL Query length of user-defined nickname infor-

mation
 4ð6 ASDFLT Set default field attributes
 4ð7 ASFCOL Define field color

 137 ESQUNS Query user-defined nickname information 4ð8 ASFEND Define field end attribute
 14ð ESQOBJ Query existence of GDDM object on auxiliary

storage
 4ð9 ASFHLT Define field highlighting
 41ð ASFIN Define input null-to-blank conversion

 151 WSIO Windowed device input/output 411 ASFINT Define field intensity
 18ð ISFLD Define image field 412 ASFMOD Change field status
 181 ISQFLD Query image field 413 ASFOUT Define output blank-to-null conversion
 182 ISCTL Set image quality-control parameters 414 ASFPSS Define primary symbol set for a field
 183 ISXCTL Extended set image quality control parameters 415 ASFTRN Assign translation table set to a field
 184 ISQFOR Query image formats supported by the device 416 ASFTYP Define field type
 185 ISESCA Control echoing of scanner image 417 ASRATT Define field attributes
 186 ISLDE Load external read-only image 418 ASQFLD Query field attributes
 187 ISQSCA Query image scanner device 419 ASQMAX Query the number of fields
 188 ISQRES Query supported image resolutions 42ð ASQMOD Query modified fields
 189 ISENAB Enable or disable image cursor 421 ASCCOL Specify character colors within a field
 19ð ISQLOC Query image locator cursor position 422 ASCGET Get field contents
 191 ISILOC Initialize image locator cursor 423 ASCHLT Specify character highlights within a field
 192 ISQBOX Query image box cursor 424 ASCPUT Specify field contents
 193 ISIBOX Initialize image box cursor 425 ASCSS Specify character symbol sets within a field
 194 ISQCOM Query image compressions supported by the

device
 426 ASMODE Define the operator reply mode
 427 ASQCOL Query character colors for a field

 428 ASQHLT Query character highlights for a field

252 GDDM Base Application Programming Reference

 APL request codes

Table 8 (Page 2 of 3). GDDM Base APL codes, in numeric
order

Table 8 (Page 2 of 3). GDDM Base APL codes, in numeric
order

APL
code

Call
name

Description APL
code

Call
name

Description

 429 ASQSS Query character symbol sets for a field 558 GSCH Set current character shear
 43ð ASFCUR Position the cursor 559 GSQCH Query character shear
 431 ASQCUR Query cursor position 56ð GSQTB Query the text box
 432 ASGPUT Specify double-character field contents 561 GSFLW Set current fractional line width
 433 ASGGET Get double-character field contents 562 GSQFLW Query the current fractional line width
 434 ASFTRA Define field transparency attribute 563 GSMSC Set marker scale
 435 ASQNMF Query the number of modified fields 564 GSQMSC Query marker scale
 436 ASFBDY Define field outline 565 GSIMGS Draw a scaled graphics image
 437 ASFSEN Define field mixed-string attribute 566 GSTAG Set current primitive tag
 438 SPMXMP Control the use of mixed fields by mapping 567 GSQTAG Query current tag
 439 DSCMF User Control function 568 GSILOC Initialize locator
 44ð DSQCMF Query user control function 569 GSIPIK Initialize pick device
 443 ASQLEN Query length of field contents 57ð GSIDVI Initial data value, integer
 5ð1 GSCLP Enable and disable clipping 571 GSIDVF Initial data value, float
 5ð2 GSFLD Define the graphics field 572 GSENAB Enable or disable a logical input device
 5ð3 GSPS Define the picture space 573 GSFLSH Clear the graphics input queue
 5ð4 GSVIEW Define a viewport 574 GSQSIM Query existence of simultaneous queue entry
 5ð5 GSWIN Define a graphics window 575 GSQCHO Query choice device data
 5ð6 GSCLR Clear the graphics field 576 GSQLOC Query graphics locator data
 5ð7 GSSCLS Close the current segment 577 GSQPIK Query pick data
 5ð8 GSSDEL Delete a segment 578 GSSATI Set initial segment attributes
 5ð9 GSSEG Create a segment 579 GSQATI Query initial segment attributes
 51ð GSCA Set current character angle 58ð GSSATS Modify segment attributes
 511 GSCB Set character-box size 581 GSQATS Query segment attributes
 512 GSCD Set current character direction 582 GSSPOS Set segment position
 513 GSCM Set current character mode 583 GSQPOS Query segment position
 514 GSCOL Set current color 584 GSUWIN Define a uniform graphics window
 515 GSCS Set current symbol set 585 GSQFLD Query the graphics field
 516 GSLT Set current line type 586 GSQSSD Query symbol set data
 517 GSLW Set current line width 587 GSSORG Set segment origin
 518 GSMIX Set current foreground color-mixing mode 588 GSSAGA Set all geometric attributes
 519 GSMS Set the current type of marker symbol 589 GSQAGA Query all geometric attributes
 52ð GSPAT Set current shading pattern 59ð GSSTFM Set segment transform
 521 GSARC Draw a circular arc 591 GSQTFM Query segment transform
 522 GSAREA Start a shaded area 592 GSSAVE Save a segment
 523 GSCHAP Draw a character string at current position 593 GSLOAD Load segments
 524 GSCHAR Draw a character string at a specified point 594 GSISTR Initialize string device
 525 GSENDA End a shaded area 595 GSISTK Initialize stroke device
 526 GSLINE Draw a straight line 596 GSQSTR Query string data
 527 GSMARK Draw a marker symbol 597 GSQSTK Query stroke data
 528 GSMOVE Move without drawing 598 GSARCC Specify aspect-ratio control (for copy)
 529 GSMRKS Draw a series of marker symbols 6ð1 FSCLS Close alternate device
 53ð GSPLNE Draw a series of lines 6ð2 FSCOPY Send page to alternate device
 531 GSVECM Vectors 6ð3 FSLOG Send character string to alternate device
 532 GSQCA Query character angle 6ð4 FSOPEN Open alternate device
 533 GSQCB Query character-box size 6ð5 GSCOPY Send graphics to alternate device
 534 GSQCD Query character direction 6ð6 FSLOGC Send character string with carriage-control

character to alternate device 535 GSQCEL Query default graphics cell size
 536 GSQCLP Query the clipping state | 62ð| FSGETS| Begin retrieval of family-4 AFPDS datastream
 537 GSQCM Query the current character mode | 621| FSGET| Retrieve a family-4 AFPDS print-file record
 538 GSQCOL Query the current color | 622| FSGETE| End retrieval of family-4 AFPDS datastream
 539 GSQCP Query the current position 632 GSSINC Include a segment
 54ð GSQCS Query the current symbol-set identifier 633 GSSCPY Copy a segment
 541 GSQCUR Query the cursor position 634 GSSPRI Set segment priority
 542 GSQLT Query the current line type 635 GSQPRI Query segment priority
 543 GSQLW Query the current line width 636 GSMB Set marker-box size
 544 GSQMAX Query the number of segments 637 GSQMB Query marker box
 545 GSQMIX Query the current color mixing mode 638 GSCORR Explicit correlation of tag to primitive
 546 GSQMS Query the current marker symbol 639 GSQORG Query segment origin
 547 GSQPAT Query the current shading pattern 643 GSQLID Query logical input device
 548 GSQPS Query the picture-space definition 644 GSTA Set text alignment
 549 GSQVIE Query the current viewport definition 645 GSQTA Query the current text alignment
 55ð GSQWIN Query the current window definition 646 GSCBS Set character-box spacing
 551 GSELPS Draw an elliptic arc 647 GSAM Set attribute mode
 552 GSIMG Draw a graphics image 648 GSQAM Query the current attribute mode
 553 GSPUT Restore graphics data 649 GSPOP Restore attributes
 554 GSGETS Start retrieval of graphics data 65ð GSQCBS Query character-box spacing
 555 GSGET Retrieve graphics data 651 GSSCT Set current transform
 556 GSGETE End retrieval of graphics data 653 GSCALL Call a segment
 557 GSPFLT Draw a curved fillet 654 GSQPKS Query pick structure

 Chapter 5. APL request codes module 253

 APL request codes

Table 8 (Page 3 of 3). GDDM Base APL codes, in numeric
order

Table 8 (Page 3 of 3). GDDM Base APL codes, in numeric
order

APL
code

Call
name

Description APL
code

Call
name

Description

 655 GSCORS Explicit correlation of structure 16ð1 IMACRT Create an image
 656 GSQBND Query the current data boundary definition 16ð2 IMARES Convert the resolution attributes of an image
 657 GSBND Define a data boundary 16ð3 IMADEL Delete the image associated with the identifier
 658 GSSVL Define segment viewing limits 16ð4 IMACLR Clear a rectangle in an image
 659 GSQSVL Query the current segment viewing limits 16ð5 IMATRM Trim an image down to the specified rectangle
 66ð GSDEFS Start the drawing defaults definition 16ð7 IMASAV Save image on auxiliary storage
 661 GSDEFE End drawing defaults definition 16ð8 IMARST Restore image from auxiliary storage
 662 FSUPDM Set update mode 16ð9 IMAPTS Start data entry into an image
 663 FSQUPD Query update mode 161ð IMAPT Enter data into an image
 664 GSBMIX Set current background color-mixing mode 1611 IMAPTE End data entry into an image
 665 GSQBMX Query the current background color-mixing

mode
1612 IMAGTS Start retrieval of data from an image
1613 IMAGT Retrieve image data from an image

 666 GSSEN Set mixed string attribute of graphics text 1614 IMAGTE End retrieval of data from an image
 667 GSQSEN Query mixed string attribute of graphics text 1615 IMXFER Transfer data between two images, applying a

projection 668 GSCP Set current position
 669 CGLOAD Load a picture from a Computer Graphics

Metafile
1619 IMAQRY Query attributes of an image
162ð IMARF Change resolution flag of an image

 67ð CGSAVE Save segments in a Computer Graphics
Metafile

165ð IMPCRT Create an empty projection
1651 IMPGID Get and reserve a unique projection identifier

 9ð1 DSOPEN Open a device 1652 IMPDEL Delete projection
 9ð2 DSCLS Close a device 1653 IMPSAV Save projection on auxiliary storage
 9ð3 DSUSE Specify device usage 1654 IMPRST Restore projection from auxiliary storage
 9ð4 DSDROP Discontinue device usage 1655 IMREX Define rectangular sub-image in pixel coordi-

nates 9ð5 DSQUID Query unique device identifier
 9ð6 DSQUSE Query device usage 1656 IMREXR Define rectangular sub-image in real coordi-

nates 9ð7 DSQDEV Query device characteristics
 9ð8 DSRNIT Reinitialize a device 1657 IMRPL Define place position in pixel coordinates
 9ð9 DSCOPY Send transformed picture to alternate device 1658 IMRPLR Define place position in real coordinates

| 91ð| DSFRCE| Output member to a PDS 1659 IMRSCL Scale extracted image
1ðð1 PTSCRT Create a partition set 166ð IMRRAL Set current resolution/scaling algorithm
1ðð2 PTSQRY Query partition set attributes 1661 IMRORN Turn an extracted image clockwise through a

number of right angles1ðð3 PTSSEL Select a partition set
1ðð4 PTSDEL Delete a partition set 1662 IMRREF Reflect extracted image
1ðð5 PTSQUN Query unique partition set identifier 1663 IMRNEG Negate the pixels of an extracted image
1ðð6 PTSSPP Set partition viewing priorities 1664 IMRCVB Define bi-level conversion algorithm
1ðð7 PTSQPP Query partition viewing priorities 1665 IMRBRI Define brightness conversion algorithm
1ðð8 PTSQPI Query partition identifiers 1666 IMRCON Define contrast conversion algorithm
1ðð9 PTSQPN Query partition numbers
1ð21 PTNCRT Create a partition
1ð22 PTNQRY Query the current partition
1ð23 PTNMOD Modify the current partition
1ð24 PTNSEL Select a partition
1ð25 PTNDEL Delete a partition
1ð26 PTNQUN Query unique partition identifier
1ð4ð WSCRT Create an operator window
1ð41 WSDEL Delete operator window
1ð43 WSMOD Modify the current operator window
1ð44 WSQRY Query the current operator window
1ð45 WSQUN Query unique operator window identifier
1ð46 WSQWI Query operator window identifiers
1ð49 WSQWP Query operator window viewing priorities
1ð5ð WSQWN Query operator window numbers
1ð51 WSSEL Select an operator window
1ð52 WSSWP Set operator window viewing priorities
11ð1 MSREAD Present mapped data
11ð2 MSPCRT Create a page for mapping
11ð3 MSQGRP Query mapgroup characteristics
11ð4 MSQMAP Query map characteristics
11ð5 MSQADS Query application data structure definition
11ð6 MSQFIT Query map fit
11ð7 MSQMOD Query modified fields
11ð8 MSDFLD Create or delete a mapped field
11ð9 MSPUT Place data into a mapped field
111ð MSGET Retrieve data from a map
1111 MSQFLD Query mapped field characteristics
1112 MSCPOS Set cursor position
1113 MSQPOS Query cursor position
1196 CDPU Control the printing of Composite Documents
12ð1 ISSE Run the Image Symbol Editor
16ðð IMAGID Get and reserve a unique image identifier

254 GDDM Base Application Programming Reference

 GDDM-REXX

Chapter 6. GDDM-REXX programming interface

GDDM-REXX enables you to run GDDM in EXECs written
for the VM/System Product Interpreter, or the TSO/E Lan-
guage Processor, using the Restructured Extended Executor
Language – REXX.

A GDDM-REXX program may consists of four kinds of com-
ponents:

 � REXX statements
� CMS or TSO commands
� GDDM-REXX commands, subcommands, and utilities

 � GDDM calls.

GDDM-REXX commands, subcommands,
and utilities

These form the interface between REXX and GDDM.

 Summary

The following lists summarize the commands, subcommands,
and utility EXEC available in GDDM-REXX.

 Commands

GDDMREXX INIT Initializes GDDM-REXX.
GDDMREXX TERM Terminates GDDM-REXX.
GDDMREXX VERSION Displays version number of

GDDM-REXX in use.

 Subcommands

GXGET AAB Obtains the currently used Application
Anchor Block (AAB). (Used in con-
junction with FSINIT and GXSET AAB.)

GXGET CDT Extracts a string of bytes that con-
tains the GDDM call descriptor table
(CDT) entry for a given GDDM call.
(This is in an encoded form.)

GXGET LASTMSG Extracts the text of the last error
message.

GXGET MSG Extracts the current state and level of
message display.

GXGET NAMES Extracts a string containing all the
GDDM call names, of which, there
are several hundred.

GXGET TRACE Extracts the current state of trace
control.

GXSET AAB Establish the given AAB as current.
GXSET MSADS In mapping, moves data to the

GDDM application data structure
(ADS) from the variables that make
up the REXX application data struc-
ture produced by the ERXMSVAR
EXEC.

GXSET MSG Enables or disables display of mes-
sages at the specified severity level
or higher.

GXSET MSVARS In mapping moves data to the REXX
application data structure from the
GDDM application data structure.

GXSET TRACE Enables or disables statement and
variable fetch or set trace.

 Utility EXEC

ERXMSVAR Creates a REXX application data
structure for use with mapped alpha-
numerics.

 Syntax conventions

The conventions used in presenting the syntax for com-
mands, subcommands, and utilities are:

� The call name is shown in uppercase.
� The parameters are shown in lowercase.
� Uppercase words and parentheses must be coded

exactly as shown.
� Lowercase words should be replaced by appropriate

arguments.
� Elements of the call that are optional are shown within

square brackets, thus: [...].

 GDDMREXX command

 GDDMREXX INIT

Function: Initializes GDDM-REXX.

 Parameters

NODCSS
Prevents the discontiguous saved segment (DCSS) being
loaded, if there is one. Instead a copy of all of
GDDM-REXX is loaded into user storage. If the DCSS is
already in use, NODCSS is rejected with an error message.
To unload the DCSS you must issue the GDDMREXX TERM

command and re-initialize. A DCSS is an area of CMS
storage available to many users.

This parameter is ignored under MVS.
LANG x

Loads GDDM-REXX message text in the appropriate lan-
guage (module name ERXTMSGx on CMS or ERXTMSTx
on MVS). It has no effect on messages from GDDM or
elsewhere. The meaning of the letters is shown below.
Some of them may not be available in your installation.

GDDMREXX INIT [([NODCSS] [LANG X][)]]

 Copyright IBM Corp. 1980, 1996 255

 GDDM-REXX

Where no translation language has been specified, maps
will remain in U.S. English. 'x' is one of the following
letters:
A U.S.-English
B Brazilian Portuguese
C Simplified Chinese (People’s Republic of China)
D Danish
F French
G German
H Korean (Hangeul)
I Italian
K Japanese (Kanji)
N Norwegian
Q Canadian French
S Spanish
T Traditional Chinese (Taiwan)
V Swedish.

Notes:

1. If a double-byte character set language is used for
GDDM or GDDM-REXX languages, we recommend
that you operate with GXSET MSG OFF, and use GDDM
to display the error messages that you extract with
GXGET LASTMSG.

2. If this operand is omitted, the default is the same as
the GDDM Base language.

 GDDMREXX TERM

Function: Terminates GDDM-REXX and frees the storage
used by it.

Termination of GDDM-REXX (and, hence, GDDM) also
implicitly occurs at CMS command ready. On MVS, however
GDDM-REXX is not automatically terminated when an EXEC
ends. The programmer must ensure that a GDDMREXX
TERM command is always executed before exiting from an
EXEC. This includes exits cause by errors and by attention
interrupts by the terminal user. Example code to trap such
exits is given in “Termination on MVS” on page 11.

 Parameters

ALL
Terminates all instances of GDDM-REXX.

 GDDMREXX VERSION

Function: Returns the version and release level, product
number, date, and copyright notice of the copy of
GDDM-REXX being used. The options allow the use of this
command within REXX EXEC files. If they are omitted, the
response is returned to the terminal.

 Parameters

action
STACK The information is queued onto the stack behind

any items that are already on the stack.
LIFO Last in/first out. The information is pushed onto the

stack before any items that are already on the stack.
FIFO First in/first out. Same as STACK.

 GXGET subcommand

The GXGET subcommand is used to extract information from
GDDM-REXX.

 GXGET AAB

Function: Extracts a token that relates to the current appli-
cation anchor block (AAB). This can later be restored by a
GXSET AAB subcommand, which will enable the correct
instance of GDDM. (Used in conjunction with FSINIT and
GXSET AAB.)

 Parameters

.aabtoken
Variable in which the token relating to the current AAB is
returned. You should not tamper with this token in any
way. Refer to the GDDM Base Application Programming
Guide for more information.

 GXGET CDT

Function: Gives the contents of the GDDM call descriptor
table (CDT) in a byte string. The CDT is described in
Chapter 22, “Special-purpose programming in GDDM” on
page 431. The bytes need to be interpreted – a method of
doing this is shown in the sample ERXPROTO EXEC.

 Parameters

.name
Variable containing the name of the call for which the CDT
entry is required. This may be coded as a literal, thus:
'GXGET CDT GSLOAD .gslcdt'

.entry
A variable in which the CDT byte string will be returned.

 GXGET LASTMSG

Function: Gives text of the last error.

GXGET AAB .aabtoken

GXGET CDT .name .entryGDDMREXX TERM [(ALL[)]]

GXGET LASTMSG .msgGDDMREXX VERSION [(action[)]]

256 GDDM Base Application Programming Reference

 GDDM-REXX

 Parameters

.msg
Variable in which the text of the last error message is put.
If there have been no previous error messages, the string is
empty.

 GXGET MSG

Function: Gives current state and level of message han-
dling.

 Parameters

.state
Variable in which the state of message handling is returned;
its value is ON or OFF.

.level
Variable in which the level of messages shown will be
returned. Values are:
0 (Informational) messages and above
4 (Warning) messages and above
8 (Error) messages and above
12 (Severe) messages and above.

 GXGET NAMES

Function: Gives a string containing all the GDDM call
names. Note that there are several hundred calls, all of
which are included.

 Parameters

.namelist
The variable into which the list of names is placed.

 GXGET TRACE

Function: Gives the current state and level of trace.

 Parameters

.state
Variable in which the state of tracing is returned. It may be
ON or OFF.

.time
Variable in which the state of trace timing is returned. It
may be TIME or NOTIME.

 GXSET subcommand

The GXSET subcommand is used to pass information to
GDDM-REXX. Although this syntax shows variable names,
literals may be used instead (except where indicated), as in
'GXSET TRACE ON TIME'.

 GXSET AAB

Function: Establishes the given AAB as current. Used in
conjunction with GXGET AAB.

 Parameters

.aabtoken
Variable containing the anchor block to be established as
current, so that the associated instance of GDDM will be
used. Refer to the GDDM Base Application Programming
Guide for more information.

 GXSET MSADS

Function: Moves data to the user’s application data struc-
ture, which must have been created with the ERXMSVAR
EXEC. Use before output when using mapped alphanu-
merics.

 Parameters

.mapgroup
Name of the mapgroup that contains the map

.map
Name of the map

.prefix
The same as the prefix specified in the ERXMSVAR EXEC.

.ads
The name of the application data structure variable. Refer
to the GDDM Base Application Programming Guide for
more information.

 GXSET MSG

Function: Enables or disables display of messages at
specified severity level or higher. The default is that the
state is ON with a level of 4, meaning that warning messages
and those of a greater severity are shown.

 Parameters

.state
Sets message handling state; it may be ON or OFF.

GXGET MSG .state .level
GXSET AAB .aabtoken

GXSET MSADS .mapgrp .map .prefix .ads

GXGET NAMES .namelist

GXGET TRACE .state .time

GXSET MSG .state [.level]

 Chapter 6. GDDM-REXX programming interface 257

 GDDM-REXX

.level
Sets message handling level; it may be:
0 echo (display before processing) user statements and

display all messages
4 (Warning) messages and above
8 (Error) messages and above
12 (Severe) messages and above.

 GXSET MSVARS

Function: Moves data from the user’s application data
structure, which was created with the ERXMSVAR EXEC.
Use after input when using mapped alphanumerics.

 Parameters

.mapgrp
Name of the mapgroup that contains the map.

.map
Name of the map.

.prefix
Prefix specified in the ERXMSVAR EXEC. This is used as
a stem to give variable names suitable for use with REXX.
Note that the dot is required.

.ads
Name of the application data structure. Refer to the GDDM
Base Application Programming Guide for more information.

 GXSET TRACE

Function: Enables or disables statement and variable
tracing.

 Parameters

.state
 ON

To start tracing
OFF
To end tracing.

.time
Optional parameter used with ON.
TIME
Causes a time-stamp record to be produced with the trace
record.
NOTIME
Suppresses time-stamping.

 GDDM calls

See “REXX” on page 6 for details of how to access GDDM
calls from GDDM-REXX.

 ERXMSVAR EXEC

Function: ERXMSVAR produces initialization statements
for REXX variables that are associated with a mapgroup and
map. It creates a sequential data set or PDS member which
can be included in a REXX exec that uses GDDM run-time
mapping calls.

Before ERXMSVAR is invoked, the sequential data set or
PDS member must be allocated with a ddname of
GDDMCOPY. Under MVS, the sequential data set or PDS
member must be V format, with a maximum record length of
256 bytes, and allocated with a ddname of GDDMCOPY.
Refer to the GDDM Base Application Programming Guide for
more information.

 Parameters

mapgroupname
The name of the generated mapgroup. The mapgroup
must have the filetype (VM/CMS) or ddname (MVS) of
ADMGGMAP. This is the filetype or ddname generated by
GDDM-IMD. If mapgroupname ends with two dots, GDDM
will supply the last two characters, which indicate the device
class.

mapname
The name of the map.

prefix
The prefix used for the associated REXX variables. To
ensure that REXX mapping variables have unique names,
specify each prefix with an underscore (_) at the end.

Description: When GDDM Interactive Map Definition has
been used to define and generate the map and mapgroup,
ERXMSVAR may be executed.

All maps used with GDDM-REXX should be generated with
the option to include field names. In GDDM-IMD panel 3.0
specify:

FIELD NAMES INCLUDED IN GENERATED MAPGROUP ==> YES

Names of the form NO_NAME_1, NO_NAME_2, and so on
are assumed if field names are not included. This is dis-
cussed further below.

Field naming rules:

1. Field names (including selector and adjunct names)
follow the normal GDDM-IMD rules. The names can be
seen in the GDDMCOPY file produced by the
ERXMSVAR EXEC.

Field names and adjunct suffixes are converted into
names acceptable to REXX, by changing hyphens (–) to
underscores (_). Thus, MY-FIELD becomes MY_FIELD,
and if it has the color selector adjunct COL-SEL, that
becomes MY_FIELD_COL_SEL.

Adjunct suffixes depend on the language you selected
when you generated the mapgroup (see Chapter 16,

GXSET MSVARS .mapgrp .map .prefix .ads

ERXMSVAR mapgroupname mapname prefix

GXSET TRACE .state [.time]

258 GDDM Base Application Programming Reference

 GDDM-REXX

“Application data structure for mapping” on page 357 for
details).

2. If you do not use

FIELD NAMES INCLUDED IN GENERATED MAPGROUP ==> YES

GDDM-REXX generates field names as follows:

For fields
prefix||"NO_NAME_"||field-number

For adjuncts
prefix||"NO_NAME_"||field-number||adjunct-suffix

where:

prefix Is as previously described.

NO_NAME_ Is the standard name given to all fields.

field-number Is the GDDM-IMD sequence number of
the field in the map (array indexes, if
any, are lost).

adjunct-suffix Is the suffix that appears on all
adjunct variables. It takes the PL/I
form, using underscores.

For example:

X_NO_NAME_3 = " "

X_NO_NAME_4 = " "

X_NO_NAME_4_COL_SEL = " "

Sample output: Assuming there were three arrays of
fields called PROD, DESC, and COST (as there are in the
sample map ERXORDER), the command

ERXMSVAR group1 map1 X_

generates:

/\ GDDM-REXX: output from ERXMSVAR EXEC: . . 16:41:32\/

/\ Initialize structure for \/

/\ MAPGROUP: ERXORDD6 , MAPNAME: ERXORDER \/

X_=""

X_PROD.1 = " "

X_DESC.1 = " "

X_COST.1 = " "

X_QTY.1 = " "

X_QTY_COL_SEL.1 = " "

X_QTY_COL.1 = " "

X_TOT.1 = " "

X_PROD.2 = " "

 ...

 ... "

 ...

X_TOTAL = " "

X_MSG = " "

X_ASLENGTH=432 /\ length of ADS string \/

Examples of REXX variable names used for a map without
names:

X_NO_NAME_3 = " "

X_NO_NAME_4 = " "

X_NO_NAME_4_COL_SEL = " "

X_NO_NAME_4_COL = " "

Possible pitfalls: If you use a stemmed variable such as
stem. do not use the same variable names in the EXEC that
are used as any field names in your maps, as this could
result in unwanted substitutions. For example:

title='Overdue orders'

stem.title=title

 ...

results in:

stem.Overdue orders=Overdue orders

The variable in your map stem.title will not have been
altered.

 Chapter 6. GDDM-REXX programming interface 259

 GDDM-REXX

260 GDDM Base Application Programming Reference

 symbol sets

 Chapter 7. Symbol sets

This chapter describes how GDDM processes its various
symbol set operations for the different device types.

The chapter also contains descriptions of the GDDM sample
Image and Vector symbol sets that are supplied with GDDM.
The sample symbol sets can be used by application pro-
grams instead of the defaults provided with GDDM.

How GDDM handles symbol sets

GDDM provides facilities for loading and using symbol sets
other than the default characters, markers, and shading pat-
terns. These may be image symbol sets (ISS), or vector
symbol sets (VSS). Two methods of loading symbol sets are
available:

� Loading image symbol sets directly into programmed
symbol (PS) stores in the device

� Loading image symbol sets or vector symbol sets into
GDDM storage.

PS stores are used for alphanumerics and mode-1 graphics
text, GDDM storage for mode-2 and mode-3 graphics text.

For these operations, the symbol sets can be loaded from
auxiliary storage, or passed as data from the application
program.

In addition to being loaded by these operations, symbol sets
can be passed as data between the application program and
auxiliary storage.

Symbol sets can be tagged with country-extended code page
(CECP) identifiers. CECP sets are automatically converted
when they are used. So a set tagged with code page identi-
fier 00037 (for the United States) is converted to represent
code page 00297 when it is loaded into a French device.

Where possible, GDDM loads symbol sets into device
storage. For the 3270-PC/G and 3270-PC/GX work stations,
both image symbol sets and vector symbol sets can be
loaded into the device, whereas for the 3179-G, 3192-G, and
3472-G displays, only image sets can be loaded.

Note: No symbol sets can be loaded into the 5550-family
work stations or ASCII graphics displays.

Loading programmed symbol stores

Display devices and printers equipped with the programmed
symbol (PS) feature contain PS stores that can be loaded
with symbol definitions. These PS stores are used for:

� Storing additional or special symbol sets

� Storing symbols or cell definitions used in constructing a
picture.

Symbol sets that are to be loaded into PS stores must have
the same matrix dimensions as the device character cell.
These are shown in Table 4 on page 243.

PS store numbers

The PS store number may optionally be specified as a
parameter of the loading call (PSLSS or PSDSS). If speci-
fied, it must exist on the device in use at the time, and it
must be a triple-plane store if a multicolor symbol set is to be
loaded. Call statements are available to determine the
number and types of PS stores in the device.

The specified store number controls the function key that can
be used by the terminal operator to select the symbol set for
data entry. The correspondence between store numbers and
keys is:

A store number should always be specified if data entry
using the symbol set is expected. The number need not be
specified if data entry is not allowed by the application
program.

When no store number is specified, the symbol set is loaded
into an appropriate PS store, if one is available.
Monochrome symbol sets may be loaded into either single-
plane or triple-plane stores (for example: numbers 2, 3, 4, 5,
6, and 7 on a 3279 display), but multicolor symbol sets
require triple-plane stores (for example: numbers 4, 5, and 7
on a 3279 display).

 Symbol-set identification

Displays and printers identify loaded symbol sets by a one-
byte symbol-set identifier. Usually, symbol sets are held on
auxiliary storage. When a set is loaded into the PS store, a
symbol-set identifier specified as a parameter in the loading
call is associated with the data. It is then used to identify the
symbol set during processing of the application program.

Reference to the symbol-set identifier takes one of two
forms:

� A single character

This form must have a character code greater than
X'40', and it is used when identifying the symbol set
associated with individual characters, as in the ASCSS

Table 9. PS store number and PS key relationship

PS store number PS key and indicator

2
3
4
5
6
7

A
B
C
D
E
F

 Copyright IBM Corp. 1980, 1996 261

 symbol sets

call. If this function or the related query function ASQSS
is used, it is likely that the symbol-set identifier chosen
will be an alphanumeric character.

� A full-word integer

This form is used when specifying the symbol-set identi-
fier to be associated with given data, an alphanumeric
field, or a graphics character string.

The correspondence between the integer and the character
specifications is:

� Characters “0” and “1” correspond to the integers 0 and
1. These refer to “read-only” character sets.

� Other characters correspond to their character codes.
For example, “A” corresponds to 193.

Integer symbol-set identifiers in the range 224 through 239
are reserved for graphics use and cannot be assigned to
loaded symbol sets.

Using preloaded PS sets

When GDDM is initialized, the current state of the PS stores
is determined by a device query, which returns the identifier
of any loaded sets. These preloaded sets are noted by the
GDDM PS management routines, which maintain knowledge
of the contents of the PS stores.

GDDM’s PSLSSC call conditionally loads a symbol set into
a PS store only if the PS store does not already contain a
symbol set with the specified identifier. Conditional loading
can be used to optimize PS loading, but it must be used with
care, because incorrect results occur if different symbol sets
have the same identifier. For example, an application
program may load a symbol set with a given identifier, and
another program running subsequently on the same device
may attempt a conditional load of a different set having the
same identifier. This situation can be avoided if a convention
is adopted that assigns unique identifiers to specific symbol
sets.

Selecting symbol sets by device type

If an application program is designed to be used with dif-
ferent devices, it may be necessary to control symbol set
loading on the basis of cell size. This can be done by using
a GDDM symbol-set naming convention. The symbol-set
name is specified as a parameter of the loading call. If the
last character of the name is the period character “�”, GDDM
replaces it by another character, depending on the current
device.

In this way, a symbol set that matches the device in use can
be retrieved from auxiliary storage and loaded. As a partic-
ular application, if a display containing PS is to be printed,
this function allows the selection of a symbol set specific to
the printer when printing begins.

For the details of which symbol sets are loaded for a partic-
ular device cell size, see Table 10 on page 264.

Using PS with graphics

This section does not apply to 3179-G, 3192-G, or 3472-G
color display stations, 3270-PC/G and 3270-PC/GX work
stations, IPDS printers, 5550-family work stations, the 5080
graphics system, ASCII graphics displays, and devices sup-
ported by GDDM-PCLK or GDDM-OS/2 Link, because PS is
not used to construct the graphics for these devices.

When GDDM is constructing a picture, the assumption is
made that all PS stores in the device are available for use
except those that have either been loaded with symbol sets,
or explicitly reserved by the application program. Because
the number of PS stores is limited, if an application program
uses both additional PS character sets and graphics con-
struction, special attention to PS allocations may be required.
This is especially true for printers, because only one PS
store can hold a multicolor symbol set.

In general, PS stores should be loaded with any additional
symbol sets before graphics picture construction is started,
because the PS stores are also used for picture display. An
attempt to load a symbol set when graphics are displayed is
usually rejected by GDDM. Only when all graphics items are
deleted from all pages do the PS stores become released for
loading symbol sets.

If the programmer anticipates the need to load a PS store
while graphics data is present, the PSRSV call is available to
reserve a PS store. This must be done before any graphics
calls are issued. The specified PS store is not used for
graphics data, and is explicitly referred to in the call state-
ment to load the symbol set. When the symbol set is no
longer needed, the symbol set can be released from the
reserved PS store, and another symbol set can be loaded,
or, the PS store itself can be released.

In a windowing environment, the PS stores are allocated in
the following order:

1. For symbol sets in the active window

2. For graphics in the active window

3. For graphics for window borders (all windows)

4. Any remaining PS slots are allocated for symbol sets
and graphics in non-active windows.

Loading graphics symbol sets

Symbol sets that are not suitable for loading into PS stores
can be loaded into GDDM storage. (For 3270-PC/G and
3270-PC/GX workstations, these symbol sets can also be
loaded into the device; for the 3179-G, the 3192-G, and the
3472-G, image symbol sets can be loaded into the device.)

Four types of symbol set can be loaded in this way:

� Image symbol sets used as graphics text

262 GDDM Base Application Programming Reference

 symbol sets

� Image symbol sets or vector symbol sets used as
marker symbols

� Image symbol sets used for shading graphics areas
� Vector symbol sets used for graphics text.

Unlike PS stores, there is no restriction on symbol size when
loading image symbol sets into GDDM storage. Any size
that can be created with the Image Symbol Editor can be
used. However, when shading patterns are used, the symbol
is truncated or padded to the cell size and repeated at cell
intervals . Therefore, in most circumstances shading pat-
terns should be the same size as the cell.

Devices other than 3179-Gs, 3192-Gs, 3472-Gs,
4224s, ASCII graphics displays, GDDM-PCLK, and
GDDM-OS/2 Link devices:

For these devices, in graphics there is occasionally a choice
between loading a symbol set into a PS store for use in
mode-1, and loading it into GDDM storage and using
mode-2. Mode-2 graphics text required if the character set
does not match the device, or if exact positioning is required.
If neither of these conditions exists, it should be remembered
that the PS load transmits all characters in the symbol set to
the device once only. Using the characters in mode-2
requires the transmission of only those characters actually
used, but more than one cell definition may be transmitted
for each.

For details of how to set the graphics text mode, see
Chapter 3, “The GDDM calls” on page 21.

Also, for guidance information on mode-1 and mode-2 usage
for graphics, see the GDDM Base Application Programming
Guide.

3270-PC/Gs, 3270-PC/GXs, 3179-Gs, 3192-Gs, and
3472-Gs:

These displays support a maximum of two monoplane PS
stores; the precise number depends on how the display has
been configured. Programmed symbol sets are not used to
construct graphics because the displays have their own
graphics capability. In the interests of better performance,
the device-provided default character sets should be used
whenever possible. Only PS sets can be used for alphanu-
meric characters.

Note: The 3179-G, 3192-G, or 3472-G display stations, and
3270-PC/G or 3270-PC/GX work stations have a different
pixel aspect ratio and default graphics character-box size
from displays such as the 3279. Thus, character mode-1
graphics character strings and character mode-2 text and
images appear differently on the two types of device.

To prevent storage problems in the display, any symbol sets
that have been loaded (by using GSDSS or GSLSS calls)
should be released when they are no longer needed. The
storage occupied by these symbol sets is common to that
used for storing segments, so loading unnecessary symbol
sets can cause segment storage to be exhausted (thereby

causing GDDM to enter unretained mode with a subsequent
effect on performance).

It should also be noted that unless the workstation has
enough symbol-set storage to hold the current user-defined
pattern sets, the default shading patterns are used (GDDM
issues a warning message when this happens).

For details of how to set the graphics text mode, see
Chapter 3, “The GDDM calls” on page 21.

For information on using mode-1 and mode-2 graphics, see
the GDDM Base Application Programming Guide.

PS overflow caused by picture complexity

Note: This section does not apply to the following devices
because the problem of PS overflow does not arise with
them:

� 3179-G, 3192-G and 3472-G display stations
� 3270-PC/G and 3270-PC/GX work stations
� 5550-family work stations
� The 5080 Graphics System
� Devices supported by GDDM-PCLK
� ASCII graphics displays

When a picture is extremely complex, it may require more
PS stores than GDDM and the device can handle. This is
known as PS overflow. When PS overflow occurs, message
ADM0273 is issued to inform the user that the picture cannot
be accurately completed.

In a windowing environment, this message is only issued if
the overflow occurs in the active window.

The 4224 printer performs its own vector-to-raster conversion
for graphics data. The graphics data stream that is sent to
these printers contains GDF orders. The amount of storage
available in these printers may not be enough to hold all of
the graphics data that defines the picture. When this occurs,
message ADM3282 is issued to inform the user that the
picture cannot be accurately completed.

The FSCHEK function can be used to discover if PS overflow
will occur when a picture is displayed. If PS overflow would
occur, the error can be intercepted and action taken to sim-
plify the picture or delete segments until it can be shown.

Using symbol sets in printing

When a call is issued to copy screen data to the printer, the
names of symbol sets in use, both on the screen and in
GDDM storage, are noted. These names include the final
character “�” if it was originally specified, not the suffix that
was substituted for it.

When the print operation begins, an attempt is made to
reload the symbol sets. The appropriate suffix replaces the
“�”, so that a printer symbol set is retrieved, if one exists on

 Chapter 7. Symbol sets 263

 symbol sets

auxiliary storage. If not, the default symbol set is used and
an error message is issued.

Note that if the symbol set was loaded into the display by a
conditional PS load, a conditional load is also performed
before printing. Therefore, the convention associating
symbol sets with unique identifiers must apply for both dis-
plays and printers.

Because there may be more PS stores available on a display
than on a printer, if an application program explicitly uses PS
stores, a picture that can be displayed may not print. Also,
because only one triple-plane store is available in the 3287
Printer (Models 1C and 2C), if the application reserves this
store for a non-graphics symbol set when the print request is
processed, multicolor graphics printing is not performed cor-
rectly.

Using DBCS symbol sets

For Kanji/Hangeul applications that have double-byte char-
acter string (DBCS) symbol sets installed, this type of symbol
set can be used directly (by the application program loading
the required symbol set and using the definition in the normal
manner) or indirectly (by the application program indicating
that it requires to use DBCS symbol sets). In the second
case, if the GSCS call specifies character set 8 (DBCS) or if
mixed (single-byte and double-byte) character strings are
enabled (by specifying MIXSOSI=YES in GDDM’s external
defaults), GDDM recognizes DBCS characters and uses the
first byte of the character to identify the symbol set to be
loaded and the second byte to retrieve the symbol definition.

| Applications access Simplified Chinese vector symbol sets by
| setting the DBCSDNM(ADMIK,ADMVC) external default.

GDDM’s external defaults define whether mixed strings are
enabled and indicate the maximum number of DBCS symbol
sets of each type that are to be loaded concurrently. When
this maximum number is reached, the least recently used
symbol set is unloaded to allow the currently required symbol
set to be loaded. For details of the external defaults, see
Chapter 18, “External defaults” on page 379.

For graphics, DBCS symbol sets are available for mode-2
and mode-3 only.

Naming conventions for sample image
symbol sets

Except for shading patterns with a suffix of N or R (and
ADMDHIPK), the last character in the name of each image
symbol set conforms to the convention for generic retrieval
by GDDM, showing the cell size of the symbol set.

Where there is a suffix of N or R, patterns are defined on an
8 by 12 cell size. This allows complete shading, as defined
in the GSLSS call.

The following table shows the suffix that GDDM uses to
replace the “�” substitution character that is used in a GSLSS
call (for a graphics symbol-set name), in a PSLSS or
PSLSSC call (for an alphanumerics symbol-set name), or in
an SSREAD or SSQF call (for either alphanumerics or
graphics).

Notes:

1. If the device has a cell size that is not one listed above,
GDDM selects the suffix that corresponds to the smallest
containing cell size. For example, for a device cell size
of 9 by 14, GDDM selects an image symbol set with a
cell size of 9 by 16 (suffix A).

2. If the device cell size does not fit into any of the cell
sizes given in the table, GDDM selects an image symbol
set with a cell size of 9 by 16 (suffix A).

3. For a family-3 printer, the character A is always used as
the suffix.

| 4. GDDM provides sample image symbol sets with M and
| O as the suffix. However, M and O are not characters in
| the substitution rules.

| 5. User shading patterns of size 32 by 32 or 64 by 64 may
| be used for family-4 devices. The sample pattern set
| ADMPATTJ is 64 by 64 and ADMPATTL is 32 by 32.
| You need to set OFFORMAT to IMAGE for printers that
| do not support loading of shading patterns.

Table 10. Cell sizes for sample image symbol sets

Substituted
suffix

Cell size in display points (width by
depth)

A 9 by 16
C 9 by 12 (monochrome)
D 9 by 12 (multicolor)
E 9 by 10 (alphanumerics only)
G 10 by 8 (monochrome)
H 10 by 8 (multicolor)
J| Family-4 high-resolution symbol sets (400

| pixels per inch or greater). See Note 5
K 20 by 18 (alphanumerics only)
L| Family-4 medium-resolution symbol sets

| (less than 400 pixels per inch). See Note
| 5

M 32 by 32. See Note 4
| O| 32 by 32. See Note 4

N 8 by 16 (graphics only)
Q 24 by 30 (monochrome)
R 12 by 20

12 by 24 (Katakana)
S 9 by 21 (alphanumerics only)
T 12 by 16
U

Plotter symbol sets

264 GDDM Base Application Programming Reference

 symbol sets

Sample image symbol sets

Sample vector symbol sets

GDDM’s sample vector symbol sets are as shown below:

Table 11. Sample image symbol sets

Set name Contents

Table 11. Sample image symbol sets ADMDISJN
ADMDISJR

Image symbols for code page 1027 for use
with OS/2-J Katakana terminals.Set name Contents

ADMDISKA
ADMDISKC
ADMDISKG

Image symbols code page 290 for use with
Katakana displays and printers.

ADMCOLSD
ADMCOLSN
ADMCOLSR

Shading patterns, that create the appearance
of 64 color shades.

ADMDISKN
ADMDISKR

8x16 and 12x24 image symbols for code
page 290 for use with 5550-family multi-
stations.

ADMDHIIA
ADMDHIIC
ADMDHIIE
ADMDHIIG
ADMDHIIK
ADMDHIIN
ADMDHIIQ
ADMDHIIR
ADMDHIIS
ADMDHIIT

The standard CECP set of characters.

| ADMDcIIA
| ADMDcIIC
| Other non-CECP image symbol sets, where

| c is:

| � C for Cyrillic (code page 1025)
| � L for Latin 2 (code page 870)
| � M for Baltic Multilingual (code page
| 1112)
| � O for Estonia (code page 1122)
| � U for Turkey (code page 1026)
| � Y for Greece (code page 875)

ADMDHIMA
ADMDHIMC
ADMDHIMG
ADMDHIMK
ADMDHIMN
ADMDHIMQ
ADMDHIMR
ADMDHIMT

Ten standard markers, that correspond to the
defaults provided with GDDM. See the
description of the GSMS call.

Note: The symbol sets are only provided as samples. GDDM
does not ensure that all styles of characters and patterns are
provided for all possible suffix characters.

ADMDHIPA
ADMDHIPC
ADMDHIPG
ADMDHIPJ
ADMDHIPM
ADMDHIPN

| ADMDHIPO
ADMDHIPR

Seventeen standard patterns, that corre-
spond to the defaults provided with GDDM.
See the description of the GSPAT call.
ADMDHIPJ is for use on an IBM 4250 high-
resolution printer, ADMDHIPM is for use on
IBM 3800-3 and 3800-8 medium-resolution

| printers, and ADMDHIPO is for use on low-
| resolution printers.

Table 12 (Page 1 of 2). Sample vector symbol sets

Set name Contents

ADMDHIMJ Contains the GDDM vector marker symbols
for use by the Interactive Chart Utility.

ADMDHIPK Eight patterns, that can be used when
producing color masters on high-resolution
and medium-resolution printers. ADMDHIMV Contains ten standard vector markers that

correspond to the defaults provided with
GDDM.

ADMDHIPL Shading patterns, that can be used for con-
verting colors into shades of gray on high
and medium-resolution printers. ADMDHIVJ Contains the default vector symbol set for the

4250 page printer.ADMIPATA
ADMIPATC
ADMIPATG
ADMIPATN
ADMIPATR

Seventeen standard patterns, that corre-
spond to the defaults provided with GDDM.
Used with the Image symbol Editor INFILL
function. See the description of the GSPAT
call.

ADMDHIVM Contains the default vector symbol set for a
3800 Model 3 or a 3800 Model 8 page
printer.

ADMDVIH Contains the default vector symbol set for
3270-PC/G, /GX, or /AT workstations.ADMITALA

ADMITALC
ADMITALG
ADMITALK
ADMITALS

Script CECP characters.

ADMDVECP CECP default vector symbol set

ADMDVSS The default vector symbol set for code page
00351 (USA version).

ADMDVSSB
ADMDVSSD
ADMDVSSE
ADMDVSSF
ADMDVSSG
ADMDVSSI
ADMDVSSN
ADMDVSSS
ADMDVSSV

National Language versions of the vector
symbol sets for code page 00351:
 Brazilian
 Danish
 U.K.English
 French
 German
 Italian
 Norwegian
 Spanish
 Swedish

ADMPATTA
ADMPATTC
ADMPATTG

| ADMPATTJ
| ADMPATTL
| ADMPATTN
| ADMPATTR

| Sixty-four sample geometric shading patterns.
| See the description of the GSPAT call.

ADMIKxx Double-byte character set 16 x 16 image
characters, where “xx” is in the range X'41'
through X'68'.

 Chapter 7. Symbol sets 265

 symbol sets

Notes:

1. It is not possible to use the Image Symbol Editor on the
sample vector symbol sets. The Vector Symbol Editor is
part of GDDM-PGF.

2. As supplied, CECP symbol sets are ordered according
to the USA CECP, 00037, and are so tagged. GDDM
converts them to the device code page when they are
loaded by an application program.

3. All the IBM-supplied sample vector symbol sets have
names starting with “ADM”; this aids identification and
serviceability. However, installations may find it more
convenient to generate copies of these symbol sets,
using other names. If necessary, the Image or Vector
Symbol Editor can be used to save the symbol sets
under different names. The symbol sets are shown in
“Illustrations of vector typefaces” on page 267.

4. It should not normally be necessary to alter a CECP set.
However, if an editor is used to change a CECP symbol
set, the application code page should first be set to be
the same as that of the symbol set being edited. GDDM
supplies the CECP sets ordered according to code page
00037.

Table 12 (Page 2 of 2). Sample vector symbol sets Table 12 (Page 2 of 2). Sample vector symbol sets

Set name Contents Set name Contents

ADMDVSSJ The vector symbol set for code page 01027. | ADMDVctd| Other non-CECP symbol sets, where

| c is:

| � C for Cyrillic (code page 1025)
| � L for Latin 2 (code page 870)
| � M for Baltic Multilingual (code page
| 1112)
| � O for Estonia (code page 1122)
| � U for Turkey (code page 1026)
| � Y for Greece (code page 875)

| t is:

| � C for Courier
| � H for Helvetica
| � T for Times New Roman

| d is:

| � R for Roman medium
| � I for Italic medium
| � S for Roman bold
| � J for Italic bold

ADMDVSSK The default vector symbol set for code page
00290.

| ADMDVSSc| Other non-CECP vector symbol sets, where

| c is:

| � C for Cyrillic (code page 1025)
| � L for Latin 2 (code page 870)
| � M for Baltic Multilingual (code page
| 1112)
| � O for Estonia (code page 1122)
| � U for Turkey (code page 1026)
| � Y for Greece (code page 875)

ADMUñARP
ADMUñCIP
ADMUñCRP
ADMUñCSP
ADMUñDRP
ADMUñFSS
ADMUñGEP
ADMUñGGP
ADMUñGIP
ADMUñKRF
ADMUñKRO
ADMUñKSF
ADMUñKSO
ADMUñMOD
ADMUñNSF
ADMUñNSO
ADMUñORP
ADMUñSHD
ADMUñSRP
ADMUñTIP
ADMUñTRP
ADMUñTSS

ñ is U

ñ is V

ñ is W

CECP vector symbol sets:

Area Filled Roman Principal
Complex Italic Principal
Complex Roman Principal
Complex Script Principal
Duplex Roman Principal
Filled Sans Serif
Gothic English Principal
Gothic German Principal
Gothic Italian Principal
Thick Round Filled
Thick Round Outlined
Thick Square Filled
Thick Square Outlined
Modern
Thin Filled
Thin Outline
Outline Roman Principal
Shadow
Simplex Roman Principal
Triplex Italic Principal
Triplex Roman Principal
Triplex Sans Serif

– proportionally spaced

– nonproportionally spaced

– proportionally spaced

(wider spacing for compatibility with
GDDM Version 1)

See “Illustrations of vector typefaces”
on page 267.

| ADMVCxx| Simplified Chinese vector symbol set charac-
| ters, where “xx” is in the range X'41'
| through X'6C'.

ADMVKxx Sample double-byte Kanji stick character set
characters, where “xx” is in the range X'41'
through X'68'.

ADMVQxx Sample double-byte Kanji Mincho character
set vector characters, where “xx” is in the
range X'41' through X'68'.

266 GDDM Base Application Programming Reference

 symbol sets

Illustrations of vector typefaces

The vector symbol sets shown on the following pages are
supplied as part of GDDM.

ADMDVECP is the default vector symbol set, used by GDDM
if you do not explicitly specify one.

Three variants of each of the following vector symbol sets
can be used, where the fifth letter of the name indicates its
form (U indicates a proportional form, as illustrated; V indi-
cates a nonproportional form; W indicates a proportional form
with a wider space character – so the first one is supplied as
ADMUUARP, ADMUVARP, and ADMUWARP). The ADMUW...
sets are supplied for compatibility with previous releases of
GDDM; the ADMUU... sets are recommended for new applica-
tions.

The illustrations on the following pages show the characters
at sizes that are consistent within each typeface, although
the sizes vary from one typeface to another.

ADMUUFSS – filled sans serif

ADMUUTSS – triplex sans serif

 Chapter 7. Symbol sets 267

 symbol sets

ADMUUMOD – modern

ADMUUKRF – thick round filled

ADMUUKSF – thick square filled

268 GDDM Base Application Programming Reference

 symbol sets

ADMUUNSF – thin filled

ADMUUKRO – thick round outlined

ADMUUKSO – thick square outlined

 Chapter 7. Symbol sets 269

 symbol sets

ADMUUNSO – thin outline

ADMUUARP – area-filled roman principal

ADMUUORP – outlined roman principal

270 GDDM Base Application Programming Reference

 symbol sets

ADMUUCRP – complex roman principal

ADMUUSRP – simplex roman principal

ADMUUDRP – duplex roman principal

 Chapter 7. Symbol sets 271

 symbol sets

ADMUUTRP – triplex roman principal

ADMUUCIP – complex italic principal

ADMUUTIP – triplex italic principal

272 GDDM Base Application Programming Reference

 symbol sets

ADMUUCSP – complex script principal

ADMUUGEP – Gothic English principal

ADMUUGGP – Gothic German principal

 Chapter 7. Symbol sets 273

 symbol sets

ADMUUGIP – Gothic Italian principal

ADMUUSHD – shadow

274 GDDM Base Application Programming Reference

 symbol set formats

Chapter 8. Symbol set formats

This chapter describes the formats for vector symbol sets
(VSS) and image symbol sets (ISS) held on files (or passed
as parameters in symbol-set manipulation calls).

In either case, definitions start with a two-byte field that gives
the total length of the definitions (including the length field).
Then follows one or more definition components, each of
which is in one of the formats described below (depending
upon whether the definitions relate to an image symbol set
(ISS) or to a vector symbol set (VSS)).

The following rules must be observed. For the purpose of
these rules, pattern and marker definitions are treated as
MODE=2.

1. ISS and VSS components must not be mixed within a
definition. ISS definitions cannot be loaded as MODE=3;
VSS definitions can be loaded only as MODE=3.

2. For ISS definitions, the following considerations apply to
the width (P) and depth (Q) of the cell matrix in display
points:

When either is specified as zero or is not specified, it is
assumed to be equal to the cell width or depth of the

actual device (except for format type '00001'B, where P
is assumed to be 9).

When the format type is '00001'B, P (specified or
assumed) must be 9.

When P is not a multiple of eight for row-loading format
(type '00011'B), the storage occupied by each row
must be padded on the right with zero bits to the next
byte boundary.

Similarly, when Q is not a multiple of eight for column-
loading format (type '00101'B), the storage occupied by
each column must be padded at the bottom with zero
bits to the next byte boundary.

3. For MODE=1 definitions, the data format must be one
that is supported by the actual device to which the defi-
nitions are to be loaded. One or more components may
be specified, either to define different color planes for a
multicolored definition, or to reduce the total length in
cases where only widely-scattered character codes are
to be loaded. Although checks are made, it is possible
for a symbol set definition to pass these checks and still
be rejected by the device or controller when the defi-
nitions are actually transmitted.

4. For MODE=2 definitions, only one component may be
specified for a monochrome definition, or exactly three
components (one for each color) for a multicolored defi-
nition. In the latter case, the starting character code and
the number of codes defined must be the same for all
three color planes.

5. For MODE=3 definitions (VSS), only one component
may be specified.

6. The CLEAR bit is not supported by GDDM, although its
setting is not altered by GDDM before transmitting
MODE=1 definitions.

Table 13. Symbol-set definition format

Byte Field length Contents

0 2 Definition length

2
 2

...

L1
 2

...

Component 1
Component length (L1)
...

2 + L1
 2+ L1

...

L2
 2

...

Component 2
Component length (L2)
...

...
...

...

 Copyright IBM Corp. 1980, 1996 275

 symbol set formats

Image symbol set component format

Table 14. Image symbol set component format

Byte Field
length

Content Meaning

0 2 LENGTH Total length of structure (including LENGTH field).

2 1 X'06' Image Symbol Set type

3 1 FLAGS

B'1.......' EXTENDED – extended format of definition.
B'.1......' CLEAR – all definitions in the specified symbol set (plane) are to be cleared before processing

the definitions.
B'..1.....' SKIPSUPP – skip is to be suppressed after printing a row that contains any symbol from this

ISS.
B'...xxxxx' TYPE – the data format for the definitions. See Note 1.
B'...ðððð1' 18-byte form – the first two bytes contain a 16-bit vertical slice; the following 16 bytes contain

8-bit horizontal slices. (For a 9 by 12 cell, the last 4 bytes contain binary zero). Equivalent to
cell format 1 for displays.

B'...ððð11' Row loading – bits within each row go from left to right, padded to a byte boundary; succes-
sive rows are from top to bottom. Equivalent to cell format 3 for graphics.

B'...ðð1ð1' Column loading – bits within each column go from top to bottom, padded to a byte boundary;
successive columns are from left to right. Equivalent to cell format 2 for printers.

4 1 Reserved.

5 1 CP0 Starting character code within this symbol set (in range X'41' — X'FE').

6 1 Reserved.

7 1 LEXT
(see Note 2)

Length of extended parameters; gives the length of fields from and including LEXT to the end,
but excluding CDEF. Must be specified as 6, if present.

8 1 EXTFLAGS (see Note 2)

B'1.......' APA – all points in the cell are not addressable
B'.1......' CB – no LCID compare
B'..1.....' OB – no operator selectability
B'...xxxxx' Reserved.

9 1 P (see Note 2) Number of x units in dot matrix.

10 1 Q (see Note 2) Number of y units in dot matrix.

11 1 SUBSN (see Note 2)

Subsection identifiers, as follows:
X'00' One-byte codes
X'42' – X'7F' Subsection identifiers for two-byte coded data
Other Reserved.

12 1 COLOR (see Note 2)

B'xxxxx...' Reserved
B'.....ððð' All color planes to be loaded
B'.....ðð1' Blue plane to be loaded
B'.....ð1ð' Red plane to be loaded
B'.....1ðð' Green plane to be loaded
B'.....xxx' (Other patterns of bits 5 – 7) Reserved.

7 or
13

V CDEF
(CP0-CPn)

Symbol definitions, starting at character code CP0, in ascending order, and in the format
defined by Byte 3.

Notes:

1. “Cell formats” are specified in the Image Symbol Editor. For more information, see the GDDM Using the Image Symbol Editor book.
2. Present only if bit 0 (EXTENDED) of FLAGS is set.

276 GDDM Base Application Programming Reference

 symbol set formats

Vector symbol set component format

Table 15. Vector symbol set component format

Byte Field
length

Content Meaning

0 2 LENGTH Total length of structure (including LENGTH field).

2 1 X'01' Vector Symbol Set type

3 1 FLAGS

B'1.......' EXTENDED – definition is in extended format
B'.x......' Ignored.
B'..1.....' SHADED– all symbols defined are to be shaded using the default shading pattern. This has

the effect of surrounding each symbol definition implicitly by GSAREA and GSENDA.
B'...xxxxx' TYPE – the data format for the definitions (see Note 1)
B'...ðððð1' Type 1
B'...ððð1ð' Type 2
B'...ððð11' Type 3

4 1 Reserved (must be zero).

5 1 CP0 Starting character code within this symbol set (in range X'00' — X'FF').

6 1 FLAGS

B'1.......' PROPORTIONAL SPACING – each index entry is extended by a halfword value specifying the

width of each symbol. If this flag is off, each symbol has the width P. Valid only for type-3
definitions.

B'.1......' LINES ONLY – only the following GDF orders are contained within the symbol definitions:
{Extended order} line
{Extended order} line at current position
End of data.

Valid only for type-3 definitions.
B'..ðððððð' reserved (must be zero)

7 1 LEXT (see
Note 2)

Length of extended parameters; gives the length of fields from and including LEXT to the end,
but excluding CDEF. Minimum value is 1. Maximum value is 9.

8 1 (see Note 2) Reserved (must be zero).

9 2 P (see Note 2) Range of x (0 through P). If this operand is not present, or it is specified as 0, then the value
15 is assumed.

11 2 Q (see Note 2) Range of y (0 through Q). If this operand is not present, or it is specified as 0, then the value
15 is assumed.

13 2 (see Note 2) Reserved (must be zero).

15 1 CPn * Last character code within this symbol set. If this operand is not present, X'FE' is assumed.
CPn must not be less than CP0.

7 or
16

V CDEF
(CP0-CPn)

Symbol definitions, starting a character code point CP0, ascending order. See page 277 for
format types 1, 2, and 3.

Notes:

1. For VSS, each symbol is formed by lines and (for type 3) curves. Three types are defined:

2. Present only if bit 0 (EXTENDED) of FLAGS is set.

P and Q together define the character box within which a
normal symbol fits. The bottom left-hand corner of the box is
(0,0) and the top right-hand corner is (P,Q).

Undefined character codes are generally displayed as a
blank, but see the description of the GSCHAR call.

Characters are always drawn using the default line type and
line width, and with the default area pattern.

Type 1: The definitions start with an index of (CPn + 1 -

CPð) two-byte values. Each index value is the offset from the
start of CDEF (that is, from the start of the index) of the start
of the definition of the corresponding character code (CP0
through CPn). This index must always be present in its
entirety, even if not all the characters in the code range are
defined. The maximum length of the index, if CP0 is speci-
fied as X'00', and CPn as X'FF', is therefore 256 by 2
bytes. Undefined values should be represented by a zero in
the index.

 Chapter 8. Symbol set formats 277

 symbol set formats

Each character is defined as a series of points that define
the shape of the character. Each point defines either a line
from the preceding point, or a move to be performed to that
point. The endpoints of each line (or move) are given by an
(x,y) coordinate pair of signed relative values (relative to the
previous coordinate, or to the bottom left-hand of the char-
acter box for the first coordinate pair). Each coordinate pair
occupies two bytes (one byte for the x coordinate, and one
for the y). If the first stroke is a line rather than a move, the
line is drawn from the bottom left-hand corner of the box.
The top bit of the y-coordinate byte is set if the stroke to that
point is visible (that is, line rather than move); after the last
coordinate pair, two bytes of all 1 bits indicates the end of
the definition for that symbol. This format of an individual
code point symbol is:

┌───┬──────────────┬───┬─────────────────┐

│ ð │ DX1 │ ð │ DY1 │ 2 bytes

├───┼──────────────┼───┼─────────────────┤

│ ð │ DX2 │VIS│ DY2 │ 2 bytes

└───┴──────────────┴───┴─────────────────┘

 . .

│ │

 . .

┌───┬──────────────┬───┬─────────────────┐

│ ð │ DXN │VIS│ DYN │ 2 bytes

├───┴──────────────┴───┴─────────────────┤

│ X'FFFF..' │ 2 bytes

└──┘

Type 2: For type-2 format, the endpoints of each line (or
move) are given by a (dx,dy) coordinate pair of signed rela-
tive values. Each coordinate pair occupies four bytes (two
bytes for the x coordinate, and two for the y), and is pre-
ceded by two bytes of flag bits, so that each point requires a
total of six bytes. Each symbol consists of a series of these
point definitions, defining the lines and moves needed to
draw it. The start is from the bottom left-hand of the char-
acter box (0,0). The last point for a particular symbol is
recognized by means of a flag, in the flag halfword.

One of the flags designates “branch.” This means that,
instead of the dx halfword, a point number is specified, to
which to branch for the remaining definitions for that symbol.
The actual offset within CDEF is given by:

offset=point-number\6

In the case of a branch, the dy value is ignored.

As with type 1, CDEF starts with an index, with (CPn+1-CPð)

entries corresponding to symbol codes CP0 through CPn.
Each entry is a branch, as defined above, which in effect
defines the starting position of a symbol.

This format of an individual point is illustrated below.

┌────────────────────────────────┬─┬─┬─┬─┐

│ │E│B│M│R│ 2 bytes

├────────────────────────────────┴─┴─┴─┴─┤

│ DX or point-number │ 2 bytes

├──┤

│ DY │ 2 bytes

└──┘

where:

E bit (bit 12) is set if this is the last point for the current
symbol

B bit (bit 13) is set if this is a branch
M bit (bit 14) is set if this is a move, not a line
R bit (bit 15) is ignored.

Type 3: The definitions start with an index, just the same as
the index for type 1. However, if the “PROPORTIONAL
SPACING” flag in the header is set, each two-byte index
offset entry is followed by a two-byte signed symbol width.
This makes the entire index twice its normal size. Each
symbol width value must be in the range

(-P < w < ð) or (ð < w <= P)

where the values ð and -P are reserved. If the width is posi-
tive, the boundaries of the symbol (for spacing purposes
only) are the left-hand side of the box, and a line “w” to the
right of the left-hand side. If the width is negative, the
boundaries are the right-hand side, and a line “−w” to the left
of the right-hand side. Thus a width of “+P” is the default
(full) width.

A type-3 symbol definition consists of a series of GDF
(graphics data format) orders. These typically specify lines
and curves that make up the symbol. The orders for a given
symbol are terminated by an end-of-data marker, which is a
single byte with the value X'FF'. All orders should be a
complete number of halfwords, and, for performance
reasons, should be aligned on a halfword boundary.

See Chapter 10, “GDF order descriptions” on page 281 for
a description of GDF orders. A symbol generated by the
Vector Symbol Editor typically uses the following orders:

 � Line (X'C1')
� Line at Current Position (X'81')

 � Fillet (X'C5')
� Fillet at Current Position (X'85')

 � Area (X'68').

Whenever a type-3 symbol is processed, a particular type of
coordinate data is assumed. This depends on the values of
P and Q. If both P and Q are less than 128, the default is
one-byte signed absolute coordinates. If either P or Q are
greater than 127, the default is two-byte signed absolute
coordinates.

If the SHADED flag in the header is set, each symbol is
drawn, using the default shading pattern, as though that
symbol were enclosed in “Begin Area” and “End Area”
orders. These orders are implicit . If the SHADED flag in
the header is not set, individual shaded symbols should
include an explicit “Begin Area” order and an explicit “End
Area” order (just before the X'FF' marker).

278 GDDM Base Application Programming Reference

 file formats

Chapter 9. GDDM object file formats

GDDM supports the following object file types:

 Record structure

Every object consists of a header record and a number of
data records. Every record in a stored GDDM object is 400
bytes long. The first 20 bytes of each record – whether a
header or a data record – comprise a record identification
field, which is used as a source key when the object is
stored on a keyed database (as in CICS or IMS). The
remaining 380 bytes of the header record provides more
information on the object; the remaining 380 bytes of subse-
quent records comprise the object data.

The record identification field

The record identification field occupies the first 20 bytes of all
records – both header record and data records.

The first eight bytes of this field contain the name of the
object. This name is the same in all the records of the
object.

The second eight bytes of this field contain the object type
(see Table 16), and is also the same for all the records in
the object.

The last four bytes of the record identification field contain
the record sequence number, starting at 1, in fixed binary
form.

The header record information field
The remaining 380 bytes of the header record provide extra
information about the record, such as the GDDM version and
release number, and the date and time the record was
encoded. The format is:

 Data records

The second and subsequent records in a GDDM stored
object contain the object data. The first 20 bytes of these
records constitute record identification fields, as defined in
Table 18, leaving 380 bytes for the data proper.

For objects generated by GDDM Version 1 Release 2 or
later, the data proper consists of one or more data blocks.

Table 18. GDDM stored object — record identification field
format

Table 16. GDDM object types Offset Length Data type Content
File type Description of object 0 8 CHAR(8) Object name
ADMSYMBL Symbol set 8 8 CHAR(8) Object type
ADMGGMAP Generated GDDM mapgroup

16 4 FIXED(31) Record sequence numberADMSAVE FSSAVE file
ADMCFORM Chart format file
ADMCDATA Chart data file
ADMGDF GDF file
ADMCDEF Chart definition file
ADMPROJ Projection definition file
ADMIMG Image data file

Table 19. GDDM stored object — header record information
field format

Offset Length Data type Content

20 4 FIXED(31) GDDM object:

V1R1 Length of object
V1R2 X'0000 0010'
V1R3 and later X'0000 0000'

24 4 CHAR(4) Reserved
28 4 CHAR(4) GDDM Version and release

(for example: '1030' for
Version 1, Release 3.0)

32 4 FIXED(31) Object major type
(same as type in record
identification field)

Table 17. GDDM stored object file format

Length
(bytes)

Content Record type 36 4 FIXED(31) Object minor type:

Image symbol sets 1
Vector symbol sets 2
Others 0

20
380

Identification field
Information field

Header record

40 4 FIXED(31) Length of supplied user
comments

20
380

Identification field
Data field

Data record 1

44 8 CHAR(8) Date and time stored (encoded)
– date (00YYDDD+ format)
– time (0HHMMSS+ format)

...

20
380

Identification field
Data field

Data record n
52 20 CHAR(20) Date and time stored (EBCDIC)
72 8 CHAR(8) Reserved (must be all X'00')
80 255 CHAR(255) Up to 255 bytes of user

comments
335 63 CHAR(63) Reserved
398 2 FIXED(16) Code page identifier

 Copyright IBM Corp. 1980, 1996 279

 file formats

Each data block contains a two-byte length field followed by
up to 32000 data bytes as defined for the particular type of
object.

For example, a symbol-set object contains just one data
block starting with a two-byte length field, followed by data
bytes as defined in Chapter 8, “Symbol set formats” on
page 275. These data bytes themselves start with two-byte
length fields.

280 GDDM Base Application Programming Reference

 GDF orders

Chapter 10. GDF order descriptions

Graphics data format (GDF) is a means of storing pictures.
GDDM uses it internally, and also makes it available to appli-
cation programs. It consists of a set of orders with similar
meanings to the GDDM graphics call statements.

In many cases there is a one-for-one mapping between GDF
orders and GDDM call statements.

GDDM supports a picture prolog that contains information
about the size of the picture and the symbol sets used in the
picture. A detailed description of the orders that relate to the
picture prolog is given under “Picture prolog” on page 302.
The information the picture prolog provides is:

� The coordinate type
� The picture boundary
� The picture scale and aspect ratio
� The symbol sets that are referenced
� The drawing defaults information.

The initial Comment order in the generated GDF is retained
for compatibility with previous releases of GDDM.

 Compatibility

GDDM ensures upward compatibility of GDF orders from pre-
vious releases to the current release. The orders are not
downward-compatible from the current release to previous
releases.

Saving GDF orders

Applications can save GDF orders for later use as follows:

� As application-written GDF files (GDDM Version 1
Release 2 onwards)

Use GSGET to move GDF orders from GDDM into
application-program storage. The application program
can then write these to auxiliary storage.

� As GDDM-written ADMGDF objects produced from
Version 1 Release 4 onwards.

Use GSSAVE to save GDF orders as a specially for-
matted ADMGDF object on auxiliary storage. This
object contains the name of the file in columns 1 through
8, and “ADMGDF” in columns 9 through 14 of each
record. The ADMGDF objects can be processed by a
GDDM application using GSLOAD.

GDF can be retrieved in two formats, fixed or floating point.
Floating-point GDF corresponds as closely as possible to the
GDDM calls used to generate the picture. The data primi-
tives will have been clipped, only if the application requested
clipping using a GSCLP call statement. Fixed-point GDF
does not necessarily match the original commands (the data
is always clipped).

The GDF data that results may not necessarily resemble the
original commands used to generate the picture because
these have been processed to suit the primary device in use.
For example, coordinates will have been converted to an
internal coordinate system with some loss of precision.
Complex primitives (such as curved fillets) may have been
simplified and approximated. Clipping may have resulted in
alterations to the primitives supplied. The data is thus not a
substitute for the original. It can, however, be useful in
producing an approximate copy of the stored data on another
device.

The GDF file conversion utility can also be used to convert
the file from the first format to the second.

Figure 14 shows the flow of events:

┌──────────────┐

│ Application- │

│ written GDF │

│ file │

│ │

└──────┬───────┘

 │

│ ADMUPCT/V command

│ called by IND$FILE EXEC or CLIST

 │

 │

 6

┌─────────────┐

│ GDDM │

│ ADMGDF │

│ Object │

│ │

└─────────────┘

Figure 14. GDF file conversion – format 1 to format 2

To convert an application-written GDF file into an ADMGDF
object the command is:

Under TSO:

ALLOC F(ADMPIF) DA('pif-dataset-name')SHR

ALLOC F(ADMGDF) DA('admgdf-dataset-name')SHR

| CALL 'GDDM.SADMMOD(ADMUPCT)' 'pif-member /

(PUT admgdf-member options'

Where admgdf-dataset-name must exist, and must be parti-
tioned. The data set has the attributes LRECL(400),
RECFM(FB), and BLKSIZE(400 * n).

If pif-dataset-name is sequential, pifmember should be
omitted.

Under CMS:

ADMUPCV gdf-file-id (PUT admgdf-name options

Note: The gdf-file-id is a standard CMS file identifier.

The options are:

� {NEWFile|REPlace} – creates a new ADMGDF object or
replaces an existing object of the same name

 Copyright IBM Corp. 1980, 1996 281

 GDF orders

� {FIXed|FLOAT} – creates the ADMGDF file in fixed-point
or floating-point format.

Format of GDF objects

The format of the data returned by GSGET is:

Comment order, with coordinate information
Begin Symbol-Set Mapping PSC

Map Symbol-Set Identifier PSC
...
...

End Symbol-Set Mapping PSC
Begin Picture Prolog PSC

Set Drawing Default PSC
...
...

End Picture Prolog PSC
Picture GDF (contains GDF orders)

The information in this appendix will help to interpret
GDDM-created GDF orders that are to be used outside
GDDM, or to create new GDF orders that can subsequently
be used within GDDM.

For an example program that shows how to handle GDF
data, see the GDDM Base Application Programming Guide.

Coordinates and aspect ratio

The coordinate values in the Picture Boundary PSC order
and the initial Comment order are the upper and lower
bounds of the picture space. In fixed-point GDF, these
values are the values suitable for the device. In floating-
point GDF, they are the continuation of the current window
bounds to the picture space boundary. Note that unclipped
floating-point GDF can contain orders with coordinates that
are outside these limits.

To reshow a GDF picture, the window coordinates should be
reset to the picture boundary values. The GDF picture can
be reshown at any size. To preserve the aspect ratio of the
picture, a GSPS call is required that is based on the coordi-
nate values in the Picture Scale PSC order. This order
defines the aspect ratio of the coordinates; the default aspect
ratio is 1.

GDF orders: summary

Table 20 shows the GDF orders in the order of their code
values and it provides useful information for those who need
to interpret the orders.

Table 21 on page 284 shows the GDF orders in alphabetic
order as they are described in this appendix. It provides
useful information for those who need to write the orders.

Process specific control orders (PSC) are listed and
| described in more detail on pages 300 through 309.

Table 20 (Page 1 of 2). Summary of GDF orders in order of
code values

Code Name of GDF order Mnemonic

X'01' Comment GCOMT
X'02' Process Specific Control GPSC
X'03' Push And Set Character Box GPSCC
X'04' Segment Characteristics GSGCH
X'07' Call Segment GSCALL

X'09' Push And Set Pattern GPSPT
X'0A' Set Color GSCOL
X'0C' Set Foreground Color Mix GSMX
X'0D' Set Background Color Mix GSBMX
X'10' Set Text Alignment GSTA

X'11' Fractional Line Width GSFLW
X'18' Set Line Type GSLT
X'19' Set Line Width GSLW
X'21' Set Current Position GSCP
X'22' Set Arc Parameters GSAP

X'23' Push And Set Pick (Tag) Identifier GPSPIK
X'24' Set Model Transform GSTM
X'26' Set Extended Color GSECOL
X'27' Set Viewing Window GSVIEW
X'28' Set Pattern GSPT

X'29' Set Marker Type GSMT
X'33' Set Character Box GSCC
X'34' Set Character Angle GSCA
X'35' Set Character Shear GSCH
X'36' Set Character Box Spacing GSCBS

X'37' Set Marker Box GSMC
X'38' Set Character Set GSCS
X'39' Set Character Precision GSCR
X'3A' Set Character Direction GSCD
X'3E' Segment End Prolog GEPROL

X'3F' Pop Attribute GPOP
X'41' Marker Scale GSMSC
X'43' Set Pick (Tag) Identifier GSPIK
X'4A' Push And Set Color GPSCOL
X'4C' Push And Set Foreground Color Mix GPSMX

X'4D' Push And Set Background Color Mix GPSBMX
X'50' Push And Set Text Alignment GPSTA
X'51' Push And Set Fractional Line Width GPSFLW
X'53' Segment Position GSSPOS
X'58' Push And Set Line Type GPSLT

X'59' Push And Set Line Width GPSLW
X'60' End Area GEAR
X'61' Push And Set Current Position GPSCP
X'62' Push And Set Arc Parameters GPSAP
X'64' Push And Set Model Transform GPSTM

X'66' Push And Set Extended Color GPSECOL
X'67' Push And Set Viewing Window GPVIEW
X'68' Area GBAR
X'69' Push And Set Marker Type GPSMT

282 GDDM Base Application Programming Reference

 GDF orders

 General structure

A GDF stream consists of a sequence of orders.

Each order is identified by a one-byte order code and con-
tains one or more bytes of operand data.

 Order formats

The order is represented in one of two formats depending on
the length of the operand data.

The first format applies to orders with up to 255 bytes of
operand data. The second applies only to orders that have a
single byte of operand data.

Normal format: In the normal format, there is a one-byte
order code and a one-byte length field, followed by “length”
bytes of operand data:

┌────────────┬────────────────┬─────────────────────┐

│ order code │ length │ ...operand data... │

│ (1 byte) │ (can be zero) │ (up to 255 bytes) │

│ │ (1 byte) │ │

└────────────┴────────────────┴─────────────────────┘

Therefore, the maximum possible length of a GDF order is
257 bytes.

Short format: If the first hexadecimal digit of an order
code is less than 8, and the second hexadecimal digit is 8 or
greater, the GDF is a short-format order. This consists of
two bytes; the first one is the order code (as just defined),
and the second one contains the operand data.

┌─────────────┬───────────────┐

│ order code │ operand data │

│ (1 byte) │ (1 byte) │

└─────────────┴───────────────┘

 Padding

Orders can be followed by padding bytes X'00' so that the
next order aligns on a convenient boundary.

Coordinate data: Many of the orders contain coordinate
data or coordinate-related data. Coordinates may use dif-
ferent representations, either fixed or floating point.

When integer coordinates are used, the integers can be:

 � Two-byte (halfword)
 � One-byte.

These coordinate values are normal 15-bit or 7-bit numbers
with sign. When negative, they are in twos-complement
notation.

When floating-point coordinates are used, they are in
standard four-byte (short floating-point) format. The type and
length of coordinates must be specified on the GSPUT call.
This is constant for the string.

 Primitives

The following graphics primitives can be represented:

� Line (relative or absolute)
 � Marker
 � Character string
 � Curved “fillet”
� Arc (circular, elliptical, or full)

 � Image.

The orders have a close correspondence with many of the
GDDM functions.

Table 20 (Page 2 of 2). Summary of GDF orders in order of
code values

Code Name of GDF order Mnemonic

X'70' Segment Start GBSEG

X'71' Segment End GESEG
X'72' Segment Attribute GISAT
X'73' Segment Attribute Modify GMSAT
X'74' Push And Set Character Angle GPSCA
X'75' Push And Set Character Shear GPSCH

X'76' Push And Set Character Box

Spacing
GPSCBS

X'77' Push And Set Marker Box GPSMC
X'78' Push And Set Character Set GPSCS
X'79' Push And Set Character Precision GPSCR
X'7A' Push And Set Character Direction GPSCD

X'81' Line (at current position) GCLINE
X'82' Marker (at current position) GCMRK
X'83' Character String (at current position) GCCHST
X'85' Fillet (at current position) GCFLT
X'86' Arc (at current position) GCARC

X'87' Full Arc (at current position) GCFARC
X'91' Image Begin (at current position) GCBIMG
X'92' Image Data GIMD
X'93' Image End GEIMG
X'A1' Relative Line (at current position) GCRLINE

X'C1' Line GLINE
X'C2' Marker GMRK
X'C3' Character String GCHST
X'C5' Fillet GFLT
X'C6' Arc GARC

X'C7' Full Arc GFARC
X'D1' Image Begin GBIMG
X'E1' Relative Line GRLINE

 Chapter 10. GDF order descriptions 283

 GDF orders

Table 21. Alphabetic summary of GDF order codes and usage

Order name Primitives Primitives at
current posi-
tion

Set Push and set Others

Arc X'C6' X'86'
Arc Parameters X'22' X'62'
Area X'68'
Background Color Mix X'0D' X'4D'
Call Segment X'07'

Character Angle X'34' X'74'
Character Box X'33' X'03'
Character Box Spacing X'36' X'76'
Character Direction X'3A' X'7A'
Character Precision X'39' X'79'

Character Set X'38' X'78'
Character Shear X'35' X'75'
Character String X'C3' X'83'
Color X'0A' X'4A'
Comment X'01'

Current Position X'21' X'61'
End Area X'60'
Extended Color X'26' X'66'
Fillet X'C5' X'85'
Foreground Color Mix X'0C' X'4C'

Fractional Line Width X'11' X'51'
Full Arc X'C7' X'87'
Image Begin X'D1' X'91'
Image Data X'92'
Image End X'93'

Line X'C1' X'81'
Line Type X'18' X'58'
Line Width X'19' X'59'
Marker X'C2' X'82'
Marker Box X'37' X'77'

Marker Scale X'41'
Marker Type X'29' X'69'
Model Transform X'24' X'64'
Pattern X'28' X'09'
Pick (Tag) Identifier X'43' X'23'

Pop X'3F'
Process Specific Control X'02'
Relative Line X'E1' X'A1'
Segment Attribute X'72'
Segment Attribute Modify X'73'

Segment Characteristics X'04'
Segment End X'71'
Segment End Prolog X'3E'
Segment Position X'53'
Segment Start X'70'
Set Viewing Window X'27'
Text Alignment X'10' X'50'

284 GDDM Base Application Programming Reference

 GDF orders

Current position: The GDF order formats given below
contain all relevant coordinates. However, for brevity the
start position of the graphics primitive can be omitted. When
omitted, current position is used in its place.

Current position is set by each of the orders. It is set to the
end point of a line or arc and, except for character strings,
the rule is the same as for the corresponding GDDM func-
tion.

The difference between an order that specifies the first coor-
dinate pair, and an order that assumes the current position
as the starting position is shown by the state of bit 1 of the
order code, thus:

0 The order specifies the first coordinate pair.
1 The order assumes the current position as the starting

position.

 Attributes

GDDM provides two forms of attribute order; these are:

� Push And Set
 � Set.

GDDM maintains a stack of attributes, which can be removed
from the stack by using the Pop order.

A Push And Set attribute order puts the current value of the
attribute being set onto the attribute stack and sets the value
of the attribute to the value in the order. The Pop order
unstacks the most recently pushed attribute on the stack and
sets the popped attribute to the value restored from the
stack.

The difference between a Set attribute and a Push And Set
attribute order is generally shown by the state of bit 1 of the
order code, thus:

0 The order is a Set attribute.
1 The order is a Push And Set attribute.

There are three exceptions to this rule; they are:

Both the Set and the Push And Set orders correspond to
GDDM attribute setting functions, according to the current
attribute mode; see the description of the GSAM call. For
example, the GPSLT order corresponds to the GSLT call
when the attribute mode is 0 (preserve attributes).

As with the equivalent call statements, attribute setting orders
change the current values of the attributes. An attribute

setting applies to all subsequent primitives (to which it is rele-
vant) until a new setting is made.

Attribute-setting orders appearing in a GDF string argument
to GSPUT affect the current attribute settings after the call.
The effects are not purely local to primitives within the string,
but may affect subsequent primitives.

Full information on the effects of the orders is not given. For
more explanation, see the corresponding call statement
descriptions in Chapter 3, “The GDDM calls” on page 21.

GDF orders: full descriptions

This section describes the content and format of the GDF
orders, which are presented in alphabetic order.

Format of tables: Where applicable, the Set and Push
And Set forms of an order are included in the same table to
reduce duplication. Only the hexadecimal order-code values
are different for the two forms. The contents of the
remaining fields are the same for the Set and Push And Set
forms.

Some orders are available as “order”, or “order at current
position”; only some of the following fields apply to “order at
current position” and the table is annotated accordingly.

Where the Content of a field is given as “LEN”, it means that
the order length is variable. Variable length orders occur
when they include fields that contain coordinate and
coordinate-related data. The length of such fields is indi-
cated by a “ñ” in the Field length column. Variable length
orders can also occur where a variable number of data items
follows.

When the content of a field can take the form of various bit
patterns with different meanings, they are represented in the
form:
B'xxxxxxxx'
where

. Bit setting is not relevant.
1 Bit is set (1).
ð Bit is reset (0).
x Bit may be set to either value.

In general, “Reserved” bit positions should be reset (0).

Format of examples: The examples are given in
hexadecimal, usually assuming halfword coordinates. Blanks
in the hexadecimal strings are to aid readability; they have
no other significance.

For detailed information about the GDDM calls mentioned,
see Chapter 3, “The GDDM calls” on page 21.

Order Set Push And Set
Pattern X'28' X'09'
Character Box X'33' X'03'
Pick (Tag) Identifier X'43' X'23'

 Chapter 10. GDF order descriptions 285

 GDF orders

 Arc

This order constructs an arc starting at (x0,y0), passing
through (x1,y1), and ending at point (x2,y2).

The intermediate point (x1,y1) should, for greatest accuracy,
lie midway along the arc. (If it coincides with either end point
the arc becomes undefined.) The initial point and the final
point must not coincide.

The arc may be part of a circle or part of the ellipse defined
by the previous “arc parameters” order. a length proportional
to “a”; the axis parallel to the y axis has a length proportional
to “b”.

The initial coordinate pair (x0,y0) may be omitted. Current
position is then used as the starting point of the arc and the
order code becomes X'86'.

The current position is set to point (x2,y2).

 Arc parameters

This order determines the shape of subsequent arcs. The
full parameters give a transformation that maps the unit circle
to an ellipse of the required shape:

x' = Px + Ry

y' = Sx + Qy

A circle results if P=Q and R=S=0.

If P=a, Q=b, an ellipse results. The axis parallel to the x axis
has a length proportional to “a”; the axis parallel to the y axis
has a length proportional to “b.”

If R and S are nonzero, the ellipse is tilted. Usually, for an
ellipse with major and minor axes proportional to “a” and “b”,
tilted at angle “theta” to the x axis:

P = a.cos(theta)

Q = b.cos(theta)

R = -b.sin(theta)

S = a.sin(theta)

 Area

The Area order approximates to the GSAREA and GSENDA
calls.

Note: The End Area (see page 291) order has the same
meaning as the Area order with the “end area” bit set.
GDDM accepts both forms of order, but only generates the
X'60' End Area order.

Examples:

68 8ð

C1 ðA ðð ðð ð5 ðð ð5 ð5 ðð ð5 ðð ðð

68 ðð

Draws a rectangular area 5 units square. Boundary lines are
not drawn.

68 Cð

C1 ðA ðð ðð ð5 ðð ð5 ð5 ðð ð5 ðð ðð

68 ðð

Draws the same area, but includes boundary lines.

Background color mix

The Background Color Mix order corresponds to the GSBMIX
call.

Fld
len

Content Meaning

1 Set X'22' Arc Parameters order code

 Push & set
X'62'

Arc Parameters order code

1 LEN Length of following data

ñ P x coordinate of major axis
end

ñ Q y coordinate of minor axis
end

ñ R x coordinate of minor axis
end

ñ S y coordinate of major axis
end

Fld
len

Content Meaning

1 X'C6' or
X'86'

Arc order code (GARC) or Arc (at
current position) (GCARC)

Fld
len

Content Meaning

1 LEN Length of following data 1 X'68' Area order code

ñ x0 x coordinate of start of arc (omitted
for order X'86')

1 Flags:

 B'1.......' Start of an area
ñ y0 y coordinate of start of arc (omitted

for order X'86') B'ð.......' End of an area

 B'.1......' The boundary lines are to be
drawn

ñ x1 x coordinate of intermediate point

ñ y1 y coordinate of intermediate point

ñ x2 x coordinate of end of arc

ñ y2 y coordinate of end of arc

286 GDDM Base Application Programming Reference

 GDF orders

 Call segment

The Call Segment order corresponds to the GSCALL call.

 Character angle

The Character Angle order corresponds to the GSCA call. It
controls the angle of subsequent character strings.

Note: Ax and Ay specify a relative vector that defines the
angle of the baseline of the string. When the coordinate (x,y)
is on the baseline, (x + Ax, y + Ay) is also on the baseline.

When both Ax and Ay are zero, the current character angle
attribute is set to the drawing default value.

 Character box

The Character Box order corresponds to the GSCB call. The
order specifies the size of characters in following character
strings.

For 1-byte or 2-byte integer coordinates, the order can
optionally be extended to provide a fractional portion of the
character box; see the FRACTWIDTH and FRACTDEPTH
fields.

Note: When either the fractional width or depth is to be
specified, both must be included. The integer and fractional
character widths (depths) together form a character width
(depth) that defines the character box required.

Character box spacing

The Character Box Spacing order corresponds to the
GSCBS call.

The order specifies the spacing of characters in following
character strings.

Fld
len

Content Meaning

1 Set X'0D' Background Color Mix order

 Push & set
X'4D'

Background Color Mix order
code

1 Background color
mix mode:

 X'00' Default

 X'01' OR

 X'02' Overpaint

 X'03' Underpaint

 X'04' Exclusive-OR (implemented
as overpaint)

 X'05' Leave alone

Fld
len

Content Meaning

1 Set X'33' Character Box order code

 Push & set
X'03'

Character Box order code

Fld
len

Content Meaning

1 LEN Length of following data

1 X'07' Call Segment order code ñ CHARWIDTH Width of character box

1 X'06' Length of following data ñ CHARHEIGHT Height of character box

2 X'0000' Reserved ñ FRACTWIDTH Fractional portion of char-
acter box width, specified as
multiples of 1/65536 for
2-byte format or 1/256 for
1-byte format

4 SEGID Identifier of segment to be
called

ñ FRACTDEPTH Fractional portion of char-
acter box depth, specified as
multiples of 1/65536 for
2-byte format or 1/256 for
1-byte format

Fld
len

Content Meaning

1 Set X'34' Character Angle order code

 Push & set
X'74'

Character Angle order code

1 LEN Length of following data

ñ Ax x coordinate of a point that
defines the angle of the text

ñ Ay y coordinate of the point

 Chapter 10. GDF order descriptions 287

 GDF orders

 Character direction

The Character Direction order corresponds to the GSCD call.

Note: The character direction gives the placement of each
character relative to the previous one, either along or perpen-
dicular to the baseline.

 Character precision

The Character Precision order corresponds to the GSCM
call.

 Character set

The Character Set order corresponds to the GSCS call.

 Character shear

The Character Shear order corresponds to the GSCH call. It
controls the shear of subsequent characters.

Fld
len

Content Meaning

1 Set X'36' Character Box Spacing order

 Push & set
X'76'

Character Box Spacing order
code Fld

len
Content Meaning

1 LEN Length of following data

1 Set X'39' Character Precision order
code

1 Flags:

 B'ð.......' Set char box spacing
 Push & set

X'79'
Character Precision order
code

 B'1.......' Set default char box spacing

 B'.ððððððð' Reserved – must be as
shown

1 Character preci-
sion mode:

1 X'00' Reserved
 X'00' Default

ñ HSPACE Horizontal character box
spacing

 X'01' String precision

 X'02' Character precision
ñ VSPACE Vertical character box

spacing X'03' Stroke precision

 Other Not defined

Fld
len

Content Meaning

Fld
len

Content Meaning
1 Set X'3A' Character Direction order

code 1 Set X'38' Character Set order code
 Push & set

X'7A'
Character Direction order
code

 Push & set
X'78'

Character Set order code

1 Character direc-
tion:

 1 Local identifier
(LCID) for the
character set:

 X'00' Default

 X'00' Default X'01' Left to right

 X'01' APL X'02' Top to bottom

 X'41' – X'DF' User-defined set X'03' Right to left

 X'F8' Default DBCS X'04' Bottom to top

 Other Not defined

288 GDDM Base Application Programming Reference

 GDF orders

Notes:

1. Hx and Hy specify a vector that defines the angle of the
upright strokes of a character relative to the baseline. If
the lower left-hand corner of a character is placed at
(0,0) and the character baseline lies along the x axis, the
line from (0,0) to (Hx,Hy) gives the direction of upright
strokes.

2. If both Ax and Ay are zero, the current shear attribute is
set to the drawing default value.

 Character string

The Character String order corresponds to the GSCHAR and
GSCHAP calls.

Note: The character string is placed at the indicated coordi-
nate. The attributes of the string (for example, mode, size,
angle) are taken from the current values.

If the character string has a length that is odd, the length
field in the order contains an odd number. The order must

be padded with padding characters to an even number of
bytes.

The position (x0,y0) may be omitted, in which case the order
code becomes X'83' and the string is placed at the current
position.

Current position is not changed. (This is different from
GSCHAR.)

Examples:

C3 ð8 ððð2 ððð3 C1C2C3C4

Draws the character string “ABCD” at coordinate (2,3).

83 ð3 C5C6C7

Draws the character string “EFG” at the current position.

 Color

There are two orders approximating to the GSCOL call.

The Color order code takes this form:

Note: The GSCOL call and the X'0A' Set Color order may
be mapped to the X'26' Set Extended Color order as
follows:

� Colors 0 through 8 are mapped to X'FF00' through
X'FF08' in the Extended Color order on page 290.

� All other values map directly to a two-byte value.

Fld
len

Content Meaning

1 Set X'35' Character Shear order code

 Push & set
X'75'

Character Shear order code

1 LEN Length of following data

ñ Hx Hx and Hy specify a relative
vector that defines the angle
at which characters are to be
sheared.

ñ Hy y increment: see above

Fld
len

Content Meaning

1 Set X'0A' Color order code

 Push & set
X'4A'

Color order code

1 Color: Fld
len

Content Meaning
 X'00' Default

1 X'C3' or X'83' Character String order code
or Character String (at
current position) order code

 X'01' Blue

 X'02' Red

 X'03' Magenta (pink)1 LEN Length of following data
 X'04' Greenñ x0 x coordinate at which char-

acter string is to be placed
(omitted for order X'83')

 X'05' Turquoise (cyan)

 X'06' Yellow
ñ y0 y coordinate of character

string (omitted for order
X'83')

 X'07' Neutral: white on displays,
black on hardcopy

 X'08' Background: black on dis-
plays, white on hardcopy

V STRING EBCDIC character code of
each character in the string.
All characters above and
including X'40' are valid.

 Other Not defined

 Chapter 10. GDF order descriptions 289

 GDF orders

The Extended Color order code takes this form:

Notes:

1. If a color value is outside the range of color values sup-
ported by a device, the color displayed is device-
dependent (see GSCOL).

2. For color separation on family-4 devices, the color
values depend on the loaded color table.

3. All subsequent primitives have the color given until this
is reset.

 Comment

The Comment order holds GDDM or application-program
data within a GDF stream. Comments are stored in floating-
point GDF.

The first GDF order returned by GSGET (and, by convention,
in GDF files) contains the coordinate range and coordinate

| type in the following form. This convention is maintained but
has been superseded by Process Specific Control (PSC)
orders.

It is recommended that Comment orders, created by an
application program to contain application-specific informa-
tion, should take the following form. (GDDM suggests the fol-
lowing convention but does not enforce it.)

 Current position

The Current Position orders approximate to the GSCP call.

Fld
len

Content Meaning

1 Set X'26' Extended Color order code

 Push & set
X'66'

Extended Color order code

1 X'02' Length of following data

2 Color:

 X'0000' or
X'FF00'

Default

Fld
len

Content Meaning
 X'0001' or

X'FF01'
Blue

1 X'01' Comment order code
 X'0002' or

X'FF02'
Red

1 LEN Length of following data

2 Coordinate type: X'0003' or
X'FF03'

Magenta (pink)

 2 2-byte integer

 X'0004' or
X'FF04'

Green 4 floating-point

ñ xL x lower boundary of picture
space X'0005' or

X'FF05'
Turquoise (cyan)

ñ xU x upper boundary of picture
space X'0006' or

X'FF06'
Yellow

ñ yL y lower boundary of picture
space X'0007' White

 X'0008' Black ñ yU y upper boundary of picture
space X'0009' Dark blue

 X'000A' Orange

 X'000B' Purple

 X'000C' Dark green

 X'000D' Dark turquoise (cyan)

 X'000E' Mustard
Fld
len

Content Meaning
 X'000F' Gray

 X'0010' Brown 1 X'01' Comment order code

 X'FF07' Neutral/multicolor (white on
displays, black on hardcopy)

1 LEN Length of following data

2 X'0000' Reserved
 X'FF08' Background (black on dis-

plays, white on hardcopy) 8 IDENT Application identifier

N DATA User data Other values Not defined

290 GDDM Base Application Programming Reference

 GDF orders

 End area

The End Area order has the same meaning as the Area
order (see page 286), with the “end area” bit set. GDDM
accepts both forms of order, but only generates the X'60'
End Area order.

 Fillet

The Fillet order approximates to the GSPFLT call.

Note: The order shown generates a single fillet. More coor-
dinate pairs may be added to form a polyfillet. The points
are joined in order by imaginary straight lines. A curve is
then fitted to the lines as follows. The curve is tangential to

the first line at its starting point and to the last line at its end
point. If there are intermediate lines, the curve is tangential
to these lines at their center points. In the special case
when only two points are supplied, a straight line results.

The initial coordinate pair (x0,y0) may be omitted. The
current position is then used as the starting point of the arc,
and the order code becomes X'85'. The current position is
set to the last point specified.

Examples:

C5 ð8 ððð2 ððð3 ððð4 ððð6

Draws a line from coordinate (2,3) to coordinate (4,6).

C5 ðC ðððð ðððð ððð4 ðððð ððð4 ððð4

Draws a curve, beginning at coordinate (0,0) and tangential
to the line from (0,0) to (4,0). Initially the curve is horizontal.
The curve then takes an approximately circular path to meet
the line from (4,0) to (4,4) at (4,4).

C5 ð8 ðð ðð ð4 ðð ð4 ð8 ðð ð8

assuming byte coordinates, draws two curves. The first is
that in the previous example and the second completes an
approximation to a semicircular arc.

Foreground color mix

The Foreground Color Mix order corresponds to the GSMIX
call.

Note: Mix mode controls how an inserted primitive affects
the existing picture. In all modes, generated 0 bits leave the
underlying features untouched; new 1 bits become whatever
the current color is if that bit was previously of background
color. The effect of a new 1 bit over an existing 1 bit
depends on the particular mode: the old color (underpaint),
the new color (over-paint), or a mixture (mix) may result.

Fld
len

Content Meaning

1 Set X'21' Current Position order code

 Push & set
X'61'

Current Position order code

1 LEN Length of following data

ñ x x coordinate of new current
position

ñ y y coordinate of new current
position

Fld
len

Content Meaning

1 X'60' End Area order code

1 LEN Length of following data

LEN X'00' Reserved (must be all nulls)

Fld
len

Content Meaning
Fld
len

Content Meaning

1 Set X'0C' Foreground Color Mix order
1 X'C5'or Fillet order code or

 Push & set
X'4C'

Foreground Color Mix order
code X'85' Fillet (at current position)

order code
1 Foreground color

mix mode:

1 LEN Length of following data

ñ x0 x coordinate of line start
(omitted for order X'85')

 X'00' Default

 X'01' Mix
ñ y0 y coordinate of line start

(omitted for order X'85') X'02' Overpaint

 X'03' Underpaintñ x1 x coordinate of first line end
 X'04' Exclusive-ORñ y1 y coordinate of first line end
 X'05' Leave aloneñ x2 x coordinate of second line

end Other Not defined

ñ y2 y coordinate of second line
end

 ...
...

 Chapter 10. GDF order descriptions 291

 GDF orders

Fractional line width

The Fractional Line Width order corresponds to the GSFLW
call.

Note: The integral and fractional line widths together form a
line-width multiplier that defines the line width required. For
an explanation of the interpretation of the multiplier, see
description the GSLW and GSFLW calls.

 Full arc

The Full Arc order allows a complete circle or ellipse to be
specified in one order. The size and shape of the circle or
ellipse are determined by the Set Arc Parameters order; see
page 286. Note that the Set Arc Parameters order sets the
relative lengths of the major and minor axes for three-point
arcs, but for the Full Arc order it sets the absolute size, in
world coordinates, of a full circle or ellipse.

The coordinate pair may be omitted. The order code then
becomes X'87', and the arc is drawn with its center at the
current position. The current position is unchanged. (The
X'87' version of the order draws the arc at the current posi-
tion.)

The major and minor axes of the arc are defined as

M.a M.b

where

M is the two-byte unsigned fractional fixed-point multi-
plier; the first eight bits are the integral part and the
second eight bits are the fractional part.

a and b are the lengths of the major and minor axes
obtained from the Arc Parameters order; see page 286.

A Full Arc order is allowed in an area definition and causes
the area to be closed.

Note: The arc is drawn with its center at point (x,y), which
becomes the current position.

Image – begin

The Begin Image order, together with the Image Data and
End Image orders approximate to the GSIMG and GSIMGS
calls.

An image consists of a rectangular array of display points.

It is represented by a sequence of orders. The first is a
Begin Image order and the last is an End Image order (see
below). Between these delimiters, several Image Data
orders may occur, giving the array of display points in the
image.

The initial coordinate pair (x0,y0) can be omitted. The
current position is then used to place the image data, and
the order code becomes X'91'. The current position is not
changed by a series of Image orders.

The size of the display point array and its representation are
given by the Begin Image order. The fields IMAGEWIDTH
and IMAGEDEPTH are optional and may be either both
specified, or both omitted. When specified, the image is
scaled to fill the area identified by the fields, using the rules
defined in the GSIMGS call. When omitted, each display
point is represented by one bit in the display point array.

Fld
len

Content Meaning
Fld
len

Content Meaning

1 Set X'11' Fractional Line Width order
code 1 X'C7' or Full Arc (at given position)

order code or
 Push & set X'51' Fractional Line Width order

code X'87' Full Arc (at current position)
order code

1 X'02' Length of following data
1 LEN Length of following data

1 INTEGRAL LINE
WIDTH

The integer portion of the
line-width multiplier ñ x x Coordinate value (omitted

for order X'87')
1 FRACTIONAL

LINE WIDTH
The fractional portion of the
line-width multiplier, specified
as multiples of 1/256

ñ y y Coordinate value (omitted
for order X'87')

2 M Multiplier

292 GDDM Base Application Programming Reference

 GDF orders

Image – data

For image FORMAT 0, each Image Data order contains the
display points for one row of the display point array. Thus
for an image with a DEPTH of N, there are N Image Data
orders between the Begin and End Image orders. Each
Image Data order contains data for WIDTH display points.
Each display point is represented by a single bit. When the
bit is one, the display point is “on”; when the bit is zero, the
display point is “off”.

Example:

91 ð6 ðððð ððð9 ððð4

92 ð2 FF8ð

92 ð2 8ð8ð

92 ð2 8ð8ð

92 ð2 FF8ð

93 ð2 ðððð

Draws an image, whose size is nine display points wide by
four deep, at the current position. The image consists of a
small square of “on” display points (which appear in the
current color) surrounding an “off” center.

Image – end

This order ends the construction of an image.

 Line

The Line order approximates to the GSPLNE call.

Note:

A line is drawn from the first coordinate given (x0,y0) to the
second (x1,y1).

The order shown is for a single line, but usually any number
of coordinates can be present. Consecutive coordinates in
the order are joined by straight lines. The data length must
be an even multiple of the coordinate length.

The initial coordinate pair (x0,y0) may be omitted. Current
position is then used as the starting point of the first line and
the order code becomes X'81'.

Fld
len

Content Meaning

1 X'D1' or X'91' Begin Image (at given posi-
tion) order code or Begin
Image (at current position)
order code

1 LEN Length of following data

ñ x0 The x position at which the
image is to be placed
(omitted for order X'91')

ñ y0 The y position at which the
image is to be placed
(omitted for order X'91')

2 FORMAT The format of the image data.
This field must have the
value 0.

2 WIDTH The width of the image in
display points

Fld
len

Content Meaning

2 DEPTH The depth of the image in
display points

1 X'93' End Image order code

1 X'02' Length of following data
ñ IMAGEWIDTH The desired width of the

image in coordinate units 2 X'0000' Reserved

ñ IMAGEDEPTH The desired depth of the
image in coordinate units

Fld
len

Content Meaning

1 X'C1' or Line order code or

 X'81' Line (at current position)
order code

1 LEN Length of following data

ñ x0 x coordinate of line start
order code (omitted for order
X'81')

Fld
len

Content Meaning
ñ y0 y coordinate of line start

order code (omitted for order
X'81')1 X'92' Image Data order code

1 LEN Length of following data ñ x1 x coordinate of first line end

LEN PIXELDATA The display points of the
image

ñ y1 y coordinate of first line end

 ...
...

 Chapter 10. GDF order descriptions 293

 GDF orders

Current position is set to the last point specified.

Note that a line order with only an initial position is permitted.
This serves only to move current position.

Examples

C1 ð8 ððð2 ððð3 ððð4 ððð6

Draws a line from coordinate (2,3) to coordinate (4,6).

C1 ðC ððð2 ððð3 ððð4 ððð6 ððð9 ððð9

Draws a line from coordinate (2,3) to coordinate (4,6) and a
line from (4,6) to (9,9).

C1 ð6 ð2 ð3 ð4 ð6 ð9 ð9

Draws the same lines, but 1-byte coordinates are used.

C1 ð4 ððð2 ððð3

Draws no lines. However, current position is changed to the
last coordinate (2,3).

81 ð4 ððð4 ððð6

Draws a line from current position to point (4,6). Thus, the
pair of orders:

C1 ð4 ððð2 ððð3

81 ð4 ððð4 ððð6

has the same effect as the first:

C1 ð8 ððð2 ððð3 ððð4 ððð6.

 Line type

The Line Type order corresponds to the GSLT call.

 Line width

The Line Width order corresponds to the GSLW call.

 Marker

The Marker order approximates to the GSMRKS call.

Note:

The order is shown for a single marker. More coordinate
pairs may be added. The current marker is placed at each
point specified.

The first (or only) coordinate pair may be omitted. The order
code then becomes X'82', and a marker is placed at the
current position in addition to any points specified.

The current position is set to the last coordinate specified, or,
if none, is unchanged.

Examples:

C2 ð4 ððð2 ððð3

Draws the current marker at coordinate (2,3).

C2 ðC ððð2 ððð3 ððð4 ððð6 ððð9 ððð9

Draws markers at (2,3) (4,6) and (9,9).

82 ðð

Draws the current marker at current position.

 Marker box

The Marker Box order specifies the size of the cell used for
scaling vector markers.

Fld
len

Content Meaning

1 Set X'19' Set Line Width order code

 Push & set
X'59'

Set Line Width order code

1 LINEWIDTH Value for line-width attribute

Fld
len

Content Meaning

1 X'C2' or Marker order code or

 X'82' Marker (at current position)
order code

1 LEN Length of following data

ñ x0 x coordinate of marker
(omitted for order X'82')

ñ y0 y coordinate of marker
(omitted for order X'82')

 ...
...

Fld
len

Content Meaning

1 Set X'18' Set Line Type order code

 Push & set
X'58'

Set Line Type order code

1 Line type:

 X'00' Default

 X'01' Dotted line

 X'02' Short dashed line

 X'03' Dash-dot line

 X'04' Double-dotted line

 X'05' Long-dashed line

 X'06' Dash-double-dot line

 X'07' Solid line

 X'08' Invisible line

 Other Not defined

294 GDDM Base Application Programming Reference

 GDF orders

 Marker scale

The Marker Scale order approximates to the GSMSC call. It
sets the scale of the marker box with respect to the default
marker box.

 Marker type

The Marker Type order corresponds to the GSMS call.

Note: The marker number determines which symbol is dis-
played by the marker primitive.

 Model transform

The Model Transform order is a transformation matrix.

Note: A segment transformation is defined by a matrix

 ┌ ┐

│ M11 M12 M13 M14 │

│ M21 M22 M23 M24 │

 M = │ │

│ M31 M32 M33 M34 │

│ M41 M42 M43 M44 │

 └ ┘

which is applied to primitives p to give p' as follows:

(x',y',z',1) = (x,y,z,1).M

The GDF order defines the matrix elements in the order

M11,M12,...,M14,M21,...,M44

This differs from the GSSTFM call, which specifies the matrix
elements in the order

M11,M21,M31,M12,...,M33

The MASK field identifies those elements of the transforma-
tion defined by the MATRIX field. The bits within MASK cor-
respond to, in order, elements

M11,M12,...,M14,M21,...M44

of the transformation. The values provided in MATRIX corre-
spond, in order, to those elements of the transformation iden-
tified by bits set to 1 within MASK. All uninitialized values
within the transformation matrix are set from the identity
transformation.

Only elements M11, M12, M21, M22, M41, and M42 are
processed by GDDM. All other elements must be zero or
one (as in the identity matrix).

Fld
len

Content Meaning

1 Set X'37' Marker Box order code

 Push & set
X'77'

Marker Box order code Fld
len

Content Meaning

1 LEN Length of following data 1 Set X'24' Model Transform order code

ñ MARKER-WIDTH Width of marker cell Push & set
X'64'

Model Transform order code

ñ MARKER-HEIGHT Height of marker cell

1 LEN Length of following data

1 X'00' Reserved

1 Flags:

 B'ðððððð..' Reserved

 B'......ðð' Replace

 B'......ð1' Postmultiply

Fld
len

Content Meaning B'......1ð' Premultiply (equivalent to
GSSTFM preemptive)

1 X'41' Marker Scale order code Other bit patterns Not supported.

1 LEN Length of following data 2 MASK Load Mask Values

4 SCALE Scale of marker box with
respect to the default marker
box in floating-point format

N MATRIX Transformation Matrix

Fld
len

Content Meaning

1 Set X'29' Marker Type order code

 Push & set
X'69'

Marker Type order code

1 Marker type:

 X'00' Default

 X'01' Cross

 X'02' Plus

 X'03' Diamond

 X'04' Square

 X'05' 6-point star

 X'06' 8-point star

 X'07' Filled diamond

 X'08' Filled square

 X'09' Dot

 X'0A' Small circle

 X'0B' through
X'40'

Not defined

 X'41' through
X'EF'

User defined

 Chapter 10. GDF order descriptions 295

 GDF orders

The transformation elements may be specified in one-byte,
two-byte, or four-byte form, corresponding to the data type
GDF coordinates.

The fixed-point representation of the matrix elements is:
M41, M42 are twos complement numbers (8-bit or 16-bit).
Elements M11, M12, M21, and M22 are twos complement
numbers in the following form:

SB.bb bbbb (bbbb bbbb)

where S is the sign bit (1 = negative), B is the integer bit,
and b the fractional bits (6 or 14 of them).

 Pattern

The Pattern order corresponds to the GSPAT call.

Notes:

1. See the description of the GSPAT call.

2. This attribute determines which pattern (either built-in or
defined through the GSLSS call) is to be used to shade
the interior of subsequent areas.

Pick (tag) identifier

The Pick order corresponds to the GSTAG call.

A value of X'00000000'is considered a “null” value. Any
output primitive that is given a null tag does not take part in
correlation.

 Pop

The Pop order pops the top attribute of the current attribute
stack and sets the popped attribute to the restored value.

The order is valid outside segments but the results can be
unpredictable.

Process specific control

GDDM uses the Process Specific Control (PSC) order to
store picture prolog and symbol-set information in a GDF
object. Because it does not add any graphics data to the
picture, the order is ignored by the GSPUT call. For informa-
tion on the different PSC orders, see pages 301 to 309.

Note: GSGET returns two types of PSCs:

� X'01' – for symbol-set names
� X'02' – for the picture prolog, including the defaults.

Fld
len

Content Meaning

1 Set X'43' Pick (Tag) Identifier order
code

 Push & set
X'23'

Pick (Tag) Identifier order
code

1 X'04' Length of following data

4 TAG Tag value

Fld
len

Content Meaning

1 Set X'28' Pattern order code row.

 Push & set
X'09'

Pattern order code

1 Pattern type:

 X'00' Default

 X'01' through
X'08'

Decreasing density

Fld
len

Content Meaning
 X'09' Vertical lines

1 X'3F' Pop order code X'0A' Horizontal lines

1 X'00' Reserved X'0B' Diagonal lines 1 (bottom left
to top right)

 X'0C' Diagonal lines 2 (bottom left
to top right)

 X'0D' Diagonal lines 1 (top left to
bottom right)

 X'0E' Diagonal lines 2 (top left to
bottom right)

 X'0F' No shading

 X'10' Solid shading
Fld
len

Content Meaning
 X'11' through

X'40'
Not defined

1 X'02' Process Specific Control
order code X'41' through

X'FE'
User-defined

1 LEN Length of following data

1 X'xx' Process Identifier

1 X'xx' Function Identifier

LEN
−2

DATA Process-specific Controls

296 GDDM Base Application Programming Reference

 GDF orders

 Relative line

The Relative Line order defines one or more straight lines.
The end point of each line is given as a one-byte signed
offset from the start of the line. Note that the offsets are
always one-byte fixed, even in the floating-point form.

Order code X'A1' omits the current position, and draws lines
from the current position.

Notes:

1. The current position is updated to the last point speci-
fied.

2. The data length must be an even multiple of the coordi-
nate length.

 Segment attribute

The Segment Attribute order approximates to the GSSATI
call. It sets the attributes to be assigned to subsequently
generated segments.

Segment attribute modify

The Segment Attribute Modify order approximates to the
GSSATS call. It modifies the attributes that are currently
assigned to a segment.

Fld
len

Content Meaning

1 X'72' Segment Attribute order code

1 X'02' Length of following dataFld
len

Content Meaning
1 The attribute to be

set for subse-
quent segments:

1 X'E1' or Relative Line order code or

 X'A1' Relative Line (at current posi-
tion) order code X'01' Detectability

 X'02' Visibility1 LEN Length of following data
 X'03' Highlightingñ x0 x coordinate of line start

(omitted for order X'A1') X'04' Transformability

ñ y0 y coordinate of line start
(omitted for order X'A1')

 X'05' Reserved

 X'06' Chained
1 x1 x1 coordinate of first line end

point

1 The value to be
assigned to the
specified attribute:

 1 y1 y1 coordinate of first line end
point

 ...
...

 X'00' Not detectable, invisible, not
highlighted, or unchained

 X'01' Detectable, visible, high-
lighted, nontransformable, or
chained

 X'02' Transformable

 Chapter 10. GDF order descriptions 297

 GDF orders

 Segment characteristics

The Segment Characteristics order adds more attributes to a
segment. It is valid only within the prolog of a segment.

The general format is as follows:

Notes:

1. GDDM sets X'80' in the CHID field. All other values
are reserved. Values above X'80' are allocated to
applications other than GDDM.

2. GDDM preserves all Segment Characteristics orders
with values of other than X'80' in the CHID field. The
use of the Segment Characteristics order with a CHID
value of X'80' is defined below.

The order can be used to provide information that corre-
sponds to the GSSORG call, as follows:

 Segment end

This order corresponds to the GSSCLS call.

Segment end prolog

The Segment End Prolog order shows the end of the prolog
section of each segment. See also page 299.

 Segment position

The Segment Position order approximates to the GSSPOS
call. It sets the position of a transformable segment.

Fld
len

Content Meaning

1 X'73' Segment Attribute Modify
order code Fld

len
Content Meaning

1 X'06' Length of following data
1 X'04' Segment Characteristics

order code1 The attribute to be
modified:

1 LEN Length of following data
 X'01' Detectability

1 X'80' Identifier for GDDM
 X'02' Visibility

1 X'00' Reserved
 X'03' Highlighting

1 X'04' Segment origin
 X'04' Transformability

1 LEN−4 Length of coordinate data
 X'05' Reserved

ñ x0 x coordinate origin
 X'06' Chained

ñ y0 y coordinate origin

1 The value to be
assigned to the
specified attribute:

 X'00' Not detectable, invisible, not
highlighted, or unchained

Fld
len

Content Meaning
 X'01' Detectable, visible, high-

lighted, nontransformable, or
chained 1 X'71' End Segment order code

1 X'00' No data X'02' Transformable

4 IDENTIFIER The identifier of the segment
for which the attributes are to
be modified.

Fld
len

Content Meaning

1 X'3E' Segment End Prolog order
code

1 X'00' Reserved
Fld
len

Content Meaning

1 X'04' Segment Characteristics
order code

1 LEN Length of following data

1 CHID Identifier code for character-
istics

Fld
len

Content Meaning
LEN
−1

DATA Data

1 X'53' Segment Position order code

1 LEN Length of following data

ñ X0 x coordinate of the segment
position

ñ Y0 y coordinate of the segment
position

4 IDENTIFIER The identifier of the trans-
formable segment that is to
be positioned.

298 GDDM Base Application Programming Reference

 GDF orders

 Segment start

This order corresponds to the GSSEG call. In the short
form, the order is truncated immediately after the
SEGMENT-ID field. In this case, all segment attributes are
taken from the current initial segment attributes as set by the
Segment Attribute order (see page 297), or by the GSSATI
call.

Segment attribute information can be extended by using a
segment prolog. The presence of a segment prolog is
shown by a flag bit in the Segment Start order.

Notes:

1. GDDM returns the length of a fixed-point GDF segment
in the Segment Start order retrieved using GSGET. The
length of segment is ignored on GSPUT; segments must
be closed by an explicit Segment End order. When the
length of a segment cannot be represented as a 2-byte
unsigned number, a length of zero is set.

2. The segment attributes in the Segment Start order over-
ride the initial segment attributes that are in effect at the
time the segment is created. The segment attributes
can be altered by GSSATS in the usual way.

3. Within the prolog of a segment, only the following orders
are valid:

� A no-operation (X'00')

 � Comment (X'01')

� Process Specific Control (X'02')

� Segment Characteristics (X'04')

 � Pop (X'3F')

� Marker Scale (X'41')

� The attribute orders shown below:

Arc Parameters (X'22' or X'62')
Character Angle (X'34' or X'74')
Character Box (X'03' or X'33')
Character-Box Spacing (X'36' or X'76')
Character Direction (X'3A' or X'7A')
Character Precision (X'39' or X'79')
Character Set (X'38' or X'78')
Character Shear (X'35' or X'75')
Color and Extended Color (X'0A', X'4A', X'26', or X'66')
Fractional Line Width (X'11' or X'51')
Line Type (X'18' or X'58')
Line Width (X'19' or X'59')
Marker Box (X'37' or X'77')
Marker Type (X'29' or X'69')
Foreground Color Mix (X'0C' or X'4C')
Model Transform (X'24' or X'64')
Pattern (X'28' or X'09')
Pick (Tag) Identifier (X'43' or X'23').
Segment Viewing Window (X'27')
Text Alignment (X'10' or X'50').

Primitive attributes in the segment prolog are treated as
being ordinary primitive attributes. GDDM does not create
any primitive attributes apart from the transform in the
segment prolog. For upward compatibility of GDF, it is advis-
able not to place primitive attribute orders (other than the
Model Transform order) within the segment prolog.

Fld
len

Content Meaning

1 X'70' Segment Start order code
1 X'0C' or Length of following data
 X'04'
4 SEGMENT-ID The identifier to be given to

the following segment, or 0 if
unnamed. A four-byte
(fullword) positive or zero
integer (as in GSSEG).

2 Flags (omitted in short form):
 B'ð.......' Visible
 B'1.......' Invisible
 B'.1......' Reserved
 B'..ð.....' Nondetectable
 B'..1.....' Detectable
 B'...1....' Reserved
 B'....ð...' No highlighting
 B'....1...' Highlighting
 B'.....1ðð' Reserved
 B'........ ð.......' Chained
 B'........ 1.......' Nonchained
 B'........ .ðð.....' Reserved
 B'........ ...ð....' No prolog
 B'........ ...1....' Prolog
 B'........ð...' Nontransformable
 B'........1...' Transformable
 B'........ððð' Reserved
2 L2 Length of segment (see

Note) (omitted in short form)
4 X'00000000' Reserved (omitted in short

form)

 Chapter 10. GDF order descriptions 299

 GDF orders

Segment viewing window

This order corresponds to the GSSVL call.

 Text alignment

This order corresponds to the GSTA call.

Process specific control orders (PSC)

The Process specific control orders (order code X'02') fall
into two sub-classes:

� Symbol-set orders. These precede all other orders
except the Comment order. The third byte of the
Symbol-set orders is always X'01'.

� Picture prolog orders, including default PSC orders.
These follow the Symbol-set orders (if present). Default
process specific control orders are only valid within the
picture prolog; they always follow a Begin picture prolog
order and are terminated by an End picture prolog order.
The third byte of the Picture prolog orders is always
X'02'.

Symbol-set process specific control orders: These
orders precede all other orders except the Comment order.
The third byte of the Symbol-set process orders is always
X'01'. The fourth byte identifies the individual orders. They
are summarized in numerical order of the fourth byte in
Table 22 on page 301. Symbol-set PSCs are listed in
alphabetic order of order name on pages 301 through 302.

Fld
len

Content Meaning Fld
len

Content Meaning

1 Set X'27' Set Segment Viewing
Window

1 Set X'10' Set Text Alignment

 Push & set
X'50'

Set Text Alignment
 Push & set

X'67'
Set Segment Viewing
Window

1 X'02' Length of following data
1 LEN Length of following data

1 Horizontal text
alignment:

1 X'00' Reserved

1 Mask: X'00' Default

 B'xx......' Reserved X'01' Normal

 B'..1.....' x left limit included in list of
WW values

 X'02' Left

 X'03' Center
 B'...1....' x right limit included in list of

WW values
 X'04' Right

 X'FF' Standard
 B'....1...' y bottom limit included in list

of WW values

1 Vertical Text
Alignment:

 B'.....1..' y top limit included in list of
WW values

 X'00' Default B'......1.' z near limit included in list of
WW values X'01' Normal

 B'.......1' z far limit included in list of
WW values

 X'02' Top

 X'03' Cap
0– 6ñ WW Window values

 X'04' Half

 X'05' Base

 X'06' Bottom

 X'FF' Standard

300 GDDM Base Application Programming Reference

 GDF orders

Picture prolog process specific control orders:
These include the Default PSC orders. These orders follow
the Symbol-set orders (if present). The third byte of the
Picture prolog process specific control orders is always
X'02'. The fourth byte identifies the individual orders. They
are summarized in numerical order of the fourth byte in
Table 23. Picture prolog PSCs are listed in alphabetic order
of name on pages 302 through 309.

Symbol-set PSC orders

The symbol-set PSCs contain the names and types of the
symbol sets that are currently loaded. When an IBM 4250
printer is the primary device, the code page is returned, as
well as the symbol-set name and type.

The symbol-set types and names are recorded in the Map
Symbol-Set Identifier PSC. There is one control for each
symbol set. All the controls are bracketed between a Begin

Symbol-Set Mapping and End Symbol-Set Mapping PSC, as
defined below.

GSGET returns one group of symbol-set mapping informa-
tion.

Begin symbol-set mapping

The Begin Symbol-Set Mapping PSC precedes the picture
prolog and the segments.

Map symbol-set identifier

Several Map Symbol-Set Identifier PSC orders follow the
Begin Symbol-Set Mapping PSC order.

Table 22. Numeric list of Symbol-set process specific control
orders.

Order name Fourth byte

Begin Symbol-set Mapping X'7E'
Map Symbol-set Identifier X'40'
End Symbol-set Mapping X'7F'

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'01' GDDM Symbol-Set Process
IdentifierTable 23. Numeric list of Picture prolog process specific control

orders.
1 X'7E' Begin Symbol-Set Mapping

Order name Fourth byte

Set Picture Origin X'01'
Set Default Foreground Color Mix X'0C'

Set Default Background Color Mix X'0D'

Set Default Coordinate Type X'0E'
Set Default Text Alignment X'10'

Set Default Fractional Line Width X'11'

Fld
len

Content MeaningSet Default Line Type X'18'
Set Default Picture Scale X'20'
Set Default Arc Parameters X'22' 1 X'02' Process Specific Control

order codeSet Default Extended Color X'26'

1 X'0D' or X'15' Length of following data
Set Default Viewing Window X'27'

1 X'01' GDDM Symbol-Set Process
Identifier

Set Default Pattern X'28'
Set Default Marker Symbol X'29'
Set Picture Boundary X'32' 1 X'40' Map symbol-set ID to name

and typeSet Default Character Box X'33'

1 Type of symbol
set:

 Set Default Character Angle X'34'
Set Default Character Shear X'35'
Set Default Character-Box Spacing X'36' X'01' Image symbol set
Set Default Marker Box X'37'

 X'02' Vector symbol setSet Default Character Set X'38'
 X'03' Shading pattern
Set Default Character Precision X'39'

 X'04' Marker (image) symbol setSet Default Character Direction X'3A'
Set Default Pick Identifier X'43' X'05' 4250 printer image symbol

setBegin Picture Prolog X'7E'
End Picture Prolog X'7F'

 X'06' Marker (vector) symbol set

 X'07' Pattern (vector) symbol set

 X'08' DBCS image symbol set

 X'09' DBCS vector symbol set

1 NUMBER Number of symbol-set defi-
nition. Always returned as
zero by GSGET.

1 ID Symbol-set identifier (LCID)

8 SS-NAME Symbol-Set Name

8 CP-NAME Code Page Name (optional)

 Chapter 10. GDF order descriptions 301

 GDF orders

End symbol-set mapping

The End Symbol-Set Mapping PSC order appears at the end
of the Map Symbol-Set Identifier PSC orders. Within the
symbol-set mapping structure, any orders other than PSCs,
comments, and no operations cause an implicit end to
symbol-set mapping. A warning message is issued.

 Picture prolog

GDDM uses PSCs to define the coordinate type, the extent
of GDF, and the default attribute values. They are returned
in the GDF after the map symbol-set PSC orders (if these
are present).

All the Picture Prolog PSC orders, including the Default PSC
orders, are bracketed between a Begin Picture Prolog PSC
order and an End Picture Prolog PSC order.

Begin picture prolog

The Begin Picture Prolog PSC order precedes the Picture
Prolog PSC order. Only one picture prolog is returned by the
GSGET call.

End picture prolog

The End Picture Prolog PSC follows the Picture Prolog PSC
orders.

Set default arc parameters

This order is only valid within the picture prolog.

Set default background mix

This order is only valid within the picture prolog.

Set default character angle

This order is only valid within the picture prolog.

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'02' GDDM Picture Prolog Identi-
fier

Fld
len

Content Meaning 1 X'7F' End Picture Prolog

1 X'02' Process Specific Control
order code

1 X'02' Length of following data

1 X'01' GDDM Symbol-Set Process
Identifier

Fld
len

Content Meaning
1 X'7F' End Symbol-Set Mapping

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' Picture Prolog Identifier

1 X'22' Set Default Arc Parameters

1 LEN−3 Length of parameter data

ñ P P parameter of the transform

ñ Q Q parameter of the transform

ñ R R parameter of the transform

ñ S S parameter of the transform

Fld
len

Content Meaning

Fld
len

Content Meaning
1 X'02' Process Specific Control

order code1 X'02' Process Specific Control
order code 1 X'03' Length of following data

1 X'02' Length of following data 1 X'02' Picture Prolog Identifier

1 X'02' GDDM Picture Prolog Identi-
fier

1 X'0D' Set Default Background Mix

1 Default back-
ground color mix-
mode attribute:

1 X'7E' Begin Picture Prolog

 X'00' Standard default

 X'02' Opaque

 X'05' Transparent

302 GDDM Base Application Programming Reference

 GDF orders

Note: AX and AY specify a relative vector that defines the
angle of the baseline of the string.

Set default character box

This order is only valid within the picture prolog.

Set default character-box spacing

This order is only valid within the picture prolog.

Set default character direction

This order is only valid within the picture prolog.

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

Fld
len

Content Meaning
1 LEN Length of following data

1 X'02' Picture Prolog Identifier 1 X'02' Process Specific Control
order code1 X'34' Set Default Character Angle

1 X'09' Length of following data1 LEN−3 Length of coordinate data

1 X'02' Picture Prolog Identifierñ AX x coordinate of a point that
defines the angle of the string 1 X'36' Set Default Character-Box

Spacingñ AY y coordinate of a point that
defines the angle of the string 1 X'06' Length of remaining data

1 Flags: :

 B'ð.......' Set character-box spacing

 B'1.......' Set default character-box
spacing

 B'.ððððððð' Reserved

1 X'00' Reserved

2 HSPACE Horizontal character-box
spacingFld

len
Content Meaning

2 VSPACE Vertical character-box
spacing1 X'02' Process Specific Control

order code

1 LEN Length of following data

1 X'02' Picture Prolog Identifier

1 X'33' Set Default Character Box

1 LEN−3 Length of width and height
data Fld

len
Content Meaning

ñ CHARWIDTH Width of character box
1 X'02' Process Specific Control

order code
ñ CHARHEIGHT Height of character box

1 X'03' Length of following data

1 X'02' Picture Prolog Identifier

1 X'3A' Set Default Character Direc-
tion

1 Default character
direction:

 X'00' Standard default

 X'01' Left to right

 X'02' Top to bottom

 X'03' Right to left

 X'04' Bottom to top

 Other Reserved

 Chapter 10. GDF order descriptions 303

 GDF orders

Set default character precision

This order is only valid within the picture prolog.

Set default character set

This order is only valid within the picture prolog.

Set default character shear

This order is only valid within the picture prolog.

Set default coordinate type

The Set Default Coordinate Type PSC defines the coordinate
type of the primitive coordinates in the segments that follow.
The default coordinate type is 2-byte fixed point.

Fld
len

Content Meaning Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Process Specific Control
order code

1 X'03' Length of following data 1 LEN Length of following data

1 X'02' Picture Prolog Identifier 1 X'02' Picture Prolog Identifier

1 X'39' Set Default Character Preci-
sion

1 X'35' Set Default Character Shear

1 LEN−3 Length of vector data
1 Default character

precision mode:

ñ HX HX and HY specify a relative
vector that defines the angle
at which characters are to
sheared

 X'00' Standard default

 X'01' String precision
ñ HY y increment: see above

 X'02' Character precision

 X'03' Stroke precision

 Other Reserved

Fld
len

Content Meaning
Fld
len

Content Meaning

1 X'02' Process Specific Control
order code1 X'02' Process Specific Control

order code 1 X'03' Length of following data

1 X'03' Length of following data 1 X'02' GDDM Picture Prolog Identi-
fier1 X'02' Picture Prolog Identifier

1 X'0E' Set Default Coordinate Type1 X'38' Set Default Character Set

1 Default coordinate
type:

 1 Local identifier
(LCID) for the
default character
set:

 B'ð.......' 2-byte fixed-point number

 B'1.......' 4-byte floating-point number
 X'00' Standard default

 B'.ððððððð' Reserved
 X'01' through

X'FF'
Specified symbol set

304 GDDM Base Application Programming Reference

 GDF orders

Set default extended color

This order is only valid within the picture prolog.

Set default foreground mix

This order is only valid within the picture prolog.

Set default fractional line width

This order is only valid within the picture prolog.

Fld
len

Content Meaning Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Process Specific Control
order code

1 X'05' Length of following data 1 X'03' Length of following data

1 X'02' Picture Prolog Identifier 1 X'02' Picture Prolog Identifier

1 X'26' Set Default Extended Color 1 X'0C' Set Default Foreground Mix

1 X'02' Length of following data 1 Default fore-
ground color mix-
mode:

2 Default color:

 X'0000' or
X'FF00'

Default
 X'00' Standard default

 X'01' OR (Mix)
 X'0001' or

X'FF01'
Blue

 X'02' Opaque

 X'0002' or
X'FF02'

Red X'03' Underpaint

 X'04' Exclusive-OR
 X'0003' or

X'FF03'
Magenta (pink)

 X'05' Transparent

 X'0004' or
X'FF04'

Green

 X'0005' or
X'FF05'

Turquoise (cyan)

 X'0006' or
X'FF06'

Yellow
Fld
len

Content Meaning

 X'0007' White
1 X'02' Process Specific Control

order code X'0008' Black

 X'0009' Dark blue 1 X'04' Length of following data
 X'000A' Orange 1 X'02' Picture Prolog Identifier
 X'000B' Purple 1 X'11' Set Default Fractional Line

Width X'000C' Dark green

1 INTEGRAL LINE
WIDTH

The integer portion of the
line-width multiplier

 X'000D' Dark turquoise (cyan)

 X'000E' Mustard
1 FRACTIONAL

LINE WIDTH
The fractional portion of the
line-width multiplier, specified
as multiples of 1/256

 X'000F' Gray

 X'0010' Brown

 X'FF07' Neutral/multicolor (white on
displays, black on hardcopy)

 X'FF08' Background (black on dis-
plays, white on hardcopy)

 Other values Not defined.

 Chapter 10. GDF order descriptions 305

 GDF orders

Set default line type

This order is only valid within the picture prolog.

Set default marker box

This order is only valid within the picture prolog.

Set default marker type

This order is only valid within the picture prolog.

Set default pattern

This order is only valid within the picture prolog.

Fld
len

Content Meaning Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Process Specific Control
order code

1 X'03' Length of following data 1 X'03' Length of following data

1 X'02' Picture Prolog Identifier 1 X'02' Picture Prolog Identifier

1 X'18' Set Default Line Type 1 X'29' Set Default Marker Symbol

1 Default line type: 1 Default marker
type:

 X'00' Standard default
 X'00' Default

 X'01' Dotted
 X'01' Cross

 X'02' Short dashed
 X'02' Plus

 X'03' Dash-dot
 X'03' Diamond

 X'04' Double dotted
 X'04' Square

 X'05' Long dashed
 X'05' 6-point star

 X'06' Dash-double-dot
 X'06' 8-point star

 X'07' Solid
 X'07' Filled diamond

 X'08' Invisible
 X'08' Filled square

 Other Reserved
 X'09' Dot

 X'0A' Small circle

 X'0B' through
X'40'

Not defined

 X'41' through
X'EF'

User defined

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' Picture Prolog Identifier

1 X'37' Set Default Marker Box

1 LEN−3 Length of width and height
data

ñ MARKER-WIDTH Width of marker box

ñ MARKER-HEIGHT Height of marker box

306 GDDM Base Application Programming Reference

 GDF orders

Set default pick identifier

This order is only valid within the picture prolog.

Set default picture scale

The format of the Set Default Picture Scale PSC is as
follows:

Notes:

1. When the coordinate type is two-byte fixed, the first
halfword encodes the integer part of the scaling factor
and the second halfword encodes the fractional part.

2. The scaling factors specify the number of coordinate
units per millimeter. The default scaling factor is 20 per
millimeter. Zero and negative scaling factors are not
valid.

Set default text alignment

The format of the Set Default Text Alignment PSC is as
follows:

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'03' Length of following data Fld
len

Content Meaning
1 X'02' Picture Prolog Identifier

1 X'02' Process Specific Control
order code

1 X'28' Set Default Pattern

1 Default pattern
type:

| 1| X'0B'| Length of following data

1 X'02' Common Picture Prolog X'00' Default

1 X'20' Set Default Picture Scale
order code

 X'01' through
X'08'

Decreasing density

1 X'08' Length of scaling factor data X'09' Vertical lines

4 x x scaling factor (see text) X'0A' Horizontal lines

4 y y scaling factor X'0B' Diagonal lines 1 (bottom left
to top right)

 X'0C' Diagonal lines 2 (bottom left
to top right)

 X'0D' Diagonal lines 1 (top left to
bottom right)

 X'0E' Diagonal lines 2 (top left to
bottom right)

 X'0F' No shading

 X'10' Solid shading

 X'11' through
X'40'

Not defined

 X'41' through
X'FE'

User-defined

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'07' Length of following data

1 X'02' Picture Prolog Identifier

1 X'43' Set Default Pick Identifier

1 X'04' Length of following data

4 PICKID Pick Identifier

 Chapter 10. GDF order descriptions 307

 GDF orders

Set default viewing window

The Set Default Viewing Window PSC defines the picture
space. For fixed-point GDF, this is in device coordinates.
For floating-point GDF, it is in world coordinates. This PSC
contains the same data as the Set Picture Boundary PSC
and should be considered as defining a view of a picture.

Note: The coordinates can be 2-byte fixed-point data or
4-byte floating-point data.

Set picture boundary

The Set Picture Boundary PSC defines the picture space.
For fixed-point GDF, this is in device coordinates. For
floating-point GDF, it is in world coordinates. This PSC con-
tains the same data as the Set Default Viewing Window PSC
and should be used for setting window coordinates when
redisplaying a GDF picture.

Fld
len

Content Meaning Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 X'02' Process Specific Control
order code

1 X'04' Length of following data 1 LEN Length of following data

1 X'02' Picture Prolog Identifier 1 X'02' Common Picture Prolog

1 X'10' Set Default Text Alignment 1 X'27' Set Default Viewing Window

1 Horizontal text
alignment.

 1 LEN−3 Length of remaining data

1 X'00' Reserved
 X'00' Default

1 Mask:
 X'01' Normal

 B'xx......' Reserved
 X'02' Left

 B'..1.....' x left limit included in list of
WW values X'03' Center

 X'04' Right B'...1....' x right limit included in list of
WW values

 X'FF' Standard
 B'....1...' y bottom limit included in list

of WW values

1 Vertical Text
Alignment.

 B'.....1..' y top limit included in list of

WW values
 X'00' Default

 B'......1.' z near limit included in list of
WW values X'01' Normal

 X'02' Top B'.......1' z far limit included in list of
WW values X'03' Cap

0– 6ñ WW Window values X'04' Half

 X'05' Base

 X'06' Bottom

 X'FF' Standard

308 GDDM Base Application Programming Reference

 GDF orders

Note: The coordinates can be 2-byte fixed-point data or
4-byte floating-point data.

Set picture origin

The Set Picture Origin PSC defines the lower left-hand
corner of the graphics field.

Note: The values returned in x0,y0 are the coordinates of
the lower left-hand corner of the graphics field.

Fld
len

Content Meaning

1 X'02' Process Specific Control
order code

1 LEN Length of following data

1 X'02' Common Picture Prolog

1 X'32' Set Picture Boundary

Fld
len

Content Meaning1 LEN−3 Length of remaining data

1 X'00' Reserved
1 X'02' Process Specific Control

order code1 Mask:

 B'xx......' Reserved 1 LEN Length of following data

 B'..1.....' x left limit included in list of
WW values

1 X'02' GDDM Picture Prolog Identi-
fier

 B'...1....' x right limit included in list of
WW values

1 X'01' Set Picture Origin order code

1 LEN−3 Length of coordinate data
 B'....1...' y bottom limit included in list

of WW values ñ x0 x coordinate of picture origin

ñ y0 y coordinate of picture origin B'.....1..' y top limit included in list of
WW values

 B'......1.' z near limit included in list of
WW values

 B'.......1' z far limit included in list of
WW values

0– 6ñ WW Window values

 Chapter 10. GDF order descriptions 309

 GDF orders

310 GDDM Base Application Programming Reference

 image file formats � image objects

Chapter 11. Image file formats

Image data is entered (or “put”) into images using the
IMAPTS, IMAPT, and IMAPTE calls. The reverse process of
retrieving image data from an image (or “get”) is done by
using the IMAGTS, IMAGT, and IMAGTE calls. If the image
is self-defining, the “put” process is a transfer operation and
so a projection can be used.

The “get” process is always a transfer operation.

Images can also be entered into and retrieved from the appli-
cation program using the IMASAV and IMARST calls. These
store complete images into, and retrieve complete images
from, a database or GDDM object library.

For detailed information on all image calls, see Chapter 3,
“The GDDM calls” on page 21.

Formats and compression types

Image data must have a valid combination of format and
compression type. The following image data formats are
allowed:

1 Unformatted
2 3193 data stream format
3 Page printer format (PPF).

The following image data compression types are allowed:

1 Uncompressed
2 MMR (IBM 8815)
3 IBM 4250
4 IBM 3800.

Only specific combinations of format and compression are
allowed; these are indicated by an “X” in the following table:

3193 data stream and page printer formats

Self-defining data comprises a data stream containing a list
of image objects. These are indicated in Figure 15 on
page 312 by suitable mnemonics.

For entry of formatted data (IMAPT) into either of these
formats, GDDM processes only the first image object in the
data stream (from BIC to EIC for 3193 data stream, and from
BIM to EIM for page printer format) and ignores all others as
shown in Figure 15 on page 312.

For retrieval of formatted data (IMAGT), GDDM constructs an
image object either in 3193DSF or in PPF.

For 3193DSF data, GDDM constructs BIC, ISP, IEP, ID, and
EIC structured fields, but it does not return ILP.

For more information on the 3193 data stream format, see
the IBM 3193 Display Station Description manual.

For PPF data, GDDM constructs BIM, IID, IRD, and EIM
structured fields, but it does not return IOC – except for 120
ppi 3800 image data, which is returned as 240 ppi with a
scale factor of 2 in the IOC.

For more information on the page printer format, see the

� Print Management Facility: User Guide and Reference
manual

� Composed Document Printing Facility: General Informa-
tion manual.

 Unformatted data

Unformatted binary image data is defined as follows:

Compression Uncompressed data; 1 bit per pixel, 8 bits per
byte.

Compressed data; as defined by the com-
pression algorithm.

Padding Uncompressed data; the end of each row is
padded to the byte boundary, if it does not fall
on one.

Compressed data; padding is defined by the
compression algorithm.

Structure No headers, trailers, or imbedded control
fields, other than those defined by the com-
pression algorithm The pixels (and trailing pad
values) occupy contiguous storage.

Row 0 (that is, the top of the picture) comes
first, followed by the other rows in order.

Within a row, the pixels with the lower index
(that is, the left of the picture) come first.

Table 24. Valid combinations of format and compression

 Unfor-
matted

3193 DSF PPF

Uncompressed X X

MMR (IBM
8815)

X X X

IBM 4250 X

IBM 3800 X

Notes:

1. MMR = modified-modified read format (8815 compatible)
2. 3193DSF = 3193 data stream format
3. PPF = page printer format.

 Copyright IBM Corp. 1980, 1996 311

 image objects

3193DSF data stream

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

│BS │...│BIC│ISP│IEP│IIP│ILP│ID │...│EIC│BIC│...│EIC│ES │

 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

 │ │

 Skip to ──5└───────────────────────────────┴────────────────

Image object to be accepted Ignored

 BS : Begin Segment

BIC : Begin Image Content

ISP : Image Size Parameter

IEP : Image Encoding Parameter

IIP : Image IDE Size Parameter

ILP : Image LUT─ID Parameter

 ID : Image Data

EIC : End Image Content

 ES : End Segment

PPF document
┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

│BDT│BPG│...│AEG│BIM│IOC│IID│ICP│IRD│ICP│IRD│...│EIM│BIM│...│EIM│EPG│EDT│

└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

 │ │

 Skip to ──5└───────────────────────────────────────┴───────────────────5

Image object to be accepted Ignored

 BDT : Begin Document

 BPG : Begin Page

AEG : Active Environment Group (optional)

 BIM : Begin Image

IOC : Image Output Control (optional)

IID : Image Input Descriptor

ICP : Image Cell Position

IRD : Image Raster Data

 EIM : End Image

 EPG : End Page

 EDT : End Document

PPF page segment

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

 │BPS│...│AEG│BIM│IOC│IID│ICP│IRD│ICP│IRD│...│EIM│BIM│...│EIM│EPS│

 └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

 │ │

 Skip to ──5└───────────────────────────────────┴────────────────────5

Image object to be accepted Ignored

BPS : Begin Page Segment

EPS : End Page Segment

Figure 15. Accepted data streams (3193DSF and PPF)

312 GDDM Base Application Programming Reference

 image objects

3193DSF output data stream
┌──────┬────────────────────────────┐

│BIC │ │ (Begin Image Content)

└──────┴────────────────────────────┘

┌──────┬────────────────────────────┐

│ISP │ │ (Image Size Parameter)

└──────┴────────────────────────────┘

┌──────┬────────────────────────────┐

│IEP │ │ (Image Encoding Parameter)

└──────┴────────────────────────────┘

┌──────┬────────────────────────────┐

│ID │////////Image Data//////////│ (Image Data)

└──────┴────────────────────────────┘
...

┌──────┬──────────────┬─────────────┐

│ID │//Image Data//│ │ (Image Data)

└──────┴──────────────┴─────────────┘

┌──────┬────────────────────────────┐

│EIC │ │ (End Image Content)

└──────┴────────────────────────────┘

PPF output data stream
┌──────┬────────────────────────────┐

│BIM │ │ (Begin Image)

└──────┴────────────────────────────┘

┌───────────────────────────────────┐

│IOC (32 bytes long) │ (Image Output Control)

└───────────────────────────────────┘

┌───────────────────────────────────┐

│IID (44 bytes long) │ (Image Input Descriptor)

└───────────────────────────────────┘

┌──────┬────────────────────────────┐

│ICP │ │ (Image Cell Portion)

└──────┴────────────────────────────┘

┌──────┬───────────────────────┬────┐

│IRD │//////Image Data///////│ │ (Image Raster Data)

└──────┴───────────────────────┴────┘

┌──────┬────────────────────────────┐

│ICP │ │ (Image Cell Portion)

└──────┴────────────────────────────┘

┌──────┬──────────────┬─────────────┐

│IRD │//Image Data//│ │ (Image Raster Data)

└──────┴──────────────┴─────────────┘
...

┌──────┬────────────────────────────┐

│EIM │ │ (End Image)

└──────┴────────────────────────────┘

Figure 16. IMAGT data streams from GDDM

 Chapter 11. Image file formats 313

 image objects

314 GDDM Base Application Programming Reference

 PIF files

Chapter 12. Picture interchange format files

Application programs can transfer picture information
between GDDM running in a host system and the 3270-PC/G
or 3270-PC/GX work station as picture interchange format
(PIF) files by using the GDDM-supplied GDF conversion
utility (ADMUPCT/V) and the 3270-PC Graphics Control
Program file transfer function.

A PIF file can also be generated on a workstation that uses
GDDM-PCLK, through the User Control facility. (For details,
refer to the GDDM User's Guide.)

As the PIF files on the host have different internal formats
from those on a workstation, when files are transferred from
one system to the other, they must also be converted to the
relevant format before they can be used.

This conversion can be done at the same time as the
transfer operation or as a separate operation.

The methods used to process PIF files vary according to the
subsystem that the GDDM host session is running under.
This chapter explains:

� Processing PIF files under TSO
� Processing PIF files under VM/CMS.

Note: GDDM does not support PIF files under CICS or IMS.

These topics are discussed for each subsystem:

� How PIF data relates to GDF data

� How to create PIF information under GDDM

� How to create PIF information at a workstation

� What a PIF file must contain if it is to be used under
GDDM

� The structure of a PIF file

� Base PIF files.

The commands needed to convert and transfer PIF files are
defined in the sections that follow; for more information, refer
to the GDDM User's Guide.

Processing PIF files under TSO

The conversion operation

The GDF file-conversion utility: The conversion utility
is distributed as a module called ADMUPCT. This utility con-
verts GDDM ADMGDF objects into PIF files, or converts PIF
files from the work station into ADMGDF objects.

The conversion utility also converts files (created by applica-
tions from GSGET calls and often named GDDM Version 1
Release 2 and 3 GDF files) into ADMGDF files; see “Saving
GDF orders” on page 281.

Figure 17 on page 316 shows the flow of events.

When the IND$FILE CLIST executes, the ADMUPCT
command is invoked to run the conversion utility if the
ADMGDF option has been specified in a SEND or RECEIVE
command.

The transfer operation

If the commands described in “Commands to use under
TSO” on page 316 did not work, check that the IND$FILE
CLIST is available at your installation, and that the library
search order searches CLISTs before searching commands.

GDF data files must be converted into PIF files before they
can be sent from GDDM to the workstation. There are four
components in the procedure for transferring and converting
the files:

� The SEND and RECEIVE commands that are issued at
the workstation.

These commands generate the IND$FILE command on
the current host session, with the first parameter set to
either PUT or GET.

� The IND$FILE CLIST that is issued at the host (GDDM).

This CLIST controls the file transfer program and the
conversion utility (see below).

� The IND$FILE file transfer command.

� The GDF conversion utility, which converts GDDM
ADMGDF object files to PIF files, and vice versa.

Of these four components, the SEND and RECEIVE com-
| mands are described in the GDDM User's Guide. The other

components are described in greater detail below.

 Copyright IBM Corp. 1980, 1996 315

 PIF files

 :

GDDM in the host processor : 327ð-PC

 :

 ADMUPCT

 ┌──────────┐ command ┌──────────────┐ IND$FILE ┌─────────────┐

 │ GDDM R4 │ │ Picture │ command │ Picture │

 │ ADMGDF │%───────5│ interchange │%─────┐ │ interchange │

 │ object │ │ format file │ └───5 │ format file │

 └──────────┘ └──────────────┘ │ on 327ð-PC │

& │ diskette or │

│ ┌───────────────┐ │ fixed disk │

│ ADMUPCT │ Application- │ : └─────────────┘

│ command │ written GDF │

└─────────────% │ containing │ :

 │ data │

│ obtained from │ :

│ GSGETS calls) │

 └───────────────┘ :

│ │

└──┘

 :

────────────────────IND$FILE EXEC ─────────────────SEND/RECEIVE

 (supplied as command

ADMUPCFT CLIST, but :

renamed to IND$FILE

when GDDM is installed)

Figure 17. GDF file conversion procedure under TSO

The IND$FILE CLIST: These examples of the commands
work with the IND$FILE CLIST that is supplied with GDDM.

Note: The CLIST is distributed with the name ADMUPCFT
CLIST; it is recommended that it is renamed to IND$FILE
CLIST by the systems programmer, after GDDM has been
installed.

The IND$FILE CLIST invokes the IND$FILE file transfer
program at the workstation.

Notes:

1. On heavily-loaded systems, it may be advisable to
perform the file transfer separately from the conversion;
for details, see “Commands to use under TSO”; for
further information, refer to the GDDM User's Guide.

2. If the ADMUPCFT CLIST has been renamed to a name
other than IND$FILE CLIST, the workstation SET
command can be used to invoke the appropriate CLIST
when a SEND or RECEIVE command is issued. For
details of the SET command, refer to the IBM Personal
Computer Disk Operating System manual.

The IND$FILE file transfer command: This is the
command that transfers files between a workstation and the
host processor.

Note: The file transfer command requires the File Transfer
Program (licensed program number 5665-311), which runs
on MVS/TSO.

Commands to use under TSO

To transfer a PIF file from the workstation to host

1. Ensure that the host session is ready to receive an oper-
ator command (that is, it is in a READY state).

2. From the PC session of the workstation enter:

SEND picture.pif 'pif-dataset-name'

The “pif-dataset-name” data set is automatically allo-
cated if it does not already exist, and is created as a
sequential data-set with fixed-length 80-byte records
(unblocked). The “pif-dataset-name” if it already exists
may be sequential or partitioned. If partitioned, the
member-name must be included in “pif-dataset-name.”

To transfer a GDDM GDF picture from the host to
the workstation

1. Enter the RECEIVE command from the workstation (in a
PC session) as follows:

RECEIVE picture.pif 'pif-dataset-name'

This sends the file “pif.dataset-name” from the host
(GDDM) system to the current workstation directory,
converting it from the ADMGDF format to a PIF format.

If the SEND or RECEIVE command was not successful,
there may be some options not set up on your system,
and you should consider this:

316 GDDM Base Application Programming Reference

 PIF files

To convert a PIF file into a GDDM ADMGDF object

1. Use the commands:

ALLOC F(ADMPIF) DA('pif-dataset-name') SHR

ALLOC F(ADMGDF) DA('admgdf-dataset-name') SHR

CALL 'GDDM.SADMMOD(ADMUPCT)'

'pif-member (PUT admgdf-member options'

Where “admgdf-dataset-name” must exist, and must
| be partitioned. The data set has the attributes
| LRECL(400), RECFM(FB), and BLKSIZE(400 * n).

If “pif-dataset-name” is sequential, pifmember should
be omitted.

To convert a GDDM ADMGDF object into a PIF file

1. Use the commands:

ALLOC F(ADMPIF) DA('pif-dataset-name') SHR

ALLOC F(ADMGDF) DA('admgdf-dataset-name') SHR

CALL 'GDDM.SADMMOD(ADMUPCT)'

 'pif-member(GET admgdf-member,options'

Where “admgdf-dataset-name” must exist, and must
| be partitioned. The data set has the attributes
| LRECL(400), RECFM(FB), and BLKSIZE(400 * n).

If “pif-dataset-name” is sequential, pifmember should
be omitted.

Notes:

1. The admpif-member-name is either a member name of
| the ADMPIF data set or blank if a sequential data set is
| being used.

| 2. The ADMPIF data set defaults are LRECL=400,
| RECFM=(FB), and BLKSIZE(400 * n).

3. The GDDM-supplied IND$FILE CLIST accepts the
SEND and RECEIVE commands from the workstation,
or it can run independently when invoked from GDDM in
the host.

The format of a PIF file

The format of a PIF file under GDDM in the host processor
depends on the subsystem being used; under TSO, it can be
a sequential data set or a member of a partitioned data set.

In a 3270-PC/G or 3270-PC/GX work station, and devices
supported by GDDM-PCLK, the PIF file is a standard
PC-DOS 2.1 file.

In both the host and the workstation, the orders in a PIF file
can span records.

Processing PIF files under VM/CMS

The conversion operation

The GDF file-conversion utility: The conversion utility
is distributed as a module called ADMUPCV. This utility con-
verts ADMGDF objects into PIF files, or converts PIF files
from the work station into ADMGDF objects.

The conversion utility also converts files (created by applica-
tions from GSGET calls and often named GDDM Version 1
Release 2 and 3 GDF files) into ADMGDF files; see “Saving
GDF orders” on page 281.

Figure 18 on page 318 shows the flow of events.

When the IND$FILE EXEC executes, the ADMUPCV
command is invoked to run the conversion utility if the
ADMGDF option has been specified in a SEND or RECEIVE
command.

The transfer operation

If the commands described in “Commands to use under
VM/CMS” on page 318 did not work, check that the
IND$FILE EXEC is available at your installation.

GDF data files must be converted into PIF files before they
can be sent from GDDM to the workstation. There are four
components in the procedure for transferring and converting
the files:

� The SEND and RECEIVE commands that are issued at
the workstation.

These commands generate the IND$FILE command on
the current host session, with the first parameter set to
either PUT or GET.

� The IND$FILE EXEC that is issued at the host (GDDM).

This EXEC controls the file transfer program and the
conversion utility (see below).

� The IND$FILE file transfer command.

� The GDF conversion utility, which converts GDDM
ADMGDF object files to PIF files, and conversely.

Of these four components, the SEND and RECEIVE com-
| mands are described in the GDDM User's Guide. The other

components are described in greater detail below.

The IND$FILE EXEC: These examples of the commands
work with the IND$FILE EXEC that is supplied with GDDM.

Note: The EXEC is distributed with the name ADMUPCFV
EXEC; it is recommended that it is renamed to IND$FILE
EXEC by the systems programmer, after GDDM has been
installed.

The IND$FILE EXEC invokes the IND$FILE file transfer
program at the workstation.

 Chapter 12. Picture interchange format files 317

 PIF files

 :

GDDM in the host processor : 327ð-PC

 :

 ADMUPCV

 ┌──────────┐ command ┌──────────────┐ IND$FILE ┌─────────────┐

 │ ADMGDF │ │ Picture │ command │ Picture │

 │ object │%───────5│ interchange │%─────┐ │ interchange │

 │ │ │ format file │ └───5 │ format file │

 └──────────┘ └──────────────┘ │ on 327ð-PC │

& │ diskette or │

│ ┌───────────────┐ │ fixed disk │

│ ADMUPCV │ Application- │ : └─────────────┘

│ command │ written GDF │

└─────────────% │ containing │ :

 │ data │

│ obtained from │ :

│ GSGETS calls) │

 └───────────────┘ :

│ │

└──┘

 :

────────────────────IND$FILE EXEC ─────────────────SEND/RECEIVE

 (supplied as command

ADMUPCFV EXEC, but :

renamed to IND$FILE

when GDDM is installed)

Figure 18. GDF file conversion procedure under VM/CMS

Notes:

1. On heavily-loaded systems, it may be advisable to
perform the file transfer separately from the conversion;
for details, see “Commands to use under VM/CMS” on
page 318; for more information, refer to the GDDM
User's Guide.

2. If the ADMUPCFV EXEC has been renamed to a name
other than IND$FILE EXEC, the workstation SET
command can be used to invoke the appropriate EXEC
when a SEND or RECEIVE command is issued. For
details of the SET command, refer to the IBM Personal
Computer Disk Operating System manual.

The IND$FILE file transfer command: This is the
command that transfers files between a workstation and the
host processor.

Note: The file transfer command requires the File Transfer
Program (licensed program number 5664-281 for VM/SP)
which runs on VM/SP Release 3 or later.

Commands to use under VM/CMS

To transfer a PIF file from the workstation to host

1. Ensure that the host session is ready to receive an oper-
ator command (for example, ensure that the host
session is not running the Interactive Chart Utility).

2. Ensure that the CMS default SET IMPEX ON is in oper-
ation.

3. Enter the SEND command from the workstation (in a PC
session) as follows:

SEND picture.PIF picture (ADMGDF

This sends the file picture.PIF from the current work-
station directory, converts it to GDDM format (because
of the ADMGDF keyword), and stores the file as a
GDDM ADMGDF picture in the host.

If you want to transmit the file again unchanged (for
back-up or transmission to another workstation), do not
use the keyword option ADMGDF as this option may
result in some details of the picture being lost.

To transfer a GDDM GDF picture from the host to
the workstation

1. Ensure that the host session is ready to receive an oper-
ator command (for example, ensure that the host
session is not running the Interactive Chart Utility).

2. Ensure that the CMS default SET IMPEX ON is in oper-
ation.

318 GDDM Base Application Programming Reference

 PIF files

3. Enter the RECEIVE command from the workstation (in a
PC session) as follows:

RECEIVE picture.PIF picture (ADMGDF

This sends the GDDM ADMGDF picture file from the
host ADMGDF object library to the current workstation
directory.

If you want to transmit the file again unchanged (for
back-up or transmission to another workstation), do not
use the keyword option ADMGDF, as this option may
result in some details of the picture being lost.

To convert a PIF file into a GDDM ADMGDF object

1. Use the command:

ADMUPCV admpif-file-id (PUT admgdf-name options

The options are:

� {NEWFile|REPlace} – creates a new GDF object or
replaces an existing object of the same name.

� {FIXed|FLOAT} – creates the GDF object in fixed- or
floating-point format.

To convert a GDDM ADMGDF object into a PIF file

1. Use the command:

ADMUPCV admpif-file-id (GET admgdf-name options

The options are:

� {NEWFile|REPlace} – creates a new PIF file or
replaces an existing file of the same name.

� {FIXed|FLOAT} – creates the PIF file in fixed- or
floating-point format. If the PIF file is to be sent to a
workstation, this parameter must be specified as
FIXed.

� LRECL {400|n} – specifies the length of each record
for fixed-length files, or the maximum record length
for variable-length files. The value of n must be in
the range 16 through 2000.

� RECFM {F|V} – specifies the record format as fixed
length or variable length.

Note: The admpif-file-id is a standard CMS file identifier.

The format of a PIF file

The format of a PIF file under GDDM in the host processor
depends on the subsystem being used; under VM/CMS, it is
a normal VM/CMS file, conventionally of filetype PIF.

In a 3270-PC/G or 3270-PC/GX work station, and devices
supported by GDDM-PCLK, the PIF file is a standard
PC-DOS 2.1 file.

In both the host and the workstation, the orders in a PIF file
can span records.

Creating PIF data under GDDM

The graphics data in PIF files is essentially the same as that
in fixed-point GDF files. Using GDDM’s GSGETS call, see
Chapter 3, “The GDDM calls” on page 21, with the options
for returning fixed-point coordinate data with a picture prolog,
produces PIF orders.

Creating PIF data at a workstation

There are two ways of creating PIF data at a workstation:

1. By capturing alphanumerics or alphanumerics and
graphics data that is displayed on a monitor. This is
done by:

a. Pressing the Ws Ctrl key

b. Pressing the Print or Print and Shift keys.

This spools a file called INDPRTnn.PIF to the user’s
INDPRT directory for printing at the workstation.

2. By writing an application program to create and save
alphanumerics or graphics data, or both of these.

If they are to be transferred to GDDM, the PIF files created
at a workstation must contain only those drawing orders that
are recognized as GDF orders; the GDF orders are listed
and described in Chapter 10, “GDF order descriptions” on
page 281. The GDF utility converts orders where possible
and diagnoses any changes made.

Note: Spooling a GDDM picture locally causes structural
information to be lost because GDDM optimizes the data
stream for display. Therefore, if possible you should create
your PIF files at the host rather than spooling them locally
into PC disk storage and retrieving them from the work-
station.

How PIF data relates to GDF data

The formats of data in PIF files and in files created by appli-
cations from the results of GSGET calls differ, in some
respects, from those of Version 1 Release 4 GDF (ADMGDF)
files created from GSSAVE calls. The conversion utility con-
verts from one form to the other. The differences are:

� PIF files contain special control information as detailed
below.

� Fixed-point GDF is, usually, a subset of PIF function.
However, some GDF orders before Version 1 Release 4
are ignored by the workstations. The GDF utility makes
the appropriate conversions. The orders are:

X'11' Fractional Line Width
X'41' Marker Scale
X'53' Segment Position
X'71' Segment End
X'72' Segment Attribute
X'73' Segment Attribute Modify.

 Chapter 12. Picture interchange format files 319

 PIF files

The workstation treats all these orders as no operations.

� Fixed-point GDF End Area (X'6800') is treated as a
Begin Area order by workstations. End Area should be
shown using X'6000'.

For a full list of the drawing orders supported by the work-
station, see the IBM 3270 Personal Computer/G or /GX:
Reference Information for Picture Interchange Format
manual. See also the IBM 3270 Personal Computer/G or
/GX: Supplementary Reference Information for Picture Inter-
change Format manual.

Pictures created at the workstation for use under GDDM
should contain only those GDF orders listed in Chapter 10,
“GDF order descriptions” on page 281 and should adhere to
the restrictions that GDDM places on their use.

The conversion utility removes or changes orders in the PIF
file that are not accepted by GDDM. In particular, note that
symbol-set definitions are removed by the GDF conversion
utility. For example, if a chart that uses symbol sets is
created under GDDM’s Interactive Chart Utility (ICU), and is
stored using the Print Spool function, GDDM may use dif-
ferent symbol sets when the chart is sent to GDDM and dis-
played at the host. This is because PIF files created in this
way do not reference the original symbol sets and because
the symbol-set definitions in the PIF file are discarded.

 Base PIF

For GDDM Version 2, there is a subset of GDF orders known
as Base PIF. All Base PIF files can be imported into GDDM.

Restrictions and considerations

To ensure that ADMGDF files convert to Base PIF so that
they can be exported, the following must be borne in mind:

Creating files: Avoid any GDDM calls involved with:

� Multiple-connected areas; for example a ring
 � Image data
 � Image symbols
� Loaded marker and pattern sets
� Foreground color mixing other than overpaint.

The spool print function: The same restrictions listed
above must be observed when the Spool Print function is
used to produce a PIF file from a picture originally created by
a GDDM application.

The GDDM sample program ADMUSP4: PIF files
imported into GDDM cannot be edited directly by the GDDM
sample program ADMUSP4; refer to the program described
in the GDDM Base Application Programming Guide.

ADMUPCV and ADMUPCT utilities: When using these
utilities to create PIF files, avoid generating files that have a
floating-point format.

LCLMODE processing option: Ensure that the
LCLMODE processing option is enabled. This ensures that
the maximum amount of picture detail is present in a PIF file
resulting from Spool Print. In the absence of local mode,
GDDM optimizes the data stream (for example, an arc is
expanded into a series of line segments), such that, at the
original scale, a picture is displayed correctly. However,
exporting the resulting PIF file to another product such as
DisplayGraphics, would not give the intended result.

GGXA file conversion: PIF files created by GGXA that
contain pictures drawn with black lines will not be visible
when imported into GDDM and viewed using a GDDM appli-
cation, such as the ICU. They will, however, be plotted and
printed successfully by GDDM.

DisplayGraphics: PIF files created by DisplayGraphics
should be drawn white with black background. They, when
imported into GDDM and viewed using a GDDM application,
such as the ICU, display correctly as a white image on a
black background, and print as black on white background.

The structure of a PIF file

A PIF file consists of the GDF orders that are listed and
described in Chapter 10, “GDF order descriptions” on
page 281. Also, it can contain specific orders from the work-
station. The structure of a PIF file created at a workstation is
as follows:

320 GDDM Base Application Programming Reference

 PIF files

File Descriptor order
Begin Symbol Set Mapping order

Map Symbol Set Identifier order One for each identifier

End Symbol Set Mapping order

Begin Line Type Mapping order
Map Line Type Identifier order

End Line Type Mapping order

Begin Picture Prolog order
Set Picture Coordinates order
Set Picture Boundary order
Set Page Color order
“picture default” orders

End Picture Prolog order

Begin Segment order Repeated for each segment
“segment attribute” orders of the picture
End Segment Prolog order

 “drawing” orders
End Segment order

Begin Symbol Set Definition order See Note 2 below
Load Symbol Set structured field Repeated as needed for
Continue Symbol Set Definition order multiplane image symbol
Load Symbol Set structured field sets

 ...
End Symbol Set Definition order

Begin Line Type Definition order
Load Line Type structured field

End Line Type Definition order

Figure 19. The structure of a PIF file

Notes:

1. Where present, the File Descriptor, Symbol Set
Mapping, Line Type Mapping, Picture Prolog, Picture
Segments, Symbol Set Definition, and Line Type Defi-
nition orders must be in the sequence shown.

2. The symbol-set definition orders are repeated for each
internal symbol-set definition.

3. COMMENT and NOOP orders can be placed anywhere
in the file except between the Begin Symbol Set Defi-
nition and End Symbol Set Definition orders, and
between the Begin Line Type Definition and End Line
Type Definition orders.

4. The GDDM-supplied conversion utility (ADMUPCT/V)
removes these orders when the PIF file is converted to
GDDM format:
� The Line Type Mapping and Line Type Definition

orders
� The Symbol-Set Definition orders
� The Set Page Color order.

The File Descriptor and Line Type Mapping orders, and the
Set Page Color order, have no corresponding GDDM GDF
orders. The format of these orders is described in the IBM
3270 Personal Computer/G or /GX: Reference Information
for Picture Interchange Format manual.

 Chapter 12. Picture interchange format files 321

 PIF files

322 GDDM Base Application Programming Reference

 CGM

Chapter 13. Computer Graphics Metafiles

A computer graphics metafile (CGM) is a file that contains
information about the content of a picture, and conforms to

| the International Standard, ISO 8632, 1987(E), or later, or is
of a similar format.

CGM files can be output to a number of devices, such as
plotters. They can also be modified by any of the editors
that accept such files.

Note: CGM support is only available in the CMS, TSO, and
MVS/Batch environments.

| GDDM allows you to save (export) pictures in CGM format,
| and to load (import) CGM files into GDDM storage. You can

also convert CGM files to ADMGDF format, so that CGM
files can be modified or processed by GDDM applications,
and you can convert ADMGDF files to CGM.

CGM is a fairly broad standard and, as a consequence,
applications that generate CGM files do so in their own way.
The CGM conversion functions of GDDM are sufficiently

| general to handle CGM files produced by various graphical
| applications. Table 25 shows the conversion profiles sup-
| plied with GDDM to aid conversion between the ADMGDF
| format and the CGM format produced by each of the listed
| graphics applications:

The parts of the conversion process that are specific to appli-
cations are defined in a CGM Conversion Profile . GDDM
supplies a profile tailored to each of the applications listed

| above, although, depending on usage, further tailoring may
| be necessary.

| In a number of instances, the general-purpose profile will
| produce acceptable output without further tailoring (especially
| with enhancements added for GDDM V3.2). You may want
| to use this profile as the basis for your own tailored conver-
| sion profiles for applications used by your enterprise. You

may need to write your own profiles for other applications.
| See “Conversion profiles” on page 329 and the information

| on retrieving pictures for CGM in the GDDM Base Application
| Programming Guide for more detail.

When GDDM converts files between CGM and ADMGDF
formats, an exact correspondence of the picture is not
always possible, because the two formats do not map exactly
onto each other. Within the limitations described later,
GDDM makes the pictures correspond as closely as pos-
sible. However, converted pictures are not guaranteed to be
identical to the original. The way in which specific orders are
handled is described in “GDF order processing (CGSAVE
call)” on page 339 and “CGM order processing (CGLOAD
call)” on page 340. Note the following general restrictions on
the conversions:

� GDDM supports only the Binary Encoding as defined in
ISO 8632-3.

| � Some CGM Version 1 orders (such as cell arrays) and
| all Version 2 and 3 orders are ignored on input. See
| Table 36 on page 340.
| � CALS (the US-MIL-D standard) restricts fonts to the
| Hershey range and certain other fonts. The Hershey
| fonts are not provided as GDDM fonts, and so, on con-
| version from CGM to GDF, available GDDM symbol sets
| are substituted for them. For further details of CALS,
| see MIL-D-28003A, November 1991 (Federal Information
| Processing Standard publication 128).
| � CALS additional pattern sets are not supported on input
| or output. Some additional linetypes (such as 6, single
| arrow) are not correctly converted on input.

� Double-byte character strings (DBCS) are not supported.
� There is no specific support for APL or Katakana charac-

ters.

The conversion functions are provided by two GDDM base
calls, CGLOAD and CGSAVE. The PL/I declarations for the
API calls are in ADMUPINK and ADMUPIRK.

Application program calls

Full descriptions of the CGLOAD and CGSAVE calls are
given in Chapter 3, “The GDDM calls” on page 21.

 CGLOAD

The CGLOAD call retrieves one or all pictures from a Com-
puter Graphics Metafile (CGM) on auxiliary storage and loads
it into the graphics field of the current GDDM page. It can
create a graphics segment for each individual primitive, to
assist with later editing of the picture, or can load the entire
picture into one graphics segment.

The permitted formats of the CGM files handled by this call
are defined in “CGM file format” on page 327.

| Table 25. GDDM-supplied conversion profiles for conversion of
| data between ADMGDF and CGM formats.

| Conversion profile| Graphics application

| ADM| General Purpose

| ADMCD| Corel Draw

| ADMFP2| Freelance Plus V2

| ADMFP3| Freelance Plus V3

| ADMHG| Harvard Graphics

| ADMMD| Micrografx Designer

| Note: In GDDM Version 2 Release 3, the names of these con-
| version profiles began with the characters CGM. If you specify
| a profile beginning with CGM, but GDDM cannot find it, GDDM
| looks for the corresponding profile beginning with ADM.

 Copyright IBM Corp. 1980, 1996 323

 CGM

 CGSAVE

The CGSAVE call saves specific graphics segments or all
the graphics segments in the current GDDM page, into a
CGM file on auxiliary storage.

The format of the CGM files created by this call is defined in
“CGM file format” on page 327.

 Utility programs

| GDDM provides two CGM-ADMGDF conversion utilities:

| � ADMUCG
| � ADMUGC

 ADMUCG

This utility converts a CGM file to a floating-point ADMGDF
file.

If you simply want to display the file on screen, and if you
| are calling it using ADMUCG, under CMS just enter:

| ADMUCG cgmfilename

All other parameters are optional.

If you want to convert a CGM file to an ADMGDF file, the
| CGM filename, filetype, and filemode, and the GDF filename
| are mandatory. For example, under CMS:

| ADMUCG cgmfilename cgmfiletype cgmfilemode gdffilename

| The GDF filetype and filemode are optional.

 Format

Under CMS, the keywords following the opening parenthesis
can occur in any order. If a keyword is specified more than
once, the last specification is used.

Under TSO, all of the keywords (including FROM and TO)
can occur in any order. If a keyword is specified more than
once, the last specification is used. The parameters fol-
lowing all of the keywords (including FROM and TO) must be
enclosed in parentheses.

Keywords: Permitted keywords with their parameters (with
the minimum abbreviation shown in uppercase) are:

 PICture picture-number

 PROFile profname

 View

NEW | REPlace

 Codepage cpn

PICture The sequence number within the CGM of the
| picture to be converted. Use -1 to choose all
| the pictures (the default).

PROFile The name of the conversion profile to be
| used. If the profile name is not specified, the
| default is ADM, except on CMS. On CMS,
| the filetype of the CGM file is used as the
| profile name. For example, on CMS:

| ADMUCG MYCGM MYTYPE A MYADF ADMGDF A

| would use a default profile name of MYTYPE.
| However, if the CGM filetype is CGM, profile
| ADM is used (if found). Otherwise, profile
| CGM is used.

| On TSO, you must allocate DD name
| ADMCGM to point to your SADMSAM data
| set to use the GDDM-supplied profiles, or to
| your own data set if you want to use your
| own profile.

View Displays the converted picture on the screen.
NEW|REPlace Specifies how to deal with the output file.
Codepage The code page that was used by the CGM

generating application.

 Parameters

data_set_name The name of the data set containing the
GDDM load library.

cgm-file The input CGM file to be converted.

Under CMS, this parameter is a CMS fileid, as
follows:
fn The CMS filename of the file – any valid

CMS file name.
ft The CMS filetype of the file – any valid CMS

| file type. The default is “CGM” (which
| GDDM maps onto the ADM profile). If you
| use the appropriate conversion-profile name
| as the filetype, GDDM uses that profile auto-
| matically for the conversion and there is no
| need to specify it as a keyword.

fm The CMS filemode of the file – any valid
CMS file mode, or “ñ” (default), indicating
the first occurrence of the file in the CMS
search order.

| Under TSO, this parameter specifies a fixed-
| block data set of record length 400 containing
| the CGM file to be loaded. The data set can be
| specified in one of the following ways:
| � As a pre-allocated DD name pointing to a
| single PDS member
| � As a pre-allocated DD name pointing to a
| sequential data set
| � As a data-set name pointing to a sequential
| data set. The data-set name can either be

CMS:
ADMUCG cgm-file gdf-file (keyword_parms

TSO:
CALL 'data_set_name(ADMUCG)'

'FROM(cgm-file) TO(gdf-file)
keyword_parms'

324 GDDM Base Application Programming Reference

 CGM

| fully qualified in which case it must be speci-
| fied in single quotes, for example:

| 'FROM(MYGDF) TO(''MYHLQ.CGM.DATA'')'

| or, if the quotes are omitted, the TSO
| PROFILE PREFIX is used as a prefix to the
| data-set name.
| � As a data-set name pointing to a single PDS
| member. The data-set name can either be
| fully qualified, in which case it must be
| specified in single quotes, or if the quotes
| are omitted, the TSO PROFILE PREFIX is
| used as a prefix to the data-set name.

gdf-file The floating point ADMGDF file to be produced.
If this parameter is omitted, no output file is
created and the VIEW option is assumed.

Under CMS, this parameter is a CMS fileid, as
follows:
fn The CMS filename of the file – any valid

CMS file name or “=”, indicating the same
file name as the cgm-file.

ft The CMS filetype of the file. This parameter
is allowed but ignored. The file type used is
the current GDDM external default value
(usually “ADMGDF”).

fm The CMS filemode of the file. This can be
omitted but must be “A”, if specified.

Under TSO, gdf-file is the name of a member
within the partitioned data set defined by the
ddname ADMGDF or the GDDM external default

| value. The new member created by this call to
| ADMUCG must not exist already.

Description: The input CGM file is converted to GDF
format and may be viewed, saved in an ADMGDF file, or
both. If the VIEW option is selected or no output ADMGDF
file is specified, the converted picture is shown on the screen
and a “read” is issued. Any PF key causes the VIEW func-
tion to end, except for the key defined to invoke GDDM User
Control. User Control can be entered and the picture manip-
ulated and saved in the usual way. Manipulations have no
effect on a picture subsequently saved as a GDF file. Other
keys such as CLEAR and the PA keys have their usual
effect.

The permitted formats of the CGM files handled by this
program are defined in “CGM file format” on page 327.

The CGM descriptors are handled in the following way:

� The text from the begin metafile and metafile descriptor
elements of the metafile are discarded.

� The name from the begin picture element is placed in
the ADMGDF file as the GDF descriptor, after appro-
priate code page translation as defined in “National lan-
guage code pages” on page 328.

ADMUCG uses the picture_info_parms provided in the con-
version profile (see page 336), except that a picture-number

or cpn (code page number) parameter will take precedence
over the values in the profile.

 Return codes

0 Normal completion
100 Too many (>6) name-parts: '(' not found when

expected
101 Invalid option: unexpected character string after '('
102 Option value not numeric (CODEPAGE or PICTURE)
103 Keyword >8 chars or value in () too long (TSO only)
104 CGLOAD failed
105 GSSAVE failed
106 ASREAD failed
107 Specified GDF file filetype is not 'A'
108 DSOPEN failed
Other Return code from failed FSINIT or FSTERM.

 ADMUGC

This utility converts an ADMGDF file to a CGM file.

If you simply want to display the file on screen, and if you
| are calling it using ADMUGC, under CMS just enter:

| ADMUGC gdffilename

All other parameters are optional.

If you want to convert an ADMGDF file to a CGM file, the
| ADMGDF file name, type, and mode, and CGM file name are
| mandatory. For example, under CMS:

| ADMUGC gdffilename gdffiletype gdffilemode cgmfilename

| The CGM file type and mode are optional.

 Format

Under CMS, the keywords following the opening parenthesis
can occur in any order. If a keyword is specified more than
once, the last specification is used.

Under TSO, all of the keywords (including FROM and TO)
can occur in any order. If a keyword is specified more than
once, the last specification is used. The parameters fol-
lowing all of the keywords (including FROM and TO) must be
enclosed in parentheses.

Keywords: Permitted keywords with their parameters (with
the minimum abbreviation shown in upper case) are:
 PROFile profname

 View

NEW | REPlace

 Codepage cpn

CMS:
ADMUGC gdf-file cgm-file (keyword_parms

TSO:
CALL 'data_set_name(ADMUGC)'

'FROM(gdf-file) TO(cgm-file)
keyword_parms'

 Chapter 13. Computer Graphics Metafiles 325

 CGM

PROFile The name of the conversion profile to be
| used. If the profile name is not specified, the
| default is ADM, except on CMS. On CMS,
| the filetype of the CGM file is used as the
| profile name. For example, on CMS:

| ADMUGC MYADF ADMGDF A MYCGM MYTYPE A

| would use a default profile name of MYTYPE.
| However, if the CGM filetype is CGM, profile
| ADM is used (if found). Otherwise, profile
| CGM is used.

| On TSO, you must allocate DD name
| ADMCGM to point to your SADMSAM data
| set to use the GDDM-supplied profiles, or to
| your own data set if you want to use your
| own profile.

View Displays the input ADMGDF picture on the
screen.

NEW|REPlace Specifies how to deal with the output file.
Codepage The code page that the application receiving

the CGM is expecting.

 Parameters

data_set_name The name of the data set containing the
GDDM load library.

gdf-file The name of the ADMGDF file to be converted.
The file can be in either fixed or floating-point
format.

Under CMS this parameter is defined as follows:
fn The CMS filename of the file – any valid

CMS file name.
ft The CMS filetype of the file – any valid file

type, normally “ADMGDF.” If ft is omitted,
the current GDDM default (normally
ADMGDF) is used. If specified as “ñ” or
omitted, the filetype “ADMGDF” or the
current GDDM external default value is
assumed.

fm The CMS filemode of the file. Any file mode
may be specified here but it is ignored and
assumed to be “ñ”.

Under TSO, gdf-file is the name of a member
within the partitioned data set defined by the
ddname ADMGDF or the GDDM external default
value.

cgm-file The name of the CGM file to be produced. If
this parameter is omitted, no output file is
produced and the VIEW option is assumed.

Under CMS this parameter is defined as follows:
fn The CMS filename of the file – any valid

CMS file name, or “=”, indicating that the
same file name is used as given in gdf-file .

ft The CMS filetype of the file – any valid CMS
file type. If omitted, the default is “CGM”

| (which GDDM maps onto the ADM conver-
| sion profile). If you specify as the filetype
| the name of the conversion profile for the

| type of CGM file you want, GDDM automat-
| ically uses that profile for the conversion.

fm The CMS filemode of the file – any valid
CMS file mode, or “=”. The default is “A”.
“ñ” is not permitted.

| Under TSO, this parameter specifies a fixed-
| block data set of record length 400 containing
| the CGM file to be loaded. The data set can be
| specified in one of the following ways:
| � As a pre-allocated DD name pointing to a
| single PDS member
| � As a pre-allocated DD name pointing to a
| sequential data set
| � As a data-set name pointing to a sequential
| data set. The data-set name can either be
| fully qualified in which case it must be speci-
| fied in single quotes, for example:

| 'FROM(MYGDF) TO(''MYHLQ.CGM.DATA'')'

| or, if the quotes are omitted, the TSO
| PROFILE PREFIX is used as a prefix to the
| data-set name.
| � As a data-set name pointing to a single PDS
| member. The data-set name can either be
| fully qualified, in which case it must be
| specified in single quotes, or if the quotes
| are omitted, the TSO PROFILE PREFIX is
| used as a prefix to the data-set name.

| Note: If you use a DD name, the data set or
| PDS member is created if it does not already
| exist or is overwritten if it already exists. If you
| specify a data-set name that points to a sequen-
| tial data set, the data set must not already exist.

Description: ADMUGC converts an ADMGDF file to a
CGM file and/or allows it to be viewed at the user’s display
terminal. If the VIEW option is selected (or defaulted), the
ADMGDF picture prior to conversion is shown on the screen
and the user may interact with it by means of User Control in
the same manner as for ADMUCG. Any changes made do
not affect the saved picture.

The format of the CGM files created by this call is defined in
“CGM file format” on page 327.

The CGM descriptors are generated in the following way:

� The text of the begin metafile and metafile descriptor
elements of the metafile are generated automatically and
contain information about the date and time of the con-
version, the name of the source file, and the name and
version of the program performing the conversion.

� The name on the begin picture element is copied from
the ADMGDF file descriptor, after appropriate code page
translation as defined in “National language code pages”
on page 328.

ADMUGC uses the picture_info_parms provided in the con-
version profile (see page 336), except that a picture-number

326 GDDM Base Application Programming Reference

 CGM

or cpn (code page number) parameter will take precedence
over the values in the profile.

 Return codes

0 Normal completion
100 Too many (>6) name-parts: '(' not found when

expected
101 Invalid option: unexpected character string after '('
102 Option value not numeric for CODEPAGE
103 Keyword >8 chars or value in () too long (TSO only)
104 GSLOAD failed
105 CGSAVE failed
106 ASREAD failed
107 ESEUDS failed
108 DSOPEN failed
Other Return code from failed FSINIT or FSTERM.

SEND and RECEIVE

These utilities let you transfer files between a workstation
and a host session. They use the PROFile and Codepage
options as used by the ADMUCG and ADMUGC utilities.
They have an extra option (ADMCGM) to cater for the con-
version between CGM and GDF formats.

The syntax for SEND and RECEIVE is as follows:

SEND pcfile hostfile

(ADMCGM PROFILE profname Codepage cpn

RECEIVE pcfile hostfile

(ADMCGM PROFILE profname Codepage cpn

 External defaults

The default filetype (on CMS) or ddname (on TSO) of the
conversion profiles may be changed using the external
default options CMSCPT and TSOCPT respectively. The
GDDM default for both is ADMCGM. The syntax is:

DEFAULT CMSCPT=aaaaaaaa

for CMS, and

DEFAULT TSOCPT=aaaaaaaa

for TSO.

CGM file format

CGM files used as input to CGLOAD or ADMUCG can be in
fixed length or variable length record format, and can have a
record length of up to 8000 bytes. The files must be in CGM
binary format.

CGM files created by ADMUGC and CGSAVE are in fixed
length record format with a record length of 400 bytes.

 Chapter 13. Computer Graphics Metafiles 327

 CGM

\ General-purpose conversion profile for CGM/ADMGDF conversion

\

| \ 5695-167, 5684-168, 5686-ð57, 5646-ðð1 (c) Copyright IBM Corp. 199ð, 1996

\ Licensed Materials - Property of IBM

\

 PICTURE_INFO_PARMS ð ð 4 2 ð ð;

| \CGM_BACKGROUND_COL -1;

| \SCALE_MODE_FACTOR 3ðð;

 \WINDOW_LIMITS ð ð 32767 32767;

| LINE_WIDTH_FACTOR 3ð 1.ð;

 MARKER_SIZE_FACTOR .5;

 \ These colors are those defined in the CALS standard

 CGM_COLOR_INDEX ð 1 2 3 4 5 6 7 8 9 ð 1 3 9 1ð 11 12 13 14 15 16;

| GDF_COLOR_INDEX -2 -1 2 4 1 6 3 5 -2 -1 8 7 ð 9 1ð 11 12 13 14 15 16;

 CGM_LINE -2 -1 1 2 3 4 5 6 7;

 GDF_LINE 5 2 7 2 1 3 6 8 4;

 LINE_CONVERT_MODE 1 1 1 1 1 1 1 1 1;

 CGM_MARKER 5 5 2 -1 -2 3 -3 -4 -5 1 1 4 4 ð ;

 GDF_MARKER ð 1 2 3 4 5 6 7 8 9 75 1ð 96 74 ;

 MARKER_CONVERT_MODE 1 1 1 ð ð 1 ð ð ð 1 1 1 1 ð ;

 CGM_PATTERN -12 -11 -1ð -9 -8 -7 -6 -5 -4 -3 -2 -1 ð 1 2 3 4 5 6 ð ð;

GDF_PATTERN 12 14 1ð 9 8 7 6 5 4 3 2 1 ð 1ð 9 11 13 5 6 15 16;

 PATTERN_CONVERT_MODE 1;

| CGM_FONT_INDEX 1 2 3 4 5 6 7 8 9 1ð 11 12;

| CGM_FONT_NAME TIMES_ROMAN TIMES_ITALIC TIMES_BOLD TIMES_BOLD_ITALIC

| HELVETICA HELVETICA_OBLIQUE HELVETICA_BOLD

| HELVETICA_BOLD_OBLIQUE COURIER COURIER_BOLD COURIER_ITALIC

| COURIER_BOLD_ITALIC;

| GDF_FONT_NAME ADMUUT ADMUUTI ADMUUTB ADMUUTBI ADMUUH ADMUUHI ADMUUHB

| ADMUUHBI ADMUVC ADMUVCB ADMUVCI ADMUVCBI;

| GDF_FONT_INDEX 1ð1 1ð2 1ð3 1ð4 1ð5 1ð6 1ð7 1ð8 1ð9 11ð 111 112;

| CHAR_WIDTH_FACTOR 1 1 1 1 1 1 1 1 1 1 1 1;

| CHAR_HEIGHT_FACTOR 1 1 1 1 1 1 1 1 1 1 1 1;

| FONT_CONVERT_MODE 1 1 1 1 1 1 1 1 1 1 1 1;

Figure 20. Example of a conversion profile.

National language code pages

Wherever character strings appear in ADMGDF or CGM
source files they are subject to code page translation during
conversion. Three types of code pages are involved in the
process:

CGM code page
The code page defining the text string content of the
CGM input or output file. Any code page in the user-

| modifiable module ADMDATRN is allowed. Code
| pages 437 (United States), 850 (multilingual), and 819
| (ISO/ANSI Multilingual), as shown in the GDDM
| System Customization and Administration book, have

been specifically provided for CGM support. The code-
page is defined by one of the following means:

� The picture_info_parms keyword of the conversion
profile

� The opt-array parameter of CGLOAD or CGSAVE
� The Codepage keyword in ADMUCG or ADMUGC.

Application code page
ADMUCG creates an ADMGDF file using the applica-
tion code page defined (or defaulted) by the GDDM
application program.

On CGLOAD, all character strings, including descrip-
tors, are translated to the application code page. (If
the application code page is 351, the translation is only
approximate.)

Installation code page
In common with other GDDM file names, the names of
the conversion profile and CGM source files are trans-
lated according to the GDDM installation code page.
Symbol set names in conversion profiles are also
translated according to the installation code page.
(This is specified by the INSCPG external default
value.)

328 GDDM Base Application Programming Reference

 CGM

 Conversion profiles

The way in which graphics orders are converted from CGM
to GDF and from GDF to CGM is controlled by a Conversion
Profile. The same profile is used for conversion in either
direction. Several profiles are supplied with GDDM, tailored
to the CGM files produced by specific graphics applications.

The conversion profile must be an F-format or V-format file
with a record length no longer than 256. Under CMS, the
profile has default filetype ADMCGM (for example, the

| GDDM-supplied profile for Freelance Plus V2 is ADMFP2
| ADMCGM). Under TSO, the ADMCGM ddname must be

allocated (using the ALLOC command) to the partitioned data
set containing the conversion profiles.

Format of a conversion profile

The conversion profile is a free-format file which consists of:

� Lines containing specified key-words followed by their
parameters

� Continuation lines (where the previous line contained an
incomplete keyword/parameter sequence).

� Comment lines (those starting with a “ñ”).

The contents of a conversion profile can be in mixed, lower,
or upper case, and leading blanks are not significant.
Keywords are followed by their parameters, and they are ter-
minated by a semicolon. Any text following the semicolon
until the end of the line is treated as a comment. An
example is given in Figure 20 on page 328.

The information specified in the conversion profile is of two
types:

� Picture mapping information , which specifies how
fonts, lines, patterns, and so on, are mapped during con-
version.

� Picture adjustment factors , which define various
adjustments necessary to allow for differences in CGM
files from different sources.

Picture mapping information

Table 26 shows the picture mapping keywords. There are
usually two of each type and they are usually specified in
pairs, though the order is immaterial.

During a GDF to CGM conversion, the value of the GDF
order (such as line type) is searched for in the parameters to
the appropriate GDF keyword (in this case, GDF_LINE). If it
is found, the corresponding parameter in the matching CGM
keyword (in this case CGM_LINE) is taken as the CGM
value. If the value being scanned for occurs more than once
in the GDF keyword, the first occurrence is used.

The converse process is followed when converting from
CGM to GDF.

For example, if line type 7 is encountered in a GDF order,
this is the third item in the GDF_LINE entry in Figure 20 on
page 328. The corresponding third entry in the CGM_LINE
entry is 1, and the CGM line type is therefore set to 1.

Although the keyword prefix “GDF” is used, the parameters
to these keywords correspond to GDDM API call parameters
and not to their encoded form in the GDF orders.

Picture mapping information is subject to the following rules:

1. Keywords and their parameters can be continued on
multiple lines up to a parameter count of 256.

2. Numeric values must be in the range −255 through
+255.

3. If the same keyword appears more than once in the con-
version profile, the final specification is the one that is
used.

4. If a keyword is missing (either a pair or one of a pair),
the GDDM-defined default values are used for the
missing parts. These defaults are defined in Table 29
on page 331.

Table 26. Picture Mapping Keywords

Attribute Keywords used in conversion profile

| Background color| CGM_BACKGROUND_COL

Line type CGM_LINE
GDF_LINE

Marker type CGM_MARKER
GDF_MARKER

Pattern type CGM_PATTERN
GDF_PATTERN

| Color index| CGM_COLOR_INDEX or
| CGM_COLOUR_INDEX
| GDF_COLOR_INDEX or
| GDF_COLOUR_INDEX

| Color mapping| COLOR_MAPPING or
| COLOUR_MAPPING

Font index and name CGM_FONT_INDEX
| CGM_FONT_NAME

GDF_FONT_INDEX
GDF_FONT_NAME

 Chapter 13. Computer Graphics Metafiles 329

 CGM

5. The two keywords of a pair need not appear together in
the conversion profile, but it aids readability if they do.

6. If one keyword of a pair has fewer parameters supplied
than the other, excess parameters on the longer one are
ignored.

7. If a value in the input order stream is not found in the
corresponding keyword parameters, the value inserted in
the output order stream is the conversion default for the
target format. These values are defined in Table 27.

8. If a value is not specified in the input order stream and it
is required to be generated in the output order stream,
the value inserted in the output is the conversion default.

9. The GDDM default value (0) can be used as a GDF_
keyword parameter and it is processed in the same way
as any other value.

| The following additional rules apply to CGM_FONT_NAME:

| 1. A maximum of 32 parameters may be used.

| 2. CGM_FONT_NAME normally has no default, but is
| HELVETICA if the CALS_COMPLIANCE keyword value
| is 1.

| 3. CGM font names may be enclosed in "quotes" if special
| characters, such as space or semicolon, are to form part
| of the CGM font name.

| 4. CGM font names may be no more than 32 characters
| long (excluding any enclosing quotes).

The following sections give details specific to some of the
mappings.

Note: The mapping of fonts, lines, patterns, and markers is
under the control of the convert_mode keywords that can be

used to stroke out these higher-level primitives to simple
vectors. These keywords are described on page 338.

| Background Color: The default CGM background color is
| white.

| If the imported CGM does not specify the background color,
| white is assumed. When a CGM is exported, the back-
| ground color is set to white, unless another color is specified
| by the CGM_BACKGROUND_COL keyword, which allows
| the exported CGM to have a defined color.

Color Index: CGM indexed colors (without a color table
definition) and GDDM colors are mapped to each other in the
standard way, with the difference that the default values are
cyclical.

The sequence between the braces, {}, in Table 29 on page
331 is extended as necessary for any required input color
with CGM_COLOR_INDEX increasing in steps of one, and
GDF_COLOR_INDEX repeating the cycle:

{2 4 1 6 3 5 8 7 }

On CGM to GDF conversion, for CGM indexed color, color
tables given in the metafile are ignored, except where the
mapped GDF value is 0. In that case, the resultant color is
the closest match to the color table’s RGB value in the
GDDM colors −2 through 16.

Table 28. Color Table created by CGSAVE/ADMUGC

Color Red Green Blue
Table 27. Conversion default values

neutral 255 255 255
Attribute GDF conversion

default
CGM conversion
default

red 255 0 0
green 0 255 0
blue 0 0 255Color| −1 1
yellow 255 255 0Marker 5 3
magenta 255 0 255Line 0 1
cyan 0 255 255Pattern| 10 1
background 0 0 0Font 0 1
dark blue 0 0 170| Background color| −2| White
orange 255 170 0
purple 170 0 170
dark green 0 170 0
dark turquoise 0 170 170
mustard 170 170 0
grey 85 85 85
brown 170 85 10

330 GDDM Base Application Programming Reference

 CGM

Table 29. Keyword Defaults.

These are defined such that lines, markers, colors, etc, in one standard map to the same or similar entities in the other.

Keyword Default values when keyword is absent from profile

CGM_LINE
GDF_LINE

1 2 3 4 5 1 1 1

7 2 1 3 6 ð 4 5

CGM_MARKER
GDF_MARKER

1 2 3 4 5 3 3 3 3 3 5

9 2 6 1ð 1 3 4 5 7 8 ð

CGM_PATTERN
GDF_PATTERN

1 2 3 4 5 6 1 1 1 1 1 1 1 1 1

1ð 9 11 13 12 14 ð 1 2 3 4 5 6 7 8

CGM_COLOR_INDEX
GDF_COLOR_INDEX

 ð 1 2 3 4 5 6 7 8 9 {1ð 11 12 13 14 15 16 17} ð 1 3 9 1ð 11 12 13 14 15 16

| -2 -1 2 4 1 6 3 5 -2 -1 { 2 4 1 6 3 5 8 7} -2 -1 ð 9 1ð 11 12 13 14 15 16

CGM_FONT_INDEX
GDF_FONT_INDEX

ð 1 2 3 4 5 6 7 8 9 1

1ðð 1ð1 1ð2 1ð3 1ð4 1ð5 1ð6 1ð7 1ð8 1ð9 ð

GDF_FONT_NAME
| CGM_FONT_NAME
| (none)
| (none)

Note: for a description of the COLOR_INDEX default see “Color Index”

For CGM direct color, RGB values are approximated to the
closest match in the GDDM colors 0-16, except where the

| RGB value is used in a non-background area fill, in which
case its closest match in the 64 color pattern set
ADMCOLSD is used.

On CGSAVE, a color table is placed in the metafile and
entries are selected according to the COLOR_INDEX values
in the conversion profile. The entries in this color table are
shown in Table 28 on page 330.

The order of the entries in the color table depends on the
color_index values in the conversion profile. The nth entry in
the table has a color value equivalent to the GDF color that
CGM color n maps to in the profile, where 1≤n≤16.

| Color mapping: The COLOR_MAPPING keyword is an
| alternative to the COLOR_INDEX keyword as way of speci-
| fying color mapping for the creation and interpretation of
| CGM data. The COLOR_MAPPING keyword takes a single
| parameter that controls the way GDDM interprets colors in a
| CGM and also controls the size of the color table generated
| in a GDDM CGM. The values that this parameter can have
| are shown in Table 30 on page 332.

| The color is determined by the Red-Green-Blue (RGB)
| values specified in the CGM. These RGB values are in the
| range 0-255 and are shown in Table 31 on page 332. (The
| color names are not intended to accurately indicate the color
| shown; you should not try to select a color based on its
| descriptive name.)

| The mapping of the RGB values to a GDDM color is
| explained in Table 30 on page 332.

 Chapter 13. Computer Graphics Metafiles 331

 CGM

| Table 30. CGM color_mapping parameter

| Color_mapping
| parameter
| Description

| 0| This is the default color mapping mode and is compatible with GDDM Version 2 Release 3 and GDDM Version 3
| Release 1.

| 16| When interpreting a CGM, the RGB specified in the CGM is mapped to a GDDM color in the range −2 to 16. The
| color chosen has the RGB value closest to that specified in the CGM. The GDDM color RGB values used are the
| first 16 shown in Table 31 on page 332.

| If a CGM using indexed color selection mode omits the RGB values for a color, the CGM color index is used as the
| GDDM color number.

| When generating a CGM, a 16-element color table is generated. The CGM color index values correspond to the
| GDDM color numbers. The only exception to this is for Black (−1), White (−2), Neutral (7) and Background (8). The
| generated color table specifies CGM color index 7 as White and 8 as black. GDDM colors −1 and 8 map to black,
| and GDDM colors −2 and 7 map to white.

| Any CGM_COLOR_INDEX or GDF_COLOR_INDEX profile entries are ignored.

| 255| When interpreting a CGM, the RGB specified in the CGM is mapped to a GDDM color in the range −2 to 255. The
| color chosen has the RGB value closest to that specified in the CGM. The GDDM color RGB values used are shown
| in Table 31 on page 332.

| If a CGM using indexed color selection mode omits the RGB values for a color, the CGM color index is used as the
| GDDM color number.

| When generating a CGM, a 255-element color table is generated. The rules described for COLOR_MAPPING=16
| apply.

| Any CGM_COLOR_INDEX or GDF_COLOR_INDEX profile entries are ignored.

| Table 31 (Page 1 of 3). GDDM colors used for CGM interpre-
| tation

| Table 31 (Page 1 of 3). GDDM colors used for CGM interpre-
| tation

| Color| Red| Green| Blue | Color| Red| Green| Blue

| −2 white| 255 | 255 | 255 | 36 mysterious green| 0 | 219 | 85
| −1 black| 0 | 0 | 0 | 37 faded cyan| 0 | 219 | 170
| 1 blue| 0 | 0 | 255 | 38 mysterious cyan| 0 | 219 | 255
| 2 red| 255 | 0 | 0 | 39 glowing green| 0 | 255 | 85
| 3 magenta| 255 | 0 | 255 | 40 scintillating green| 0 | 255 | 170
| 4 green| 0 | 255 | 0 | 41 shadowy red| 43 | 0 | 0
| 5 cyan| 0 | 255 | 255 | 42 shadowy pink| 43 | 0 | 85
| 6 yellow| 255 | 255 | 0 | 43 deep blue| 43 | 0 | 170
| 7 neutral | 44 hot blue| 43 | 0 | 255
| 8 background | 45 shadowy yellow| 43 | 36 | 0
| 9 dark blue| 0 | 0 | 170 | 46 muddy blue| 43 | 36 | 85
| 10 orange| 255 | 128 | 0 | 47 dense blue| 43 | 36 | 170
| 11 purple| 170 | 0 | 170 | 48 glowing blue| 43 | 36 | 255
| 12 dark green| 0 | 146 | 0 | 49 drab yellow| 43 | 73 | 0
| 13 dark turquoise | 0 | 146 | 170 | 50 drab cyan| 43 | 73 | 85
| 14 mustard| 192 | 160 | 32 | 51 wintry blue| 43 | 73 | 170
| 15 gray| 131 | 131 | 131 | 52 warm blue| 43 | 73 | 255
| 16 brown| 144 | 48 | 0 | 53 dull green| 43 | 109 | 0
| 17 shadowy green| 0 | 36 | 0 | 54 stagnant cyan| 43 | 109 | 85
| 18 shadowy blue| 0 | 36 | 85 | 55 sombre cyan| 43 | 109 | 170
| 19 dreary blue| 0 | 36 | 170 | 56 brilliant blue| 43 | 109 | 255
| 20 happy blue| 0 | 36 | 255 | 57 sombre green| 43 | 146 | 0
| 21 drab green| 0 | 73 | 0 | 58 twilight green| 43 | 146 | 85
| 22 shadowy cyan| 0 | 73 | 85 | 59 dim cyan| 43 | 146 | 170
| 23 twilight blue| 0 | 73 | 170 | 60 scintillating blue| 43 | 146 | 255
| 24 fresh blue| 0 | 73 | 255 | 61 gloomy green| 43 | 182 | 0
| 25 muddy green| 0 | 109 | 0 | 62 wintry green| 43 | 182 | 85
| 26 muddy cyan| 0 | 109 | 85 | 63 evening cyan| 43 | 182 | 170
| 27 numb cyan| 0 | 109 | 170 | 64 mellow cyan| 43 | 182 | 255
| 28 light blue| 0 | 109 | 255 | 65 mellow green| 43 | 219 | 0
| 29 stormy green| 0 | 146 | 85 | 66 happy green| 43 | 219 | 85
| 30 gloomy cyan| 0 | 146 | 255 | 67 sweet green| 43 | 219 | 170
| 31 dusky green| 0 | 182 | 0 | 68 faint cyan| 43 | 219 | 255
| 32 murky green| 0 | 182 | 85 | 69 perky green| 43 | 255 | 0
| 33 twilight cyan| 0 | 182 | 170 | 70 bright green| 43 | 255 | 85
| 34 wintry cyan| 0 | 182 | 255 | 71 shining green| 43 | 255 | 170
| 35 ominous green| 0 | 219 | 0 | 72 light cyan| 43 | 255 | 255

332 GDDM Base Application Programming Reference

 CGM

| Table 31 (Page 2 of 3). GDDM colors used for CGM interpre-
| tation

| Table 31 (Page 2 of 3). GDDM colors used for CGM interpre-
| tation

| Color| Red| Green| Blue | Color| Red| Green| Blue

| 73 drab red| 85 | 0 | 0 | 144 radiant gray | 197 | 197 | 197
| 74 drab pink| 85 | 0 | 85 | 145 dazzling gray | 213 | 213 | 213
| 75 faded blue| 85 | 0 | 170 | 146 sparkling gray | 222 | 222 | 222
| 76 stunning blue| 85 | 0 | 255 | 147 soft gray | 230 | 230 | 230
| 77 dull red| 85 | 36 | 0 | 148 pastel gray | 238 | 238 | 238
| 78 muddy pink| 85 | 36 | 85 | 149 faded gray | 246 | 246 | 246
| 79 flat blue| 85 | 36 | 170 | 150 faint gray | 254 | 254 | 254
| 80 bright blue| 85 | 36 | 255 | 151 dreary yellow | 128 | 146 | 85
| 81 muddy yellow| 85 | 73 | 0 | 152 sweet blue | 128 | 146 | 170
| 82 dull pink| 85 | 73 | 85 | 153 pale blue | 128 | 146 | 255
| 83 faint blue| 85 | 73 | 170 | 154 dim yellow | 128 | 182 | 0
| 84 vibrant blue| 85 | 73 | 255 | 155 bleary green | 128 | 182 | 85
| 85 dull yellow| 85 | 109 | 0 | 156 foggy cyan | 128 | 182 | 170
| 86 dreary green| 85 | 109 | 85 | 157 gentle blue | 128 | 182 | 255
| 87 cheerful blue| 85 | 109 | 170 | 158 hot green | 128 | 219 | 0
| 88 dazzling blue| 85 | 109 | 255 | 159 light green | 128 | 219 | 85
| 89 deep green| 85 | 146 | 0 | 160 sparkling green | 128 | 219 | 170
| 90 dense green| 85 | 146 | 85 | 161 glowing cyan | 128 | 219 | 255
| 91 deep cyan| 85 | 146 | 170 | 162 brilliant green | 128 | 255 | 0
| 92 shining blue| 85 | 146 | 255 | 163 soft green | 128 | 255 | 85
| 93 faded green| 85 | 182 | 0 | 164 hazy green | 128 | 255 | 170
| 94 flat green| 85 | 182 | 85 | 165 soft cyan | 128 | 255 | 255
| 95 murky cyan| 85 | 182 | 170 | 166 evening red | 170 | 0 | 85
| 96 flat cyan| 85 | 182 | 255 | 167 faded pink | 170 | 0 | 255
| 97 faint green| 85 | 219 | 0 | 168 stormy red | 170 | 36 | 0
| 98 fresh green| 85 | 219 | 85 | 169 foggy red | 170 | 36 | 85
| 99 vibrant green| 85 | 219 | 170 | 170 deep pink | 170 | 36 | 170
| 100 bleary cyan| 85 | 219 | 255 | 171 ominous pink | 170 | 36 | 255
| 101 stunning green| 85 | 255 | 0 | 172 dusky red | 170 | 73 | 0
| 102 dazzling green| 85 | 255 | 85 | 173 mellow red | 170 | 73 | 85
| 103 pastel green| 85 | 255 | 170 | 174 twilight pink | 170 | 73 | 170
| 104 dazzling cyan| 85 | 255 | 255 | 175 flat pink | 170 | 73 | 255
| 105 stagnant red| 128 | 0 | 0 | 176 sombre orange | 170 | 109 | 0
| 106 stagnant pink| 128 | 0 | 85 | 177 bleary red | 170 | 109 | 85
| 107 sombre pink| 128 | 0 | 170 | 178 gloomy pink | 170 | 109 | 170
| 108 dusky pink| 128 | 0 | 255 | 179 pastel blue | 170 | 109 | 255
| 109 sombre red| 128 | 36 | 0 | 180 stormy yellow | 170 | 146 | 0
| 110 numb pink| 128 | 36 | 85 | 181 deep yellow | 170 | 146 | 85
| 111 dreary pink| 128 | 36 | 170 | 182 murky pink | 170 | 146 | 170
| 112 radiant blue| 128 | 36 | 255 | 183 hazy blue | 170 | 146 | 255
| 113 muddy orange| 128 | 73 | 0 | 184 twilight yellow | 170 | 182 | 0
| 114 dim red | 128 | 73 | 85 | 185 gloomy yellow | 170 | 182 | 85
| 115 stormy pink | 128 | 73 | 170 | 186 warm green | 170 | 182 | 170
| 116 sparkling blue | 128 | 73 | 255 | 187 misty blue | 170 | 182 | 255
| 117 stagnant yellow | 128 | 109 | 0 | 188 faded yellow | 170 | 219 | 0
| 118 numb yellow | 128 | 109 | 85 | 189 radiant green | 170 | 219 | 85
| 119 perky blue | 128 | 109 | 170 | 190 pale green | 170 | 219 | 170
| 120 soft blue | 128 | 109 | 255 | 191 vibrant cyan | 170 | 219 | 255
| 121 drab gray | 1 | 1 | 1 | 192 mellow yellow | 170 | 255 | 0
| 122 dull gray | 8 | 8 | 8 | 193 faded green | 170 | 255 | 85
| 123 stagnant gray | 16 | 16 | 16 | 194 misty green | 170 | 255 | 170
| 124 sombre gray | 24 | 24 | 24 | 195 faded cyan | 170 | 255 | 255
| 125 stormy gray | 32 | 32 | 32 | 196 murky red | 213 | 0 | 0
| 126 dim gray | 41 | 41 | 41 | 197 mysterious red | 213 | 0 | 85
| 127 dusky gray | 49 | 49 | 49 | 198 evening pink | 213 | 0 | 170
| 128 evening gray | 57 | 57 | 57 | 199 mysterious pink | 213 | 0 | 255
| 129 gloomy gray | 65 | 65 | 65 | 200 ominous red | 213 | 36 | 0
| 130 murky gray | 74 | 74 | 74 | 201 hot red | 213 | 36 | 85
| 131 foggy gray | 82 | 82 | 82 | 202 dense pink | 213 | 36 | 170
| 132 ominous gray | 90 | 90 | 90 | 203 bleary pink | 213 | 36 | 255
| 133 mellow gray | 98 | 98 | 98 | 204 dowdy red | 213 | 73 | 0
| 134 dowdy gray | 106 | 106 | 106 | 205 fresh red | 213 | 73 | 85
| 135 mysterious gray | 115 | 115 | 115 | 206 foggy pink | 213 | 73 | 170
| 136 bleary gray | 123 | 123 | 123 | 207 blunt pink | 213 | 73 | 255
| 137 hot gray | 139 | 139 | 139 | 208 happy red | 213 | 109 | 0
| 138 perky gray | 148 | 148 | 148 | 209 light red | 213 | 109 | 85
| 139 glowing gray | 156 | 156 | 156 | 210 mellow pink | 213 | 109 | 170
| 140 sweet gray | 164 | 164 | 164 | 211 fresh pink | 213 | 109 | 255
| 141 light gray | 172 | 172 | 172 | 212 dusky orange | 213 | 146 | 0
| 142 bright gray | 180 | 180 | 180 | 213 vibrant red | 213 | 146 | 85
| 143 vibrant gray | 189 | 189 | 189 | 214 sparkling red | 213 | 146 | 170

 Chapter 13. Computer Graphics Metafiles 333

 CGM

| Table 31 (Page 3 of 3). GDDM colors used for CGM interpre-
| tation

| Color| Red| Green| Blue

| 215 bright pink | 213 | 146 | 255
| 216 murky yellow | 213 | 182 | 0
| 217 foggy yellow | 213 | 182 | 85
| 218 pale red | 213 | 182 | 170
| 219 steaming blue | 213 | 182 | 255
| 220 wintry yellow | 213 | 219 | 0
| 221 flat yellow | 213 | 219 | 85
| 222 faint yellow | 213 | 219 | 170
| 223 blizzard blue | 213 | 219 | 255
| 224 mysterious yellow | 213 | 255 | 0
| 225 blunt yellow | 213 | 255 | 85
| 226 blizzard green | 213 | 255 | 170
| 227 blizzard cyan | 213 | 255 | 255
| 228 sweet red | 255 | 0 | 85
| 229 wintry pink | 255 | 0 | 170
| 230 perky red | 255 | 36 | 0
| 231 bright red | 255 | 36 | 85
| 232 dowdy pink | 255 | 36 | 170
| 233 sweet pink | 255 | 36 | 255
| 234 stunning red | 255 | 73 | 0
| 235 scintillating red | 255 | 73 | 85
| 236 faint pink | 255 | 73 | 170
| 237 radiant pink | 255 | 73 | 255
| 238 warm red | 255 | 109 | 0
| 239 dazzling red | 255 | 109 | 85
| 240 faded red | 255 | 109 | 170
| 241 sparkling pink | 255 | 109 | 255
| 242 dense orange | 255 | 146 | 0
| 243 shining orange | 255 | 146 | 85
| 244 hazy red | 255 | 146 | 170
| 245 pale pink | 255 | 146 | 255
| 246 ominous orange | 255 | 182 | 0
| 247 pastel orange | 255 | 182 | 85
| 248 faint red | 255 | 182 | 170
| 249 hazy pink | 255 | 182 | 255
| 250 dowdy orange | 255 | 219 | 0
| 251 bleary orange | 255 | 219 | 85
| 252 blizzard red | 255 | 219 | 170
| 253 blizzard pink | 255 | 219 | 255
| 254 sparkling yellow | 255 | 255 | 85
| 255 blizzard yellow | 255 | 255 | 170

| \

| \ The color_mapping keyword can be used to provide an

| \ alternative to the color_index keywords and

| \ color_shading patterns used by default.

| \

| \ Mapping to and from 16 or 255 GDDM colors is

| \ available

| \

| \COLOR_MAPPING 16;

| \COLOR_MAPPING 255;

| Figure 21. CGM color_mapping keyword

| Depending on the application for which you are providing a
| profile, the value you specify on the COLOR_MAPPING
| parameter gives different results. To determine whether 16-
| or 255-color mapping gives you better results, perform the
| conversion twice, modifying the sample profile each time to
| use a different setting of the parameter. Remove the
| asterisk preceding either parameter setting in the sample
| profile to use it in the conversion. The appearance of the
| colors also depends on the device on which they are output.

| For example, an eight-color display shows the color orange
| as red, because of color mapping.

| Note: GDDM accepts the keyword with the alternative
| spelling COLOUR_MAPPING.

Marker: On CGM to GDF conversion, marker values in the
CGM input may be mapped to either the system or user
defined markers of GDDM. The user-defined markers that
the picture will reference are those current when the
CGLOAD call was issued. If no user-defined set has been
loaded, CGLOAD loads ADMDHIMJ.

On GDF to CGM conversion, markers are mapped or stroked
out under the control of the marker_convert_mode. If
stroked out, they are converted to vector form using the
symbols in the currently-loaded vector marker set, or, if none,
in ADMDHIMJ, which is loaded by GDDM if needed.

Pattern: The term “pattern” in this context refers to both
GDDM patterns and CGM hatches that approximately corre-

| spond to each other. CGM patterns are converted in the
| same way as CGM hatches, and are used for interior style 2
| areas. Default-hatched areas in imported CGMs are treated

334 GDDM Base Application Programming Reference

 CGM

| as if hatch index 1 were specified. On CGM import, shading
| patterns from the 64 geometric pattern symbol set
| ADMPATT� are used for GDF patterns greater than 64
| (unless a shading pattern symbol set is already loaded or 64
| colour pattern set ADMCOLSD is being used in an area fill).
| This allows the use of patterns such as 100 and 98 for CGM
| hatches 5 and 6 on devices that can load patterns.

The precise way that GDF patterns are mapped to CGM
(when the pattern_convert_mode specifies non-stroked-out
mode) is as follows:

Hence, most GDF pattern values map to CGM hatch values,
and vice versa, except for 0, 15 and 16, which map to empty
and solid areas. Consequently, the CGM_PATTERN
keyword parameters corresponding to GDF_PATTERN 0, 15
and 16 are ignored. For stroked-out mode
(pattern_convert_mode = 0) CGM areas are filled with
vectors to correspond to the original GDF pattern.

| Font Index and Font Name: Fonts (symbol sets) are
| handled in a special way using four picture mapping
| keywords and the FONT_CONVERT_MODE adjustment
| factor.

| On CGM export, if any FONT_CONVERT_MODE is 0, the
| corresponding font is stroked out to vectors if the font is
| available in vector form. If FONT_CONVERT_MODE is 1, or
| the font is not available in vector format, the following font
| mapping process is used:

| � If CGM_FONT_NAME has at least one font name, “font
| mapping by name” is performed:

| – A font list is placed in the CGM containing all the
| font names in the CGM_FONT_NAME list, indexed
| from 1 to number-of-fonts. (But if
| CALS_COMPLIANCE is specified, the list will only
| contain allowed font names. See the
| CALS_COMPLIANCE keyword.)

| – The GDF symbol-set name used is looked up in the
| GDF_FONT_NAME list and its position determines
| the CGM_FONT_NAME to be indexed in the CGM.

| – If there is no matching CGM font name, CGM font
| index 1 is used (that is, the first named CGM font
| name).

| � If CGM_FONT_NAME is absent, or has no font names,
| “font mapping by index” is performed:

| – No font list is placed in the CGM (unless
| CALS_COMPLIANCE is specified, in which case a
| font list will be placed in the CGM, containing CGM
| font names matching GDDM core interchange
| symbol set names found in GDF_FONT_NAME, or

| HELVETICA. See the CALS_COMPLIANCE
| keyword.)

| – The GDF symbol-set name used is looked up in the
| GDF_FONT_NAME list and its position determines
| the CGM_FONT_INDEX to be used in the CGM.

| – If there is no matching CGM font index, CGM font
| index 1 is used.

| On CGM import, GDDM saves an internal copy of the Font
| List if one is found in the CGM (and records the font names,
| and any truncation, in a GDDM trace if tracing is activated
| with the CGMREP trace keyword). If a text element occurs
| before any font index element, font index 1 is assumed. The
| following mapping process is then used:

| � If CGM_FONT_NAME has at least one font name, “font
| mapping by name” is performed:

| – The CGM font index in the CGM is used to select:

| - A CGM font name from the saved list
| - The first font name if the index is out of range
| - HELVETICA, if there was no font list in the
| CGM.

| – The selected CGM font name is then looked up in
| the CGM_FONT_NAME list, and its position deter-
| mines the GDF_FONT_INDEX and the
| GDF_FONT_NAME in the usual way (ignoring the
| CGM_FONT_INDEX entries). If no match is found,
| but the font name started “HERSHEY:”, the search
| is repeated as if the name started “HERSHEY/”. If
| there is still no match, the font index found in the
| CGM is looked up in the CGM_FONT_INDEX list,
| and its position determines the GDF_FONT_INDEX
| and GDF_FONT_NAME in the usual way.

| � If CGM_FONT_NAME is absent, or has no font names,
| “font mapping by index” is performed. The font index
| found in the CGM is looked up in the
| CGM_FONT_INDEX list, and its position determines the
| GDF_FONT_INDEX and GDF_FONT_NAME.

| In either case, the default font ADMDVECP is loaded if there
is no valid GDDM font name in the conversion profile corre-
sponding to the chosen LCID (or the defaults above) or if the
symbol set does not exist. If the LCID is less than 65, the
device default font is used. If a vector symbol set has
already been loaded for a particular LCID (greater than or
equal to 65) before the CGLOAD call, the way this is handled
depends on the setting of the symbol-set parameter of
CGLOAD. There is an upper limit of 60 symbol sets that can
be handled during conversion.

Picture adjustment factors: Several adjustment factors
may be specified in a conversion profile. These have in
most cases been provided in order to cater for the different
types of CGM file commonly found and the inconsistencies
sometimes found between them. They are:

Picture_Info_Parms
Window_Limits

Table 32. GDF patterns and CGM mapping
GDF pattern
number

CGM elements generated: area
with interior style

15 4 (empty)
0, 16 1 (solid)
other values 3 (hatch)

 Chapter 13. Computer Graphics Metafiles 335

 CGM

| Scale_Mode_Factor
| CALS_Compliance

Line_Width_Factor
Marker_Size_Factor
Char_Width_Factor
Char_Height_Factor
Line_Convert_Mode
Marker_Convert_Mode
Pattern_Convert_Mode
Font_Convert_Mode

Picture_Info_Parms: The picture_info_parms adjustment
factor supplies defaults for the opt-array parameters of the
CGLOAD and CGSAVE calls. The ADMUCG and ADMUGC
utilities also use the picture_info_parms (except where over-
ridden by explicit utility keywords). If the call is coded with
the appropriate opt-array parameter as the default (that is, 0
or omitted), the corresponding picture_info_parms parameter
is used in its place. In other words, picture_info_parms sup-
plies defaults for these calls.

When a value from picture_info_parms is used, it has the
same meaning and allowed range of values as that defined
for the CGLOAD or CGSAVE call (including the use of 0 to
take the default value). The following items can be set:

� picture-number : If the picture-number parameter on the
CGLOAD call is set to default (0) or omitted, the value
supplied here is used.

� seg-base : If the seg-base parameter on the CGLOAD
call is set to default (0) or omitted, the value supplied
here is used.

� load-type : If the load-type parameter on the CGLOAD
call is set to default (0) or omitted, the value supplied
here is used.

� symbol-set : If the symbol-set parameter on the
CGLOAD call is set to default (0) or omitted, the value
supplied here is used.

� seg-use : If the seg-use parameter on the CGLOAD call
is set to default (0) or omitted, the value supplied here is
used.

� code-page : If the code-page parameter on the CGLOAD
or CGSAVE call is set to default (0) or omitted, the value
supplied here is used. Unlike the other
picture_info_parms, code-page applies to both calls.

Window_Limits: The window_limits allow the specification
of a coordinate range (window) to override the extent of the
CGM Virtual Device Coordinates (VDC). This only has an
effect on CGM to GDF conversion, and is used to overcome

the problem that CGM files from some applications use only
a small fraction of the VDC extent that they define.
Window_limits also allows a limited zoom and crop capability.
It is ignored on GDF to CGM conversion.

If the window_limits are absent, the window defaults first to
the CGM VDC extent. If the VDC extent is not defined in the
CGM file, the default values used are:

−32768, 32767, −32768, 32767

| Scale_Mode_Factor: Exported CGMs can contain a scaling
| factor in order to produce results with fixed measurements.
| The value specified for the Scale Mode Factor is used for the
| size, in millimeters, of the longer side of the picture. The
| value must be positive. A number of CGM applications do
| not use this metric mode and may respond with errors for
| CGMs that contain it.

| If a value is not specified, or if a value of 0 is used, exported
| CGMs do not have a scaling factor.

| CALS_Compliance: This takes a single parameter that is
| used to select whether or not exported CGMs should be con-
| strained to the limits specified by MIL-D-2803A. When the
| parameter is 0 (the default), or the keyword omitted, no con-
| straints are imposed. When the parameter is 1, the following
| constraints are imposed on exported CGMs:

| � The string “MIL-D-28003A/BASIC-1” is included in the
| Metafile Descriptor element.

| � Polygon elements are limited to 1024 points. Additional
| points are truncated (and this fact reported in a GDDM
| trace statement if tracing is active with the CGMREP
| keyword).

| � Graphical text strings have any control codes (X'01'-
| X'1F' and X'80 - X'9F') changed to ASCII space charac-
| ters (X'20').

| � Line types out of the range 1 through 15 are changed to
| 1 (and this fact reported in a GDDM trace statement if
| tracing is active with the CGMREP keyword).

| � Line and edge widths greater than 10% of the smaller
| VDC range are reduced to 10% (and this fact reported in
| a GDDM trace statement if tracing is active with the
| CGMREP keyword).

| � Marker types out of the range 1 through 5 are changed
| to 1 (and this fact reported in a GDDM trace statement if
| tracing is active with the CGMREP keyword).

| � A font list is always placed in the CGM, containing only
| font names from this list:

336 GDDM Base Application Programming Reference

 CGM

| HERSHEY/CARTOGRAPHIC_ROMAN

| HERSHEY:CARTOGRAPHIC_ROMAN

| HERSHEY/CARTOGRAPHIC_GREEK

| HERSHEY:CARTOGRAPHIC_GREEK

| HERSHEY/SIMPLEX_ROMAN

| HERSHEY:SIMPLEX_ROMAN

| HERSHEY/SIMPLEX_GREEK

| HERSHEY:SIMPLEX_GREEK

| HERSHEY/SIMPLEX_SCRIPT

| HERSHEY:SIMPLEX_SCRIPT

| HERSHEY/COMPLEX_ROMAN

| HERSHEY:COMPLEX_ROMAN

| HERSHEY/COMPLEX_GREEK

| HERSHEY:COMPLEX_GREEK

| HERSHEY/COMPLEX_SCRIPT

| HERSHEY:COMPLEX_SCRIPT

| HERSHEY/COMPLEX_ITALIC

| HERSHEY:COMPLEX_ITALIC

| HERSHEY/COMPLEX_CYRILLIC

| HERSHEY:COMPLEX_CYRILLIC

| HERSHEY/DUPLEX_ROMAN

| HERSHEY:DUPLEX_ROMAN

| HERSHEY/TRIPLEX_ROMAN

| HERSHEY:TRIPLEX_ROMAN

| HERSHEY/TRIPLEX_ITALIC

| HERSHEY:TRIPLEX_ITALIC

| HERSHEY/GOTHIC_GERMAN

| HERSHEY:GOTHIC_GERMAN

| HERSHEY/GOTHIC_ENGLISH

| HERSHEY:GOTHIC_ENGLISH

| HERSHEY/GOTHIC_ITALIC

| HERSHEY:GOTHIC_ITALIC

| TIMES_ROMAN

| TIMES_ITALIC

| TIMES_BOLD

| TIMES_BOLD_ITALIC

| HELVETICA

| HELVETICA_OBLIQUE

| HELVETICA_BOLD

| HELVETICA_BOLD_OBLIQUE

| COURIER

| COURIER_BOLD

| COURIER_ITALIC

| COURIER_BOLD_ITALIC

| If a font list was forced, this fact is reported in a GDDM
| trace statement if tracing is active with the CGMREP
| keyword.

| � Out-of-range font indexes (that is, which do not point to
| a font in the font list) are changed to 1 (and this fact
| reported in a GDDM trace statement if tracing is active
| with the CGMREP keyword).

| � Hatch indexes out of the range 1 through 6 are changed
| to 1 (and this fact reported in a GDDM trace statement if
| tracing is active with the CGMREP keyword).

| � Edge types out of the range 1 through 5 are changed to
| 1 (and this fact reported in a GDDM trace statement if
| tracing is active with the CGMREP keyword).

| Line_Width_Factor: This takes two positive parameters,
| the second of which is optional. The default values are 1,1.

| The first parameter applies in nearly all circumstances. It is
| used as a divisor in converting from CGM to GDF and as a
| multiplier in the reverse direction. The CGM line width value
| is divided by this parameter to obtain the GDDM line width
| value. On 3270 displays, width values less than 2 give the
| standard line width (1 pixel). A value of 2 or more gives the
| doubled line width (2 pixels). For further details, see the
| GSLW call in Chapter 3, “The GDDM calls” on page 21.

| The second parameter is used only on CGM-to-GDF conver-
| sion, where the CGM specifies absolute values for line and
| edge width. This value is used as a divisor to influence the
| value that GDDM normally sets for imported lines and edges.
| Where the imported CGM specifies a scaling mode with a
| metric scale factor and uses absolute values for lines and
| edges, GDDM uses this to determine the required thickness
| of lines in millimeters. The output should maintain the
| correct values for printing on a 300dpi IPDS printer such as
| the IBM 4028, which uses a 3 dot unit line width. Where the
| final output is intended for a 240dpi printer, the second
| parameter needs to be changed from 1 to 1.25. Similarly,
| adjustments need to be made to the second parameter
| where the unit line width is not 3 dots. Where no metric
| scale factor is specified in the CGM, GDDM bases the
| standard line width on .001 of the longer side of the VDC
| extent specified in the CGM.

Marker_Size_Factor: This takes a single parameter that is
used to adjust sizes of all markers of all marker types. It is
analogous in operation to line_width_factor. The default
value is 1.0.

| Char_Width_Factor, Char_Height_Factor: These factors
| affect the shape of text characters when GDDM generates or
| interprets CGM data.

| Figure 22 on page 338 shows how these factors can be
| specified in combination with other font-related keywords in
| the ‘general’ CGM profile supplied with GDDM.

| The character width and height adjustments correspond in
| position to their respective font-name and font-index values.

| � When GDDM is importing a CGM, the character box
| width and height of each font are divided by the appro-
| priate factors.

| � When GDDM is exporting a CGM, the character box
| width and height of each font are multiplied by the
| appropriate factors.

| This modification of the shape of the characters assists in
| matching the appearance of converted character strings
| because character aspect ratios can differ from font to font.

 Chapter 13. Computer Graphics Metafiles 337

 CGM

| CGM_FONT_INDEX 1 2 3 4 5;

| GDF_FONT_INDEX 1ð1 1ð2 1ð3 1ð4 1ð5;

| GDF_FONT_NAME ADMUUDRP ADMUUKSF ADMUVC ADMUUFSS ADMUUCIP;

| CHAR_WIDTH_FACTOR ð.9ð ð.77 1.2 ð.85 1;

| CHAR_HEIGHT_FACTOR ð.83 ð.83 1.1 ð.83 1;

| FONT_CONVERT_MODE 1 1 1 1 1;

| Figure 22. Character-height and character-width factors for conver-
| sion of fonts between ADMGDF and CGM formats.

Line_, Pattern_, Font_, and Marker_Convert_Mode:
These each have the same number of parameters as the
corresponding CGM_ or GDF_ keyword, each of which
should be 0 or 1. On GDF to CGM conversion, these control
whether lines, patterns, markers, and fonts should be stroked
out (when 0) or converted to corresponding CGM index
values (when 1). On CGM to GDF conversion, lines, pat-
terns, markers, and fonts are never stroked out.

If there are fewer parameters supplied than on the corre-
sponding CGM_ or GDF_ keyword, missing values are
assumed to be 0.

Note: If a convert_mode keyword is not specified, the
default values used are 0s (the corresponding primitives are
stroked out).

Stroked out mode (0) should be used when you want an
exact replication of the original picture at the expense of gen-
erating many short vector orders, resulting in a larger
graphics file. Non-stroked-out mode (1) should be used
when you are more concerned with generating a concise file

and when you are intending to edit the converted file. As an
example, the double dot line type does not exist in CGM; it
can be emulated by stroking out the short dots (at consider-
able cost in terms of processing time and file size).

| Pattern_Convert_Mode has no effect on GDF patterns 0, 15,
| or 16; these are never stroked out.

Conversion Profiles supplied with GDDM: GDDM
supplies a set of standard conversion profiles for use in
importing and exporting CGM files to and from various appli-
cations. These are listed in Table 33. There is not a 1:1
mapping of all CGM to GDF orders, and so it is not possible
to guarantee that all pictures will convert perfectly in all cir-
cumstances. Conversion of pictures from one format to
another and then back again is unlikely to produce exactly
the same graphics orders as in the original, and users should
check carefully the restrictions listed in “CGM order proc-
essing (CGLOAD call)” on page 340 and “GDF order proc-
essing (CGSAVE call)” on page 339 before discarding any
original data.

Table 33. GDDM-supplied conversion profiles
Name of conversion profile Use
ADMFP2 Freelance Plus V2
ADMFP3 Freelance Plus V3
ADMHG Harvard Graphics
ADMCD Corel Draw
ADMMD Micrografx Designer
ADM General purpose

Table 34. CGM test patterns for conversion profile creation

Name Description Instructions

COLORxxx color test
pattern

Draw a set of filled rectangles each with a different fill color. Label each as it is drawn with text
describing the color.

PATNSxxx hatch test pat-
terns

Using the same set of rectangles as for color specification, vary the fill pattern in an orderly
fashion with notations describing the appearance (for example, solid, empty, horizontal hatch,
45 degree diagonal hatch, large diagonal hatch, vertical hatch, and so on).

LINESxxx linetypes Draw a set of lines, each with a different line type and appropriate description (for example,
solid, dotted, dashed, dash dot, and so on).

WIDTHxxx linewidths Draw a set of lines, each with a different line width and appropriate description (for example,
thinnest, thin, medium, thick, thickest).

MARKSxxx markers Create a metafile depicting the available marker symbols with appropriate description (for
example, cross, triangle, filled triangle, and so on).

FONTSxxx fonts Create a metafile that lists the available fonts with the font description in that same font (for
example, Swiss Light, Roman Bold, Italic, Italic bold, and so on). Use vertical reference lines to
delimit the string length. This is useful for character aspect ratio adjustment.

Creating conversion profiles for other
applications: Conversion profiles for applications other
than those catered for above can fairly easily be created and
tested. The technique involves creating CGM test patterns
using the application program for which a conversion profile
is required and then adjusting the new conversion profile until
the correct picture is obtained after conversion. Table 34
lists the recommended test patterns for creating a conversion
profile CGMxxx where “xxx” is a mnemonic for the

CGM-generating application. They are not provided with
GDDM.

In addition, place a border around the application drawing
space to allow for the possible requirement of window adjust-
ment.

It is not recommended that you create all these picture ele-
ments in the same CGM, because it would become too con-
fused to analyze. If the naming convention described is

338 GDDM Base Application Programming Reference

 CGM

adhered to, it allows you to keep track of the test patterns for
many different applications.

GDF order processing (CGSAVE call)

This section defines how GDF orders are dealt with during
the GDF to CGM conversion process. Orders described as
“ignored” are skipped in the input datastream and the next
order is dealt with. Orders described as “equivalent” have
CGM orders generated to produce the equivalent effect.

Pushing and Popping: There is no direct equivalence in
CGM of the GDF pushing and popping of environments, and
so this is handled by generating appropriate CGM orders to
set and reset the environment.

Area Fill: The definitions of the area fill algorithms for GDF
and CGM are different, and the way GDF areas are con-
verted to CGM may result in a different appearance in some
cases.

The type of CGM area-fill implemented by most CGM
receiving applications limits the area definition to using only
the polygon order. Hence, areas containing only complete
polygons (regardless of the number of line crossings) are
drawn the same in CGM as in GDF, but those containing
move orders are subject to restrictions.

If a move or set current position order is found within a GDF
area definition, and the move is to outside the smallest rec-
tangle aligned with the X/Y axes that encloses all of the
graphics already drawn, the current CGM polygon is closed
and a new polygon started at the point after the move.
Hence, each GDF area may give rise to several CGM areas.

However, if the move is to within the enclosing rectangle, the
move is converted to a line so that the polygon before the
move and the one after are joined together to form one
polygon. At the end of the second polygon, a second line is
generated back over the previously generated line to join the
two polygons.

The above effect causes some GDF areas to appear incor-
rectly after conversion. If more than one CGM polygon is
created from one GDF area and these CGM polygons
overlap, the result depends on the order that they are drawn
(the last one appears on the top), whereas the appearance
of areas of overlap in GDDM areas are defined by the
GDDM line crossing fill algorithm.

Multi-line text strings: The position of multi-line GDF text
strings may not be exactly replicated by the CGM orders. If
positioning problems are found, they can often be solved by
specifying a font_convert mode of 0 (stroked out). However,
the position of the text may still change, particularly if the
horizontal alignment of the multi-line string was defined as
'centered' or 'right'.

Table 35 (Page 1 of 2). GDF order processing

GDF order name Comments

Arc Generates CGM arc order, except when
within an area fill, when the arc is
stroked out to line orders.

Arc parameters Equivalent.

Area Generates CGM filled polygon order(s).
Subject to restrictions as described in
“Area Fill.”

Background color
mix

Equivalent.

Call segment Ignored.

Character angle Equivalent.

Character box Equivalent. Height converts to CGM
character height. Width converts to
CGM character expansion factor.

Character-box
spacing

Equivalent. (character spacing)

Character direc-
tion

Equivalent. (character path)

Character preci-
sion

Precisions 1 and 2 are converted to
CGM stroked precision text with a suit-
able CGM font index as defined in the
conversion profile. Precision 3 is either
stroked out to vector or mapped to a
CGM font index under control of the
profile. Precisions 1 and 2 are never
stroked out.

Character set Equivalent. The mapping of character set
to font index is controlled by the profile.

Character shear Equivalent. (baseline angle and up-vector
orders).

Character string Equivalent. Result depends on character
precision. See under character precision.
Character string is translated to the
required CGM code page.

Color Colors are mapped under control of the
profile.

Comment Ignored.

Current position Equivalent.

End area Equivalent.

Extended color Equivalent.

Fillet Same as arc. orders.

Foreground color
mix

Ignored. CGM only supports overpaint.

Fractional line
width

Maps to CGM line width order after
rounding to integer. CGM linewidth may
be absolute or scaled. CGSAVE always
generates absolute CGM linewidths.
See also line_width_factor in the
conversion profile.

Full arc Same as arc

Image begin
Image data
Image end

Ignored.

 Chapter 13. Computer Graphics Metafiles 339

 CGM

CGM order processing (CGLOAD call)

This section defines how CGM orders are dealt with during
the CGM to GDF conversion process. Orders described as
“Ignored” are skipped in the input datastream and the next
order is dealt with. Orders described as “Equivalent” are
converted to equivalent GDF orders and/or affect the gener-
ation of subsequent GDF orders.

Table 35 (Page 2 of 2). GDF order processing

GDF order name Comments

Line Generates CGM polyline order.

Line type Maps to CGM linetype under control of
the conversion profile.

Line width Same as for fractional line width.

Marker
Marker box
Marker scale
Marker type

Maps to CGM markers under control of
the conversion profile.

Table 36 (Page 1 of 3). CGM order processing

| CGM code and order name Comments
Model transform There is no corresponding CGM trans-

form order, and so CGM coordinates that
are generated subsequent to this GDF
order have the model transform pre-
applied to them. The additive and
preemptive forms of this order as proc-
essed are not specifically handled; they
are processed in the same ways as the
replace form. Combinations of character
angle, spacing, direction and shear with
a model transform applied may result in
text misplacement.

| CGM Class 0 orders: Delimiter elements

0 No-op Ignored.

1 Begin metafile Text returned as first
part of CGLOAD
descriptor1 parameter

2 End metafile Terminates picture
definition

3 Begin Picture Text returned as
CGLOAD descriptor2
parameter

No-op Order is skipped. 4 Begin Picture Body Causes GDDM picture
to be started and first
segment opened

Pattern Maps to CGM hatch (pattern) types
under control of the conversion profile.

5 End PicturePick (tag) identi-
fier

Ignored.

| 6 Begin Segment
| 7 End Segment
| 8 Begin Figure
| 9 End Figure
| 13 Begin Protection Region
| 14 End Protection Region
| 15 Begin Compound Line
| 16 End Compound Line
| 17 Begin Compound Text Path
| 18 End Compound Text Path
| 19 Begin Tile Array
| 20 End Tile Array

| CGM Version 2 and 3
| elements. Ignored.Pop No CGM pop order, so pop is handled by

generating appropriate color, width, etc.
orders when needed.

Process specific
control

PSC defines GDF's symbol sets and
defaults for mix, width, etc. Symbol sets
are mapped to CGM fonts using the font
mapping defined in the conversion
profile. PSC specifying defaults are
ignored.

Relative line Generates a polyline order.

| CGM Class 1 orders: Metafile Descriptor elementsSegment attribute Ignored.

1 Metafile Version| Value checked (only
| Version 1, 2, or 3
| CGM permitted, but all
| Version 2 and 3 ele-
| ments are ignored).

Segment attribute
modify

Ignored.

Segment charac-
teristics

Ignored unless CHID is X'80'.

Segment end
Segment end
prolog

CGM does not support segments so no
specific segment end can be generated.
However, the pushing and popping of
segment attributes, viewing window,
transform etc are converted to CGM
orders.

2 Metafile Description Text returned as
second part of
CGLOAD descriptor1
parameter.

3 VDC Type Equivalent.

4 Integer Precision Equivalent.Segment position Ignored.

5 Real Precision Equivalent.Segment start Invisible segments are not drawn. Other
aspects of order are ignored (i.e.
detectability, highlight, transformability,
chaining).

6 Index Precision Equivalent.

7 Color Precision Equivalent.

8 Color Index Precision Equivalent.Set viewing
Window

Maps to CGM clipping window order.

9 Maximum Color Index Equivalent.
Text Alignment Equivalent.

340 GDDM Base Application Programming Reference

 CGM

Table 36 (Page 2 of 3). CGM order processing Table 36 (Page 2 of 3). CGM order processing

| CGM code and order name Comments | CGM code and order name Comments

10 Color Value Extent Equivalent. 3 Auxiliary Color Ignored.

11 Metafile Element List Ignored. 4 Transparency Equivalent.

12 Metafile Defaults Replacement
(metafile elements)

Equivalent. 5 Clip Rectangle Equivalent.

6 Clip Indicator Equivalent.
| 13 Font List| Equivalent. Up to 32
| font names of up to 32
| characters each.

| 7 Line Clipping Mode
| 8 Marker Clipping Mode
| 9 Edge Clipping Mode
| 10 New Region
| 11 Save Primitive Context
| 12 Restore Primitive Context
| 17 Protection Region Indicator
| 18 Generalized Text Path Mode
| 19 Mitre Limit
| 20 Transparent Cell Color

| CGM Version 2 and 3
| elements. Ignored.

| 14 Character Set List| Ignored.

| 15 Character Coding Announcer| Ignored.

| 16 Name Precision
| 17 Maximum VDC Extent
| 18 Segment Priority Extent
| 19 Color Model
| 20 Color Calibration
| 21 Font Properties
| 22 Glyph Mapping
| 23 Symbol Library List

| CGM Version 2 and 3
| elements. Ignored.

| CGM Class 4 orders: Graphical Primitive elements

1 Polyline Equivalent.

2 Disjoint Polyline Equivalent.
| CGM Class 2 orders: Picture Descriptor elements

3 Polymarker Equivalent.
1 Scaling Mode Equivalent.

4 Text Equivalent.
2 Color Selection Mode Equivalent. See “Color

Index” on page 330
for more details.

| 5 Restricted Text| Equivalent, using
| basic restriction and (if
| appended) using the
| final text attributes for
| the complete text
| string

3 Line Width Specification Mode| Equivalent. GDDM
| accepts only Absolute
| and Scaled modes.
| Other modes are
| rejected as errors.

| 6 Append Text| Equivalent.

7 Polygon Equivalent.
4 Marker Size Specification Mode| Equivalent. GDDM

| accepts only Absolute
| and Scaled modes.
| Other modes are
| rejected as errors.

8 Polygon Set Equivalent.

 9 Cell Array Ignored.

10 Generalized Drawing Primitive Ignored.

11 Rectangle Equivalent.5 Edge Width Specification Mode| Equivalent. GDDM
| accepts only Absolute
| and Scaled modes.
| Other modes are
| rejected as errors.

12 Circle Equivalent.

13 Circular Arc 3-point Equivalent.

14 Circular Arc 3-point Close Equivalent.

6 VDC Extent Equivalent. 15 Circular Arc Center Equivalent.

7 Background Color Equivalent. 16 Circular Arc Center Close Equivalent.

| 8 Device Viewport
| 9 Device Viewport Spec. Mode
| 10 Device Viewport Mapping
| 11 Line Representation
| 12 Marker Representation
| 13 Text Representation
| 14 Fill Representation
| 15 Edge Representation
| 16 Interior Line Spec. Mode
| 17 Line and Edge Type Definition
| 18 Hatch Style Definition
| 19 Geometric Pattern Definition

| CGM Version 2 and 3
| elements. Ignored.

17 Ellipse Equivalent.

18 Elliptical Arc Equivalent.

19 Elliptical Arc Close Equivalent.

| 20 Circular Arc Center Reversed
| 21 Connecting Edge
| 22 Hyperbolic Arc
| 23 Parabolic Arc
| 24 Non-Uniform B-Spline
| 25 Non-Uniform Rational B-Spline
| 26 Polybezier
| 27 Bitonal Tile
| 28 Tile
| 29 Polysymbol

| CGM Version 2 and 3
| elements. Ignored.

| CGM Class 3 orders: Control elements

1 VDC Integer Precision Equivalent.

| CGM Class 5 orders: Attribute elements2 VDC Real Precision Equivalent.

 Chapter 13. Computer Graphics Metafiles 341

 CGM

Table 36 (Page 3 of 3). CGM order processing Table 36 (Page 3 of 3). CGM order processing

| CGM code and order name Comments | CGM code and order name Comments

| 1 Line Bundle Index| Implemented as per
| CALS defaults in
| Table XI of the
| MIL-D-28003A specifi-
| cation.

26 Edge Bundle Index| Implemented as per
| CALS defaults in
| Table XI of the
| MIL-D-28003A specifi-
| cation.

2 Line Type Equivalent. 27 Edge Type Equivalent.

3 Line Width Equivalent. 28 Edge Width Equivalent.

4 Line Color Equivalent. 29 Edge Color Equivalent.

5 Marker Bundle Index| Implemented as per
| CALS defaults in
| Table XI of the
| MIL-D-28003A specifi-
| cation.

30 Edge Visibility Equivalent.

31 Fill Reference Point Ignored.

32 Pattern Table Ignored.

33 Pattern Size Ignored.
6 Marker Type Equivalent. 34 Color Table Order converted under

certain conditions.
See “Color Index” on
page 330 for more
details.

7 Marker Size Equivalent.

8 Marker Color Equivalent.

9 Text Bundle Index| Implemented as per
| CALS defaults in
| Table XI of the
| MIL-D-28003A specifi-
| cation.

| 35 Aspect Source Flags| Ignored.

| 36 Pick Identifier
| 37 Line Cap
| 38 Line Join
| 39 Line Type Continuation
| 40 Line Type Initial Offset
| 41 Text Score Type
| 42 Restricted Text Type
| 43 Interpolated Interior
| 44 Edge Cap
| 45 Edge Join
| 46 Edge Type Continuation
| 47 Edge Type Initial Offset
| 48 Symbol Library Index
| 49 Symbol Color
| 50 Symbol Size
| 51 Symbol Orientation

| CGM Version 2 and 3
| elements. Ignored.

10 Text Font Index Equivalent.

11 Text Precision Ignored.

12 Character Expansion Factor Equivalent.

13 Character Spacing Equivalent.

14 Text Color Equivalent.

15 Character Height Equivalent.

16 Character Orientation Equivalent.

17 Text Path Equivalent.

18 Text Alignment Equivalent (except for
“continuous text align-
ment,” which is
ignored.)

| CGM Class 6 orders: Escape element

 1 Escape Ignored.
19 Character Set Index
20 Alternate Character Set Index

Ignored.
| CGM Class 7 orders: External elements

 1 Message Ignored.21 Fill Bundle Index| Implemented as per
| CALS defaults in
| Table XI of the
| MIL-D-28003A specifi-
| cation.

 2 Application Data Ignored.

| CGM Class 8 orders: Segment elements

| 1 Copy Segment
| 2 Inheritance Filter
| 3 Clip Inheritance
| 4 Segment Transformation
| 5 Segment Highlighting
| 6 Segment Display Priority
| 7 Segment Pick Priority

| CGM Version 2 and 3
| elements. Ignored.| 22 Interior Style| Equivalent (except for

| “geometric pattern”
| and “interpolated”,
| which are treated as
| “solid”).

23 Fill Color Equivalent.

24 Hatch Index Equivalent. Maps to
GDDM patterns

25 Pattern Index| Equivalent.

342 GDDM Base Application Programming Reference

 GIF

| Chapter 14. Graphics Interchange Format (GIF) files

| The graphics interchange format (GIF) is a commercial
| format for interchanging graphical information between com-
| puter systems. GIF files contain bitmap (graphics) data that
| is compressed using the LZW (Lempel-Ziv Welch) com-
| pression algorithm. The files can be expanded and viewed
| by using a variety of graphical application programs at a
| user’s workstation. GIF is the main format used to include
| images on World Wide Web (WWW) Internet pages.

| GIF file structure

| GIF allows for more than one color image to be defined in a
| file. It has the concept of a logical screen area, within which
| all the images are displayed. Each image is offset by a
| number of pixels from the top left-hand corner of the logical
| screen. Any part of the logical screen not covered by an
| image is filled with the background color (as specified by the
| GIF file or the GIF viewer itself).

| GIF images are a sequence of color numbers (one for each
| pixel). The color numbers are in the range 0 to 255 and are
| used as an index into a color table to get the real RGB value
| for that pixel. GIF also has the concept of a transparency
| color. This has the effect of not displaying that color (so the
| background color shows through). Only one color number
| may be specified as the transparency color. The color table
| also forms part of the GIF.

| ADMUGIF

| ADMUGIF is a GDDM utility that runs under VM/CMS and
| MVS/TSO. It converts an ADMGDF file to a GIF file.

| ADMUGIF needs parameters to identify the input ADMGDF
| file, the output GIF file name, and keyword parameters that
| affect the format of the GIF.

| The input ADMGDF file (fixed or floating point) is converted
| to GIF, and the output is saved in a file in ASCII binary
| format. If a file with the same name exists, it is overwritten
| (without issuing any warning message).

| GIF files produced by ADMUGIF have only one color image
| and have a logical screen size that is the same as the image
| size. So, in effect, offsets for the color image are redundant,
| and background color is only seen through transparent pixels
| (if the GIF viewer does not force its own background color).

| The color table placed in the GIF is derived from the default
| GDDM color table used originally in GDDM 3.1.1 for
| PostScript support. See Table 31 on page 332 for mapping
| color numbers to real RGB values.

| The values can be changed by using the ADMMCLTB or
| COLORTAB UDS (see the GDDM System Customization
| and Administration book).

| ADMUGIF uses GDDM color separation facilities and, during
| its execution, creates eight color separation files (which have
| a maximum size of 1MB). Also, to encode the color image,
| ADMUGIF allocates virtual storage of about 2MB. All allo-
| cated files and storage are freed after execution finishes.

| Some GIF viewers or decoders are for specific GIF versions.
| GIF files produced by ADMUGIF are version 87a. If a trans-
| parency color other than -1 is used, they are version 89a.

| Keyword parameters

| The keyword parameters are as follows (abbreviations shown
| in uppercase):

| Width The range is 8 through 1024; the default is
| 400. GDDM rounds up the number you
| specify to a multiple of 8 pixels.
| Depth The range is 8 through 1024; the default is
| 400.

| The Width and Depth values specify the
| maximum size, in pixels, of the output GIF
| image.

| If a Width value is specified without a Depth,
| the Depth is set to the Width. Similarly, the
| Width is set to the Depth if only a Depth
| value is specified.
| Aspect The range is 0 through 2; the default is 1.

| 0 The GIF image exactly fits the Width and
| Depth area. The aspect ratio of the ori-
| ginal ADMGDF file is not maintained. (In
| effect, the original ADMGDF is stretched
| to fit the Width and Depth area of the
| GIF.)

| 1 The GIF image is produced in the same
| aspect ratio as the original ADMGDF.
| The GIF image may not fill the specified
| Width and Depth area. The GIF image
| has an actual width or depth that is less
| than the values specified in the Width and
| Depth keyword parameters.

| 2 The GIF picture is produced in the same
| aspect ratio as the original ADMGDF.
| The GIF image fills the Width and Depth
| area. This may mean that parts of the
| GIF image are ‘unused’ and default to
| black image (color number 0).

| Transcol The range is -2 through 255; the default is -1.
| Specifies the transparency color number,
| where:

 Copyright IBM Corp. 1980, 1996 343

 GIF

| -2 Transparency is the color of the left-
| most edge of the image.

| -1 No transparency.

| 0-255 Transparency color, as specified by
| the color table.

| Backcol The range is -2 and 0 through 255; the
| default is 0. Specifies the background color
| and is output in the GIF file but, as described
| above, may have no effect.
| -2 Swaps white and black so that the output GIF
| has a white background with black lines.

| Keyword parameter values that are out of range are set to
| the highest or lowest values, as applicable.

| Invoking ADMUGIF under VM/CMS

| The ADMGDF file name is required. The GIF file name and
| keyword parameters are optional.

| ADMUGIF gdf-file <gif-file> <(keyword-parameters>

| where:
| gdf-file = gdf-filename <gdf-filetype <gdf-filemode>>
| gif-file = <gif-filename <gif-filetype<gif-filemode>>>

| The defaults are:

| gdf-filetype ADMGDF
| gdf-filemode A
| gif-filename Same as gdf-filename
| gif-filetype GIFBIN
| gif-filemode A

| Example VM/CMS invocations

| ADMUGIF ADMTEST

| Gets an ADMGDF file called ADMTEST ADMGDF (the first
| one in the CMS disk search order) and converts it to a GIF
| output file called ADMTEST GIFBIN A (of width 400 pixels
| and depth 400 pixels, depending on the aspect ratio).

| ADMUGIF ADMTEST GIFOUT

| Gets an ADMGDF file called ADMTEST ADMGDF (the first
| one in the CMS disk search order) and converts it to a GIF
| output file called GIFOUT GIFBIN A (of width 400 pixels and
| depth 400 pixels, depending on the aspect ratio).

| Note: After ADMUGIF, two names (with no other values)
| are treated as filenames. For example, ADMUGIF
| ADMTEST ADMGDF produces an output GIF file
| called ADMGDF GIFBIN.

| ADMUGIF ADMTEST GDF GIFOUT GIF

| Gets an ADMGDF file called ADMTEST GDF (the first one in
| the CMS disk search order) and outputs the corresponding
| GIF file called GIFOUT GIF A (of width 400 pixels and depth
| 400 pixels, depending on the aspect ratio).

| ADMUGIF ADMTEST GDF T GIFOUT GIF B

| Gets an ADMGDF file called ADMTEST GDF from the T disk
| and outputs the corresponding GIF file called GIFOUT GIF to
| the B disk (of width 400 pixels and depth 400 pixels,
| depending on the aspect ratio). ADMUGIF expects that any
| output filemode used for the GIF output file will be accessed
| in write mode.

| ADMUGIF ADMTEST (Width 8ðð Depth 8ðð

| Creates a GIF file called ADMTEST GIFBIN of approximately
| 800 by 800 pixels, depending on the aspect ratio of the
| GDF).

| ADMUGIF ADMTEST (W 8ðð D 8ðð B 1 T 2 A ð

| Creates a GIF file called ADMTEST GIFBIN of exactly 800
| by 800 pixels, with the picture stretched to fit the area and
| having a background color of 1 (blue) and a transparency
| color of 2 (red).

| Invoking ADMUGIF under MVS/TSO

| The following allocations are needed before invoking
| ADMUGIF:

| ALLOC F (ADMGDF) DSN(gdf-pds-dataset-name)

| ALLOC F (ADMSYMBL) DSN(symbolset-pds-name)

| where gdf-pds-dataset contains all the ADMGDF files that
| are to be converted and symbolset-pds contains ADMDHIPK,
| which is needed for color image separation processing.

| The ADMGDF file name is required. The GIF file name and
| keyword parameters are optional.

| CALL ‘dataset-name (ADMUGIF)’

| ‘From(gdf-file) <To(gif-file)> <keyword-parms>’

| where:

| gdf-file Is the name of a member within the parti-
| tioned data set defined by the ddname
| ADMGDF.
| gif-file Is either an allocated ddname or a data
| set name to which a data set qualifier is
| added to the front (in the usual TSO way).
| If you do not enter a gif-file name, the
| name defaults to:

| ‘TSO-prefix.gdf-file.GIFBIN’

344 GDDM Base Application Programming Reference

 GIF

| keyword-parms Parentheses are required around the
| parameter values: for example,
| Width(200).

| ADMUGIF can also be used in batch under the MVS/TSO
| command processor IKJEFT01. Here is some sample JCL:

| //ADMUGIF JOB

| //IKJEFTð1 EXEC PGM=IKJEFTð1,REGION=3M

| //ADMSYMBL DD DSN=GDDM.SADMSYM,DISP=SHR

| //ADMGDF DD DSN=GDDM.SADMGDF,DISP=SHR

| //SYSTSPRT DD SYSOUT=\

| //SYSPRINT DD SYSOUT=\

| //SYSTSIN DD \

| CALL 'GDDM.SADMMOD(ADMUGIF)' 'FROM(ADMTEST)'

| /\

| The userid running the batch job must be defined for TSO
| logon and have a valid TSO PREFIX value assigned.

| Example MVS/TSO invocations

| CALL ‘dataset-name(ADMUGIF)’ ‘F(ADMTEST)’

| Gets an ADMGDF file called ADMTEST from the partitioned
| data set defined by ddname ADMGDF and converts it to a
| GIF sequential output file called
| TSO-prefix.ADMTEST.GIFBIN.

| CALL ‘dataset-name(ADMUGIF)’ ‘F(ADMTEST) T(GIFOUT)’

| Gets an ADMGDF file called ADMTEST from the partitioned
| data set defined by ddname ADMGDF and converts it to a
| GIF sequential output file called TSO-prefix.GIFOUT.

| CALL ‘dataset-name(ADMUGIF)’ ‘F(ADMTEST)

| T(GIFOUT) W(8ðð) T(ð) A(2)’

| Creates a GIF output file that will best fit an 800 by 800 pixel
| output area and have a transparency color of 0 (black).

| For both VM/CMS and MVS/TSO

| The following return codes and notes apply to both VM/CMS
| and MVS/TSO.

| Return codes

| 100 Too many (>6) name-parts: '(' not found when
| expected

| 101 Invalid option: unexpected character string after '('

| 102 Option value not numeric

| 103 Keyword >8 chars or value in () too long (TSO only)

| 104 FSFRCE failed

| 105 GSLOAD failed

| 106 File open failed

| 107 File read failed

| 108 File close failed

| 109 ESEUDS failed

| 110 Allocate storage failed

| 111 DSOPEN failed

| Other: Return code from failed FSINIT or FSTERM

| Notes:

| 1. Text quality: GDDM graphics text mode 1 and mode 2
| are not sized correctly because of the way the image is
| reduced by using a GDDM viewport. Mode 3 text is
| sized correctly but may be indistinct for small output GIF
| files.

| 2. MVS Batch invocation needs to run under IKJEFT01 and
| run with a userid that has a valid TSO profile prefix.

| 3. ADMMCLTB or COLORTAB for color number 0 should
| be used to change the background color of a converted
| ADMGDF file.

| 4. GIF is a service mark of Compuserve Inc.

 Chapter 14. Graphics Interchange Format (GIF) files 345

 GIF

346 GDDM Base Application Programming Reference

 CDPDS

Chapter 15. Format of a Composite Document Presentation Data Stream

This chapter describes the structure of a Composite Docu-
ment Presentation Data Stream (CDPS) document that can
be processed by the Composite Document Print Utility
(CDPU). A list of the Advanced Function Presentation Data
Stream (AFPDS) structured fields supported by the CDPU is
given in “AFPDS structured fields supported by the CDPU”
on page 356.

The physical organization of the file varies depending on the
environment:

CICS Temporary data file

VSE Batch ESDS data set

MVS Batch V-format sequential data set

TSO V-format sequential data set

CMS V-format sequential file.

In each case each record contains a complete structured
field. The structured fields must be in the order shown,
except where it is stated that the order is optional.

Structured fields are described in detail below.

 Document structure

In the syntax structure below, the following conventions
apply:

::= Precedes the definition of an item

[] Square brackets indicate optional items

 . . . The item may be repeated.

document::=
begin-document
[invokable-master-environment-group] . . .
[page] . . .

 end-document

The file cannot contain multiple documents. Anything after
the end-document structured field is ignored.

The formats of individual structured fields, such as “begin-
document” and “end-document”, are defined in the next
section, under the heading “Structured field formats” on
page 349.

invokable-master-environment-group::=
begin-master-environment-group

 [medium-descriptor]
[medium-modification-control] . . . (up to two)

 [medium-copy-count]
 [map-medium-overlay]
 [page-descriptor]
 [page-position]
 end-master-environment-group

page::=
[master-environment-group-invocation] . . .

 begin-page
 [active-environment-group]
 [presentation-text-object]

[image-object] . . .
[graphics-object] . . .
[bar-code-object] . . .

 end-page

Note: The presentation-text-object, image-object, graphics-
object, and bar-code-object may occur in any order.

master-environment-group-invocation::=
begin-master-environment-group

 invoke-master-environment-group
 end-master-environment-group

active-environment-group::=

begin-active-environment-group
 [map-coded-font]
 [page-descriptor]
 [page-position]
 [object-area-descriptor]
 [object-area-position]
 [presentation-text-descriptor]
 [object-area-position]
 end-active-environment-group
presentation-text-object::=

begin-presentation-text
[presentation-text-data] . . .

 end-presentation-text
graphics-object::=

begin-graphics-object
 begin-object-environment-group
 object-area-descriptor
 object-area-position
 [map-coded-font]
 [graphics-data-descriptor]
 end-object-environment-group

[graphics-data] . . .
 end-graphics-object
bar-code-object::=

begin-bar-code-object
 begin-object-environment-group
 object-area-descriptor
 object-area-position
 [map-bar-code]
 [map-coded-font]
 bar-code-data-descriptor
 end-object-environment-group
 [bar-code-data]...
 end-bar-code-object
image-object::=

begin-image-object
begin-object-environment-group

 object-area-descriptor
 object-area-position

 Copyright IBM Corp. 1980, 1996 347

 CDPDS

 [image-data-descriptor]
 end-object-environment-group

[image-picture-data] . . .
 end-image-object

In addition, no-operation structured fields may appear any-
where in the document and are ignored.

 Structured fields

A document consists of a sequence of structured fields, each
of which has the following format:

0 – 1 Length of the structured field in bytes. This is the
length of the parameters specific to the type of
structured field, plus the 8-byte introducer. In no
case may the length of a structured field be more
than 8200. (This differs from AFPDS documents,
for which the maximum is 8202.)

2 – 4 String identifying the type of structured field. The
hexadecimal value for each type is shown in the
heading for each structured field; see “Structured
field formats” on page 349.

5 – 7 X'000000'.

8 – n Parameter information as described for each struc-
tured field under “Structured field formats” on
page 349.

Offsets, for example in error messages, are shown in
hexadecimal and are calculated from the start of the struc-
tured field, including the two length bytes.

Summary of structured fields

Table 37. Structured fields in code order

Hex code Meaning

D3A9C8 End master environment group EMG
D3A9C9 End active environment group EAG
D3A9EB End bar code object EBC
D3A9FB End image object EIM
D3AB8A Map coded font/2 MCF/2
D3ABDF Map medium overlay MMO
D3ABEB Map bar code MBC
D3AC6B Object area position OBP
D3AFC8 Invoke master environment group IMG
D3B188 Medium copy count MCC
D3B1AF Page position PGP
D3EE9B Presentation text data PTX
D3EEBB Graphics data GAD
D3EEEB Bar code data BDA
D3EEEE No operation NOP
D3EEFB Image picture data IPD

Table 38. Structured fields in alphabetic order

 Meaning Hex code

BAG Begin active environment group D3A8C9
BBC Begin bar code object D3A8EB
BDA Bar code data D3EEEB
BDD Bar code data descriptor D3A6EB
BDT Begin document D3A8A8
BGR Begin graphics object D3A8BB
BIM Begin image object D3A8FB
BMG Begin master environment group D3A8C8
BOG Begin object environment group D3A8C7
BPG Begin page D3A8AF
BPT Begin presentation text D3A89B
EAG End active environment group D3A9C9
EBC End bar code object D3A9EB
EDT End document D3A9A8
EGR End graphics object D3A9BB
EIM End image object D3A9FB

Table 37. Structured fields in code order EMG End master environment group D3A9C8
EOG End object environment group D3A9C7Hex code Meaning
EPG End page D3A9AF

D3A66B Object area descriptor OBD EPT End presentation text D3A99B
D3A688 Medium descriptor MDD GAD Graphics data D3EEBB
D3A69B Presentation text descriptor PTD GDD Graphics data descriptor D3A6BB
D3A6AF Page descriptor PGD IDD Image data descriptor D3A6FB
D3A6BB Graphics data descriptor GDD IMG Invoke master environment group D3AFC8
D3A6EB Bar code data descriptor BDD IPD Image picture data D3EEFB
D3A6FB Image data descriptor IDD MBC Map bar code D3ABEB
D3A788 Medium modification control MMC MCC Medium copy count D3B188
D3A89B Begin presentation text BPT MCF/2 Map coded font/2 D3AB8A
D3A8A8 Begin document BDT MDD Medium descriptor D3A688
D3A8AF Begin page BPG MMC Medium modification control D3A788
D3A8BB Begin graphics object BGR MMO Map medium overlay D3ABDF
D3A8C7 Begin object environment group BOG NOP No operation D3EEEE
D3A8C8 Begin master environment group BMG OBD Object area descriptor D3A66B
D3A8C9 Begin active environment group BAG OBP Object area position D3AC6B
D3A8EB Begin bar code object BBC PGD Page descriptor D3A6AF
D3A8FB Begin image object BIM PGP Page position D3B1AF
D3A99B End presentation text EPT PTD Presentation text descriptor D3A69B
D3A9A8 End document EDT PTX Presentation text data D3EE9B
D3A9AF End page EPG
D3A9BB End graphics object EGR
D3A9C7 End object environment group EOG

348 GDDM Base Application Programming Reference

 CDPDS

Structured field formats

For each of the structured fields below, offsets are shown
within the parameter information section which starts at byte
8 in the structured field.

Begin active environment group (D3A8C9) BAG:
Indicates the beginning of an active environment group.

0 – 7 Active environment group name (0 through 8 char-
acters).

Begin bar code object (D3A8EB) BBC: Indicates the
beginning of a bar code object.

0 – 7 Data-object name (0 through 8 characters)

Bar codes can be printed on IPDS printers and viewed on
graphics displays. They are not supported on page printers.

GDDM does not check the suitability of the bar-code font ID,
module width, element height, height multiplier, or wide-to-
narrow ratio for the target IPDS printer. Unsuitable values
cause an error message to be issued and can cause the
printer to stop.

When a bar code is viewed on a display, GDDM shows a
generalized and stylized picture of the bar code, rather than
an accurate representation. The following defaults are used
if requested by the application:

Bar code data (D3EEEB) BDA: Contains data parame-
ters for positioning, encoding, and presenting a bar code
symbol in the bar code object presentation space. The data
to be presented is encoded in accordance with the parameter
definitions in the Bar-code-data descriptor (BDD) structured
field.

0 Flags to control the presence and position of the
human-readable interpretation (HRI).

B'ð.......' The HRI is printed.
B'1.......' The HRI is not printed.
B'.ðð.....' The printer default is used for posi-

tioning the HRI.
B'.ð1.....' The HRI is printed below the bar

code symbol.
B'.1ð.....' The HRI is printed above the bar

code symbol.
B'...ð....' No asterisk is printed as the HRI for

3-of-9 code start and stop.

B'...1....' An asterisk is printed as the HRI for
3-of-9 code start and stop.

1 – 2 x coordinate of the top left corner of the bar code
symbol (in the range 1 through 32767).

3 – 4 y coordinate of the top left corner of the bar code
symbol (in the range 1 through 32767).

5 – n bar coded data.

The coordinates in bytes 1-2 and 3-4 are expressed using
the measurement units defined in the BDD structured field.
The format and length of the data is determined by the bar
code type specified in the BDD (see Table 39).

Bar-code-data descriptor (D3A6EB) BDD: Specifies
the size of the bar-code-object presentation space, the bar
code type, and various parameters and attributes for pre-
senting bar code symbols within the object.

0 – 1 X'0000'
2 – 3 Number of measurement units in 10 inches in the

x-direction
4 – 5 Number of measurement units in 10 inches in the

y-direction
6 – 7 Presentation-space size in the x-direction
8 – 9 Presentation-space size in the y-direction
10 – 11 Reserved
12 – 13 Bar code type and modifier

The following types are supported.
X'01' 3-of-9 code, with modifier X'01'–'02'
X'02' MSI, with modifier X'01'–X'09'
X'03' UPC/CGPC-Version A, with modifier X'00'
X'05' UPC/CGPC-Version E, with modifier X'00'
X'06' UPC 2 digit supplement, with modifier X'00'

Table 39. Format of bar code data

Type Length Data

3-of-9 variable Alphanumeric charac-
ters

MSI variable Numeric characters

UPC/CGPC-Version A 11 Numeric characters

UPC/CGPC-Version E 10 Numeric characters
(5th to 9th must be 0)

UPC 2-digit supple-
ment

2 Numeric characters

UPC 5-digit supple-
ment

5 Numeric characters

EAN 8 (include JAN
short)

7 Numeric characters

Module width 014-inch EAN 13 (includes JAN
standard)

12 Numeric characters
Element height UPCA,

UPCE,
EAN13

1-inch

2-of-5 variable Numeric characters

 3-of-9,
2-of-5,
MSI

¼-inch EAN 2-digit add-on 2 Numeric characters

EAN 5-digit add-on 5 Numeric characters

 others ⅞-inch Note: Numeric characters are in EBCDIC from X'FO' through
X'F9'.Wide-to-narrow ratio 2.5 : 1

 Chapter 15. Format of a Composite Document Presentation Data Stream 349

 CDPDS

X'07' UPC 5 digit supplement, with modifier X'00'
X'08' EAN-8, with modifier X'00'
X'09' EAN-13, with modifier X'00'
X'0A' 2-of-5 industrial, with modifier X'01'–X'02'
X'0B' 2-of-5 matrix, with modifier XX'01'–X'02'
X'0C' Interleaved 2-of-5, with modifier

X'01'–X'02'
X'16' EAN 2-digit add-on, with modifier X'00'
X'17' EAN 5-digit add-on, with modifier X'00'

14 Local font identifier

This allows control of the font to be used for any
Human Readable Information (HRI) associated with
the bar code. Setting it to X'FF' causes the
printer to use the default font appropriate to the
particular bar code type. A value in the range
X'00' through X'7F' matching the Resource Local
Identifier in the preceding MCF/2 causes the IPDS
font specified by that MCF/2 to be used for the
HRI.

The Resource Local Identifier on the MCF/2 must
not clash with that used on any other MCF/2.

Printers may impose restrictions on the font that
may be used with a particular bar code type. It is
therefore recommended that you use the default
X'FF'.

The UPC and EAN bar code types can only be
printed with OCR-B.

15 – 16 Color identifier
X'0000' or X'FF00' Printer default
X'0001' or X'FF01' Blue
X'0002' or X'FF02' Red.
X'0003' or X'FF03' Magenta (pink)
X'0004' or X'FF04' Green
X'0005' or X'FF05' Turquoise (cyan)
X'0006' or X'FF06' Yellow
X'0008' Black
X'0010' Brown
X'FF07' Printer default
X'FF08' Color or medium

17 Module width
X'FF' Printer default
Others The width in thousandths of an inch of

the smallest defined bar code dimen-
sion

18 – 19 Element height
X'FFFF' Printer default height
Others The height of bar and space elements

in units of 1/1440 of an inch.
20 Height multiplier

The number of vertically contiguous, identical bar
and space patterns printed in a bar code symbol.

21 – 22 Wide-to-narrow ratio

The ratio of the wide element to the narrow
element dimension.
X'FFFF' Printer default
X'0014'–X'00IE' 2.0 – 3.0 in units of 0.1
X'00C8'–X'012C' 2.00 – 3.00 in units of 0.01

This does not apply to UPC/CGPC, EAN, JAN, or
UPC codes.

Note: Printers impose restrictions on the values accepted in
bytes 17 through 22. These restrictions also depend on the
bar code type (byte 12). Check your printer documentation
before using non-default values.

Begin document (D3A8A8) BDT: Indicates the begin-
ning of the document. It contains the following fields:

0 – 7 Document name.

8 – 9 X'0000'.

10 – n Groups of optional, additional information, in any
order. These groups are reserved to describe the
level of function in the document.

Begin graphics object (D3A8BB) BGR: Indicates the
beginning of a graphics object.

0 – 7 Data Object name (0 through 8 characters).

Begin image object (D3A8FB) BIM: Indicates the
beginning of an image object.

0 – 7 Image name (0 through 8 characters).

Begin master environment group (D3A8C8) BMG:
Indicates the beginning of a master environment group
(MEG). This may be either an invokable MEG, or an invoca-
tion of such a MEG.

0 – 7 Master environment group name (0 through 8 char-
acters).

Begin object environment group (D3A8C7) BOG:
Indicates the beginning of an object environment group.

0 – 7 Object environment group name (0 through 8 char-
acters).

Begin page (D3A8AF) BPG: Indicates the beginning of
a page.

0 – 7 Page name (0 through 8 characters).

Begin presentation text (D3A89B) BPT: Indicates the
beginning of a presentation text object.

0 – 7 Data object name (0 through 8 characters).

End active environment group (D3A9C9) EAG: Indi-
cates the end of an active environment group.

0 – 7 Active environment group name (0 through 8 char-
acters).

End bar code object (D3A9EB) EBC: Indicates the
end of a bar code object.

0 – 7 Data-object name (0 through 8 characters).

End document (D3A9A8) EDT: Indicates the end of the
document.

0 – 7 Document name (0 through 8 characters).

350 GDDM Base Application Programming Reference

 CDPDS

End graphics object (D3A9BB) EGR: Indicates the
end of a graphics object.

0 – 7 Data object name (0 through 8 characters).

End image object (D3A9FB) EIM: Indicates the end of
an image object.

0 – 7 Image name (0 through 8 characters).

End master environment group (D3A9C8) EMG:
Indicates the end of a master environment group.

0 – 7 Master environment group name (0 through 8 char-
acters).

End object environment group (D3A9C7) EOG:
Indicates the end of an object environment group.

0 – 7 Object environment group name (0 through 8 char-
acters).

End page (D3A9AF) EPG: Indicates the end of a page.

0 – 7 Page name (0 through 8 characters).

End presentation text (D3A99B) EPT: Indicates the
end of a presentation text object.

0 – 7 Data object name (0 through 8 characters).

Graphics data (D3EEBB) GAD: Contains the graphics
orders to be drawn.

0 – n Up to 8192 bytes of graphics data. This, combined
with successive graphics data structured fields if
required, contains one or more complete graphics
segments. It must not have drawing orders outside
segments.

The format is a sequence of orders suitable for processing
by GSPUT, with the following exceptions:

� Segment start is one of two formats.

– The longer of the two forms defined in Chapter 10,
“GDF order descriptions” on page 281.

– An extended form of the above. The second byte
contains X'0E' as the length of following data. The
length of segment field contains the low-order 2
bytes of the length of segment. Two extra bytes at
the end contain the high-order bytes.

In each case the length of segment must be specified
exactly, and is not assumed to end when a X'FF' order
code is met.

� Segment end is not accepted as indicating the end of a
segment, and is ignored. Instead, the length given in
the segment start order is used to show the position of
the end.

Coordinates must match the format specified in the graphics
data descriptor.

A graphic order may span successive graphics data struc-
tured fields that make up an object.

Graphics data descriptor (D3A6BB) GDD: Specifies
the limits of coordinates in the graphics data. It contains one
or two groups of data as follows:

� Drawing order subset, optional.

0 X'F7'.
1 Length of following data.
2 – n Reserved.

� Window specification, required.

0 X'F6'
1 Length of following data
2 – 3 X'0000'
4 Format of coordinates:

X'00' 2 byte integers
X'01' 4 byte floating-point

5 X'00' Reserved.
6 – 11 (or 6 – 17 if floating-point coordinates)

Reserved
12 – 13 (or 18 – 21 if floating-point coordinates)

x-coordinate of left edge in graphics data
14 – 15 (or 22 – 25 if floating-point coordinates)

x-coordinate of right edge in graphics data
16 – 17 (or 26 – 29 if floating-point coordinates)

y-coordinate of bottom edge in graphics data
18 – 19 (or 30 – 33 if floating-point coordinates)

y-coordinate of top edge in graphics data
20 – 23 (or 34 – 41 if floating-point coordinates)

Reserved.

The graphics data is drawn scaled to fit the object area spec-
ified in the object area descriptor and object area position
fields. If the object area is partly off the page, the object is
clipped at the page boundary.

Preservation of aspect ratio or size can be achieved by
appropriate selection of parameters when creating this file.

Image data descriptor (D3A6FB) IDD: Specifies the
size of the image to be included.

0 X'00'
1 – 2 Number of pixels in 10 inches in the x-direction
3 – 4 Number of pixels in 10 inches in the y-direction
5 – 6 Image size in the x-direction
7 – 8 Image size in the y-direction.

The image is drawn without scaling, and is trimmed to fit the
object area specified in the object area descriptor and object
area position fields. If the object area is partly off the page,
the image is trimmed at the page boundary.

Invoke master environment group (D3AFC8) IMG:
This indicates a change for the current state master environ-
ment group (MEG) parameters. It contains the following
field:

0 – 7 The name of the invokable MEG whose parame-
ters are to become the current state MEG values.

 Chapter 15. Format of a Composite Document Presentation Data Stream 351

 CDPDS

Image picture data (D3EEFB) IPD: Contains the
image orders to be drawn.

0 – n Up to 8192 bytes of image data. It must be in a
format suitable for processing by IMAPT. The con-
tents of a sequence of image picture data struc-
tured fields must be a valid sequence that would
follow a call to IMAPTS specifying default com-
pression and a format value of –2. This implies
that the image data must follow the convention that
1 = black .

Map bar code (D3ABEB) MBC: Specifies how the bar
code data object is to be positioned in an output area of the
logical page.

0 – 4 X'0005030400'

This specifies the only valid option - position, no trim or
scale. The top-left corner of the bar code object presentation
space is mapped to the object-content origin that is specified
in the object-area position (OBP) structured field.

This is the default action if this structured field is omitted.

Medium copy count (D3B188) MCC: Specifies
medium modification group references.

0 – 4 X'0001000100'.
5 Medium modification group reference for the front

of the paper. It must match the group identifier in
a medium modification control structured field.

6 Medium modification group reference for the
reverse of the paper, applicable to duplex printing.
It must match the group identifier in a medium
modification control structured field, or is zero for
simplex printing.

Map coded font (D3AB8A) MCF/2: Identifies the corre-
spondence between external font names and a resource
local identifier. It consists of a repeating group for each font.
Each has the following fields:

0 – 1 Length of this repeating group
2 – n Groups of additional information, in any order, as

follows:

� Fully qualified name, required

0 – 1 X'0C02'– identifies the group
2 Type of name as follows:

X'84' Coded font name (GRID)
X'85' Code page name
X'86' Font name

3 X'00' Reserved
4 – 11 External name of the font.

For a text map-coded font, one of the following
is required:

– a coded font name (GRID)
– both a code page name and a font name.

For a graphics map-coded font, one of the fol-
lowing is required:

– a coded font name (GRID)
– a font name.

For both text and graphics DBCS fonts, a
coded font name (GRID) is required.

Code page information is ignored for graphics
map-coded fonts.

The external name of the font (byte 4 through
11) takes one of the following forms:

– Coded font name (X'84'–global resource
identifier or GRID):

4 – 5 A graphic character-set global
identifier (GCSGID).

6 – 7 A code-page global identifier
(CPGID).

8 – 9 A font global identifier (FGID).
10 – 11 A 2-byte character-width field.

This is the width of the space
character in 1/1440 inch units.

– Font name (X'86')

For a presentation-text map-coded font
(MCF/2) the external name is an 8 byte
PSF member name. For a graphics-text
MCF/2, it must be a GDDM symbol-set
name.

� Resource local identifier, required.

0 – 2 X'042405' – identifies the group.
3 Resource local identifier. It must be

in the range 1 through 127 for a text
font. When used in a graphics
object the value is as follows:
0 pattern or marker symbol

set
65 – 223 other symbol sets.

� Font descriptor, optional

0 – 1 X'0D1F' – identifies the group.
2 Font weight class. It must be in the

range 1 through 9.
3 Font width class. It must be in the

range 1 through 9.
4 – 5 Font vertical point size. It must be in

the range 0 through 360.
6 – 7 Average character width. It must be

in the range 0 through 360.
8 Font descriptor flags, assigned as

follows:
X'80' Italic
X'40' Underscored
X'10' Outline characters
X'08' Overstruck
X'04' Proportional spaced.
These flags are ignored by GDDM.

9 Font usage. This is defined in a
graphics object only, and is a
reserved byte for a text font. The
values 1–5, 8, and 9 correspond to

352 GDDM Base Application Programming Reference

 CDPDS

the type parameter on a call to
GSLSS. Other values are reserved.

10 Font family – reserved.
11 Font class – reserved.
12 Font quality.

Font descriptor for IPDS printers

GDDM uses the following interpretation of the font descriptor
when driving IPDS printers:

1. Font weight class

X'07' Bold characters (when supported by
printer)

other values Normal characters.

2. Font width class

X'07' Double wide characters (when sup-
ported by printer)

other values Normal characters.

3. Font descriptor flags

X'80' Italic characters (when supported by
printer)

X'08' Overstruck characters (when supported
by printer).

 4. Font quality

X'01' Low quality, high speed (when sup-
ported by printer)

X'02' Medium quality, medium speed (when
supported by printer)

X'03' High quality, low speed (when sup-
ported by printer).

GDDM changes font quality only when it changes pages.
For consistent results, all fonts used on any one page
should all have the same font quality.

Medium descriptor (D3A688) MDD: Specifies the size
of the medium. The default is the size of the target device
known to GDDM. It contains the following fields:

0 – 1 X'0000'.
2 – 3 Number of medium measurement units in 10

inches in the x-direction. It must be in the range
2400 through 14400.

4 – 5 Number of medium measurement units in 10
inches in the y-direction. It must be in the range
2400 through 14400.

6 – 8 Medium size in the x-direction (in the range 1
through 8388607).

9 – 11 Medium size in the y-direction (in the range 1
through 8388607).

Medium modification control (D3A788) MMC: Speci-
fies the modifications of a medium copy group.

0 Medium modification group identifier, in the range 1
through 127.

1 X'FF'.

2 – n Modifications, in any order, from the list below.
Each type of modification may be specified at most
once.

� First source location selector.

0 X'E1'. Keyword identifier.
1 Source selection for the first form in the

group. It must be in the range 1 through
100. The default is 1.

� Subsequent source location selector.

0 X'E2'. Keyword identifier.
1 Source selection for subsequent forms in

the group. It must be in the range 1
through 100. The default is 1.

� Medium overlay local identifier.

0 X'F2'. Keyword identifier.
1 Local identifier for the overlay required. It

must match the local identifier in a map
medium overlay structured field. The
default is no overlay.

Map medium overlay (D3ABDF) MMO: Identifies the
correspondence between an external overlay name and a
resource local identifier. It contains one or two groups, each
specifying such a pair. If a second group is included, it
applies to the reverse of the paper in duplex printing. The
format of each group is:

0 – 1 X'0012'.
2 – 17 Two groups of additional information, in any order,

as follows:

� Fully qualified name, required.

0 – 3 X'0C028400'. Identifies the group.
4 – 11 External name of the overlay.

� Resource local identifier, required.

0 – 2 X'042401'. Identifies the group.
3 Resource local identifier. It must be

in the range 1 through 127.

No operation (D3EEEE) NOP: This may be used to
add comments to the data stream. It can appear in any posi-
tion.

0 – n Up to 8192 bytes of comment data, not examined.

Object area descriptor (D3A66B) OBD: Specifies the
size of an object. It contains the following fields:

0 – n Three groups of additional information, in any
order, as follows:

� Descriptor position identifier, required.

0 – 1 X'0343'. Identifies the group.
2 Descriptor position identifier in range

1 through 127.

� Object area measurement units, required.

0 – 3 X'084B0000'. Identifies the group.

 Chapter 15. Format of a Composite Document Presentation Data Stream 353

 CDPDS

4 – 5 Number of object area units in 10
inches in the x-direction. It must be
in the range 2400 through 14400.

6 – 7 Number of object area units in 10
inches in the y-direction. It must be
in the range 2400 through 14400.

� Object area size, required.

0 – 2 X'094C02'. Identifies the group.
3 – 5 Object area size in the x-direction (in

the range 1 through 8388607).
6 – 8 Object area size in the y-direction (in

the range 1 through 8388607).

The information for the text object area descriptor must
match that of the page descriptor, which is the default if this
field is missing.

Object area position (D3AC6B) OBP: Specifies the
position of an object on the page.

0 Object area position identifier in range 1 through
127.

1 X'17'.
2 – 4 Object area origin, x (in the range 0 through

8388607).
5 – 7 Object area origin, y (in the range 0 through

8388607).
8 – 11 Object orientation. The orientations are respec-

tively:
X'00002D00' North
X'2D005A00' East (permitted for bar code

objects only)
X'5A008700' West (permitted for bar code

objects only)
X'87000000' South (permitted for bar code

objects only).
12 X'00'
13 – 15 Object content origin, x (in the range 0 through

8388607).
16 – 18 Object content origin, y (in the range 0 through

8388607).
| 19 – 23 X'00002D0000'.

The text object area position, if present, must have both
origins zero (the default). The origins are expressed in
object measurement units, as defined in the OBD structured
field.

Parts of a graphics or image object that lie outside the page
size are not printed.

Note: Non-zero object rotation may only be used for bar
code objects. Non-zero object rotation is not supported by
all IPDS printers.

Page descriptor (D3A6AF) PGD: Specifies the size of
the page, which must not be zero and must fit on the GDDM
device size at the position given by the page-position struc-
tured field. The default is found from the size in the medium
descriptor.

0 – 1 X'0000'.
2 – 3 Number of page measurement units in 10 inches in

the x-direction. It must be in the range 2400
through 14400.

4 – 5 Number of page measurement units in 10 inches in
the y-direction. It must be in the range 2400
through 14400.

6 – 8 Page size in the x-direction (in the range 1 through
8388607).

9 – 11 Page size in the y-direction (in the range 1 through
8388607).

Page position (D3B1AF) PGP: Specifies the position of
the page on the form. The defaults are zero. It contains the
following fields:

0 – 1 X'0109'.
2 – 4 Page origin in the x-direction (in the range 0

through 8388607).
5 – 7 Page origin in the y-direction (in the range 0

through 8388607).
8 – 9 Page orientation. The orientations are respec-

tively:
X'0000' North
X'2D00' East
X'5A00' South
X'8700' West.

Note: The page origin is ignored for family-4 devices if it is
found within an active environment group.

Presentation text descriptor (D3A69B) PTD: Gives
the size of the text block on the page, and may specify
defaults to be used for text controls. The fields are as
follows:

0 – 1 X'0000'.
2 – 3 Number of text measurement units in 10 inches in

the x-direction. It must be in the range 2400
through 14400.

4 – 5 Number of text measurement units in 10 inches in
the y-direction. It must be in the range 2400
through 14400.

6 – 8 Text block size in the x-direction, the same as the
size in the Page Descriptor.

9 – 11 Text block size in the y-direction, the same as the
size in the Page Descriptor.

12 – 13 Presentation text flags.
14 – n Optional groups of additional information, in any

order, specifying initial defaults in place of printer
defaults. The format is the same as bytes 2 – n of
the presentation text data structured field. The
subset that may be included in the presentation
text descriptor structured field is as follows:

� Set baseline increment
� Set coded font local
� Set intercharacter increment
� Set inline margin
� Initial addressable position (absolute move

baseline and absolute move inline)
� Set text color.

354 GDDM Base Application Programming Reference

 CDPDS

Presentation text data (D3EE9B) PTX: This contains
a chain of text controls. It contains the following fields:

0 – 1 X'2BD3'.
2 – n A sequence of text controls as described below.

Byte 1 of the last text control contains the value
shown minus 1, to mark the end of the chain.

� Absolute move baseline.

Sets the distance from the top margin of the paper.

0 – 1 X'04D3'.
2 – 3 Baseline print position.

� Absolute move inline.

Sets the distance from the left margin of the paper.

0 – 1 X'04C7'.
2 – 3 Inline print position.

 � Begin line.

Sets the print position for a new line. See also set
baseline increment and set inline margin .

0 – 1 X'02D9'.

� Draw baseline rule.

Draws a rule perpendicular to the top of the page.

0 – 1 X'07E7'.
2 – 3 Length. If the length is positive, the line is

drawn in the sequential baseline direction. If
the length is negative, the line is drawn away
from the sequential baseline direction.

4 – 5 Width. If the width is positive, pixels are
added in the positive inline direction. If the
width is negative, pixels are added in the neg-
ative inline direction.

6 X'00'.

� Draw inline rule.

Draws a rule parallel to the top of the page.

0 – 1 X'07E5'.
2 – 3 Length. If the length is positive, the line is

drawn in the sequential inline direction. If the
length is negative, the line is drawn away from
the sequential inline direction.

4 – 5 Width. If the width is positive, pixels are
added in the positive baseline direction. If the
width is negative, pixels are added in the neg-
ative baseline direction.

6 X'00'.

 � No operation.

Used to include variable length comments, or to termi-
nate chaining (by changing byte 1 to X'F8').

0 – 1 X'xxF9'. xx denotes the length of the
comment.

2 – (xx+1) Variable length comment.

� Relative move baseline.

Used to change the current baseline position.

0 – 1 X'04D5'.

2 – 3 Baseline print position move. It can be posi-
tive or negative.

� Relative move inline.

Used to change the current inline position.

0 – 1 X'04C9'.
2 – 3 Inline print position move. It can be positive or

negative.

 � Repeat string.

Specifies the repetition of a character string.

0 – 1 X'xxEF'. xx denotes the length of the
string to be repeated.

2 – 3 Number of characters to be repeated.
For example, if the resulting length is 7
and the string is ABC , then ABCABCA is
printed.

4 – (xx+3) Variable length string to be repeated.

For example, to generate the string ABCABCA the field
would be:

ð3EFððð7ABC

� Set baseline increment.

Sets the baseline movement to be used by the begin
line control.

0 – 1 X'04D1'.
2 – 3 Baseline increment amount.

� Set coded font local.

Identifies the coded font to be used for printing subse-
quent text.

0 – 1 X'03F1'.
2 Local identifier of the coded font to be used. It

must match one of those in a map coded font
structured field.

� Set inline margin.

Sets the inline margin to be used by the begin line
control.

0 – 1 X'04C1'
2 – 3 Inline margin.

� Set intercharacter increment.

Used to set intercharacter spacing.

0 – 1 X'04C3'
2 – 3 Increment.

� Set text color.

Specifies the color of text that follows.

0 Length of set text color control, either 4 or 5.
1 X'75'.
2 – 3 Foreground color.
4 If present, indicates the color precision.

� Set text orientation.

Only one text orientation may be specified, although the
whole page may be rotated.

 Chapter 15. Format of a Composite Document Presentation Data Stream 355

 CDPDS

0 – 5 X'06F700002D00'.

� Set variable space character increment.

Establish the width of blank characters that appear in
transparent data controls.

0 – 1 X'04C5'.
2 – 3 Width of variable space character.

 � Transparent data.

Identifies text to be printed that does not contain any text
controls.

0 – 1 X'xxDB'. xx denotes the length of the
text.

2 – (xx+1) Variable length text to be printed.

AFPDS structured fields supported by the
CDPU

The Composite Document Print Utility (CDPU) supports
printing and viewing of a document, a page segment or an
overlay in Advanced Function Presentation Data Stream
(AFPDS) format. AFPDS formats supported by the CDPU
include LIST3820, LIST38PP, LIST4250, LISTAPA,
PSEG38PP, PSEG4250, OVLY38PP, and OVLY4250.

The following restrictions apply to CDPU support of AFPDS
documents:

� The AFPDS document cannot contain multiple docu-
ments or page segments. (A document can contain
page segments inline.)

� The structured field length must not exceed 8202 bytes.
� Input formatted for the 4250 can be viewed but not

printed.
� Secondary input is not supported.
� Page segments that contain text cannot be printed

unless they are imbedded in a document.

GDDM supports the AFPDS enhancements provided by Print
Services Facility (PSF) Version 2.1 on VM and MVS
systems. These include support for GOCA graphics orders
and IO compressed image.

The formats of individual structured fields, such as “begin-
document”, are defined in the AFPDS Data Stream Refer-
ence, S544-3202.

Summary of AFPDS structured fields
supported by the CDPU

AFPDS structured fields supported by the CDPU are listed in
Table 40.

The include-page-segment structured field is not supported
and is treated as an error. Structured-field-introducer (SFI)
extensions (bit 0, flag byte 5) are not supported and are
treated as errors. Padding bytes (bit 4, flag byte 5 of SFI)
are not supported.

Table 40. AFPDS structured fields supported by the CDPU
Hex code Meaning
D3A66B Object area descriptor (OBD)
D3A67B Image input descriptor (IID)
D3A69B Composed/Presentation text descriptor - format 1

(CTD/PTD)
D3A6AF Page descriptor (PGD)
D3A6BB Graphics data descriptor (GDD)
D3A6FB Image date descriptor (IDD)
D3A77B Image output control (IOC)
D3A79B Composed text control (CTC)
D3A85F Begin page segment (BPS)
D3A87B Begin image (IM) object (BIM)
D3A89B Begin composed/presentation text object (BCT/BPT)
D3A8A8 Begin document (BDT)
D3A8AF Begin page (BPG)
D3A8BB Begin graphics object (BGR)
D3A8C7 Begin object environment group (BOG)
D3A8C9 Begin active environment group (BAG)
D3A8DF Begin medium/multifunction overlay (BMO)
D3A8FB Begin image (IO) object (BIM)
D3A95F End page segment (EPS)
D3A97B End image (IM) block (EIM)
D3A99B End composed/presentation text (ECT/EPT)
D3A9A8 End document (EDT)
D3A9AF End page (EPG)
D3A9BB End graphics object (EGR)
D3A9C7 End object environment group (EOG)
D3A9C9 End active environment group (EAG)
D3A9DF End medium/multifunction overlay (EMO)
D3A9FB End image (IO) object (EIM)
D3AB8A Map coded font - format 2 (MCF/2)
D3ABBB Map graphics object (MGO)
D3AC6B Object area position (OBP)
D3AC7B Image cell position (ICP)
D3B18A Map coded font - format 1 (MCF/1)
D3B19B Presentation text descriptor - format 2 (PTD)
D3EE7B Image raster data (IRD)
D3EE9B Composed/Presentation text data (CTX/PTX)
D3EEBB Graphics data (GAD)
D3EEEE No operation (NOP)
D3EEFB Image picture data (IPD)
D3A67B Image input descriptor (IID)
D3A69B Composed text descriptor (CTD)
D3A6AF Page descriptor (PGD)
D3A77B Image output control (IOC)
D3A79B Composed text control (CTC)
D3A85F Begin page segment (BPS)
D3A87B Begin image block (BIM)
D3A89B Begin composed text block (BCT)
D3A8A8 Begin document (BDT)
D3A8AF Begin page (BPG)
D3A8C9 Begin active environment group (BAG)
D3A8DF Begin medium overlay (BMO)
D3A95F End page segment (EPS)
D3A97B End image block (EIM)
D3A99B End composed text block (ECT)
D3A9A8 End document (EDT)
D3A9AF End page (EPG)
D3A9C9 End active environment group (EAG)
D3A9DF End medium overlay (EMO)
D3AC7B Image cell position (ICP)
D3B18A Map coded font (MCF)
D3EE7B Image raster data (IRD)
D3EE9B Composed text data (CTX)

356 GDDM Base Application Programming Reference

 application data structures

Chapter 16. Application data structure for mapping

The basic purpose of the application data structure is to
define an input/output area for use in transferring data
between your application program and GDDM. You include
the application data structure declaration created by
GDDM-Interactive Map Definition (GDDM-IMD) in your appli-
cation to define the layout of one or more areas of storage.
GDDM also keeps a copy in its own storage of the data area
associated with each mapped field that you define, and it
uses its copy to create the display that the operator sees,
and to record the changes made by the operator.

Your program modifies the GDDM data area by filling in
values in its own area, then passing the area to GDDM using
an MSPUT call. It finds out the values in the GDDM data
area by using an MSGET call, which copies the GDDM area
into the program’s data area. Usually, MSGET is used so
that the program gets access to the operator’s input, though
it can be used at other times; for example, after MSDFLD, to
initialize the program’s data area to the default values.

When you have finished the GDDM-IMD map-definition and
generation processes, you will not only have one or more
generated mapgroups, but you will also have an application
data structure for each map. The data structure and the
fields that it defines depends on the selections made during
the map-definition process. Further information on this
process is given in the GDDM Interactive Map Definition
book.

The application data area can be used for these purposes:

� Most of an application data structure is data fields, each
data field corresponding to a map-defined display field.
You place into the data fields the character data that you
want to be displayed.

� You can position the cursor in a display field by setting
the field’s cursor adjunct . By default, the cursor is
placed under the first character of the field, but you can
change this by using the MSCPOS call before you use
MSPUT.

� Selector adjuncts provide additional control over, and
information about, a field’s data value. You can selec-
tively update a field, reset a field to its map-defined
default value, and determine whether a field has been
modified by the operator.

� Length Adjuncts show the length of the data in the
field. If the data in a field is shorter than the map-
defined display field length, GDDM pads the data with
nulls when it displays the field. After operator input the
length adjunct is set to the number of characters pro-
vided by the operator.

� Usually, field attributes are specified for the various
fields on a map during map definition. However, at run
time the application program can change these attributes
by placing attribute values in attribute adjunct fields in
the application data structure. One or more adjunct

fields can be associated with a given data field in the
application data structure during map definition. Each
attribute adjunct controls a different type of attribute.

� Some devices allow different attributes to be applied to
individual characters in the same field. Character attri-
butes are controlled using a separate copy of the appli-
cation data area. The data fields in this copy contain the
character attribute data instead of the normal character
data. Each character in the character attribute data area
determines the attributes of the corresponding character
in the normal application data area.

� The application program can be designed to allow
detection (or selection) of fields in a displayed panel by
a light pen or, on some devices, the Cursor Select
(CURSR SEL) key. The type of detection that occurs is
determined by the first data character in the field; this
character is called a designator character .

� If specified in the map during map definition, GDDM
edits input data entered by the terminal operator. To
process this edited input, you need to know how GDDM
presents it in the application data structure.

This chapter gives valid settings and explanations of adjunct
fields, character attributes, and designator characters, and
describes the format of edited input. It also describes how to
copy the application data structure into the application
program.

 Adjunct fields

Each data field in the application data structure may have
associated adjunct fields, depending on the options selected
during the Field Naming step of map definition. The possible
adjunct fields for a data field are shown below. They appear
in the data structure in the order given, immediately before
the data field.

The base attribute, extended highlighting, color, PS, vali-
dation, and outlining adjunct fields shown above are each
subdivided into two one-byte fields. In each case, the first
byte acts as a selector to let GDDM know whether or not the
value held in the second byte is to be used during program
execution.

Adjunct Length (bytes)

Selector
Cursor
Base attribute
Extended highlighting
Color
Programmed symbols (PS)
Validation
Outlining
Length

1
1
2
2
2
2
2
2
2

 Copyright IBM Corp. 1980, 1996 357

 application data structures

 COBOL example

Suppose that in the Map Characteristics frame (2.1) of
GDDM-IMD, you entered:

PROGRAM LANGUAGE ==> COBOL

Next, suppose that in the Application Structure Review frame
(2.5), you are defining the characteristics of a data field that
you have named SPECNAME. You want to be able to:

1. Set the cursor in the field under application program
control

2. Have dynamic control of extended highlighting

3. Specify the length of data in the field.

You therefore enter “#HL” in the ADJUNCT column against
the field name.

As a result of this entry, the application data structure con-
tains, for the field SPECNAME, a cursor adjunct (1 byte), a
highlighting adjunct (2 bytes), a length adjunct (2 bytes), plus
the data field itself, whose length is as defined in the map
(say 25 bytes).

GDDM-IMD names the adjunct fields by suffixing the data
field name supplied by the user. So, for example, the cursor
adjunct field is named SPECNAME-CURSOR.

The portion of the application data structure that is generated
for SPECNAME is:

1ð SPECNAME-CURSOR PIC X.

1ð SPECNAME-HI-SEL PIC X.

1ð SPECNAME-HI PIC X.

1ð SPECNAME-LENGTH PIC 999 COMP.

1ð SPECNAME PIC X(25).

Assembler language example

Assume that instead of entering COBOL as the program lan-
guage in the above example, you enter ASM, and, to comply
with Assembler-language length restrictions, you name the
data field SPEC. The generated code (assuming the other
selections were the same as those given above) is:

SPECCR DS X

SPECHS DS X

SPECH DS X

SPECL DS AL2

SPEC DS XL25

 PL/I example

Similarly, if you use PL/I as the program language and call
the data field SPECNAME, the generated code is:

1ð SPECNAME_CURSOR CHAR(1),

1ð SPECNAME_HI_SEL CHAR(1),

1ð SPECNAME_HI CHAR(1),

1ð SPECNAME_LENGTH FIXED BIN(15),

1ð SPECNAME CHAR(25),

Adjunct field names

The above examples show that GDDM-IMD suffixes the
name you have given to a data field to create unique names
for each adjunct field in the application data structure. The
full set of suffixes that GDDM-IMD uses for COBOL, Assem-
bler, and PL/I data structures is shown in Table 41 on
page 358.

 Adjunct values

Table 42 on page 359 summarizes valid settings for adjunct
fields. Information for each type of adjunct is given in the
following text.

Table 41. Adjunct field naming conventions

Adjunct Length COBOL name Assembler name PL/I name

Selector 1 XXX-SEL XXXS XXX_SEL

Cursor 1 XXX-CURSOR XXXCR XXX_CURSOR

Base
attribute

1
1

XXX-ATTR-SEL
XXX-ATTR

XXXAS XXXA XXX_ATTR_SEL
XXX_ATTR

Extended
highlighting

1
1

XXX-HI-SEL
XXX-HI

XXXHS
XXXH

XXX_HI_SEL
XXX_HI

Color 1
1

XXX-COL-SEL
XXX-COL

XXXCS
XXXC

XXX_COL_SEL
XXX_COL

PS 1
1

XXX-PS-SEL
XXX-PS

XXXPS
XXXP

XXX_PS_SEL
XXX_PS

Validation 1
1

XXX-VAL-SEL
XXX-VAL

XXXVS
XXXV

XXX_VAL_SEL
XXX_VAL

Outlining 1
1

XXX-OUT-SEL
XXX-OUT

XXXOS
XXXO

XXX_OUT_SEL
XXX_OUT

Length 2 XXX-LENGTH XXXL XXX_LENGTH

358 GDDM Base Application Programming Reference

 application data structures

Table 42 (Page 1 of 2). Values used in adjunct fields

Adjunct Value (See Note 1) Meaning

Selector C' ' MSPUT: Any data value is ignored. The field is unchanged (see Note 2).

Selector C' ' MSGET: Neither the application nor the operator has put a value in it.

Selector C'1' MSPUT: The field contains a value.

Selector C'1' MSGET: The field contains a value that the operator has just modified.

Selector C'2' MSPUT: The field is to be reset to its map-defined default value. The data
value is ignored. On a subsequent MSGET, the field contains its default value
and the selector is C'3'.

Selector C'2' MSGET: not used.

Selector C'3' MSPUT: The field contains a value. (that is, the same as C'1').

Selector C'3' MSGET: The field contains a value that has not just been modified by the
operator.

Cursor C' ' MSPUT: The cursor is not in this field.

Cursor C' ' MSGET: The cursor is not in this field.

Cursor C'1' MSPUT: The cursor is in this field.

Cursor C'1' MSGET: The cursor is in this field (set only if map is a cursor rece iver).

The cursor position within the field can be controlled by using the MSCPOS call, and verified by using the MSQPOS call.

Attribute Selector (first
byte of adjunct)

C' ' The attribute is unchanged (see Note 2). The attribute byte (the second byte)
is ignored.

Attribute Selector (first
byte of adjunct)

C'1' Change the attribute to the value in the second byte.

Attribute Selector (first
byte of adjunct)

C'2' Reset the attribute to the map-defined default value.

Attribute Selector (first
byte of adjunct)

C'3' Change the attribute to the value in the second byte (same as C'1'). After an
MSGET, the attribute selector is set to C'3' and the attribute byte set to the
current attribute value.

Attribute Value (second
byte of attribute adjunct)

Ignored unless the attribute selector is C'1' or C'3'. Otherwise, the valid value depends on the attribute
type, as follows:

C' ' Default for all attributes.
X'00' Default for all attributes.

Base attribute A valid 3270 attribute if used. These values are defined mnemonically in ADMUAIMC (Assembler),
ADMUCIMC (COBOL), and ADMUPIMC (PL/I).

For example:
 C' ' Unprotected
 C'H' Unprotected, Intensified
 C'-' Protected
 C'Y' Protected, Intensified
 C'0' Autoskip

 B'xx......' Ignored (set by GDDM)
 B'..1.....' Protected
 B'..ð.....' Unprotected
 B'...ð....' Alphanumeric
 B'..ð1....' Unprotected numeric
 B'..11....' Autoskip
 B'....ðð..' Normal
 B'....ð1..' Selectable
 B'....1ð..' Intensified selectable
 B'....11..' Nondisplay
 B'......x.' Ignored (set by GDDM)
 B'.......1' Modified data tag set
 B'.......ð' Modified data tag not set

 Chapter 16. Application data structure for mapping 359

 application data structures

Table 42 (Page 2 of 2). Values used in adjunct fields

Adjunct Value (See Note 1) Meaning

Extended high-lighting
attribute

C' ' No extended highlighting.

Extended high-lighting
attribute

C'1' Blinking.

Extended high-lighting
attribute

C'2' Reverse video.

Extended high-lighting
attribute

C'4' Underscore.

Color attribute C' ' Default.

Color attribute C'1' Blue.

Color attribute

Color attribute C'2' Red.

Color attribute C'3' Magenta (pink).

Color attribute C'4' Green.

Color attribute C'5' Turquoise (cyan).

Color attribute C'6' Yellow.

Color attribute C'7' White/Neutral.

PS attribute C' ' Default character set.

PS attribute X'41'–X'DF' PS code of any symbol set specified in PS Set Management in GDDM-IMD, or
loaded using PSDSS, PSLSS, or PSLSSC.

Validation attribute C' ' No validation.

Validation attribute X'00' No validation.

Validation attribute X'01' Trigger.

Validation attribute X'02' Mandatory enter.

Validation attribute X'04' Mandatory fill.

Validation attributes can be ORed together to give two or more validation attributes to the same field. For example, specify X'03' to give
a field the mandatory enter and trigger attributes (X'02' OR X'01'=X'03').

Outlining attribute C' ' No outlining.

Outlining attribute X'00' No outlining.

Outlining attribute X'01' Underline.

Outlining attribute X'02' Vertical line on right.

Outlining attribute X'04' Overline.

Outlining attribute X'08' Vertical line on left.

Outlining attributes can be ORed together to give two or more outlining attributes to the same field. For example, specify X'03' to give a
field with underlining and a vertical line on the right (X'02' OR X'01'=X'03').

Length Binary value Length, in characters, of the data.

Notes:

1. In this table, C'c' indicates character data type, X'x'
indicates hexadecimal data type, and B'bbbbbbbb' indi-
cates a binary pattern.

2. On an MSPUT call with option 0 (“WRITE”), all fields
and attributes are reset to their map-defined default
value, before the application data area is processed.
Therefore, an attribute selector or field selector of C' '

has the net effect of resetting the value to default, when
used on an MSPUT call with option 0, or of leaving the
value unchanged, when used on an MSPUT call with
option other than zero.

The application program sets the values required for a send
request. GDDM sets the values associated with input data
returned for a receive request. On a send request, each field
must contain one of the settings given for it in Table 42.

360 GDDM Base Application Programming Reference

 application data structures

Selector adjunct: The selector adjunct provides addi-
tional control over an individual field in the application data
structure, and shows, after an MSGET, whether the data field
has just been modified by the operator.

The control function is most useful when using MSPUT with
option 1 (REWRITE) or 2 (REJECT), particularly if the appli-
cation program does not maintain a complete copy of the
application data area. A partially completed application
structure can be used. Fields whose selector is blank are
ignored and so need not be set by the application. Their
value is unchanged. Fields whose selector is C'1' or C'3'
are processed by placing the current data value in GDDM’s
copy of the data area with the value from the program’s data
area.

Note: Fields that do not have a selector are always proc-
essed.

The control function can also be used to set a field to its
map-defined default value. This is the constant text placed
into the field during GDDM-IMD’s Field Definition or Field
Initialization steps. This is the value of the field immediately
after a mapped field is defined by MSDFLD. Note that if the
field has no selector, any MSPUT call replaces this default
value with the value from the application data area (even if
the field is all blanks). If the field has a selector adjunct, its
value can be reset to the map-defined default value by speci-
fying a selector of C'2' on any MSPUT call.

Notes:

1. The map-defined default character attributes are always
“default.” GDDM-IMD does not support character attri-
butes.

2. An MSPUT with option 0 (WRITE) sets all fields (attri-
butes and so on) back to their default value before proc-
essing the application data area.

When a selector value of C'2' is specified, GDDM converts
it into C'3', and places the default field value into the data
field in GDDM’s copy of the data area so that the program
can access it using MSGET. (The program’s data area is
not modified during an MSPUT.)

After an MSGET, a selector adjunct shows whether the field
has just been modified by the operator. A value of C'1'
shows that the field has been modified by one of these
events:

� The operator has typed into the field

� The operator has selected the field with a light-pen (if
the field is selectable)

� The field has been set by AID translation.

Note: “Modified” includes the degenerate case of the oper-
ator modifying the field back to its original value.

Usually, modification indicators are reset when the operator
is next given an opportunity to enter data (for example, an

ASREAD). Your program can avoid this resetting by issuing
an MSPUT call with option 2 (REJECT) on any map within
the page, before the ASREAD call.

Cursor adjunct: The cursor adjunct is used to set the
cursor in a field dynamically (thus overriding any static cursor
setting specified in the map), and to show whether the cursor
was left in a field on input.

Static setting of the cursor is specified in the Field Attribute
Definition step of GDDM-IMD; for further information, see the
GDDM Interactive Map Definition book.

To set the cursor in a field dynamically, the application
program sets the associated cursor adjunct to 1. This
causes the cursor to be placed in the field when the field is
displayed. By default, the cursor is placed under the first
character of the field. To position the cursor elsewhere, use
the MSCPOS call to specify the position, just before issuing
the MSPUT call. The position is a number between 0 and
the length of the field, thus:

0 Means “under the attribute byte”
1 Means “under the first character”
2 Means “under the second character” and so on.

When the position specified is greater than the length of the
field, GDDM places the cursor under the last character in the
field.

GDDM places the cursor at the last dynamic setting it meets
for a page. In the absence of any dynamic settings, GDDM
places the cursor at the first static setting.

To determine the position of the cursor on input, the map
must have been defined as a cursor-receiver map in the Map
Characteristics step of map definition. If the map has been
so defined, GDDM sets the cursor adjunct of the field in
which the cursor lies to C'1' when the field has a cursor
adjunct. The position of the cursor within the field can be
found using the MSQPOS call after the MSGET call.

Note: The “cursor-receiver” map characteristic is provided
so that applications that use cursor adjuncts only for output
cursor control do not have to search for, and turn off, cursor
adjuncts after an MSGET call. If the cursor adjuncts were
left on, GDDM might misinterpret the application’s intention
when the application data area is next used in an MSPUT
call.

Attribute adjuncts: An Attribute adjunct is used to
change the attribute of a field from its map-defined default
value. There are several types of attribute adjuncts; one
“base” attribute that controls a compound set of basic field
properties, and one attribute type for each of a set of
“extended” properties.

Each attribute adjunct field consists of two subfields; an attri-
bute selector byte, and an attribute value byte. The valid
values for the attribute selector are the same for all attribute
adjuncts (and the same as those for a Field Selector):

 Chapter 16. Application data structure for mapping 361

 application data structures

C' ' Ignore the value provided. Leave the attribute at its
current value. If the mapped field has just been
defined, or if the operator is an MSPUT with option
0 (WRITE), the current value is the map-defined
value. Otherwise, the value is that set by previous
MSPUT operations.

C'1' Change the attribute to that specified in the attri-
bute adjunct.

C'2' Reset the attribute to the map-defined value.

C'3' Change the attribute to that specified in the attri-
bute adjunct (that is, the same as C'1'). After an
MSGET, all attribute adjunct selectors are set to
C'3', and the attribute value byte is set to the
current attribute value.

The second byte of an attribute adjunct is the value to be
used (for selector value C'1' and C'3'). The range of valid
values is dependent on the attribute type.

GDDM provides, as part of GDDM-IMD, a set of declarations
in Assembler, COBOL, and PL/I, for the values that can be
used in attribute adjuncts. These are in the files ADMUAIMC
(Assembler), ADMUCIMC (COBOL) and ADMUPIMC (PL/I)
in the GDDM Sample Library.

Note that all attribute adjunct types can be used on all
devices supported by GDDM for mapping, but they have no
effect on the presentation if the device does not support the
corresponding function.

Base attribute adjunct: Base attributes are the basic
(as opposed to extended) field attributes that are supported
by all display devices supported by GDDM. They can be
specified for individual fields on a map during map definition
and reset during program execution by base-attribute
adjuncts. They include:

 � Protected/unprotected/autoskip
 � Intensified-display/normal-display/nondisplay
 � Detectable/nondetectable
� MDT bit set/reset

 � Alphanumeric/numeric.

The attribute adjunct value byte can contain any valid
IBM 3270 basic attribute code. GDDM sets the reserved
and meaningless bits of the attribute correctly, so all one-
byte values are accepted.

The base attribute adjunct value byte completely specifies
the combination of base attributes to be used for the field on
the device. It is not merged in any way with previous base-
attribute specifications for the field, or with the value speci-
fied in the associated map.

Extended highlighting adjunct: The extended high-
lighting adjunct can be used by the application program to
override any extended highlighting attribute defined for a field
in the map. Extended highlighting is available only on spe-
cific devices, and can be used in addition to the
intensification control of the base attribute. It lets you specify
whether a field should blink, be underscored, or be displayed
in reverse video.

Possible settings in the attribute adjunct value byte are as
shown in Table 42 on page 359.

Color adjunct: Possible settings in the attribute adjunct
value byte are again as shown in Table 42 on page 359.

Note that this adjunct cannot be used to control color on
devices whose color is determined by means other than the
color extended attribute. For example, it can be used to
control color on seven-color display devices, but not on four-
color display devices.

 Programmed symbols adjunct: The programmed
symbols (PS) adjunct lets you specify that the special char-
acters and symbols defined in a given symbol set apply for
the field associated with the PS adjunct in the application
data structure. You can define your own symbol sets using
the Image Symbol Editor, as described in the GDDM Using
the Image Symbol Editor book. You can also use the prede-
fined symbol sets supplied by IBM.

Your application program can use characters from a partic-
ular symbol set only if that symbol set is loaded into a PS
store in the device. A symbol set can be loaded when
defining a mapgroup containing maps that use symbol sets.
You can specify that the symbol sets are to be loaded auto-
matically by GDDM when a MSPCRT request naming the
mapgroup is issued; for more information, see the GDDM
Interactive Map Definition book. Symbol sets loaded in this
way are available to the application program for the life of the
page.

The required symbol set is identified by the PS code (or
PSID), which is a single-character identifier in the range
X'41' through X'DF', designated by you or your installation.
The PS code is designated when the mapgroup is defined, if
GDDM is to handle symbol-set loading, or during the loading
operation, if your application program or your installation is
handling symbol-set loading directly.

Validation adjunct: The validation attribute is supported
only by the IBM 8775 Display Terminal (with the appropriate
feature). On all other devices it is ignored.

Possible settings in the attribute adjunct value byte are as
shown in Table 42 on page 359. The IBM 8775 handles
operator input according to the validation attribute, as follows:

1 Mandatory Enter Attribute
If the operator tries to transmit data (for example, by
pressing the ENTER key) while there is a mandatory
enter field that has not had data entered into it, the

362 GDDM Base Application Programming Reference

 application data structures

transmission fails and input is inhibited. The cursor is
repositioned to the start of the first empty mandatory
enter field. The operator can proceed by pressing the
RESET key. Then, the operator can either enter data in
the mandatory enter field, or use the ERASE EOF or
Error Override key to set the MDT. For the Error Over-
ride key, an error value (X'3F') is returned to the appli-
cation program in the mandatory enter field.

2 Mandatory Fill Attribute
If data is entered into a mandatory fill field, the field must
be completely filled before the cursor can be moved out
of it. If an attempt is made to move the cursor out of the
field before it has been filled, further input is inhibited.

The operator can proceed by pressing the RESET key,
and completing the entry of data into the mandatory fill
field. Or, the Error Override key can be used to fill the
field with error values (X'3F') before continuing.

3 Trigger Fill Attribute
The trigger field attribute enables the application
program to receive data entered into a particular field as
soon as the data entry for that field is complete and the
cursor leaves the field. The operator can continue
keying data while the trigger field is being checked, but
the data entered is placed on a queue in the device (and
is not displayed).

Cursor exit from a modified trigger field causes the
inbound transmission of this single field with a “trigger”
AID. The application can access the trigger field data in
the usual way using MSGET.

The application program must then decide whether to
accept the trigger field (and hence the operator’s queued
keystrokes) by issuing a positive acknowledgment, or to
reject the field (and lose the operator’s queued key-
strokes) by issuing a negative acknowledgment.

A positive acknowledgment is generated by issuing an
MSPUT call specifying that the keyboard is to be
unlocked. By default, this is true of options 0 (WRITE)
and 1 (REWRITE).

A negative acknowledgment is generated by issuing an
MSPUT call specifying that the keyboard is to remain
locked. By default, this is true of option 2 (REJECT).

Note: The relationship between the MSPUT option and
locking the keyboard is defined in GDDM-IMD’s Map
Characteristics step.

Field outlining: Outlining is only available on specific
devices; if the device does not support outlining the adjunct
is ignored. Possible settings in the attribute adjunct byte are
shown in Table 42 on page 359.

Length adjunct: The length adjunct is a two-byte field
that can contain values in the range 0 through the length of
the field. It indicates the length of the data in the data field.
GDDM treats a value greater than the field length as if it
were equal to the field length.

When a field is displayed, GDDM pads the data with nulls,
from the length specified in the length adjunct, to the length
of the display field.

After the operator modifies a field, the length adjunct speci-
fies the number of bytes of data placed in this field by the
input operation.

If right-hand justification has been specified for the field
during map definition, the length adjunct is set on input to the
length of the field in the application data structure. If left-
hand justification has been specified, the length adjunct is set
to the number of characters in the field up to the first padding
character.

 Character attributes

Highlighting, color, and PS attributes can be specified for
individual characters within a field. Usually, character attri-
butes are used to emphasize a particular character string in
a field.

Note: GDDM supports character attributes in mapped vari-
able fields, but not in constant or initial values held in the
map.

To control any type of character attribute, the program needs
an additional application data area. This area has the same
structure as the usual application data area (including adjunct
fields), but the data fields are interpreted as character attri-
butes rather than character data.

To declare several data areas using the same structure, you
can use an array of structures or (in PL/I) the LIKE attribute.

COBOL

ð1 ALLAREAS.

 ð2 DATA-AREA OCCURS 3 TIMES.

 COPY MAP.

PL/I

Declare

 1 DATA_AREA,

 %INCLUDE MAP;

Declare

1 COLOR_AREA LIKE DATA_AREA;

In the former case, the individual application areas (and
fields and adjuncts within them) can be referred to using an
array index. In the second case, they can be referenced
using name qualification (DATA_AREA.FIELD1,
COLOR_AREA.FIELD1, and so on).

The character attribute data areas are filled in the same way
as are the usual application data areas, except that the data

 Chapter 16. Application data structure for mapping 363

 application data structures

fields contain characters representing attributes. For
example:

DATA_AREA.FIELD1 ='data value';

COLOR_AREA.FIELD1='1111111121';

Adjunct fields in the character attribute application data area
have the same meaning as in the normal data area.
Selector and Length adjuncts apply to the character attribute
data field.

Each application data area is passed to GDDM with a sepa-
rate MSPUT call. The character attribute type is specified as
an option on MSPUT. The character attributes should be
MSPUT after the data values, because changing the data
value of any field automatically resets the character attributes
of the field to the default value (C' '). Also, an MSPUT with
option 0 (WRITE) resets all the character attributes of all
fields in the map to default.

The allowable attribute types and attribute values are listed in
Table 43. GDDM checks attribute types and does not
transmit those that the device does not support. Invalid attri-
bute values are rejected.

Setting character attributes from the
terminal

If the application program uses the ASMODE call and an
appropriate keyboard is in use, the terminal operator can set
the attributes of data characters entered from the terminal.
The program can read these attributes using MSGET with
the correct option.

The procedure for setting character attributes from the ter-
minal can be found in the appropriate terminal operator’s
guide.

Designator characters for light-pen or
cursor selection

You specify that a field can be selected by a light pen, or, on
some terminals, the CURSR SEL key, by giving it a “detect-
able” attribute at map-definition time. The “detectable” attri-
bute can be defined for a field using GDDM-IMD’s Field
Attribute Definition step, and can be controlled dynamically
using the base attribute adjunct.

However, the type of selection that occurs on using the light
pen is determined by the first character (the designator char-
acter) in the data field. You must set the required designator
character in the first byte of the data field. If the field con-
tains constant data, the designator character is set in the
map; otherwise, it is set in the application data structure.
When the field is displayed, the designator character appears
on the screen along with the rest of the data in the field.

A field having a “detectable” attribute but not starting with a
valid designator character is not selectable.

The types of selection that can be set are:

1. Delayed detection. When selected by the operator, the
field is marked as “modified” but nothing is transmitted
until the operator performs another action associated
with field modification (such as selecting an “immediate
detection” field or pressing ENTER). The designator
character for this type of field is “?” (X'6F'). If the field
is detected, the designator character changes to “>”
(X'6E'); another detection restores it to “?” and cancels
the modification indication.

2. Immediate detection without data. The designator char-
acter is a blank (X'40'). Selection of this type of field
causes immediate input transmission. No data from any
of the fields is transmitted, however. The effect is thus:

a. The ASREAD (or MSREAD) returns an Attention
Type of 2 indicating light-pen selection.

b. If the application issues an MSGET, any field that
was modified or delay-detected has its selector set
to C'1'; its data value, however, is unchanged even
if the operator typed into the field.

c. GDDM restores all display fields to their original
value at the next FSFRCE, ASREAD, or GSREAD.

3. Immediate detection with data. (Not possible with the
IBM 3277 Display Terminal). The designator character
is “&” (X'50'). The effect is the same as pressing
ENTER.

For more information on the mechanics of light-pen detection
and the use of designator characters, refer to the appropriate
component description manual.

Table 43. Character attribute types and values

Type Value Meaning

All X'00'
C' '

Default. Take the attribute
value from field’s attribute.

Extended
highlighting

C'1'
C'2'
C'4'

Blinking
Reverse video
Underscore

Color C'1'
C'2'
C'3'
C'4'
C'5'
C'6'
C'7'

Blue
Red
Magenta (pink)
Green
Turquoise (cyan)
Yellow
White/Neutral

Programmed
symbols

X'41'
...

X'DF'

PS code. Note that a
symbol-set must be loaded
before any reference to it is
made. See “Programmed
symbols adjunct”.

Note: In the above table, C'c' indicates character data type,
and X'x' indicates hexadecimal.

364 GDDM Base Application Programming Reference

 application data structures

Map-defined input editing

Using GDDM-IMD’s Field Naming or Application Data Struc-
ture Review steps, you can specify that the following trans-
formations are to be performed automatically by GDDM on
input data passed to the application program. The transfor-
mations are specified for individual fields.

� Folding: translation to uppercase of all alphabetic input
entered into the field.

� Justification and padding: right- or left-alignment and
padding of data entered into the field.

� Attention identifier translation: translation of the AID
associated with the input transmission into a predeter-
mined character string.

For information on how to specify these transformations on a
map, see the Application Data Structure Review step of
GDDM-IMD in the GDDM Interactive Map Definition book.
The information given in the remainder of this section relates
to the application program’s view of the transformed fields
returned in response to a receive request.

Notes:

1. The transformations take place on input from the oper-
ator, for receipt by the application on an MSGET. Data
that is placed into the application data area by the
application’s MSPUT and map-defined default data is not
transformed, even though it may be read back using
MSGET.

The effect of the transformations is not immediately
visible to the operator. However, if the application does
not modify the field, delete the mapped field, or delete
the page, the transformed data is displayed to the oper-
ator on the next ASREAD, FSFRCE, or GSREAD call.

2. If more than one of these transformations have been
specified for a given field, processing is done in this
order:

 a. AID translation
 b. Folding

c. Justification and padding.

 AID translation

At map definition time, you can associate an AID translation
table with an input field on a map. This field is called an
“AID receiver” field.

The translation table is set up during map definition. It
defines character strings for the various terminal function
keys (and the light pen, trigger fields, operator ID card
reader, and magnetic slot reader, if required).

When the operator uses the corresponding key, GDDM
places the corresponding character string into the designated
field.

AID translation is not restricted to a single field on the map.
You can associate several fields with the same or different
translation tables and thus receive different character strings
in the fields on input.

AIDs can be specified as “do not translate,” in which case,
the existing field value remains unchanged. For AIDs not
explicitly named in the table, a default translation value can
be specified; on the other hand, these AIDs can be specified
as “do not translate.”

An AID receiver field can have a corresponding display field,
although this is not mandatory. If the receiver field has a
corresponding unprotected display field, operator input into
that field is overwritten by the translated AID value unless the
operator uses an interrupt key that is designated (explicitly or
implicitly) “do not translate.”

 Folding

When specified, folding always occurs irrespective of what
other attributes have been specified for the field.

The folding transformation uses the Lowercase-to-Uppercase
Translation Table in the GDDM Alphanumerics Defaults
Table (ADMDATRN).

Justification and padding

During map definition, you can specify that a field should be
right-justified, left-justified or not justified, and, if you want,
that it should be padded with a particular character. If you
do not specify a padding character, defaults are used; that is,
character zero for right-justified fields, blank for left-justified
fields.

For right-justified fields:

1. The rightmost significant (that is, nonblank, nonnull)
character is aligned with the rightmost boundary of the
field in the application data structure. Leading blanks or
nulls are then changed to the padding character.

2. The length adjunct (if one was specified for the field) is
set to the application data structure field length.

For left-justified fields:

1. The leftmost significant (that is, nonblank, nonnull) char-
acter is aligned with the leftmost boundary of the field in
the application data structure. Trailing padding charac-
ters are then added to fill the field.

2. The length adjunct (if one was specified) is set to the
number of characters in the field up to the first padding
character.

For fields for which no justification is specified, the input data
is left unchanged (that is, leading and trailing blanks are not
removed), and the rest of the field is filled with blanks. The
length adjunct, if specified, is set to the number of characters

 Chapter 16. Application data structure for mapping 365

 application data structures

(including leading and trailing blanks) entered by the terminal
operator.

If the input data is longer than the field in the application data
structure, it is truncated on the right, irrespective of any justi-
fication specification, before leading and trailing blanks are
suppressed, and a warning message is issued when MSGET
is used on the map.

Copying the application data structure into
the program

When you have finished the map definition and generation
processes, you will have an application data structure for
each map, each having the same name as the associated
map. You can copy these application data structures into
your application program, if it is a COBOL or PL/I program.

For an Assembler program, you must include macro
instructions in your program having the same names as the
maps. These expand into DSECTs at assembly time.

An example showing the code that might be used for a
COBOL program is given below. For illustration, assume
that there is a page that is constructed from three separate
maps named HEADER, DATAREC, and TRAILER. The
maps belong to a mapgroup called MAPGRP.

ð1 HEADER.

 COPY HEADER.

ð1 DATAREC.

 COPY DATAREC.

ð1 TRAILER.

 COPY TRAILER.

Note: As part of the application structure declaration,
GDDM-IMD generates a declaration of a variable with name
“mapname-ASLENGTH” (COBOL) “mapname_ASLENGTH”
(PL/I) that is initialized with the length, in bytes, of the appli-
cation structure. This variable can be used as the length
parameter in MSPUT and MSGET calls.

Overlaying application data areas

Sometimes, for programming reasons such as conserving
storage, it is convenient to overlay the storage used by one
of several application data structures. Generally, the struc-
tures are not the same length. In this situation, COBOL
requires that the longest record description occurs first. To
avoid needing to know in advance which record is the
longest, you can specify

LARGE STRUCTURE ===> YES

in frame 3.0 of the generation step of GDDM-IMD. This
causes GDDM-IMD to generate an additional structure in a
file with the same name as the mapgroup containing a single
data item of length equal to that of the largest record.

The following code in the relevant section of the COBOL
program then creates the necessary overlaid record
descriptions:

ð1 MAPGRP.

 COPY MAPGRP.

ð1 HEADER REDEFINES MAPGRP.

 COPY HEADER.

ð1 DATAREC REDEFINES MAPGRP.

 COPY DATAREC.

ð1 TRAILER REDEFINES MAPGRP.

 COPY TRAILER.

COBOL also has the restriction on the placement of declara-
tions using REDEFINES. To satisfy this restriction
GDDM-IMD does not generate variables initialized to the
application structure length, if you request

LARGE STRUCTURE=YES

Note: If one of the maps has a name that is the same as
the mapgroup name, the application data structure for that
map is expanded by a dummy data item (if necessary) to
make it as long as the longest application data structure.

Double-byte character string fields

Double-byte character strings (DBCS) fields are specially
treated in some cases. (Double-byte character string fields
are used for Kanji and Hangeul applications).

A field can be designated as DBCS by using GDDM-IMD’s
Field Definition steps, or Field Attribute Definition steps, or
both of these.

A field can also be changed to or from DBCS by using a PS
attribute adjunct and specifying a value of X'F8' (C'8') for
DBCS, or C' ' (or any other valid value) for EBCDIC.

However, the special treatment of length adjuncts and cursor
positioning provided for DBCS fields depends only on how
the fields were defined to GDDM-IMD. Dynamically changing
a field to or from DBCS does not change this treatment.

The special treatment is:

Length adjuncts
If a field is designated at map definition time as a DBCS
field, the field’s length adjunct is always interpreted as
several two-byte characters. Hence, the length of the data in
bytes is twice the value of the length adjunct.

Cursor position
If a field is designated at map definition time as a DBCS
field, the cursor position specified by MSCPOS and returned
by MSQPOS is interpreted as several two-byte characters.
Hence, the position within the field in bytes is twice the value
specified (minus 1).

366 GDDM Base Application Programming Reference

 application data structures

Mixed double-byte and single-byte
character fields in maps

Some Asian languages, including Chinese, Kanji, and
Hangeul are displayed and printed using double-byte char-
acter sets (DBCS), which means that each character is
represented by two bytes. European languages use Latin
single-byte character sets (SBCS). The IBM 5550 Multi-
station and Personal System/55 workstations will display and
print both SBCS and DBCS characters.

Sometimes, the two types need to be mixed in a single
alphanumeric field. The 5550 and Personal System/55 allow
this.

The internal representation of mixed character strings makes
use of shift-out (SO) and shift-in (SI) control characters,
X'0E' and X'0F', to indicate the start and end of a DBCS
substring.

There are two ways of displaying mixed character strings,
called mixed-with-position and mixed-without-position. The
display method to be used is specified in the map definition
for each field.

 � Mixed-with-position

The SO/SI codes occupy one character position each,
and are displayed as either a blank or a special char-
acter – the terminal user can select which.

 � Mixed-without-position.

The SO/SI codes do not occupy a character position on
the screen.

The initial input mode of the workstations is SBCS. To enter
DBCS characters, the operator presses a special shift key to
change the mode. After entering the DBCS string, pressing
another shift key returns the terminal to SBCS mode, so
further single-byte characters can be entered.

GDDM-supplied mapping constants

The following table lists the GDDM-supplied declarations that
contain mapping constants. By including these declarations
in your program, you can simplify the setting of the second
byte of attribute adjuncts by using a mnemonic name rather
than a bit value.

The declarations contain mnemonically-named variables for
every attribute, and for combinations of attributes. The vari-
ables are initialized to the bit patterns required in the 3270
attribute bytes.

The method of including the declarations in your program
varies according to the subsystem and programming lan-
guage that are being used.

| Table 44. GDDM mapping constants tables

| Mapping constants table name| Language

| ADMUAIMC| Assembler

| ADMUBIMC| C

| ADMUCIMC| COBOL

| ADMUPIMC| PL/I

 Chapter 16. Application data structure for mapping 367

 application data structures

368 GDDM Base Application Programming Reference

 high-performance alphanumerics

Chapter 17. GDDM high-performance alphanumerics

High-performance alphanumerics (HPA) is another way of
doing alphanumerics in GDDM, and is intended for complex
applications that require minimum instruction path length
within GDDM.

The application program may not mix mapped and proce-
dural alphanumeric field definitions with HPA field definitions
on the same GDDM page.

The style of application programming interface used by HPA
differs from that used by other parts of GDDM, such as pro-
cedural alphanumerics. When using procedural alphanu-
merics, application programs use many API calls to describe
the data to GDDM for output, and also to determine the data
input by the device operator. In contrast, the HPA applica-
tion builds a data structure to describe all the data, and
passes that to GDDM for output. Also, the data input by the
device operator is returned to the HPA application in the
same data structure. Changes to the data are indicated
through status indicators that are part of the structure.

Note: Although HPA can be used from REXX, its use is not
recommended, except for prototyping, because the
instruction-path length in the interpreter interface to GDDM is
significant.

HPA data structure

The data structure consists of three distinct objects. These
are:

The field list
The data buffer
The bundle list.

The field list

The field list groups together all information about the layout
of alphanumeric data on one GDDM page. New fields can
be added to an existing GDDM page, or old ones deleted, by
modifying the field list. To give additional flexibility, there
may be more than one field list in any GDDM page, so that if
an existing field list is used up, further field definitions can be
added by creating a new one.

A field list consists of a header followed by field definitions.

The header contains:

The status of the field list
The number of field definitions in the list
The size of the field definitions
The cursor position on the page.

Each field definition contains:

The status of the field definition
The size and position of the field on the GDDM page
A reference to the field attribute bundle definition in the
bundle list
A reference to the character data
Optional length of character data
Optional references to character attributes.

The field list is represented as a rectangular array of half-
word integers, in which the first row is the header and the
following rows contain field definitions.

It can be declared as a structure, or as a two-dimensional
array stored in row-major order. Programming languages
that use column-major ordering of two dimensional arrays will
have to exchange rows and columns in the description which
follows. Below is a sample PL/I declaration for a field list,
where “depth” and “width” are the array dimensions used in
the API call APDEF:

DCL FIELD_LIST(depth,width) FIXED BIN(15);

The numbers beside each component description below are
the indexes of each item in the row. See Figure 23 on
page 370.

The field list header row

1 – List Status
The status of the field list.

Values that can be assigned to list status are the same as
field status; in fact, list status must always be equal to the
value obtained by ORing together the values of all the field
statuses in the field list. For example, if any field has the
indicator set to indicate that the field is to be “output”
because the character data has been changed by the appli-
cation, the corresponding indicator in list status must also
be set. This means that whenever the application changes
a field status indicator, it must ensure that the list status
indicator is correct. Whenever GDDM changes a field status
indicator it will also do this.

2 – Used depth
The number of rows in the field list used by GDDM.

This value must be in the range 1 through list depth. It may
be changed by the application to add new fields or to
remove deleted fields from the list.

Note: If this number is increased to add new fields to the
list, the create indicator must be set in the new field-
definition status elements. Also, if deleted fields are
removed from the list, the deletions must first have been
processed by GDDM, which sets the status element in the
field definitions to zero.

3 – Used width
The number of elements in the header and each field defi-
nition used by GDDM.

 Copyright IBM Corp. 1980, 1996 369

 high-performance alphanumerics

This value must be less than or equal to the list width, and
must be in the range 6 through 10. If the value is less than
the list width, any extra elements in the header and each
field definition are ignored by GDDM, and may be used by
the application to record its own data. It may be changed
by the application to extend or reduce the field definitions.
An example of this might be increasing the used width to 9
to specify character color. If the used width is changed, the
output indicator must be set in the field definition status ele-
ments of all the field definitions altered by this change.

If this value is less than 10, then the omitted parts of the
field definition are described as being “not present,” and
assume default values.

Note: Even though GDDM may not use as many elements
in the header as in the field definitions, only those elements
beyond the used width may be used for application data.
The rest must be zero.

4 – Cursor row
This is the row position of the alphanumeric cursor on the
GDDM page.

When used, it must be in the range 1 through page depth,
otherwise it must be zero. If the field list is designated as
the one used for cursor positioning, then the cursor row and
cursor column are used to position the alphanumeric cursor
on output, and also to return its position on input. This des-
ignation is made by setting the mode parameter of the
APDEF or APMOD call.

This cursor position overrides any cursor position specified
by calling ASFCUR. During I/O, if the cursor position speci-
fied lies outside the page window, then the cursor is placed
at the closest position within the page window.

5 – Cursor column
This is the column position of the alphanumeric cursor on
the GDDM page.

When used it must be in the range 1 through page width,
otherwise it must be zero.

The field definition row

1 – Field Status
The status of the field definition. The list of values below
shows both numerical value and corresponding bit position
of the indicator. If your use of HPA requires complex testing
and setting of these status indicators then you may prefer to
declare the status element as a bit string.

Values that can be assigned to the field status are:

1 — Bit 15 — Process
If this indicator is not set, none of the other indicators in
the field status element may be set.

Only those field definitions that have this indicator set are
processed. This allows space for future field definitions
to be reserved in the field list, in which case the applica-
tion program must set both this indicator and the create
indicator before the first use of the field. If a field has
been indicated to be deleted, GDDM sets the field status
element to zero on the next I/O to the primary device
involving the GDDM page.

Note: An I/O involving the page is any I/O operation,
ASREAD, FSFRCE, and so on, for the primary device to
which the page belongs during which the page is the
current one for its partition, and the partition set is the
current one for the device.

2 — Bit 14 — Create
Indicates a new field to be created.

If it is set, GDDM resets it on the next I/O to the primary
device involving the GDDM page. When a field list is first
defined to GDDM all its fields are assumed to be new, so
this indicator need not be set.

4 — Bit 13 — Delete
Indicates a field to be deleted.

When the application sets this indicator, it informs GDDM
that the field is to be deleted. GDDM resets the entire
status element, including the Process indicator, on the
next I/O to the primary device involving the GDDM page.
The field definition may not be reused to define another
field until after GDDM has reset this indicator.

 Column (width)

1 2 3 4 5 6 7 8 9 1ð ...

 ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬

Row (depth) 1│List │Used- │Used- │Cursor│Cursor│ │ │ │ │ │

│status│depth │width │row │column│ │ │ │ │ │

 ├──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼

2│Field │Field │Field │Field │Bundle│Char │Actual│Color │Highlt│SS │

│status│row │column│width │row │index │length│index │index │index │

 ├──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼

3│Field │Field │Field │Field │Bundle│Char │Actual│Color │Highlt│SS │

│status│row │column│width │row │index │length│index │index │index │

 ├──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼──────┼

..

..

..

 └──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘

Figure 23. Field list array

370 GDDM Base Application Programming Reference

 high-performance alphanumerics

8 — Bit 12 — Output
Indicates a field to be output.

It must be set by the application whenever it changes
one of the following:

 Character data
 Character attributes
 Character index
 Color index
 Highlight index
 Symbol-set index
 Actual-length
 Bundle-row.

This indicator is reset by GDDM on the next I/O to the
primary device involving the GDDM page.

Notes:

1. This indicator is set by GDDM if the device operator
updated the field. This causes the field to be output
on the next I/O to ensure that any input data editing
is reflected back on the device.

2. This indicator should not be set to indicate changes
in the bundle definition, it only indicates changes in
the field definition.

16 — Bit 11 — Input
Indicates a field has been input.

This indicator is set by GDDM, during input involving the
GDDM page, to indicate changes to character data and
possibly character attributes, made by the device oper-
ator. It should be reset by the application once the
changes have been processed.

If more than one status indicator is required, the element
must be set to the sum of the numbers corresponding to the
indicators required.

2 – Row
This is the row for the top left-hand corner of the field within
the GDDM page.

Rows are numbered from top to bottom of the page, starting
with 1. This is the position of the field contents, not the
field attribute. Once the field has been defined the applica-
tion may not change the field row until the field has been
deleted. For best performance it is recommended that
fields are defined in order of their positions on the page.

3 – Column
This is the column for the top left-hand corner of the field
within the GDDM page. Columns are numbered from left to
right across the page, starting with 1. This is the position of
the field contents, not the field attribute. Once the field has
been defined, the application may not change the field
column until the field has been deleted.

4 – Width
This is the number of columns that the field occupies.

The width may cause the field to extend beyond the right-
hand side of the page, in which case it wraps to the left-
hand side of the page on the next row. A field may not
extend below the bottom of the page, neither may fields

overlap. Once the field has been defined, the application
may not change the field width until the field has been
deleted.

Width also defines the data-area length. For mixed-without-
position fields the data-area length is twice Width bytes, and
for other fields the data-area length is Width bytes. The
data-area length is the length of the data areas in the data
buffer, where the data for the field is held. There may,
optionally, be data areas for:

 Character data
Character color attributes
Character highlight attributes
Character symbol-set attributes.

The data areas as defined by the character index and
width, the color index and width, the highlight index and
width, and the symbol-set index and width, must be con-
tained totally within the data buffer.

5 – Bundle row
This is the row number in the bundle list of the field attribute
bundle definition. It must be in the range 2 through the
number of rows in the bundle list.

6 – Character Index
This is the index in the data buffer of the data area con-
taining the characters that occupy the field. An index of 0
indicates that there are no character codes for the field.
The character data area must be present if color, highlight,
or symbol-set data areas are present. The character data
area must also be present if the field is unprotected or has
the MDT attribute.

Note: It is possible for more than one field to be associ-
ated with the same data area or overlapping data areas,
within the data buffer. This does not cause any difficulty if
all the fields are protected.

In the instance where one or more of the fields is unpro-
tected, the application must set the output indicators of all
the fields involved if the data area has been changed as a
result of device operator input. If this is not done, the corre-
sponding fields on the screen may not be updated on the
next I/O.

In the instance where two or more unprotected fields share
the same data area, and the device operator enters updates
into two or more such fields in the same I/O operation, the
resulting contents of the data area are undefined.

7 – Actual Length
This is the length of the data in the data area(s).

When the application changes the data, it must set this to
the length of data in the character, color, highlight, and
symbol-set data areas in the data buffer. If not present an
actual length of data-area length is assumed. If a value
greater than data-area length is specified, then only data
area length bytes are output. If the number of bytes output
does not fill the field, then the rest of the field is filled with
the pad character. (The pad character is null for character
data and blank, meaning inherit the field attributes, for char-
acter attributes.)

 Chapter 17. GDDM high-performance alphanumerics 371

 high-performance alphanumerics

If the device operator enters data into the field, GDDM sets
actual length to the length of data, in bytes, now in the field,
up to and including the last nonpad character.

GDDM only sets actual length if the field status indicates
that changes to field contents have been input.

8 – Color Index
This is the index in the data buffer of the data area con-
taining the color codes for individual characters that occupy
the field. If not present, an index of 0 is assumed. An
index of 0 indicates that there are no character color codes
for the field.

9 – Highlight index
This is the index in the data buffer of the data area that
contains the highlight codes for individual characters that
occupy the field. If not present an index of 0 is assumed.
An index of 0 indicates that there are no character highlight
codes for the field.

10 – Symbol-set index
This is the index in the data buffer of the data area that
contains the symbol-set codes for individual characters that
occupy the field. If not present, an index of 0 is assumed.
An index of 0 indicates that there are no character
symbol-set codes for the field.

Fields that do not have character attributes should specify
indexes of 0. Omitting character attribute data areas, when
not required, significantly improves the performance charac-
teristics of an application.

Example: This is an example of a field list declaration in
PL/I (compare with Figure 23 on page 370).

 DCL FL(5,1ð) FIXED BIN(15) STATIC INIT

/\STA DEP WID CSR CSC \/

(1, 5, 1ð, 2, 5, ð, ð, ð, ð, ð,

/\STA ROW COL WID BLR CHI ACT COI HII SSI\/

1, 2, 5, 4, 2, 1, 4, ð, ð, ð,

1, 4, 1ð, 11, 3, 5, 11, ð, ð, ð,

1, 6, 15, 13, 4, 16, 13, ð, ð, ð,

1, 8, 2ð, 3, 5, 29, 3, 32, 35, 38);

The data buffer

The data buffer consists of data areas containing the data
and character attributes for each field defined in the field list.
The position and size of each data area within the data
buffer is defined in the field list. Each field-list entry contains
the length and index into the data buffer of its character-data
area. Optionally, it may also contain indexes to a character
color data area, a character highlight data area, and a char-
acter symbol set data area.

Mixed double-byte and single-byte character
fields: The internal representation of mixed character
strings makes use of shift-out (SO) and shift-in (SI) control
characters, X'0E' and X'0F', to indicate the start and end
of a DBCS substring.

There are two ways of displaying mixed character strings,
called mixed-with-position and mixed-without-position. The
display method to be used is specified in the bundle defi-
nition for each field.

 � Mixed-with-position

The SO/SI codes occupy one character position each,
and are displayed as either a blank or a special char-
acter – the terminal user can select which.

 � Mixed-without-position.

The SO/SI codes do not occupy a character position on
the screen.

Character attributes Character attributes are represented
by these codes:

Color

Highlight

Symbol-set

Notes:

1. The two character attributes, corresponding to the two
bytes of a DBCS character, must both be the same.

2. Symbol-set character attributes, corresponding to DBCS
characters, must be blank.

blank X'40' Inherit the field color (the default)
1 X'F1' Blue
2 X'F2' Red
3 X'F3' Magenta (pink)
4 X'F4' Green
5 X'F5' Turquoise (cyan)
6 X'F6' Yellow
7 X'F7' Neutral (white on displays, black on

printers).

blank X'40' Inherit the field highlight (the default)
1 X'F1' Blink
2 X'F2' Reverse video
4 X'F4' Underscore.

X'00' or X'40' Inherit the field symbol set (the
default)

X'01' through X'03' Loadable symbol set (3800
system printer)

X'41' through X'DF' Loadable symbol set (3270 family
devices)

X'F1' Alternative nonloadable symbol
set (3270-family devices).

372 GDDM Base Application Programming Reference

 high-performance alphanumerics

Example: The data buffer to go with the field lists in the
earlier example might be:

 DCL DB CHAR(4ð) STATIC INIT

 ('HighPerformanceAlphanumericsAPI356124 &&');

/\& & & & & & & \/

The field list has four fields defined, corresponding to the
words High, Performance, Alphanumerics, and API. No
color, highlight, or symbol set indexes have been specified
for the first three fields. The field definition for the fourth
defines a color index that selects the '356', a highlight index
that selects the '124', and a symbol-set index that selects
the ' &&' in the data buffer. (The blank specifies inheritance
of the field symbol set, and the two '&' characters (X'50',
decimal 80) request the use of a symbol set with identifier
80.)

The bundle list

The field attributes that are used with the alphanumeric fields
defined in the field list, are themselves defined in the bundle
list . Each field definition in the field list contains a bundle
row, which is the row number of the bundle definition in the
bundle list.

The first row of the bundle list is a header, and following
rows contain field attribute bundle definitions. Each bundle
definition consists of a status element, and the number of
type-and-value pairs in the definition, followed by pairs of
attribute types and attribute values describing the attributes
of the bundle. It may also contain application data.

Figure 24 on page 374 illustrates the layout of a bundle list.

The bundle list can be declared as a structure, or as a two-
dimensional array stored in row-major order. Programming
languages that use column-major ordering of two dimen-
sional arrays have to exchange rows and columns in the
description that follows. Below is a sample PL/I declaration
for a bundle list, where “depth” and “width” are the array
dimensions used in the API call APDEF:

DCL BUNDLE_LIST(depth,width) FIXED BIN(15);

The components of the bundle list are:

Bundle list header row

1 – List Status
The status of the bundle list.

Values that can be assigned to list status are the same as
bundle status; in fact list status must always be equal to the
value obtained by ORing together the values of all the
bundle statuses in the bundle list. For example, whenever
the application changes a bundle status indicator it must
also change the list status.

2 – Used depth
The number of rows that GDDM uses in the bundle list.

Its value must be in the range 1 through list depth. It may
be changed by the application to add new definitions or to

remove unused definitions from the list. If this value is
increased, the new bundle definitions must have the bundle
changed indicator set in the bundle definition status
element.

3 – Used width
The maximum number of elements in the header and each
bundle definition used by GDDM.

This value must be less than or equal to the list width, and
the minimum value is 4. If the value is less than the list
width, then extra elements in the header and each bundle
definition will be ignored by GDDM, and may be used by
the application to record its own data. It may be changed
by the application to extend or reduce the maximum
number of type-and-value pairs in the bundle definitions.

Note: Although GDDM may not use as many elements in
the header as in the bundle definitions, only those elements
beyond the used width may be used for application data, the
rest must be zero.

Bundle definition row

1 – Bundle status
The status of the bundle definition. The list of values below
shows both numerical value and corresponding bit position
of the indicator.

1 — Bit 15 — Bundle changed
This must be set by the application to tell GDDM of
changes made to the bundle definition, and, if set by the
application, is reset by GDDM on the next I/O to the
primary device involving the GDDM page. Set it if the
number of pairs, the attribute types, or the attribute
values, have been changed.

Note: All the other status indicators in the halfword must
be zero.

2 – Pairs
The number of type-and-value pairs in the bundle definition.

The minimum value is 0 and the maximum value is
(Used_width−2)/2. Elements in the bundle definition beyond
this specified number are ignored by GDDM.

3 – Type-and-value pairs
Type is a code for the attribute type, such as “color” and
value is a code for the corresponding value such as “blue”.

The permitted type codes and their associated value codes
are:

0 Dummy

This is a special type code that causes the type-and-
value pair is to be ignored by GDDM. It effectively
reserves space within the bundle definition for future use
by the application. The associated value is ignored.

8 Field type

The permitted values are:

0 Unprotected alphanumeric (the default)
1 Alphanumeric output, numeric input
2 Protected alphanumeric.

 Chapter 17. GDDM high-performance alphanumerics 373

 high-performance alphanumerics

 R Column

o 1 2 3 4 5 6 ...

w ┌──────┬──────┬──────┬──────┬──────┬──────┬─ ─ ──┐

Header 1│List │Used- │Used- │ │ │ │ │

│status│depth │width │ │ │ │ │

├──────┼──────┼──────┼──────┼──────┼──────┼─ ─ ──┤

 Definition 1 2│Bundle│Pairs │Type │Value │Type │Value │ │

│status│ │ │ │ │ │ │

├──────┼──────┼──────┼──────┼──────┼──────┼─ ─ ──┤

Definition 2 3│Bundle│Pairs │Type │Value │ │ │ │

│status│ │ │ │ │ │ │

├──────┼──────┼──────┼──────┼──────┼──────┼─ ─ ──┤

 Definition 3 4│Bundle│Pairs │Type │Value │Type │Value │ │

│status│ │ │ │ │ │ │

.├──────┼──────┼──────┼──────┼──────┼──────┼─ ─ ──┤

 .

 .

│ │ │ │ │ │ │ │

└──────┴──────┴──────┴──────┴──────┴──────┴─ ─ ──┘

Figure 24. The bundle list array

16 Intensity

The permitted values are:

0 Invisible
1 Normal (the default)
2 Bright.

24 Color

The permitted values are:

0 Default
1 Blue
2 Red
3 Magenta (Pink)
4 Green
5 Turquoise (cyan)
6 Yellow
7 Neutral (white on color displays, black on printers).

32 SBCS Primary symbol set alias

The permitted values are:

0 Default. For a 3270-family device, the base
nonloadable symbol set; for a 3800-system printer, the
first loadable symbol set (use the CHARS parameter to
specify the loaded symbol sets when printing).

1 through 3. For a 3800-system printer, the second, third,
and fourth loadable symbol sets respectively (use the
CHARS parameter to specify the loaded symbol sets
when printing).

65 through 223. For a 3270 family device, loadable
symbol sets corresponding to X'41' through X'DF'.
The alias must be made known to GDDM with a call to
PSDSS, PSLSS, or PSLSSC to load the symbol set.

40 Highlight

The permitted values are:

0 Normal (the default)
1 Blink
2 Reverse video

4 Underscore.

48 End

The permitted values are:

0 Autoskip (the default)
1 Notautoskip.

56 Transparency

The permitted values are:

0 Opaque (the default)
1 Transparent.

64 SBCS/DBCS

The permitted values are:

0 SBCS (the default)
1 Mixed-with-position
2 Mixed-without-position
3 DBCS.

Note: On 5550-family displays all unprotected fields on
the device that are not DBCS, or mixed-with-position are
enabled for mixed-without-position input if any bundle list
on the device specifies mixed-without-position. If the
device operator enters mixed-without-position data into a
field, GDDM only places the correct shift-in, shift-out, and
DBCS characters into the data buffer if mixed-without-
position is specified for the field.

72 Outlining

The permitted values are:

0 None (the default)
1 Underline
2 Vertical line on right
4 Overline
8 Vertical line on left.

For an outlining attribute that is composed of more than
one of these lines, specify the sum of the numbers corre-
sponding to the lines required.

374 GDDM Base Application Programming Reference

 high-performance alphanumerics

80 Modified data tag (MDT)

This defines the field MDT setting. It causes the physical
MDT bit to be set so that the fields can be returned as
input to a subsequent application program after GDDM
terminates. This function is intended primarily for use
under CICS and IMS.

The permitted values are:

0 Reset the MDT (the default)
1 Set the MDT.

88 Reply

This defines the character reply attribute. It specifies
whether the device operator is able to enter color, high-
light, or symbol-set character attributes into the field. If
the field definition also specifies data areas for character
attributes, GDDM will update the data areas with the attri-
butes input.

The permitted values are:

0 Character reply mode off (the default)
1 Enable color character reply mode
2 Enable highlight character reply mode
4 Enable symbol-set character reply mode.

To enable combinations of color, highlight, and
symbol-set character reply modes, specify the sum of the
numbers corresponding to the enablements required.

Note: On 3270-family displays all unprotected fields in
the real partition (or on the real screen if emulated parti-
tions are being used) are enabled for character-attribute
input if any bundle list on the page sets this attribute. If
the device operator enters character attributes into a
field, GDDM only places the character attributes input
into the data buffer if the appropriate reply mode is
enabled for the field.

96 Pen detectable

This attribute permits selection of fields by a light pen or
cursor select key.

The permitted values are:

0 Not pen detectable (the default)
1 Pen detectable.

The type of selection that occurs is determined by the
first data character in the field; this character is called a
designator character. A field having a “pen detectable”
attribute but not starting with a valid designator character
is not selectable.

The types of selection that can be set are:

Delayed detection. When selected by the device oper-
ator, the field is marked as “modified” but nothing is
transmitted until the device operator performs another
action associated with field modification (such as
selecting an “immediate detection” field or pressing
ENTER). The designator character for this type of field
is “?” (X'6F'). If the field is selected the designator
character changes to “>” (X'6E'); another selection

restores it to “?” and cancels the modification indi-
cation.

Immediate detection without data. The designator char-
acter is a blank (X'40'). Selection of this type of field
causes immediate input transmission. No data from
any of the fields is transmitted, however. The effect is
thus:

1. The ASREAD returns an Attention Type of 2 indi-
cating light pen selection. All changes typed in by
the device operator are lost.

2. GDDM restores all fields on the display to their ori-
ginal value at the next ASREAD (or other I/O call).

Immediate detection with data. The designator char-
acter is “&” (X'50'). The effect is the same as
pressing ENTER. (Not possible with the IBM 3277
display terminal.)

Except for dummy, the same type may not appear more than
once in the same bundle definition.

Example: Below is an example of a declaration for a
bundle list in PL/I:

DCL BL(5,1ð) FIXED BIN(15) STATIC INIT

 /\STA DEP WID \/

(ð, 5, 1ð, ð, ð, ð, ð, ð, ð, ð,

/\STA PRS TYP VAL COL VAL BDY VAL PSS VAL\/

ð, 3, 8, ð, 24, 3, 72, 1, ð, ð,

ð, 3, 8, ð, 24, 5, 72, 3, ð, ð,

ð, 4, 8, ð, 24, 6, 72, 15, 32, 8ð,

ð, 4, 8, ð, 24, 3, 72, 7, 88, 7);

How to use high-performance
alphanumerics

Move mode and locate mode: There are two modes in
which data can be transferred between GDDM and the appli-
cation program, which are the move and locate modes. The
mode is specified through the “mode” parameter of the
APDEF call.

If move mode is specified, the field list, data buffer, and
bundle list are copied by GDDM when APDEF is called.
Subsequent output and input processing, done by GDDM,
use the GDDM copies. When the application needs to
retrieve updates made by the device operator, or modify the
fields, it must query the field list, data buffer, and bundle list
by calling APQRY. This returns copies of the field list, data
buffer, and bundle list held by GDDM. When the application
has modified the field list, data buffer, and bundle list, it must
pass the modified versions back to GDDM by calling
APMOD.

 Chapter 17. GDDM high-performance alphanumerics 375

 high-performance alphanumerics

If locate mode is specified, GDDM does not copy the field
list, data buffer, or bundle list. Subsequent output and input
processing, by GDDM, use the copies in application storage.
The application must not release the storage that these
objects occupy until the field list has been deleted. The con-
tents of the field list, data buffer, and bundle list must be
valid whenever GDDM is called. When using locate mode, it
is not necessary to call APQRY to determine device operator
updates, nor to call APMOD to inform GDDM of changes
made by the application.

The choice of move mode or locate mode will affect any
application data embedded in the field list, data buffer, or
bundle list. If move mode is used, this application data is
copied by GDDM on APDEF and subsequent calls to
APMOD. The value copied on the most recent APDEF or
APMOD call is returned by GDDM on APQRY. This means
that any changes made after APDEF or APMOD will be lost
on the next call to APQRY. If locate mode is used this appli-
cation data is not altered by GDDM.

Output: To display a page of alphanumeric fields:

� Construct the field list and associated data buffer and
bundle list to describe the page of alphanumerics. Set
the field definition statuses for all the fields to be shown
to 1. Set the field list status to 1. Set the bundle list
status, and all bundle definition statuses to 0.

� Call APDEF to define the field list and associated data
buffer and bundle list to GDDM.

� Call ASREAD, or another GDDM I/O call as required.

Input: To retrieve device operator updates to the page of
alphanumeric fields following an I/O operation:

� If using move mode, retrieve the field list, data buffer,
and bundle list from GDDM by calling APQRY.

� Test the field list status input indicator to determine if
any fields have been updated by the device operator. If
they have, test field definition input indicators to deter-
mine which fields have been changed, and process the
input found in the data buffer.

� If the alphanumerics are not to be reshown, they should
be cleared by calling APDEL.

Reshow: The application may need to reshow the page of
alphanumeric fields just input, which should be done as
follows:

� Reset the field list status input indicator and the field
definition input indicators.

� Change the data or character attributes in the data
buffer as required, and set the corresponding output indi-
cators in the field definition and header status.

� Change the bundle definitions in the bundle list as
required, and set the corresponding bundle definition
and header status indicators.

� Change the field definitions in the field list as required,
and set the corresponding status indicators to specify
what has changed.

� If using move mode, return the modified field list, data
buffer, and bundle list to GDDM by calling APMOD.

� Call ASREAD, or another GDDM I/O call as required.

Field list update rules: The rules for altering a field list
are:

� The input indicators, which indicate device operator
updates, should be reset by the application after each
I/O. If this is not done, the application will not be able to
detect further updates on a subsequent I/O.

� Field row, field column, and field width may not be
changed, except when using a previously-unused field
definition entry to define a new field. Fields may be
defined in any order, but must not overlap. They may
wrap from row to row, but must not extend beyond the
end of the page.

� Bundle row may be changed by the application, in which
case the application must also set the output indicator to
indicate to GDDM that this is changed. It is not neces-
sary to set this indicator if only the bundle definition has
changed and the field definition has not changed.

� If the character index, color index, highlight index,
symbol-set index or actual length are changed, then the
application must set the Output indicator to indicate to
GDDM that the field has changed and is therefore to be
output on the next I/O.

� When a previously unused field definition is activated,
the process indicator and the create indicator must be
set by the application. These indicators should never be
reset by the application, only by GDDM.

� If an existing field is to be deleted, the field delete indi-
cator should be set by the application. This indicator
should never be reset by the application, only by GDDM,
and the field definition entry may only be reused to
define a new field after GDDM has reset the entire field
status element.

� Changes to any field definition status indicator may also
require changes to the corresponding header status indi-
cator. The header status must always be set to the value
obtained by ORing together all the field status elements.

Data buffer update rule: The rule for altering a data
buffer is:

� If a character data area, or a character attribute data
area is modified, then the output indicators in the corre-
sponding field definition status and field list status must
be set.

Bundle list update rule: The rule for altering a bundle
list is:

� If a bundle definition is modified, the bundle changed
indicator in the bundle definition status and bundle list
status must be set.

376 GDDM Base Application Programming Reference

 high-performance alphanumerics

Dynamic fields: Dynamic alphanumeric fields, using
HPA, may be obtained by reserving space in the field list,
data buffer, and bundle list for the fields to be added later.
Reserved field definitions in the field list may be made by
leaving the process indicator off. Reserved space may be
left in the data buffer by not referring to it in existing field
definitions. Reserved bundle definitions in the bundle list
may be made by setting the number of type-and-value pairs
to zero, or by using the dummy attribute type.

It may become necessary at some stage to enlarge the
structures. When this happens, the APMOD call may be
used to change the size of the field list, data buffer, or
bundle list and also their location if using locate mode. The
application must allocate new-larger data structures to
replace the old ones, initialize them from the old ones (or by
calling APQRY), call APMOD to define the enlarged versions
to GDDM, and throw the old ones away.

Note: If APMOD is used in this way, any differences
between the contents of the old and new structures must be
indicated by change indicators as defined in the rules above.

Interpreted languages: In general, locate mode cannot
be used by applications written in interpreted languages such
as REXX. When using these languages move mode must
be used. See also the restrictions on shared storage below.

Read-only storage: In certain circumstances it may be
desirable to use HPA with the field list, data buffer, or bundle
list in read-only storage. An example might be an application
that is used by many users at the same time. In this
instance, it would be more efficient if fixed panel layouts
were placed in shared storage. To use HPA from read-only
storage, ensure that GDDM does not write to it by adhering
to the rules below:

� Neither APDEF nor APMOD alters the storage of the
field list, data buffer, or bundle list.

� In move mode, ASREAD does not alter the objects in
user storage.

� In locate mode, ASREAD only alters:

The field list If any of the create, delete, or output
indicators are set, or if any field is
unprotected or has the MDT attribute

The data buffer If any field is unprotected or has the
MDT attribute

The bundle list If any status indicators are set.

Shared storage: When using locate mode, it is possible
for an application to define more than one field list using the
same storage. Field lists, data buffers, and bundle lists could
all share storage. The rules for sharing storage are:

� Field lists may not share storage unless they are read
only. See the section on Read-only storage on page
377.

� Bundle lists may be shared between more than one field
list on the same device. They may not be shared
between field lists on different devices unless they are
read only.

� Data buffers may be shared between more than one
field list only if unprotected data areas (that is, data
areas corresponding to fields that are unprotected or
have the MDT attribute) are not shared.

Note: Violations of these rules are not detected, and the
results of such a violation are undefined.

Validation: To enable GDDM to be used as the device
driver for fully tested program products, it is necessary to be
able to run HPA without validation. (Validation is not neces-
sary for tested applications and the performance advantages
are significant.)

Validation checks the API parameters such as identifiers and
lengths, as well as the field list, data buffer, and bundle list.
The field list, data buffer, and bundle list are not validated
during the API call processing as other parameters are,
instead they are validated during processing for each I/O call
involving the GDDM page.

If the writers of an application choose to use HPA without
validation, they do so at their own risk. Incorrect use may
result in device checks.

Validation is controlled by an external default as follows:

FRCEVAL — Force validation.
The default is NO. When FRCEVAL=YES is specified,
the validation indicator in the mode parameter is over-
ridden so that validation is always performed. The other
indicators in the mode parameter are not affected.

For example, when a tested application (for instance, a
shipped program product that does not use validation), is
suspected of a bug, validation can be turned on to deter-
mine whether the application or GDDM is at fault by
specifying:

ADMMDFT FRCEVAL=YES

in the external defaults file. This default may not be
specified in the external defaults module, on SPINIT
calls, or by API call.

Alternatively validation may be controlled by the mode
parameter on the APDEF and APMOD API calls. It may be
used during application development, but once an application
is fully tested validation should be turned off.

 Chapter 17. GDDM high-performance alphanumerics 377

 high-performance alphanumerics

378 GDDM Base Application Programming Reference

 external defaults

 Chapter 18. External defaults

This chapter contains information on the following:

� Changing GDDM’s default values

� Format of GDDM external defaults, listed alphabetically.

� Alphabetical list of default descriptions on pages 384
through 393.

GDDM’s default values

This section describes the options you can specify to change
defaults for your GDDM and subsystem environment. The
information is presented in tabular form.

Full descriptions of the defaults are given under “Alphabetical
list of GDDM external defaults” on page 384, where they are
listed in alphabetical order of the user default specification
parameter.

The first four columns of each table give a brief meaning of
the option, the source format of the user default specification
(UDS) to change that option, the GDDM default for that
option, and the encoded format of the UDS. The fifth column
shows the methods of implementing the UDS you have spec-
ified; it shows where the UDS can be specified, as follows:

M in the External Defaults Module,
F in the External Defaults File,
S in the SPINIT call,
C in the ESEUDS and ESSUDS calls.

Note that not all defaults can be specified by all of the
methods; some defaults can be specified by only one of the
methods. The final column shows to which subsystems the
external defaults apply.

Changing GDDM’s default values

The default values supplied by GDDM can be changed to
allow for variations in such things as specific operating envi-
ronments, equipment availability, or user requirements. For
full information, refer to the GDDM System Customization
and Administration book.

If a default keyword is specified without a value, the current
default value is not changed. For example, in:

DEFAULT ERRTHRS=,NATLANG=F

the ERRTHRS keyword has no effect.

A default value of blanks can be defined by specifying it as a
null string enclosed in parentheses. For example:

DEFAULT TSOS99U=()

The tables that follow list, in alphabetical order of default
function, the GDDM defaults you can change for each sub-
system environment, together with their source-format and
equivalent encoded-format user default specifications.

Note that in defaults files, the “ADMMDFT” keyword can be
replaced by “DEFAULT”.

External defaults: format

The syntax of the external defaults are listed here in alpha-
betic order of keyword.

Table 45 (Page 1 of 5). GDDM external defaults

Source syntax of the
ADMMDFT options Description GDDM default

Encoded values – list
of fullwords

Valid in:
M F S C System

— No operation — {0|1} Y N Y Y All

ABNDRET={NO|YES} Abend-return processing NO 3,3,{0|1} N N Y N VM

AM3270=
({LOCREM|REMOTE|
LOCAL},
{SNANOSNA|
NONSNA|SNA})

Device attachment LOCREM
SNANOSNA

4,12,{0|1|2|},{0|1|2} Y Y Y Y All

APPCPG=n Application code page 00351 3,125,n Y Y Y Y All

AUNLOCK={NO|
YES}

Always-unlock-keyboard NO 3,10,{0|1} Y Y Y Y All

CALLINF=(len,addr) Call information feedback block: length,
address

0,0 (none) 4,1101,L(CIB),A(CIB) N N Y N All

CECPINP={YES|NO} CECP keyboard input YES 3,126,{1|0} Y Y N N All

CICAUD=
 (stg-addr,pgm-addr)

Audit trail anchor block addresses:
storage, program

0,0 (none) 4,1201,A(STGANCH),
 A(PGMANCH)

N N Y N CICS

CICDECK=aaaa Deck output transient data name ADMD 3,202,aaaa Y Y Y N CICS

CICDFPX=aaaa Defaults file temporary storage prefix ADMD 3,210,aaaa Y N Y N CICS

 Copyright IBM Corp. 1980, 1996 379

 external defaults

Table 45 (Page 2 of 5). GDDM external defaults

Source syntax of the
ADMMDFT options Description GDDM default

Encoded values – list
of fullwords

Valid in:
M F S C System

CICGIMP=aaaaaaaa GDDM-IMD ADMGIMP file-control
name

ADMGIMP 4,203,aaaa,aaaa Y Y N N CICS

CICIADS=aaaa GDDM-IMD ADS output transient data
name

ADMG 3,207,aaaa Y Y N N CICS

CICIFMT=aaaaaaaa GDDM-IMD staged data file-type ADMIFMT 4,208,aaaa,aaaa Y Y N N CICS

CICPRNT=aaaa Print Utility transaction name ADMP 3,205,aaaa Y Y Y N CICS

CICSTGF=aaaaaaaa GDDM-IMD staging file file-control
name

ADMX 4,209,aaaa,aaaa Y Y N N CICS

CICSYSP=aaaa System printer output transient data
name

ADMS 3,206,aaaa Y Y Y N CICS

CICTIF={NO|YES|
EXT}

Transaction independence NO 3,14,{0|1|2} N N Y N CICS

CICTQRY=aaaa CICS device query temporary storage
prefix

ADMQ 3,211,aaaa Y Y Y Y CICS

CICTRCE=aaaa Trace output transient data name ADMT 3,201,aaaa Y Y Y N CICS

CICTSPX=aaaa Print Utility temporary storage prefix ADMT 3,204,aaaa Y Y Y N CICS

CMSAPLF=
{DATAANAL|
 APLTEXT}

APL default specification APLTEXT 3,15,{0|1} Y Y Y Y VM

CMSCOLM=aaaaaaaa Page-printer output filetype for color
masters

ADMCOL+ 4,510,aaaa,aaaa Y Y Y N VM

CMSCPT=aaaaaaaa CGM conversion profile filetype ADMCGM 4,512,aaaa,aaaa Y Y Y Y VM

CMSDECK=aaaaaaaa Deck output filetype ADMDECK 4,503,aaaa,aaaa Y Y Y N VM

CMSDFTS=(aaaaaaaa,
 bbbbbbbb)

Defaults file: filename, filetype PROFILE
 ADMDEFS

6,511,aaaa,aaaa,
 bbbb,bbbb

Y N Y N VM

CMSIADS=aaaaaaaa GDDM-IMD ADS output filetype COPY 4,506,aaaa,aaaa Y Y N N VM

CMSIFMT=aaaaaaaa GDDM-IMD Export data filetype ADMIFMT 4,507,aaaa,aaaa Y Y N N VM

CMSMONO=aaaaaaaa AFPDS and HRIG: monochrome
filetype

ADMIMAGE 4,509,aaaa,aaaa Y Y Y N VM

CMSMSLT=aaaaaaaa GDDM-IMD MSL filetype ADMMSL 4,508,aaaa,aaaa Y Y N N VM

CMSPRNT=aaaaaaaa Queued printer output filetype ADMPRINT 4,504,aaaa,aaaa Y Y Y N VM

CMSSYSP=aaaaaaaa System printer output filetype ADMLIST 4,505,aaaa,aaaa Y Y Y N VM

CMSTEMP=aaaaaaaa Work-file filetype ADMUT1 4,501,aaaa,aaaa Y Y Y N VM

CMSTRCE=(aaaaaaaa,
 bbbbbbbb)

Trace output: filename, filetype ADM00001
 ADMTRACE

6,502,aaaa,aaaa,
 bbbb,bbbb

Y Y Y N VM

COMMENT=(cccccccc,
 cccccccc,........)

Comments for module identification N/A 1-8000,0,cccc,
 cccc,....

Y Y Y Y All

CPN4250=aaaaaaaa 4250 code-page name AFTC0395 4,109,aaaa,aaaa Y Y Y Y TSO, VM

CTLSAVE={YES|NO} User Control SAVE function control| YES
| (NO on CICS)

3,119,{0|1} Y Y Y Y CICS,
VM, TSO

DATEFRM={1|2|3|4} Date convention 4 3,5,{1|2|3|4} Y Y Y Y All

DATRN=addr Alphanumeric defaults module control ADMDATRN 3,118,addr Y N Y Y All

DBCSDFT={GDDM|
NO|YES}

DBCS default selection GDDM 3,18,{0|1|2} Y Y Y Y All

DBCSDNM=(aaaaaa,
bbbbbb)

DBCS default symbol-set name ADMIK
ADMVK

6,128,aaaa,aa␣␣,
 bbbb,bb␣␣

Y Y Y Y All

DBCSLIM=n DBCS symbol set component in-core
threshold

4 3,113,n Y Y Y Y All

DBCSLNG=c DBCS symbol set language K 3,111,X'xx000000' Y Y Y Y All

DFTXTNA=aaaaaaaa Label on first ADMMDFTX macro| —| 4,123,aaaa,aaaa| Y Y Y Y VSE

ERRFDBK=
(GDDMDFLT)

Error exit: use GDDM-supplied feed-
back block

GDDMDFLT 3,1102,0 Y N Y Y All

ERRFDBK=
 (USERAREA,addr,len)

Error exit: use user-supplied feedback
block

— 5,1102,2,addr,len Y N Y Y All

ERRTHRS=n Error threshold value 4 3,101,n Y Y Y Y All

380 GDDM Base Application Programming Reference

 external defaults

Table 45 (Page 3 of 5). GDDM external defaults

Source syntax of the
ADMMDFT options Description GDDM default

Encoded values – list
of fullwords

Valid in:
M F S C System

FF3270P=
 {NO|AFTER|
BEFORE|BOTH}

Form feed AFTER 3,11,{0|1|2|3} Y Y Y Y All

FRCEVAL={NO|YES} Force validation of HPA NO 3,127,{0|1} N Y N N All

ICUFMDF={0|1|2} ICU format 0 3,121,{0|1|2} Y Y Y Y All

ICUFMSS={0|1|2} ICU symbol sets 0 3,122,{0|1|2} Y Y Y Y All

ICUISOL={0|1|2} ICU isolate value 0 3,112,{0|1|2} Y Y Y Y All

ICUPANC=
{TURQUOISE|BLUE}

ICU panel color TURQ 3,120,{5|1} Y Y Y Y All

IMSDECK=aaaaaaaa Deck output LTERM name ADMDECK 4,302,aaaa,aaaa Y N Y N IMS

IMSEXIT=aaaaaaaa Interactive Utility exit character string EXIT 4,311,aaaa,aaaa Y N N N IMS

IMSICU=aaaaaaaa Transaction name for Interactive Chart
Utility

CHART 4,306,aaaa,aaaa Y N N N IMS

IMSISE=aaaaaaaa Transaction name for Image Symbol
Editor

ISSE 4,304,aaaa,aaaa Y N N N IMS

IMSMAST=aaaaaaaa Interactive Utility shutdown LTERM
name

MASTER 4,313,aaaa,aaaa Y N N N IMS

IMSMODN=aaaaaaaa GDDM message output descriptor
(MOD) name

DFS.EDT 4,317,aaaa,aaaa Y N Y Y IMS

IMSPRNT=aaaaaaaa Print Utility transaction name ADMPRINT 4,303,aaaa,aaaa Y N Y N IMS

IMSSDBD=aaaaaaaa GDDM system definition database
DBD name

ADMSYSDF 4,307,aaaa,aaaa Y N Y N IMS

IMSSEGS=(aaaaaaa,
 bbbbbbbb,....)

Segment/Key field names:

 Object database
 root segment
 Object database
 dependent segment
 Object database

root key field
 Object database

dependent key field
 System definition
 database segment
 System definition

database key field

ADMOBROO

ADMOBDEP

ADMOBRKY

ADMOBDKY

ADMSDSGM

ADMSDKEY

14,308,

 aaaa,aaaa,

 bbbb,bbbb,

 cccc,cccc,

 dddd,dddd,

 eeee,eeee,

 ffff,ffff

Y N Y N IMS

IMSSHUT=aaaaaaaa Interactive Utility shutdown string SHUTDOWN 4,312,aaaa,aaaa Y N N N IMS

IMSSYSP=aaaaaaaa System printer output destination name ADMLIST 4,314,aaaa,aaaa Y N Y N IMS

IMSTRCE=aaaaaaaa Trace output ddname ADMTRACE 4,301,aaaa,aaaa Y N Y N IMS

IMSUISZ=n Input area size 3000 3,310,n Y N N N IMS

IMSUMAX=n Maximum number of users 5 3,309,n Y N N N IMS

IMSVSE=aaaaaaaa Transaction name for Vector Symbol
Editor

VSSE 4,305,aaaa,aaaa Y N N N IMS

IMSWTOD=
(n,n,n,....)

Write-to-operator descriptor codes (7) 3,316,X'xxxx0000' Y N Y N IMS

IMSWTOR=
(n,n,n,....)

Write-to-operator routing codes (2) 3,315,X'xxxx0000' Y N Y N IMS

INSCPG=n Installation code page 00037 3,124,n Y N N N All

IOBFSZ=n Transmission buffer size 1536 3,104,n Y Y Y Y All

IOCOMPR={NO|YES} Compressed PS loads YES 3,9,{0|1} Y Y Y Y All

IOSYNCH={NO|YES} Synchronized I/O NO 3,8,{0|1} Y Y Y Y| CICS,
| TSO

MAPGSTG=n Mapgroup storage threshold 8192 3,106,n Y Y Y Y All

MIXSOSI={NO|YES} DBCS strings with shift-out/shift-in NO 3,17,{0|1} Y Y Y Y All

NATLANG=c National language A 3,4,X'xx000000' Y Y Y N All

NUMBFRM={1|2|3} Number convention 1 3,7,{1|2|3} Y Y Y Y All

 Chapter 18. External defaults 381

 external defaults

Table 45 (Page 4 of 5). GDDM external defaults

Source syntax of the
ADMMDFT options Description GDDM default

Encoded values – list
of fullwords

Valid in:
M F S C System

OBJFILE=(aaaaaaaa,
 bbbbbbbb,....)

VSAM data-set names for:

 Symbol sets
 Generated mapgroups
 Saved pictures
 Chart formats
 Chart data
GDDM-IMD tutorial pages

 GDF files
 (reserved)
 (reserved)
 Projection definitions
 Image data
Reserved for GDDM-PCLK
and GDDM-OS/2 Link files

ADMF
ADMF
ADMF
ADMF
ADMF
ADMGIMP
ADMF
–
–
ADMF
ADMF
ADMF

4-24,107,

 aaaa,aaaa,
 bbbb,bbbb,
 cccc,cccc,
 dddd,dddd,
 eeee,eeee,
 ffff,ffff,
 gggg,gggg,
 hhhh,hhhh,
 iiii,iiii,
 jjjj,jjjj,
 kkkk,kkkk,
 llll,llll

Y Y Y Y CICS

OBJFILE=(aaaaaaaa,
 bbbbbbbb,....)

Database DBD names for:

 Symbol sets
 Generated mapgroups
 Saved pictures
 Chart formats
 Chart data
 (reserved)
 GDF files
 (reserved)
 (reserved)
 Projection definition
 Image data
 (reserved)

ADMOBJ1
ADMOBJ1
ADMOBJ1
ADMOBJ1
ADMOBJ1
—
ADMOBJ1
—
—
ADMOBJ1
ADMOBJ1
—

4-24,107,

 aaaa,aaaa,
 bbbb,bbbb,
 cccc,cccc,
 dddd,dddd,
 eeee,eeee,
 ffff,ffff,
 gggg,gggg,
 hhhh,hhhh,
 iiii,iiii,
 jjjj,jjjj,
 kkkk,kkkk,
 llll,llll

Y N Y N IMS

OBJFILE=(aaaaaaaa,
 bbbbbbbb,....)

ddnames for:

 Symbol sets
 Generated mapgroups
 Saved pictures
 Chart formats
 Chart data
GDDM-IMD tutorial pages

 GDF files
Reserved for GDDM-GKS

 metafiles
Chart data definition

 Projection definition
 Image data
Reserved for GDDM-PCLK
and GDDM-OS/2 Link files

ADMSYMBL
ADMGGMAP
ADMSAVE
ADMCFORM
ADMCDATA
ADMGIMP
ADMGDF
—

ADMCDEF
ADMPROJ
ADMIMG
ADMPC

4-24,107,

 aaaa,aaaa,
 bbbb,bbbb,
 cccc,cccc,
 dddd,dddd,
 eeee,eeee,
 ffff,ffff,
 gggg,gggg,
 hhhh,hhhh,

 iiii,iiii,
 jjjj,jjjj,
 kkkk,kkkk,
 llll,llll

Y Y Y Y TSO

OBJFILE=(aaaaaaaa,
 bbbbbbbb,....)

VSAM data-set names for:

 Symbol sets
 Generated mapgroups
 Saved pictures
 Chart formats
 Chart data
GDDM-IMD tutorial pages

 GDF files
 (reserved)
 (reserved)
 Projection definitions
 Image data
Reserved for GDDM-PCLK
and GDDM-OS/2 Link files

ADMF
ADMF
ADMF
ADMF
ADMF
ADMGIMP
ADMF
—
—
ADMF
ADMF
ADMF

4-24,107,

 aaaa,aaaa,
 bbbb,bbbb,
 cccc,cccc,
 dddd,dddd,
 eeee,eeee,
 ffff,ffff,
 gggg,gggg,
 hhhh,hhhh,
 iiii,iiii,
 jjjj,jjjj,
 kkkk,kkkk,
 llll,llll

Y Y Y Y VSE

382 GDDM Base Application Programming Reference

 external defaults

Table 45 (Page 5 of 5). GDDM external defaults

Source syntax of the
ADMMDFT options Description GDDM default

Encoded values – list
of fullwords

Valid in:
M F S C System

OBJFILE=(aaaaaaaa,
 bbbbbbbb,....)

Filetypes for:

 Symbol sets
 Generated mapgroups
 Saved pictures
 Chart formats
 Chart data
GDDM-IMD tutorial pages

 GDF files
 (reserved)
Chart data definition

 Projection definition
 Image data
Reserved for GDDM-PCLK
and GDDM-OS/2 Link files

ADMSYMBL
ADMGGMAP
ADMSAVE
ADMCFORM
ADMCDATA
ADMTUTPG
ADMGDF
—
ADMCDEF
ADMPROJ
ADMIMG
ADMPC

4-24,107,

 aaaa,aaaa,
 bbbb,bbbb,
 cccc,cccc,
 dddd,dddd,
 eeee,eeee,
 ffff,ffff,
 gggg,gggg,
 hhhh,hhhh,
 iiii,iiii,
 jjjj,jjjj,
 kkkk,kkkk,
 llll,llll

Y Y Y Y VM

PARMVER={NO|YES} Parameter verification (SPI) NO 3,1,{0|1} N N Y N All

SAVBFSZ=n FSSAVE buffer size 1024 3,105,n Y Y Y Y All

SOSIEMC=c DBCS SO/SI emulation character ” 3,110,X'xx000000' Y Y Y Y All

STGRET={NO|YES} Short-on-storage processing NO 3,2,{0|1} N N Y N All

TIMEFRM={1|2|3|4} Time convention 1 3,6,{1|2|3|4} Y Y Y Y All

TRACE={0|n} Trace word value 0 3,102,n Y Y Y Y All

TRCESHR={NO|YES} Trace share NO 3,117,{0|1} Y Y Y Y TSO, VM

TRCESTR= 'xxxxxx....' Trace control (none) 3-8000,114,xxxx, xx.... Y Y Y Y All

TRCEWID=
 {SINGLE|DOUBLE}

Trace output width SINGLE 3,115,{0|1} Y Y Y Y All

TRTABLE=n Trace table size, in-core 100 3,103,n Y Y Y N All

TSOAPLF=
 {DATAANAL|
APLTEXT}

APL default specification DATAANAL 3,16,{0|1} Y Y Y Y TSO

TSOCOLM=aaaaaaaa High-resolution image generation: color
ddname or high-level qualifier

ADMCOL+ 4,409,aaaa,aaaa Y Y Y N TSO

TSOCPT=aaaaaaaa CGM conversion profile ddname ADMCGM 4,414,aaaa,aaaa Y Y Y Y TSO

TSODECK=aaaaaaaa Deck output ddname ADMDECK 4,402,aaaa,aaaa Y Y Y N TSO

TSODFTS=aaaaaaaa Defaults file ddname ADMDEFS 4,411,aaaa,aaaa Y N Y N TSO

TSOEMUL={NO|YES} TSO Emulation NO 2,413 Y Y Y Y TSO

TSOGIMP=aaaaaaaa GDDM-IMD ADMGIMP ddname ADMGIMP 4,403,aaaa,aaaa Y Y N N TSO

TSOIADS=aaaaaaaa GDDM-IMD ADS output ddname ADMGNADS 4,406,aaaa,aaaa Y Y N N TSO

TSOIFMT=aaaaaaaa GDDM-IMD export data ddname ADMIFMT 4,407,aaaa,aaaa Y Y N N TSO

TSOMONO=aaaaaaaa| Page-printer output ddname or data set
| name low-level qualifier

ADMIMAGE 4,408,aaaa,aaaa Y Y Y N TSO

TSOPRNT=aaaaaaaa Print data-set qualifier ADMPRINT 4,404,aaaa,aaaa Y Y Y N TSO

TSORESV={NO|YES} Reserve master print queue DASD NO 3,415,{0|1} Y N N N TSO

TSOSYSP=aaaaaaaa System printer output ddname ADMLIST 4,405,aaaa,aaaa Y Y Y N TSO

TSOS99S=n Dynamic allocation size 742710 3,410,n Y Y Y Y TSO

TSOS99U=aaaaaaaa Dynamic allocation unit specification SYSDA 4,412,aaaa,aaaa Y Y Y Y TSO

TSOTRCE=aaaaaaaa Trace output ddname ADMTRACE 4,401,aaaa,aaaa Y Y Y N TSO

VSECOLM=aaaaaaaa Page printer files for image generation:
color file name

ADMCOL+ 4,603,aaaa,aaaa Y Y Y Y VSE

VSEDFTS=aaaaaaaa Defaults file name SYSIPT 4,604,aaaa,aaaa Y N Y N VSE

VSEMONO=aaaaaaaa Page printer files for image generation:
monochrome file name

ADMIMAGE 4,602,aaaa,aaaa Y Y Y Y VSE

VSETRCE=aaaaaaaa Trace file name ADMTRCE 4,601,aaaa,aaaa Y Y Y N VSE

 Chapter 18. External defaults 383

 external defaults

Alphabetical list of GDDM external defaults

This section lists the GDDM external defaults and their
values in alphabetical order of the user external default
description parameter. For example, for the “always-unlock-
keyboard” external default you would look up AUNLOCK in
this list.

In this list, the values of the external defaults, as supplied by
GDDM, are underlined thus: NO.

Note: Where an operand is defined as a 4- or 8-character
string, it may be specified as a shorter value, in which case
the string is left-justified and padded with blanks to 4 or 8
characters.

ABNDRET={NO |YES}
Subsystem: VM only.

Defines whether, in case of a controlled abnormal-end
(abend) condition, GDDM should return control to the
application program immediately with a corresponding
error code and message. The message includes the
abend code that GDDM would otherwise have issued.

This external default can cause GDDM to return control
to the application only in controlled abend situations. It
does not enable return from uncontrolled abends, such
as program checks and abends issued by underlying
subsystem services. Also, as an abend can indicate a
major internal error, successful return to the application
cannot be guaranteed.

GDDM does not try to correct the abend situation or to
release resources before returning to the application.
Successful continuation of the GDDM session after
return cannot be ensured.

AM3270=({LOCAL|REMOTE|LOCREM},
{SNA|NONSNA|SNANOSNA})

Subsystem: All.
Defines the attachment mode of 3270 devices. Such
devices can be defined as locally attached (LOCAL),
remotely attached (REMOTE), or a mixture of both
(LOCREM). Similarly, all 3270 devices can be SNA
devices, non-SNA devices, or a mixture of both.

This external default specifies device characteristics that
GDDM may not otherwise be able to deduce, and allows
GDDM to optimize its device processing.

If GDDM can deduce that all devices are locally
attached, it does not usually generate “compressed PS
load” data streams, even if the device shows that it sup-
ports compression and even if the IOCOMPR=YES
external default has been specified.

If GDDM can deduce that all devices are either locally-
attached or SNA, it does not constrain “PS load” data
streams to conform to the 3KB transmission limit
required for remote non-SNA devices.

APPCPG=n
Subsystem: All.

Defines the code-page to be used by GDDM applica-
tions. It applies to names (for example, window names,
symbol set names, map names) and character strings on
FSLOG and FSLOGC calls. It also applies to GDDM
objects. For example, when a page is saved using
GSSAVE, graphics strings in the resulting GDF file are
coded according to the application code page.

This table lists the code pages supported by GDDM:

00037 U.S.A., Canada, Portugal1,
Netherlands, Brazil2

00273 Austria, Germany
00277 Denmark, Norway
00278 Finland, Sweden
00280 Italy
00281 Japan (Latin characters)
00284 Spain, Latin America
00285 United Kingdom, Ireland
00290 GDDM Katakana
00297 France
00351 GDDM default EBCDIC
00500 Multilingual page (MLP),

Switzerland, Belgium3

00871 Iceland
01027 Japan (Latin) Extended

| 00870 Latin 2
| 00875 Greece
| 00880 and 1025 Cyrillic
| 00905 and 1026 Turkey
| 01112 Baltic multilingual
| 01122 Estonia

1 00037 has superseded 00282 for Portugal
2 00037 has superseded 00275 for Brazil
3 00500 has superseded 00274 for Belgium

AUNLOCK={NO|YES }
Subsystem: All.

Specifies whether GDDM is to operate in “always-
unlock-keyboard mode.” For more information, see the
description of the AUNLOCK processing option in
Chapter 19, “Processing options” on page 395.

CALLINF=(length,address)
Subsystem: All.

Specifies two 4-byte fields containing the length and
address of a call-information feedback block provided by
the application program.

The area passed by the application must be at least
eight bytes long. The first four bytes receive the
address of the call formats descriptor module. See “Call
format descriptor module” on page 438. The second
four bytes receive the address of the APL request code
module. See Chapter 5, “APL request codes module”
on page 251.

If either call-information module cannot be located, the
8-byte call information feedback block is set to binary
zeros.

384 GDDM Base Application Programming Reference

 external defaults

CECPINP={YES|NO}
Subsystem: All.

Specifies whether the full range of CECP code points is
to be allowed in alphanumeric input data from the key-
board of a family-1 device. See the GDDM System
Customization and Administration book.

CICAUD=(stg-addr,pgm-addr)
Subsystem: CICS.

Specifies two 4-byte fields, each containing the address
of a 4-byte anchor by which GDDM locates a record of
currently acquired storage resources and currently
acquired program resources, respectively. For a full
explanation of this processing, refer to the GDDM Base
Application Programming Guide.

CICDECK=aaaa
Subsystem: CICS

A 4-character string that is the transient-data destination
used by GDDM for object module output from the Image
Symbol Editor or the GDDM-PGF Vector Symbol Editor.

CICDFPX=aaaa
Subsystem: CICS

A 4-character string containing the 4-byte prefix used by
GDDM to determine the CICS Temporary Storage
names used for external defaults files. This option is
intended for use in problem determination only. For
information on how to use it in that context, see the
GDDM Diagnosis book.

CICGIMP=aaaaaaaa
Subsystem: CICS

An 8-character string that is the CICS File Control
data-set name used by GDDM for retrieving the gener-
ated mapgroups required for the operation of
GDDM-IMD.

CICIADS=aaaa
Subsystem: CICS

A 4-character string that is the external default Transient
Data destination used by GDDM for the output of ADSs
(application data structures) resulting from the use of
GDDM-IMD.

CICIFMT=aaaaaaaa
Subsystem: CICS

An 8-character string that is a external default “file-type”
assigned to data exported to a VSAM “staging” data set,
as a result of using GDDM-IMD’s Export Utility.

CICPRNT=aaaa
Subsystem: CICS

A 4-character string that is the transaction name
assigned to the GDDM CICS Print Utility; refer to the
GDDM Base Application Programming Guide.

CICSTGF=aaaaaaaa
Subsystem: CICS.

An 8-character string that is the default CICS File
Control data-set name of the VSAM “staging” data set to
be used with GDDM-IMD.

CICSYSP=aaaa
Subsystem: CICS.

A 4-character string that is the default transient data
destination used by GDDM for output resulting from
system printers. Such devices are defined as described
in the GDDM Base Application Programming Guide.

CICTIF={NO|YES|EXT}
Subsystem: CICS.

Shows whether GDDM is to use transaction-independent
services. For a full description of this processing, see
the GDDM Base Application Programming Guide.

The values are:

NO Transaction-independent services are not to be
used.

YES GDDM storage is retained between transactions.
EXT All GDDM storage is allocated above 16MB, and

is retained between transactions. All ASREAD
calls are read-only operations.

Note: The EXT option requires CICS support for
both SHARED and FLENGTH options in the
EXEC CICS GETMAIN command.

CICTQRY=aaaa
Subsystem: CICS.

A 4-character string that is the prefix for the CICS tem-
porary storage queue names used for saving device
query information.

CICTRCE=aaaa
Subsystem: CICS.

A 4-character string that is the transient data destination
used by GDDM for diagnostic trace output.

CICTSPX=aaaa
Subsystem: CICS.

A 4-character string that is the 4-byte prefix used by
GDDM to construct CICS Temporary Storage names for
passing data to the GDDM CICS Print Utility; refer to the
GDDM Base Application Programming Guide.

CMSAPLF={DATAANAL|APLTEXT }
Subsystem: VM.

Identifies the APL feature installed on nonqueriable IBM
3270 printers.

DATAANAL GDDM is to assume that any APL feature
installed on any IBM 3270 printer is the
Data Analysis-APL feature, unless specific
application program device-definition infor-
mation shows otherwise. The Data
Analysis-APL feature applies to such
printers as the IBM 3284, 3286, and 3288.

APLTEXT GDDM is to assume that any APL feature
installed on any IBM 3270 printer is the
APL/Text feature, unless specific applica-
tion program device-definition information
shows otherwise. The APL/Text feature
applies to such printers as the IBM 3287
and 3289.

 Chapter 18. External defaults 385

 external defaults

CMSCOLM=aaaaaaaa
Subsystem: VM.

An 8-character string defining the default filetypes used
by GDDM under VM for multicolored output resulting
from high-resolution image devices. For information on
how to define these devices, see Chapter 19, “Proc-
essing options” on page 395.

The character string must contain a “+” substitution char-
acter.

CMSCPT=aaaaaaaa
Subsystem: VM.

An 8-character string defining the default filetype used
by GDDM under VM for files containing Computer
Graphics Metafile (CGM) conversion profiles.

CMSDECK=aaaaaaaa
Subsystem: VM.

An 8-character string that is the filetype used by GDDM
under VM for object module output resulting from
requests through the Image Symbol Editor or the
GDDM-PGF Vector Symbol Editor.

CMSDFTS=(aaaaaaaa,bbbbbbbb)
Subsystem: VM.

Two 8-character strings that are the filename and
filetype of the External Defaults File under VM.

CMSIADS=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for the output of ADSs (application
data structures) resulting from the use of GDDM-IMD.

CMSIFMT=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for exporting data as a result of using
GDDM-IMD’s Export Utility.

CMSMONO=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for monochrome page-printer output.
For information on how to define these devices, see
Chapter 19, “Processing options” on page 395.

CMSMSLT=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for GDDM-IMD map specification
libraries (MSLs).

CMSPRNT=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for generating files to be printed by the
GDDM VM Print Utility, ADMOPUV; refer to the GDDM
Base Application Programming Guide.

CMSSYSP=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for disk file output resulting from
system printers. For information on how to define these
devices, see Chapter 20, “Name-lists” on page 415.

CMSTEMP=aaaaaaaa
Subsystem: VM.

An 8-character string that is the default filetype used by
GDDM under VM for intermediate file operations.

CMSTRCE=(aaaaaaaa,bbbbbbbb)
Subsystem: VM.

Two 8-character strings that are the default filename and
filetype used by GDDM under VM for trace output.

COMMENT=(cccccccc,cccccccc,........)
Subsystem: All.

Specifies a comment as a list of strings of 8 or less non-
blank characters, which are ignored by GDDM external
default processing. The list must not contain more than
8000 such strings. This external default can be used to
imbed a comment into an encoded UDSL for documen-
tation purposes.

CPN4250=aaaaaaaa
Subsystem: All except IMS.

An 8-character string that is the system default code-
page name used for an IBM 4250 printer. For a list of
possible values, see the description of the GSCPG call
(“GSCPG – Set current code page” on page 113).

CTLSAVE={YES|NO}
Subsystem: Not IMS.

Shows whether GDDM is, by default, to allow the appli-
cation to control the picture-saving facilities offered in the
User Control environment.

The external default value varies according to the sub-
system:

Under CICS it is NO
Under VM and TSO it is YES
Under IMS it is not available.

DATEFRM={1|2|3|4 }
Subsystem: All.

The date convention to be used by GDDM and
GDDM-PGF:

1 MM/DD/YYYY (US convention)
2 DD.MM.YYYY (European convention)
3 YYYY-MM-DD (ISO and Japanese convention)
4 DD MMM YYYY (MMM are the first 3 characters of

the month name).

Note that GDDM-IMD always displays the date in an
abbreviated form; that is, the first two digits of the year
(YYYY) are omitted.

386 GDDM Base Application Programming Reference

 external defaults

DATRN=addr
Subsystem: All.

Provides a means by which a program can pass to
GDDM the address of an alphanumeric defaults module
to be used instead of ADMDATRN.

DBCSDFT={GDDM|NO|YES}
Subsystem: All.

This external default, which has meaning only when the
NATLANG external default specifies a double-byte-
character-set (DBCS) language, introduces the concept
of the default error message destination, and enables
the user to control DBCS support for it. DBCSDFT
allows the user to specify, or to ask GDDM to specify,
whether the default error message destination can
support DBCS languages. The default is that GDDM
should determine this.

The values are:

GDDM GDDM must determine whether the device can
support DBCS

NO The device cannot support DBCS
YES The device can support DBCS.

Some examples of default error message destinations
are:

� The user screen (for TSO)
� Transaction-initiating terminals (for CICS and IMS)

 � FSQERR destination
 � FSEXIT destination.

DBCSDNM=(aaaaaa,bbbbbb)
Subsystem: All.

| Specifies the prefixes of the GDDM-supplied DBCS
| default symbol sets to be loaded when GSCS(8) is

called, or when the external default MIXSOSI=YES is
| specified. The first name (aaaaaa) is used for mode-2
| (image symbol GSCM(2)) text. The second name
| (bbbbbb) is used for mode-3 (vector symbol GSCM(3))
| text. Both mode-2 and mode-3 names must be sup-
| plied. The names must be valid DBCS symbol-set

names as defined for the GSLSS call.

These symbol sets are loaded as required by GDDM
when processing GSCHAP, GSCHAR, or GSQTB calls.
The external default DBCSLIM=n specifies the limit on
the number of wards that can be loaded concurrently.

| The prefixes of the GDDM-supplied DBCS default
| symbol sets are as follows:

| ADMIK Standard Kanji mode-2
| ADMVK Standard Kanji mode-3
| ADMVQ High-quality Kanji mode-3
| ADMVC Standard Simplified Chinese mode-3

| The following are examples of source format specifica-
| tions:

| ADMMDFT DBCSDNM=(ADMIK,ADMVK)

| This gives standard Kanji mode-2 and mode-3 text.
| (These are the default values.)

| ADMMDFT DBCSDNM=(ADMIK,ADMVC)

| This gives standard Simplified Chinese mode-3 text.
| (Mode-2 text will use standard Kanji.)

| When creating encoded GDDM user default specifica-
| tions, each DBCS default symbol set name prefix must
| be padded with trailing blanks to be exactly eight charac-
| ters long.

Note: If both the DBCSLNG and DBCSDNM external
defaults are used, the one specified last takes preced-
ence.

DBCSLIM=n
Subsystem: All.

An integer, in the range 1 through 16, that is the DBCS
symbol-set component (ward) in-core threshold. This
limit applies to each DBCS set loaded by a GSLSS call
and to the default DBCS sets if these are loaded.
GDDM usually optimizes DBCS symbol set functions by
retaining loaded DBCS symbol set components (wards)
in main storage up to the specified number of compo-
nents for each DBCS symbol set.

DBCSLNG=c
Subsystem: All.

The DBCS symbol set used. The GDDM-supplied
default is K for Kanji. If another language is used, the
character chosen must be used in the symbol-set names
as a replacement for K.

In the encoded UDS format, the default value must be
coded as X'xx000000', where “xx” is the hexadecimal
equivalent of the character “c”.

Note: This external default is obsolete and has been
superseded by DBCSDNM. The use of this external
default is not recommended. If both the DBCSLNG and
DBCSDNM external defaults are used, the one specified
last takes precedence.

DFTXTNA=aaaaaaaa
Subsystem: VSE.

The label on the first ADMMDFTX macro that defines
the Job Control Language (JCL) to be used for batch
printing. For more information, refer to the GDDM
System Customization and Administration book.

ERRFDBK=(aaaaaaaa)
Subsystem: All.

Shows that an error feed-back block is used. The
meaning of “aaaaaaaa” can be:

GDDMDFLT
Shows that the GDDM-supplied default error feed-back
block is used. This external default can only be speci-
fied in encoded format and cannot, therefore, be speci-
fied in an ESSUDS call or in an External Defaults File.

USERAREA,addr,len
Shows that a user or application program-supplied error
feed-back block is used. The arguments are the
address and length of an error feed-back block provided
by the application program. This external default can be

 Chapter 18. External defaults 387

 external defaults

specified only in encoded format and cannot, therefore,
be specified in an ESSUDS call or in an External
Defaults File.

If an application program error feedback block is located
in this manner, GDDM’s default error exits do not send
error messages to the user’s terminal device. Rather,
these default error exits return error details in the appli-
cation program error feedback block. The format of the
information returned in the feedback block is defined in
the GDDM Base Application Programming Guide.
GDDM never clears this error feedback block; it is set
only as a result of a GDDM default error exit being
invoked.

Note that the ERRFDBK option establishes the default
error action. The FSEXIT(0,n) call shows that the
default error action is to be taken. FSEXIT(addr,n)
shows that the FSEXIT-defined user error exit is to be
used. A subsequent FSEXIT(0,n) restores the default
error action.

ERRTHRS=n
Subsystem: All.

A nonnegative integer that is the default error-threshold
value. This value has the same meaning as the error-
severity value specified in the FSEXIT call. However,
the specified threshold can have effect from the start of
initialization.

The error threshold value can also be changed in the
FSEXIT call.

FF3270P={NO|AFTER |BEFORE|BOTH}
Subsystem: All.

Shows whether GDDM, including the GDDM Print Utility,
by external default, performs a form feed (page eject) at
the start, end, or start and end of processing on an IBM
3270-family printer.

| It does not apply to cut-sheet devices (including IPDS
| cut-sheet printers).

FRCEVAL={NO |YES}
Subsystem: All.

Allows the user to control the validation of high-
performance alphanumerics data.

For example, when a tested application (for example, a
shipped licensed program that does not use validation),
is suspected of a bug, validation can be turned back on
to determine whether the application or GDDM is at fault
by specifying:

ADMMDFT FRCEVAL=YES

in the external defaults file. This external default cannot
be specified in the external defaults module, on SPINIT
calls, or by API call.

ICUFMDF={0|1|2}
Subsystem: All.

Allows the user to control the use of chart format
defaults in the Interactive Chart Utility of GDDM-PGF.
All applications on the system (new, old, or stand-alone

ICU) have their chart format defaults controlled by this
one parameter. The values that can be specified are:

0 Release-dependent ICU choice.

Allows the ICU to choose the chart format defaults
– the actual defaults may change from one release
of GDDM to the next. This value is usually the
same as choosing “2” except when the ICU is
invoked by CHART with FORMNAME=ñ and
DISPLAY≠1 or ≠2; in this case ICUFMDF is set as
if “1” had been chosen.

1 Use the chart format defaults as specified in GDDM
Version 1 Release 4.

2 Use the chart format defaults as specified in GDDM
Version 2 Release 1.

ICUFMSS={0|1|2}
Subsystem: All.

Specifies the external default use of symbol sets in
formats value in the Interactive Chart Utility of
GDDM-PGF.

The values that can be specified are:

0 Release-dependent ICU choice (same as 2).
1 Use an asterisk (ñ) for all symbol sets named in

format defaults.
2 Use Vector Symbol Sets as named in the format

defaults.

ICUISOL={0|1|2}
Subsystem: All.

Allows you to control users’ access to the Save,
Restore, and Directory panels of the GDDM-PGF Inter-
active Chart Utility (ICU). This value is inspected only if
the chart-control parameter of the GDDM-PGF CHART
call has the isolate value set to zero.

The values that can be specified are:

0 The Save, Restore, and Directory panels of the ICU
are made available to the operator.

1 The Save, Restore, and Directory panels are not
made available to the operator.

2 The Save and Restore panels are made available
to the operator, but the Directory panel is not.

ICUPANC={TURQUOISE|BLUE}
Subsystem: All.

Specifies the default use of the basic panel color for the
Interactive Chart Utility of GDDM-PGF.

The values that can be specified are:

TURQUOISE The default.
BLUE

IMSDECK=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the logical terminal name
(LTERM) used by GDDM for object module output
resulting from requests through the Image Symbol Editor
or the GDDM-PGF Vector Symbol Editor.

388 GDDM Base Application Programming Reference

 external defaults

IMSEXIT=aaaaaaaa
Subsystem: IMS.

An 8-character string used as a parameter to the GDDM
interactive utility transaction to cause exit processing for
all conversations from a particular LTERM.

IMSICU=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the transaction name for
requesting the Interactive Chart Utility of GDDM-PGF.

IMSISE=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the transaction name for
requesting the Image Symbol Editor.

IMSMAST=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the LTERM name of the
only LTERM allowed to issue the shutdown request to
the GDDM interactive utility transaction.

IMSMODN=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the message output
descriptor (MOD) name used by GDDM for sending non-
conversational messages to IBM 3270-family displays.

IMSPRNT=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the transaction name
assigned to the GDDM IMS Print Utility.

IMSSDBD=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the DBD name by which the
GDDM system definition database is accessed.

IMSSEGS=(aaaaaaaa,bbbbbbbb,cccccccc,dddddddd,
eeeeeeee,ffffffff)

Subsystem: IMS.
Six 8-character strings, which are the names of the IMS
segments and key fields:

aaaaaaaa object database root-segment name
bbbbbbbb object database dependent segment name
cccccccc object database root-segment key field

name
dddddddd object database dependent segment key

field name
eeeeeeee system definition database segment name
ffffffff name of the key field in the above

segment.

IMSSHUT=aaaaaaaa
Subsystem: IMS.

An 8-character string used as a parameter to the GDDM
interactive utility transaction to cause immediate termi-
nation of the transaction.

IMSSYSP=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the default destination for
output from a system printer. For information on how to

define system printers, see Chapter 20, “Name-lists” on
page 415.

IMSTRCE=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the ddname used by GDDM
for trace output.

IMSUISZ=n
Subsystem: IMS.

An integer, in the range 1 through 32000, which is the
size of the data area reserved to contain the MFS
Bypass input to the GDDM interactive utility transaction.

IMSUMAX=n
Subsystem: IMS.

An integer, in the range 1 through 32765, which is the
maximum number of concurrent conversations to be
supported by the GDDM interactive utility transaction.

IMSVSE=aaaaaaaa
Subsystem: IMS.

An 8-character string that is the transaction name for
requesting the GDDM-PGF Vector Symbol Editor.

IMSWTOD=(n,n,n,n,....)
Subsystem: IMS.

The descriptor codes for a write-to-operator (WTO)
macro. This is used by GDDM to issue error messages
if all other methods fail. For a description of valid
descriptor codes, see the OS/VS2 MVS Supervisor Ser-
vices and Macro Instructions manual.

In the encoded-UDS format, the external default value
should be coded as X'xxxx 0000', in which bit n=1 (n=0
through 31) corresponds to descriptor code “n+1” being
requested.

IMSWTOR=(n,n,n,n,...)
Subsystem: IMS.

The routing codes for a write-to-operator (WTO) macro.
This is used by GDDM to issue error messages if all
other methods fail. For a description of valid routing
codes, see the OS/VS2 MVS Supervisor Services and
Macro Instructions manual.

In the encoded-UDS format, the default value should be
coded as X'xxxx 0000', in which bit n=1 (n=0 through
31) corresponds to routing code “n+1” being requested.

INSCPG=n
Subsystem: All.

The code-page to be used by GDDM as the default for
the installation. It applies to all character data that is not
explicitly tagged; for example, object names in auxiliary
storage.

This table shows the code pages supported by GDDM:

00037 U.S.A., Canada, Portugal1,
Netherlands, Brazil2

00273 Austria, Germany
00277 Denmark, Norway
00278 Finland, Sweden
00280 Italy

 Chapter 18. External defaults 389

 external defaults

00281 Japan (Latin characters)
00284 Spain, Latin America
00285 United Kingdom, Ireland
00290 GDDM Katakana
00297 France
00351 GDDM default EBCDIC
00500 Multilingual page (MLP),

Switzerland, Belgium3

00871 Iceland
01027 Japan (Latin) Extended

| 00870 Latin 2
| 00875 Greece
| 00880 and 1025 Cyrillic
| 00905 and 1026 Turkey
| 01112 Baltic multilingual
| 01122 Estonia

1 00037 has superseded 00282 for Portugal
2 00037 has superseded 00275 for Brazil
3 00500 has superseded 00274 for Belgium

IOBFSZ=n
Subsystem: All.

An integer, in the range 1024 through 32000, which is
the size of the transmission buffer used by GDDM for
IBM 3270-family devices. GDDM splits outbound ter-
minal transmissions to fit within this buffer size. Under
IMS, this is the size of segments, excluding the LLZZ
prefix, that are inserted into the Message Queue.

On a non-SNA connection, for an IBM 3179-G, an IBM
3192-G, an IBM 3472-G color display station, a
3270-PC/G, /GX, or /AT workstation, or a device sup-

| ported by GDDM-PCLK or GDDM-OS/2 Link, the out-
bound transmission size is restricted to approximately
3500 bytes to avoid possible controller timeouts.

Inbound transmission sizes are regulated according to
the system you are using:

Under CICS
Maximum inbound transmission size is regulated by
CICS system generation (specifically, the Terminal I/O
Area lengths defined in the Terminal Control Table
(TCT)), and is not affected by the value of IOBFSZ.

Under IMS
User transactions cannot receive input ; therefore, this
field does not apply to input processing. The size of the
input area allocated in the GDDM interactive utility trans-
action is defined in the IMSUISZ external default.

Under TSO
The maximum inbound transmission size is regulated
by TSO and VTAM system and network definition.
Within this bound, IOBFSZ determines the size of an
individual work buffer but does not otherwise affect or
limit inbound transmission processing.

Under VM
IOBFSZ determines the default inbound transmission
buffer size used by GDDM. GDDM acquires temporary
buffers of 32000 bytes for larger inbound terminal data
streams (resulting from 3270 READ MODIFIED com-

mands). IOBFSZ should not be greater than the RSCS
buffer size if RSCS is used with 3287 or 4224 printers.

IOCOMPR={NO|YES}
Subsystem: All.

Shows whether GDDM is to create compressed PS load
data streams. See also the description of the AM3270
external default on page 384.

Some IBM 3270-series terminals optionally support com-
pression of programmed symbol (PS) data streams. If
such compression is to be inhibited, it is generally
recommended that this be done on a specific basis
through device-configuration parameters. However, the
IOCOMPR external default can be used to inhibit com-
pression, on a global basis, of all PS load data streams
generated by GDDM.

IOSYNCH={NO|YES}
| Subsystem: CICS, TSO.

Shows whether GDDM is to perform synchronized ter-
minal I/O. Usually, the use of synchronized terminal I/O
implies longer transmission times and increased proc-
essing overhead. It may be useful to prevent jamming a
network with large data streams used for graphics. In
this context, this control might be used with a smaller
value of IOBFSZ and SAVBFSZ.

The meaning of synchronized terminal I/O differs
according to the subsystem in use:

Under CICS
Each GDDM outbound terminal transmission which
expects input to be received, specifies “definite,”
requiring that the terminal returns a definite response,
where applicable, before GDDM continues with the next
transmission. Each GDDM outbound terminal trans-
mission which does not expect input to be received,
specifies “wait”, requiring that the application program
waits until the transmission has been completed.
Under TSO
Each GDDM outbound terminal transmission (using
TPUT) specifies “hold,” requiring that the transmission
physically arrives at the terminal, where applicable,
before GDDM continues with the next transmission.

MAPGSTG=n
Subsystem: All.

An integer defining the mapgroup storage threshold.
GDDM usually optimizes mapping functions by retaining
loaded mapgroups in main storage up to the specified
threshold value.

MIXSOSI={NO|YES}
Subsystem: All.

Defines whether alphanumeric and graphic character
strings can contain shift-out (SO) (X'0E') and shift-in
(SI) (X'0F') characters to mix one-byte (SBCS) charac-
ters with two-byte (DBCS) characters.

Except on devices that support mixed alphanumeric
fields (such as the IBM 5550 and 5553), alphanumeric
fields that are to contain mixed strings must also be

390 GDDM Base Application Programming Reference

 external defaults

defined as “mixed” by the ASFSEN call. On devices that
support mixed alphanumeric fields, it is not necessary to
specify MIXSOSI=YES, unless mixed graphic character
string support is also required. (See also the SOSIEMC
external default.)

MIXSOSI must be set to “YES” if you are using utilities
such as the GDDM-PGF ICU on a Kanji device. If an
ICU chart is created when MIXSOSI=YES, it can be dis-
played only when MIXSOSI=YES, even if it does not
contain double-byte characters.

The default double-byte character set is always used in
mixed strings, whether the default set was selected by
DBCSNM, DBCSLNG, or simply defaulted.

NATLANG=c
Subsystem: All.

The language used by GDDM, the GDDM-PGF Interac-
tive Chart Utility, and Presentation Graphics routines in
generating messages, user control panels, Menu Panels,
Help Panels, and generated charts. The meanings of “c”
are defined as:

A U.S.-English
B Brazilian Portuguese
C Simplified Chinese (People’s Republic of China)
D Danish
F French
G German
H Korean (Hangeul)
I Italian
K Japanese (Kanji)
N Norwegian
Q Canadian French
S Spanish
T Traditional Chinese (Taiwan)
V Swedish.

The corresponding National Language Support special
feature must be installed.

In the encoded-UDS format, the default value must be
coded as X'xx000000', where “xx” is the hexadecimal
equivalent of the character “c”.

NUMBFRM={1|2|3}
Subsystem: All.

The number representation convention to be used by
GDDM and GDDM-PGF is:

1 N,NNN,NNN.MMM (Period decimal convention)
2 N.NNN.NNN,MMM (Comma decimal convention)
3 N NNN NNN,MMM (French decimal convention).

OBJFILE=([aaaaaaaa],[bbbbbbbb],...)
Subsystem: All.

Up to twelve 8-character strings that show the default
file-types (VM), default ddnames (TSO), default File
Control data-set names (CICS), or default DBD names
(IMS):

aaaaaaaa symbol sets

bbbbbbbb generated mapgroups
cccccccc saved pictures
dddddddd chart formats
eeeeeeee chart data
ffffffff GDDM-IMD tutorial pages
gggggggg GDF files
hhhhhhhh GDDM-GKS metafiles
iiiiiiii Chart data definition (under TSO and VM)

Reserved (under CICS and IMS)
jjjjjjjj Projection definition
kkkkkkkk Image data
llllllll GDDM-PCLK objects and GDDM-OS/2

Link files

PARMVER={NO|YES}
Subsystem: All.

Shows whether all calls through the system programmer
interface should be verified for correctness of function
code and number of parameters. Requesting this func-
tion incurs additional processing overheads.

SAVBFSZ=n
Subsystem: All.

An integer, in the range 1024 through 32000, which is
the FSSAVE transmission buffer size used by GDDM.
The FSSAVE function stores preformatted data streams
ready for subsequent recall and display by FSSHOW.
SAVBFSZ determines the transmission buffer size used
by such a saved data stream. The value of SAVBFSZ
at the time of the FSSAVE call must not exceed the
value of IOBFSZ at the time of the FSSHOW call.

For maximum efficiency, you should choose the
FSSAVE buffer size so that the value 4ð88/(n + 5) is
greater than 2 and close to an integer (whole number).

Be careful about choosing an unnecessarily high value
as this may cause problems with BSC line protocol.

For 3179-G, 3192-G, or 3472-G color display stations,
3270-PC/G, /GX, or /AT workstations, and devices sup-
ported by GDDM-PCLK, the size saved is restricted to
approximately 3500 bytes to avoid possible controller
timeouts when subsequently showing the saved file.

SOSIEMC=c
Subsystem: All.

Shows the character that is used as the shift-out/shift-in
emulation character in mixed character strings. The
character can be any keyable character that is con-
sistent with the syntax of GDDM defaults; however, the
character specified must not then be used for any
other purpose (for example, as its own keyable value)
in a mixed-string field.

The emulation character is ignored unless the
MIXSOSI=YES external default is specified and the
device is a family-1 display other than an IBM 5550.

In the encoded-UDS format, the default value must be
coded as X'xx000000', where “xx” is the hexadecimal
equivalent of the character “c”.

 Chapter 18. External defaults 391

 external defaults

STGRET={NO|YES}
Subsystem: All.

Shows whether not-enough-storage or short-on-storage
conditions should be processed by GDDM, and whether
control should be returned immediately to the application
program with a corresponding error code. Otherwise,
storage requests are unconditional, with subsequent
action determined by the subsystem.

Note: Requesting this function causes GDDM to issue
conditional storage requests only where these are avail-
able in the subsystem. Some subsystem requests are
implicitly unconditional; in these cases, subsequent
action is determined by the subsystem.

TIMEFRM={1|2|3|4}
Subsystem: All.

The time convention to be used by GDDM and
GDDM-PGF is:

1 HH:MM xM (U.S. convention; XM=AM or
PM)

2 HH.MM (International convention)
3 -HH.MM.SS (ISO convention)
4 ,HH,MM,SS (Japanese convention).

Note that GDDM-IMD always displays the time using the
International convention (format 2).

TRACE={0|n}
Subsystem: All.

An integer that is the default value of the trace control
word at initialization. You can specify the value either as
a decimal integer or as an assembler-language
hexadecimal constant. The use of trace is described in
the GDDM Diagnosis book.

TRCESHR={NO|YES}
Subsystem: TSO and VM.

Shows whether the trace output file is to be shared
between more than one instance of GDDM. The use of
trace is described in the GDDM Diagnosis book.

TRCESTR='aaaaaaaaaaaaa'
Subsystem: All.

Shows the default value of the trace control word at
initialization, which is no trace. The alphanumeric string
aaaaaaaaaaaaa, which can be from 1 through 256 char-
acters long, indicates the type of trace; the use of trace
is described in the GDDM Diagnosis book.

TRCEWID={SINGLE|DOUBLE}
Subsystem: All.

Shows the default value of the trace output width control
word at initialization.

SINGLE GDDM is to produce the trace output as
4-word hexadecimal.

DOUBLE GDDM is to produce the trace output as
8-word hexadecimal, thus saving space.

The use of trace is described in the GDDM Diagnosis
book.

TRTABLE=n
Subsystem: All.

An integer, in the range 5 through 1000, defining the
number of trace entries to be held in the cyclic in-
storage trace table.

TSOAPLF={DATAANAL |APLTEXT}
Subsystem: TSO.

Shows the APL feature that is installed on nonqueriable
IBM 3278, and IBM 3279 Model 2 displays.

DATAANAL
GDDM is to assume that any APL feature installed on
any display of the above type is the Data Analysis-APL
feature, unless specific application program device-
definition information shows otherwise. The Data
Analysis-APL feature applies to such terminals as the
IBM 3279.

APLTEXT
GDDM is to assume that any APL feature installed on
any display of the above type is the APL/Text feature,
unless specific application program device-definition
information shows otherwise. The APL/Text feature
applies to such terminals as the IBM 3278 and IBM
3279.

TSOCOLM=aaaaaaaa
Subsystem: TSO.

An 8-character string defining the default ddnames or
high-level qualifiers used by GDDM for multicolored
output resulting from high-resolution image devices.

The character string must contain a “+” substitution char-
acter.

TSOCPT=aaaaaaaa
Subsystem: TSO.

An 8-character string that defines the default ddname
used by GDDM for data sets containing Computer
Graphics Metafile (CGM) conversion profiles.

TSODECK=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM for object module output resulting from requests
through the Image Symbol Editor or the GDDM-PGF
Vector Symbol Editor.

TSODFTS=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM to access an External Defaults File.

| TSOEMUL={NO|YES}
Subsystem: TSO.

This specifies whether, when operating in the MVS batch
environment, TSO terminal I/O supervisor calls are emu-
lated through the MVS screening facility. The emulation
routines are compatible with the current version of TSO.
For information on MVS SVC screening, see the
OS/VS2 System Programming Library: Supervisor
Manual, and for information on TSO see the OS/VS2

392 GDDM Base Application Programming Reference

 external defaults

TSO Guide to Writing a Terminal Monitor Program or a
Command Processor.

TSOGIMP=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM for retrieving the generated mapgroups required
for the operation of GDDM-IMD.

TSOIADS=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM for the output of ADSs (application data struc-
tures) resulting from the use of GDDM-IMD.

TSOIFMT=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM for exporting data as a result of using
GDDM-IMD’s Export Utility.

TSOMONO=aaaaaaaa
Subsystem: TSO.

| An 8-character string that is the default ddname or data
| set name low-level qualifier used by GDDM for
| monochrome page-printer output.

TSOPRNT=aaaaaaaa
Subsystem: TSO.

An 8-character string used to generate a name of the
form “aaaaaaaa.REQUEST.QUEUE” to identify the Print
Utility Master Print Queue data set, where this has not
otherwise been identified by DD statement. This string
is also used to generate names of the form

[dsn-prefix.][userid.]aaaaaaaa.REQUEST.#nnnnn,

which are assigned to intermediate data sets required for
queued printer support.

TSORESV={NO|YES}
Subsystem: TSO.

If TSORESV=YES, when operating in an MVS/TSO or
MVS/BATCH environment, the DASD device upon
which the master print queue resides is protected by a
hardware RESERVE macro instruction when it is being
updated.

TSOSYSP=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM for output resulting from system printers.

TSOS99S=n
Subsystem: TSO.

An integer defining the size (in bytes) of the intermediate
data sets that are dynamically allocated for queued
printer support. The IBM-supplied default of 742710 is
approximately equivalent to three 3330 cylinders.

TSOS99U=aaaaaaaa
Subsystem: TSO.

An 8-character string defining the UNIT specification
used for intermediate data sets that are dynamically allo-
cated by GDDM in TSO Batch or MVS Batch. In fore-
ground TSO or if the option is set to blanks (by
specifying it as TSOS99U=()), GDDM allows the UNIT
specification to be defaulted from the TSO user attribute
data set (UADS), where available.

TSOTRCE=aaaaaaaa
Subsystem: TSO.

An 8-character string that is the default ddname used by
GDDM for trace output.

VSECOLM=aaaaaaaa
Subsystem: VSE.

An 8-character string defining the default file name used
by GDDM for multicolored output resulting from files con-
taining graphics or images suitable for use by page
printers.

The character string must contain a “+” substitution char-
acter.

VSEDFTS=aaaaaaaa
Subsystem: VSE.

An 8-character string, which is the file name of the VSE
external defaults file.

VSEMONO=aaaaaaaa
Subsystem: VSE.

An 8-character string defining the default file name used
by GDDM for monochrome output resulting from files
containing graphics or images suitable for use by page
printers.

VSETRCE=aaaaaaaa
Subsystem: VSE.

An 8-character string, which is the file name used by
GDDM for trace output.

 Chapter 18. External defaults 393

 external defaults

394 GDDM Base Application Programming Reference

 processing options

 Chapter 19. Processing options

Processing options (procopts) allow you to specify precisely
how the input or output of a device is to be processed, with
regard to the devices available, the devices’ capabilities, and
the subsystem under which they run.

Name-lists are a means of grouping devices according to the
device family, and the subsystem under which the application
is running. For information on these, see Chapter 20,
“Name-lists” on page 415.

 Processing options

Processing options can be specified on DSOPEN calls, and
in nicknames.

The processing options are summarized in numeric order of
option group code in Table 46.

Processing options: format

The processing options are listed here in numeric order of
processing option group code.

Table 46 (Page 1 of 2). Summary of processing options and nickname keywords

Procopt
group
code

Nickname
keyword Arguments Examples

1 BMSCOORD {NO|YES} (BMSCOORD,NO)
2 OUTONLY {NO|YES} (OUTONLY,NO)
3 AUNLOCK {NO|YES} (AUNLOCK,NO)
4 PRINTCTL n,n,n,n,..... (PRINTCTL,

 1,1,66,0,0,0,80,0)
| 5| OFDSTYPE| {PS|EPS}| (OFDSTYPE,EPS)

5 OFDSTYPE {DOC|PSEG|OVLY} (OFDSTYPE,PSEG)
5 CDPFTYPE {PRIM|SEC|OVLY}

Alternative to OFDSTYPE. Retained for compatibility with earlier releases of
GDDM.

(CDPFTYPE,SEC)

6 HRISPILL {YES|NO} (HRISPILL,YES)
7 HRISWATH n (HRISWATH,1)

| 8| PRTPSIZE| w,d,{TENTHS|MILLS}| (PRTPSIZE,80,110,TENTHS)
8 HRIPSIZE w,d,{TENTHS|MILLS} (HRIPSIZE,50,30,TENTHS)
9 OFFORMAT {BITMAP|IMAGE|GRIMAGE|GRCIMAGE} (OFFORMAT,IMAGE)
9 HRIFORMT {BITMAP|CDPF|GRIMAGE|GRCIMAGE}

Alternative to OFFORMAT. Retained for compatibility with earlier releases of
GDDM.

(HRIFORMT,CDPF)

10 PLTFORMF {NO|YES} (PLTFORMF,NO)
11 PLTPENV n (PLTPENV,30)
12 PLTPENW n (PLTPENW,3)
13 PLTPENP n (PLTPENP,10)
14 PLTAREA xmin,xmax,ymin,ymax (PLTAREA,0,70,0,70)
15 PLTPAPSZ { ñ|A4|A3|...|A|B|...} (PLTPAPSZ, ñ)
16 PLTROTAT {NO|YES} (PLTROTAT,NO)
17 SEGSTORE {YES|NO} (SEGSTORE,NO)
18 STAGE2ID xxxxxxxx,xxxxxxxx,... (STAGE2ID,ñ,AUX2)
19 LOADDSYM {NO|YES} (LOADDSYM,YES)

20 ORIGINID {NO|YES} (ORIGINID,YES)
21 LCLMODE {NO|YES} (LCLMODE,NO)
22 HRIDOCNM xxxxxxxx (HRIDOCNM,FIGURE9)
23 SPECDEV {IBM5080|ñ}, {ddname|ñ} (SPECDEV,IBM5080)
24 WINDOW {NO|YES} (WINDOW,YES)
25 PSCNVCTL {NO|START|CONTINUE} (PSCNVCTL,START)
26 FASTUPD n (FASTUPD,0)
27 CTLFAST {NO|YES} (CTLFAST,YES)
28 CTLMODE { ñ|YES|NO} (CTLMODE,NO)
29 CTLKEY type,value (CTLKEY,4,3)

 Copyright IBM Corp. 1980, 1996 395

 processing options

Table 46 (Page 2 of 2). Summary of processing options and nickname keywords

Procopt
group
code

Nickname
keyword Arguments Examples

30 CTLPRINT {YES|NO} (CTLPRINT,NO)
31 CTLSAVE {YES|NO} (CTLSAVE,YES)
32 INRESRCE {YES|NO} (INRESRCE,YES)
33 PCLK {YES|NO} (PCLK,YES)
34 DEVCPG n (DEVCPG,00273)
35 IPDSQUAL { ñ|DP|DPQ|DPT|DPTQ|NLQ|LLL|MLL|HLH|LLH} (IPDSQUAL,NLQ)
36 PCLKEVIS {YES|NO} (PCLKEVIS,YES)

| 37| PRTROT| {0|90|180|270}| (PRTROT,90)
37 IPDSROT {0|90|180|270} (IPDSROT,180)
38 IPDSTRUN {YES|NO} (IPDSTRUN,NO)
39 IPDSLPI {6|8} (IPDSLPI,8)

40 IPDSBIN m,n (IPDSBIN,1,2)
41 IPDSIMSW {YES|NO} (IPDSIMSW,NO)
42 IMGINIT {BLACK |WHITE|BACKGND} (IMGINIT,BLACK)
43 IPDSCPI {100|120|133|150|167|170|180|200} (IPDSCPI,100)
44 PATTRAN m,n (PATTRAN,5,1)
45 GINKEY type,value (GINKEY,0,0)
46 TOFILE {NO|YES},{REP|NOREP} (TOFILE,NO,REP)
47 PLTDELAY n (PLTDELAY,0)

| 48| GRAYLINE| {NO|YES}| (GRAYLINE,YES)
| 49| PSCHAR| {7|8}| (PSCHAR,8)

| 50| POSTPROC| xxxxxxxx| (POSTPROC,COLORPRI)
| 51| DEVCSET| n| (DEVCSET,1172)

1000 CMSINTRP {PA1PA2 |PA2|PA1|NONE} (CMSINTRP,PA1PA2)
1001 CMSATTN {BASIC |EXTENDED},n,addr (CMSATTN,BASIC,0,0)
1002 CPSPOOL xxxxxxxx,xxxxxxxx,... (CPSPOOL,TO,RSCS)
1003 CPTAG xxxxxxxx,xxxxxxxx,... (CPTAG,OUR3287,PRT,=,

 GRAPH)
1004 INVKOPUV {NO|YES} (INVKOPUV,YES)

2000 TSOINTRP {PA1|NONE} (TSOINTRP,NONE)
2001 TSORESHW n (TSORESHW,0)

| 2002| PRINTDST| {class| ñ}, [destname|ddname| ñ|=], [writer],[forms])| (PRINTDST,G,=,MYPRT)
| 2003| FRCETYPE| {FSFRCE|DSFRCE}| (FRCETYPE,DSFRCE)

3000 COLORMAS n (COLORMAS,0)

Note: Default settings, shown in either the Arguments or Examples columns, are shown like this: BLACK . Where no value is shown like
this, either there is no default setting or the default setting is determined by the device being used.

Detailed descriptions, in numeric order of option group code,
are given on pages 396 through 413.

Processing options: full descriptions

The processing options are listed here in numerical order of
option group code. A full description is given of each proc-
essing option, in this format:

� The processing option group code and nickname
keyword

� A definition of the nickname syntax
� A brief description of the function of the processing

option
� The applicable subsystems
� The applicable device families

� The length of the processing option group, expressed in
fullwords

� A breakdown of the function of each fullword.

In this list, the default values, as supplied by GDDM are
underlined thus: NO.

The processing options are summarized on page 395.

0 Dummy
Nickname syntax: not applicable

A dummy processing option, which is ignored. It can be
used to pad processing option-lists to any desired length.

Subsystems: All
Devices: All

396 GDDM Base Application Programming Reference

 processing options

Length: 1 fullword.

1 The option group code: 0

1 Coordination mode
Nickname syntax: (BMSCOORD,{NO|YES})

Coordination mode allows a GDDM CICS application
program to use Basic Mapping Support (BMS) for the alpha-
numeric portion of the screen, and lets GDDM build and
display the graphics portion. The GDDM output functions are
modified so that they alter only that part of the screen
covered by the graphics field and do not corrupt any data
established by BMS. Coordination mode is more fully
described in the GDDM System Customization and Adminis-
tration book.

Subsystems: CICS
Devices: Family-1
Length: 2 fullwords.

1 The option group code: 1
2 The type of coordination:

0 (NO) Not in coordination mode (default)
1 (YES) In coordination mode.

2 Output-only mode
Nickname syntax: (OUTONLY,{NO|YES})

Output-only mode means that functions such as ASREAD
and FSSHOW, which normally imply a wait for the operator
to enter data, should instead return immediately to the appli-
cation without unlocking the keyboard (unless this has been
imposed by the always-unlock-keyboard mode, see option
group 3). One use of this option is to allow a device to be
opened so that it can display a continuous series of pictures
using FSSHOW, without any operator intervention.

Subsystems: All
Devices: Family-1
Length: 2 fullwords.

1 The option group code: 2
2 Normal or output-only mode:

0 (NO) Not output-only mode (default)
1 (YES) Output-only mode.

3 Always-unlock-keyboard mode
Nickname syntax: (AUNLOCK,{NO|YES})

Always-unlock-keyboard mode means that functions such as
FSFRCE, which normally cause output without unlocking the
keyboard, should instead unlock the keyboard, while still
returning immediately to the application. This could be useful
in the IMS environment, to avoid the need for the operator to
press RESET before being able to enter the next transaction.

It is also useful in CICS pseudoconversational applications to
cause keyboards to be unlocked on FSFRCE instead of
DSCLS, which improves performance.

The default value is defined in the AUNLOCK parameter in
GDDM’s external defaults (see Chapter 18, “External
defaults” on page 379), and is subsystem-dependent.

This procopt is set to the value current at DSOPEN time. It
is valid from the issue of DSOPEN to the issue of DSCLS.
The value cannot be altered dynamically; if a change is
required, the device must be reinitialized.

Note: For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for the
real device is used instead.

Subsystems: All
Devices: Family-1
Length: 2 fullwords.

1 The option group code: 3
2 The type of keyboard mode:

0 (NO) Normal mode (default for CICS, TSO, VM)
1 (YES) Always-unlock-keyboard mode (default for

IMS).

4 Print control options
Nickname syntax: (PRINTCTL,n,n,n,n,....)

(where n,n,n,n,... represents the values of Fullword 3
onwards, as defined below). This option controls printing
and copy functions. The group has this format:

 ┌────────────────────────────┐

Fullword 1 │ Option code = 4 │

 ├────────────────────────────┤

2 │ No. of fullwords following │

 ├────────────────────────────┤

3 │ Heading indicator │

 ├────────────────────────────┤

4 │ Number of copies │

 ├────────────────────────────┤

5 │ Page depth │

 ├────────────────────────────┤

6 │ Top margin │

 ├────────────────────────────┤

7 │ Left margin │

 ├────────────────────────────┤

8 │ Bottom margin │

 ├────────────────────────────┤

9 │ Max FSLOG characters/line │

 ├────────────────────────────┤

1ð │ Alphanumeric device type │

 └────────────────────────────┘

Notes:

1. This option is of variable length and is regarded as being
“mergeable” (that is, if some of the values are omitted,
their current values are not changed).

2. Of the parameters listed below, only number of copies,
depth of top margin, and width of left margin apply to
family-2 print files spooled to plotters.

3. If, for plotters, the PLTAREA processing option is speci-
fied in addition, the PRINTCTL margins take effect first.
The resulting user page is positioned with respect to the

 Chapter 19. Processing options 397

 processing options

plotting area as defined by the PLTAREA processing
option.

4. For family-4 devices, this procopt applies only to those
devices defined by cell-based device token.

5. Print margins specified on the PRINTCTL procopt are in
addition to margins specified via the GDDM-PGF ICU
interface.

Subsystems: All
Devices: All
Length: 2+N fullwords.

1 The option group code: 4.
2 Number (N) of fullword values that follow (can be 0

through 8).
3 The heading indicator (family-2 only):

0 Do not print a heading page
1 Print a heading page (default).

4 The number of copies (applicable to family-2 only).
The default is 1. If 0 is specified, 1 is assumed.

5 The page depth in rows (FSLOG and FSLOGC only).
The default is the maximum page depth for the
device.

The page depth specifies the vertical size of a page
of paper, fold-to-fold, in rows. If zero is specified for
this parameter, a value of 66 (or the device
maximum) is assumed.

6 The depth of the top margin. The default is 0.

The top and left margins (fullwords 6 and 7) specify
the top left-hand corner, within each page of the
paper, of the printed data. Also, for FSLOG and
FSLOGC purposes, a bottom margin may be speci-
fied. The total number of printed lines for each page
for FSLOG and FSLOGC data is:

(page depth)–(top margin)–(bottom margin)

Note: The maximum page size for the device is
taken from the device definition, as defined by the
device-token parameter.

7 The width of the left margin. The default is 0.

See the description for the top margin, under
Fullword 6.

8 The depth of the bottom margin (FSLOG and
FSLOGC only). The default is 0.

9 Maximum number of characters per line (FSLOG and
FSLOGC only). The default is the maximum page-
width for the device less the width of the left margin.

Left margin + maximum number of characters per line
must not exceed the maximum page width for the
device.

10 Alphanumeric device type for translation. The default
is 0.

For information about the values that can be speci-
fied, see the description of ASTYPE in Chapter 3,
“The GDDM calls” on page 21.

5 Output file data-stream type
| Nickname syntax: (OFDSTYPE,{PS│EPS})

Alternative syntax: (OFDSTYPE,{DOC│PSEG│OVLY})
Alternative syntax: (CDPFTYPE,{PRIM│SEC│OVLY})

| Determines whether the formatted output file is to be con-
| structed as primary data stream, or as secondary data
| stream, or as an overlay.

| Primary data stream is a complete PostScript, AFPDS or
| CDPF document that can be printed. Secondary data stream
| can be an encapsulated PostScript (EPS) file or a page
| segment (PSEG) that should be imbedded in a document to
| be printed.

| A complete document (primary data stream) can be printed.
| Except for encapsulated PostScript files, secondary data
| stream must be imbedded in a document before it can be
| printed. Primary data streams can be processed by:

| � PostScript printers

| � IBM Print Services Facility (PSF) for printing on
| advanced function printers

| � IBM Composed Document Print Facility (CDPF) for
| printing on the 4250 printer

Subsystems: TSO, VM, MVS, and VSE Batch
Devices: Family 4
Length: 2 full-words

1 The option group code 5
2 Data-stream type:

| 0 (PS) or (DOC) or (PRIM) Produce primary data
| stream (a document) (the default). The
| device token for the device with which this
| procopt is associated determines which kind
| of document is produced.
| 1 (EPS) or (PSEG) or (SEC) Produce secondary data
| stream (encapsulated PostScript or page
| segment). Not supported for the CDPU.
| 2 (OVLY) Produce an overlay segment (secondary
| data stream). Not supported for the CDPU or
| PostScript.

Notes:

1. If a 4250 output file is to contain text that refers to the
4250-printer fonts in addition to graphics picture data, it
is recommended that the file be formatted as a page
segment and included as part of another document.

2. Family-4 output created by the CDPU is always a docu-
ment (primary data stream), regardless of the setting of
the OFDSTYPE procopt.

| 3. When you create a PostScript document, (without using
| the CDPU), GDDM scales and positions the output so
| that it all appears in the printable area. The size of the
| printable area depends on the PostScript printer used.
| No adjustment is made for output from the CDPU.
| 4. When you create encapsulated PostScript (EPS) output,
| the full size of the page specified is assumed to be avail-
| able.

398 GDDM Base Application Programming Reference

 processing options

| 5. If the creation of EPS produces more than one page of
| output, only the first page is placed in the family-4
| PostScript print file.

6. For compatibility with previous releases of GDDM, the
option name CDPFTYPE may also be used. The old
forms PRIM and SEC are allowed as synonyms for DOC
and PSEG. If the OVLY parameter is specified when
generating output with a PostScript device token, it is
ignored and the default setting, PS, is used.

6 Spill file usage
Nickname syntax: (HRISPILL,{YES|NO})

Determines whether a spill file in external storage is to be
used while processing a high-resolution image file for a 4250
printer.

The use of a spill file reduces the main storage requirements
at the cost of processing time. If a spill file is not used and
segments are used, primitives outside segments (temporary
data) do not form part of the final image, except where they
occur between the last GSSCLS and ASREAD or FSFRCE
calls.

Subsystems: TSO, VM, MVS, and VSE Batch
Devices: Family-4
Length: 2 fullwords.

1 The option group code: 6
2 Spill file usage:

0 (YES) Store internal picture description on disk in
a spill file (the default)

1 (NO) Store internal picture description in main
storage.

7 Number of swathes
Nickname syntax: (HRISWATH,n)

Determines whether a high-resolution image is to be proc-
essed as one horizontal “swathe” or many. (“Swathes” are
also called slices.)

The use of swathing reduces storage requirements but at the
cost of processing time.

Subsystems: TSO, VM, MVS, and VSE
Devices: Family-4
Length: 2 fullwords.

1 The option group code: 7
2 The number of swathes to be used: The default is 1,

which means generate the output image with just one
pass through the internal picture description.

| 8 Output paper size
| Nickname syntax: (PRTPSIZE,w,d,{TENTHS|MILLS})

Alternative syntax: (HRIPSIZE,w,d,{TENTHS|MILLS})

Specifies the size of the paper, as width by depth. The
default size of the paper is given by the device character-
istics, defined for the device token being used.

Subsystems: TSO, VM, MVS, and VSE Batch

Devices: Family-4
Length: 4 fullwords.

1 The option group code: 8
2 The paper width in the units defined in Fullword 4
3 The paper depth in the units defined in Fullword 4
4 The units used in Fullword 2 and Fullword 3:

0 (TENTHS) Units are tenths of an inch
1 (MILLS) Units are millimeters.

Notes:

1. Although the term “paper size” is used, the output
medium need not be paper.

2. The picture output may be slightly smaller than that
specified in the width and depth parameters.

3. Most printers are unable to print right to the edges of the
loaded paper but have a small margin or “unprintable
area” around the edges. The size of this margin varies
with the model of printer used and the size of paper
loaded.

| On PostScript printers, the setting of the OFDSTYPE
| procopt determines how much space GDDM allows for
| the unprintable area.

| 4. If the PRTROT processing option has been specified
| with a rotation of 90 degrees or 270 degrees, the width

and depth are interchanged.

5. This option does not apply to AFPDS output generated
using cell-based device tokens.

| 6. For compatibility with previous releases of GDDM, the
| option name HRIPSIZE can also be used in nickname
| statements.

9 Output file format
Nickname syntax:
(OFFORMAT,{BITMAP│IMAGE│GRIMAGE│GRCIMAGE})
Alternative syntax:
(HRIFORMT,{BITMAP│CDPF│GRIMAGE│GRCIMAGE})

Determines the format of the output file. Unformatted output
is a representation of the picture as one bit for each pixel.
Formatted output is in a form suitable for processing either
by the Print Services Facility (PSF) for AFP data streams,
and other printers, or by the Composed Document Printing

| Facility (CDPF) for the 4250. By default, GDDM produces
| output to suit the highest functional characteristics of the
| device token used.

For compatibility with previous releases of GDDM, the option
name HRIFORMT may also be used. The old form CDPF
can be used as a synonym for IMAGE.

Subsystems: TSO, VM, MVS, and VSE Batch
Devices: Family 4
Length: 2 full-words

1 The option group code 9
2 Output format

0 (BITMAP) Produce unformatted output.

 Chapter 19. Processing options 399

 processing options

1 (IMAGE) or (CDPF) Produce formatted output for
IBM 4250 or AFPDS printers depending on
the device token used. For AFPDS printers,
this format of output contains only IM uncom-
pressed image. All graphical constructs are
converted to image (the default where no
user device token is specified).

2 (GRIMAGE) Output of any graphics contained
within segments in the GDDM graphics field
is as GOCA graphics orders. (GOCA
produces a shorter data stream than graphics
converted to image.) Output of any image in
the GDDM image field is in IM uncompressed
form. The use of this value is supported by
PSF/VM Version 2.1 and PSF/MVS Version
2.1 or later.

3 (GRCIMAGE) Output of any graphics contained
within segments in the GDDM graphics field
is as GOCA graphics orders. Output of any
image in the GDDM image field is in IO com-
pressed form. (This reduces the size of the
file, compared with GRIMAGE output.) The
compression algorithm used is MMR 8815.
The use of this value is supported by PSF/VM
Version 2.1 and PSF/MVS Version 2.1 or
later.

Note: The number of pixels per line width specified for each
device token applies only to rastered graphics (when procopt
OFFORMAT or HRIFORMT is set to BITMAP or
IMAGE/CDPF). The standard line width for the current
device is used when procopt OFFORMAT or HRIFORMAT is
set to GRIMAGE or GRCIMAGE.

10 Plotter page feed
Nickname syntax: (PLTFORMF,{YES|NO})

Specifies whether a page feed is required after each GDDM
page sent to the plotter by an output call such as FSFRCE.
GDDM issues a warning message (ADM0094) when the
device is opened if it does not support page feed. The
GDDM default action is to cause a page feed for those
devices that support it.

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices: Family-1 6182, 6186 plotters
Length: 2 fullwords.

1 The option group code: 10
2 The plotter form feed option:

0 Page feed (default for those devices that
support page feed)

1 (NO) No page feed
2 (YES) Page feed.

11 Plotter pen velocity
Nickname syntax: (PLTPENV,n)

Specifies the pen velocity to be used by a plotter. The value
applies to all the pens in the plotter. The default (0) uses
the velocity set up on the plotter. It may be necessary to
specify a lower value for pens used on material such as
transparencies.

The recommended values are:

 � On paper:

50 centimeters/second: Fiber-tipped pens
60 centimeters/second: Roller
15 centimeters/second: Drafting

 � On transparencies:

10 centimeters/second: Fiber-tipped pens

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices: Family-1 7371, 7372, 7374, and 7375 plotters
Length: 2 fullwords.

Note: Refer to the information about the velocity-select (VS)
instruction in the appropriate color plotter programming
manual.

1 The option group code: 11
2 The pen velocity:

0 The velocity set up by the plotter oper-
ator (the default)

1 – 255 The velocity in centimeters per second,
related to the actual velocity values avail-
able for each plotter.

If a value greater than the maximum for the plotter is
specified, the maximum velocity is set. This is:
38 centimeters/second: For a 7371 and 7372
60 centimeters/second: For a 7374 and 7375.

12 Plotter pen width
Nickname syntax: (PLTPENW,n)

Specifies the width of the pens to be used in a plotter.
Applies to all the pens in the plotter.

GDDM uses the pen width to determine how far apart to
space lines when the plotter fills areas. If the plotter uses
pens of different widths in the same picture, the pen-width
value must be set to the size of the pens used for filling
areas.

The pen width is used for:

� Image pixel size
� Shading line separation
� Double-width line separation
� Background line width where clipped from underlying

areas

400 GDDM Base Application Programming Reference

 processing options

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices All family-1 plotters
Length: 2 fullwords.

1 The option group code: 12
2 The pen width, in tenths of a millimeter:

0 Pen width of 0.3 millimeters (the default)
1 – 10 Pen width of 0.1 through 1.0 millimeters.

13 Plotter pen pressure
Nickname syntax: (PLTPENP,n)

Specifies how hard the plotter pen is to be pressed onto the
plot bed.

The recommended values are:

 � On paper:

10 grams: Fiber-tipped pens
18 grams: Roller
50 grams: Drafting

 � On transparencies:

18 grams: Fiber-tipped pens

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices: Family-1 7374 and 7375 plotters
Length: 2 fullwords.

Note: Refer to the information on the pressure-select
instruction in the appropriate color plotter programming
manual.

1 The option group code: 13
2 The pen pressure:

0 The pressure, as set by the user on the
plotter control buttons (see below)

1 – 255 The pressure, in grams, related to the
actual pressure that can be set on the
plotter with the control buttons.

If a value greater than the maximum for the plotter is
specified, the maximum pressure is set.

If a value less than the minimum for the plotter is
specified, the minimum pressure is set.

The range of values that can be set on the 7374 and
7375 plotters using the plotter control buttons is:
Button Pressure
1 10 grams
2 18 grams
3 26 grams
4 34 grams
5 42 grams
6 50 grams
7 58 grams

8 66 grams.

14 Plotting area
Nickname syntax: (PLTAREA,xmin,xmax,ymin,ymax)

Specifies the area of the paper into which GDDM is to draw
the picture on a plotter. If all values are specified as zero,
the user defines the plotting area (before the DSOPEN call is
issued) by pressing the appropriate buttons (P1, P2, and
ROTATE) on the plotter, when these buttons are supported;
otherwise, the maximum plotting area is used. For long
plots, PLTAREA should be allowed to default or be set to its
default value (0,100,0,100).

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices: All family-1 plotters
Length: 5 fullwords.

1 The option group code: 14.

2 The minimum x value as a percentage of the
maximum paper width. The default is 0.

3 The maximum x value as a percentage of the
maximum paper width. The default is 100.

4 The minimum y value as a percentage of the
maximum paper height. The default is 0.

5 The maximum y value as a percentage of the
maximum paper height. The default is 100.

15 Plotter paper size
Nickname syntax: (PLTPAPSZ,{ ñ|A4|A3|...|A|B|...})

Specifies the size of the paper that is loaded in a plotter.
Plotters that have paper-size switches must have them set
correctly to indicate the size of the paper loaded; otherwise,
the aspect ratio might be distorted, the picture might not be
placed centrally, or only part of the picture might be drawn.

If this option is not specified, GDDM uses whatever paper
size is already loaded in the plotter.

When IBM-GL files are being created, the PLTPAPSZ
procopt should be used to specify the paper size loaded on
the eventual output device.

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices: All family-1 plotters
Length: 3 fullwords.

1 The option group code: 15.
2 The paper-size code:

0 (ñ) The default (whatever paper size is
loaded)

1 A or A4 size
2 B or A3 size

 Chapter 19. Processing options 401

 processing options

3 C or A2 size
4 D or A1 size
5 E or A0 size.

3 The dimension-type code:
0 (ñ) ISO dimensions (the default)
1 ISO dimensions (A4, A3, A2, A1, or

A0)
2 ANSI dimensions (A, B, C, D, or E).

16 Plotter picture orientation
Nickname syntax: (PLTROTAT,{NO|YES})

By default, GDDM draws the plotted picture with the x (hori-
zontal) axis along the longest side of the paper (“landscape”
format). This option allows the picture to be rotated by 90
degrees, so that the x axis is along the shorter side of the
paper (“portrait” format). This does not affect the way in
which the paper is placed in the plotter; instead, it specifies
the orientation of the picture relative to the paper on the
plotter bed.

GDDM ignores option group 16 when the drawing area is set
by pressing buttons on the plotter (see option group 14)
because this action controls the orientation of the picture.

Note: This processing option does not apply to plotting via
GDDM-OS/2 Link. If it is specified on the GDDM host
session, it is ignored.

Subsystems: CICS, TSO, VM
Devices: All family-1 plotters
Length: 2 fullwords.

1 The option group code: 16
2 The orientation value:

0 No rotation (the default)
1 (NO) No rotation
2 (YES) Rotate the picture by 90 degrees.

17 Retained or unretained mode
Nickname syntax: (SEGSTORE,{YES|NO})

Indicates whether a 3270-PC/G, GX, or /AT workstation is to
operate in retained or unretained mode.

Retained mode means that graphics segments are held in
the display’s segment buffers and are not re-sent from the
host when a picture is redisplayed.

Unretained mode means that graphics segments are not held
in the display’s segment buffers. Segments have to be
re-sent from the host to the display whenever a picture is
updated.

Even if retained mode is specified, the device may be run in
unretained mode if it is customized as being in output-only
mode, or if there is not enough storage available in the
device, or multiple graphics fields are being displayed.

Retained mode should be the preferred mode of operation
because retained segments are required to perform functions
locally.

However, if an application needs more segment storage than
is available in the device, this can lead to continual switching
between retained and unretained modes (with undesirable
performance overhead). In such cases, it may be preferable
to request unretained mode, and avoid the switching
between modes.

Subsystems: All
Devices: Family-1 3270-PC/G, /GX, and /AT work-

stations
Length: 2 fullwords.

1 The option group code: 17
2 Retained or unretained mode:

0 (YES) Retained mode (the default)
1 (NO) Unretained mode.

18 Deferred device name-list for print utility
Nickname syntax: (STAGE2ID,xxxxxxxx,xxxxxxxx,...)

Specifies the name-list for the device on which the print utility
is to produce the output from a print file. The list of 8-byte
name-parts defined in this group is passed (in the print file)
to the print utility for use as its DSOPEN name-list parameter
value.

For example, if a name-list of (ñ,aux-id) is specified, the print
utility uses this in its DSOPEN call to access the auxiliary
device attached to the session device.

The default is a zero value in fullword 2. If this processing
option is not specified or if fullword 2 is zero, the file is
printed on the device specified in the original DSOPEN
name-list parameter.

Under VM, this list is ignored if the ON parameter in the
ADMOPUV command is specified (ON overrides the values
specified in the list).

Subsystems: CICS, TSO, VM
Devices: Family-2
Length: 2+2xN fullwords.

1 The option group code: 18.
2 The number (N, in the range 0

through 2) of pairs of fullwords that
follow.

3 through 2+2xN “N” pairs of fullwords. Each pair
forms an 8-byte name-part.

Note: This procopt is used to determine the values returned
when you are plotting via a family-2 device. (See the
FSQURY call.)

19 Load default symbol sets
Nickname syntax: (LOADDSYM,{NO|YES})

Indicates whether the workstation is to use the device’s
default symbol sets or the GDDM default symbol sets. If the
application program requires any alternative characters in the
symbol set (for example, national use characters), GDDM’s
default symbol sets must be used. For information on
changing GDDM’s default symbol sets, see the GDDM
System Customization and Administration book.

402 GDDM Base Application Programming Reference

 processing options

Note: Using GDDM’s symbol sets reduces the amount of
storage in the workstation that is available for segment
storage and for symbol sets loaded by the application
program.

Subsystems: All
Devices: Family-1 3270-PC/G, /GX, and /AT work-

stations, 3179-G, 3192-G, and 3472-G color
| display stations, and devices supported by
| GDDM-OS/2 Link

Length: 2 fullwords.

1 The option group code: 19
2 The default symbol sets option:

0 (NO) Use the workstation’s default mode-2 and
mode-3 symbol sets (the default)

1 (YES) Load GDDM’s mode-2 and mode-3 symbol
sets, replacing the device’s default symbol
sets.

20 Origin identification
Nickname syntax: (ORIGINID,{NO|YES})

Indicates whether GDDM is to draw an origin identification
string (consisting of a user ID, the date, and the time) in the
bottom left-hand corner of the graphics field.

For plotters, the identification appears inside a background-
shaded box, so that no part of the picture can obscure it.
However, if the plotting area is small, the origin identification
string might be clipped and the right-hand side might be lost.

For family-1 printers, the identification is similar to an alpha-
numeric field. The identification is truncated, if necessary, by
the page width.

When specified for a family-2 device, the processing option is
passed (in the print file) to the print utility, which specifies the
processing option when opening the output device.

Note: This option is regarded as being “mergeable”. That
is, if ORIGINID is not specified, its current value remains in
effect.

Subsystems: All
Devices: All, but used by family-1 plotters and printers

and family-2 printers only
Length: 2 + N fullwords.

1 The option group code: 20
2 The number (N, in the range 0 through 1) of fullword

values that follow
3 The identification value:

0 (NO) No origin identification (the default)
1 (YES) Origin identification required.

21 Local interactive graphics mode
Nickname syntax: (LCLMODE,{NO|YES})

Indicates whether panning, zooming, and scaling of graphics

on 3270-PC/G, /GX, or /AT workstations is to be performed
using local data streams or by rebuilding the picture in the
host.

Full information on how to use local interactive graphics
mode is given in the GDDM User's Guide.

Subsystems: All
Devices: Family-1 3270-PC/G, /GX, and /AT work-

stations
Length: 2 fullwords.

1 The option group code: 21
2 The local interactive graphics mode option:

0 (NO) Local interactive graphics mode not
allowed (the default)

1 (YES) Local interactive graphics mode allowed.

22 Document name
Nickname syntax: (HRIDOCNM,xxxxxxxx)

Provides a name for the document or primary data stream
that is passed to CDPF. This name is printed in the picture
separator line, above each picture. This can be used to
identify the owner of the printed output.

Subsystems: TSO, VM, MVS, and VSE
Devices: Family-4, 4250 printers only
Length: 3 fullwords.

1 The option group code: 22
2 and 3 One pair of fullwords, forming an 8-byte name

part.

23 Special device
Nickname syntax: (SPECDEV,{IBM5080|ñ},{ddname|ñ})

Provides a token defining the type of special device and a
namelist providing information specific to a type of special
device.

Subsystems: TSO, VM
Devices: Family-1
Length: 2+2xN fullwords.

1 The option group code: 23.
2 The number (N, in the range 0 through 2) of

pairs of words that follow.
3 and 4 One pair of fullwords specifying an 8-byte

special device name:
'IBM5080 ' To use the IBM 5080 Graphics

System for graphics
'ñ ' To turn off the use of the IBM

5080 Graphics System.
5 and 6 Information specific to this device.

For a special device name for the IBM 5080
Graphics System, there are only two fullwords
of device-specific information, which are
ddname or blank.

 Chapter 19. Processing options 403

 processing options

Notes:

1. The device name, ddname, is the same as the name in
the command that you issue before you use the IBM
5080 Graphics System.

� Under CMS, the command is:

FILEDEF ddname GRAF cuu

� Under TSO, the command is:

| ALLOC FILE (ddname) UNIT (cuu)

where in both cases, cuu is the address of the control
unit for the display unit.

2. The use of a blank indicates DUM5080; that is, no actual
5080 need be attached.

24 Window mode
Nickname syntax: (WINDOW,{NO|YES})

Indicates whether the device is to be used for windowing. It
allows the use of the WSCRT call to define a window on the
device. Subsequent calls of DSOPEN for the same device
(same device name-list) open virtual devices, which appear
in the window.

Specifying that a device is to be windowed creates a default
operator window, with an identifier of 0, and associates the
device with the window. You do not have to use this
window. Instead, you may prefer to use only windows that
you explicitly create.

The use of the WINDOW processing option inhibits the use
of real partitions.

Notes:

1. For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for
the real device is used instead.

2. When running under CICS with external default
CICTIF=EXT specified, WINDOW mode must be set to
NO.

Subsystems: CICS, TSO, VM
Devices: Family-1 displays, except the IBM 5080

Graphics System
Length: 2 fullwords.

1 The option group code: 24
2 The type of window mode:

0 (NO) Not in window mode (the default)
1 (YES) In window mode.

25 CICS pseudoconversational control
Nickname syntax: (PSCNVCTL,{NO|START|CONTINUE})

Specifies whether GDDM is to run in transaction-dependent
pseudoconversational mode.

Notes:

1. For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for
the real device is used instead.

2. If transaction-independent pseudoconversation has been
specified using the external default (CICTIF=EXT),
PSCNVCTL must be set to NO.

Subsystems: CICS (both MVS and VSE)
Devices: Default family-1 display device only
Length: 2 fullwords.

1 The option group code: 25.
2 The use of pseudoconversational mode:

0 (NO) Do not use pseudoconversational
mode (the default).

1 (START) Start use of pseudoconversational
mode.

2 (CONTINUE) Continue use of pseudo-
conversational mode.

26 Fast update mode
Nickname syntax: (FASTUPD,n)

Selects the level of picture degradation that is acceptable to
enable a fast update of the graphic data on the device. The
option selected can subsequently be queried by the
FSQUPD call and changed by the application using the
FSUPDM call; see “FSUPDM – Set update mode” on
page 95.

The main use of this processing option is to control fast-
update mode by means of a nickname.

It has an effect only on IBM 3270-PC/G, /GX, and /AT work-
stations, 3179-G, 3472-G, and 3192-G color display stations,
5550-family workstations, and devices supported by
GDDM-PCLK or GDDM-OS/2 Link. On these devices, the
color mixing can be degraded to use exclusive-OR mode to
enable segments to be changed or deleted without causing a
redraw of the picture.

Subsystems: TSO, CMS, CICS
Devices: Family-1 3270-PC/G, GX, and /AT work-

stations, 3179-G, 3472-G, and 3192-G dis-
plays, 5550-family workstations, and devices
supported by GDDM-PCLK or GDDM-OS/2
Link.

Length: 2 fullwords.

1 The option group code: 26
2 The type of window mode:

0 No degradation of picture fidelity (default)
1 Picture degradation acceptable using GDDM’s

chosen method for the picture.

27 User Control fast path mode
Nickname syntax: (CTLFAST,{NO|YES})

Selects fast-path mode for User Control functions that require

404 GDDM Base Application Programming Reference

 processing options

pointings. When (CTLFAST,YES) is specified and a User
Control function that requires pointing (MOVE, SIZE, POINT,
CENTER, ZOOM-IN, ZOOM-OUT) is selected by a PF key, it
is assumed that the user has already positioned the cursor at
the first pointing.

Subsystems: TSO, VM, CICS
Devices: All family-1 displays
Length: 2 fullwords.

1 The option-group code: 27.
2 The availability of fast-path mode for User Control

functions that require pointings:
0 (NO) Fast path mode is not selected (the

default).
1 (YES) Fast path mode is selected.

28 User Control
Nickname syntax: (CTLMODE,{ ñ|YES|NO})

Selects User Control

Notes:

1. For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for
the real device is used instead.

2. When running under CICS with external default
(CICTIF=EXT), CTLMODE must be set to NO.

Subsystems: TSO, VM, CICS
Devices: All family-1 displays
Length: 2 fullwords.

1 The option-group code: 28.
2 The availability of control mode:

0 (ñ) User Control is available for devices not
capable of supporting real partitions (the
default).

1 (YES) User Control is always available, forcing
emulated partitions.

2 (NO) User Control is not allowed.

29 User Control key
Nickname syntax: (CTLKEY,type,value)

Selects a User Control key. The default is (CTLKEY,4,3),
which is PA3.

Note: For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for the
real device is used instead.

Subsystems: TSO, VM, CICS
Devices: All family-1 displays
Length: 3 fullwords.

1 The option-group code: 29.
2 The type of key selected for entering User Control:

0 None. User Control cannot be entered by
key action.

1 A PF key (see value below) is used to enter
User Control.

4 A PA key (see value below) is used to enter
User Control.

3 Value. The number of the PA or PF key used:
0 None. User Control cannot be entered by

key action.
n The number of the PA or PF key defined for

User Control.

30 User Control print
Nickname syntax: (CTLPRINT,{YES|NO})

Controls the print or plot facilities offered in User Control.

Subsystems: TSO, VM, CICS
Devices: All family-1 displays
Length: 2 fullwords.

1 The option-group code: 30.
2 The ability to print from the screen:

0 (YES) Printing is allowed in User Control (the
default).

1 (NO) Printing is not allowed in User Control.

31 User Control save
Nickname syntax: (CTLSAVE,{NO|YES})

Controls the picture-saving facilities offered in the User
Control environment.

The default value is defined in the CTLSAVE parameter in
GDDM’s external defaults (see Chapter 18, “External
defaults” on page 379), and is subsystem-dependent.

Subsystems: TSO, VM, CICS
Devices: All family-1 displays
Length: 2 fullwords.

1 The option-group code: 31.
2 The ability to save the picture:

0 (NO) Saving is not allowed from User Control.
1 (YES) Saving is allowed from User Control.

32 Inline resources
Nickname syntax: (INRESRCE,{NO|YES})

Indicates whether the CDPU is to transfer inline resources
from the CDPDS input file to the AFPDS output file.

Subsystems: All
Devices: Family-4 AFPDS printers
Length: 2 fullwords.

1 The option-group code: 32.
2 Inline resources supported:

0 (NO) Inline resources are not supported (the
default).

1 (YES) Inline resources supported.

 Chapter 19. Processing options 405

 processing options

33 PCLK
Nickname syntax: (PCLK,{NO|YES})

Indicates whether GDDM-PCLK is to be made available. If it
is set to YES, users of GDDM applications on nongraphics
displays, such as 3278s, are prompted to indicate whether
they want to use GDDM-PCLK.

The PCLK procopt is ignored if coordination mode is also
selected (BMSCOORD procopt is set to YES).

Subsystems: Not IMS
Devices: Devices running GDDM-PCLK
Length: 2 fullwords.

1 The option-group code: 33
2 GDDM-PCLK availability:

0 (NO) GDDM-PCLK not available (the default)
1 (YES) GDDM-PCLK available.

34 Device code-page
Nickname syntax: (DEVCPG,n)

Specifies the code page that GDDM is to use for a device.
This code-page overrides that returned by a CECP device
when GDDM opens it.

Subsystems: All
Devices: All
Length: 2 fullwords.

1 The option-group code: 34
2 Device code-page:

n The global code-page identifier

35 IPDS printer quality
Nickname syntax:
(IPDSQUAL,{ ñ|DP|DPQ|DPT|DPTQ|NLQ|LLL|MLL|HLH|LLH})

Selects the print quality on IPDS printers.

Subsystems: Not IMS
Devices: IPDS printers
Length: 2 fullwords.

1 The option-group code: 35
2 Print quality:

0 (ñ) Printer hardware setting (the
default)

1 (DP or DPQ) Data-processing quality text, high-
density graphics, and high con-
trast bar codes

2 (DPT or DPTQ) Data-processing text quality text,
high-density graphics, and high
contrast bar codes

3 (NLQ) Near-letter quality text, high-
density graphics, and high con-
trast bar codes

4 (LLL) Data-processing quality text, low
density graphics, and low contrast
bar codes

5 (MLL) Data-processing text quality text,
low-density graphics, and low
contrast bar codes

6 (HLH) Near-letter quality text, low-
density graphics, and high con-
trast bar codes

7 (LLH) Data-processing quality text, low-
density graphics, and high con-
trast bar codes.

36 Encoded data fields on personal computers
Nickname syntax: (PCLKEVIS,{NO|YES})

Indicates whether the fields are to be displayed or are to be
made nondisplayable.

Subsystems: Not IMS
Devices: Devices running GDDM-PCLK
Length: 2 fullwords.

1 The option-group code: 36
2 Encoded data fields to be displayed:

0 (NO) Encoded data fields to be nondisplayable
(the default)

1 (YES) Encoded data fields to be displayed.

(PCLKEVIS,YES) must be used with GDDM-PCLK if your
terminal emulator normally discards nondisplayable charac-
ters.

| 37 Rotation of print output
| Nickname syntax: (PRTROT,{0|90|180|270})

Alternative syntax: (IPDSROT,{0|90|180|270})

The whole page to be printed is rotated by the specified
amount.

Subsystems: Not IMS
Devices: Family-1 and -2 IPDS 3812 Model 2, 3816,

| 4028; family-4 PostScript, AFPDS, and CDPF
| output

Length: 2 fullwords.

1 The option group code: 37
2 The clockwise rotation, in degrees:

0 (0) Portrait – top of page is drawn at upper
edge of paper (the default)

1 (90) Landscape – top of page is drawn at
right edge of paper

2 (180) Portrait – top of page is drawn at lower
edge of paper

3 (270) Landscape – top of page is drawn at left
edge of paper.

406 GDDM Base Application Programming Reference

 processing options

Notes:

| 1. For compatibility with previous releases of GDDM, the
| option name IPDSROT can also be used in nickname
| statements.

2. When rotating AFPDS output, some printers may not
support the printing of presentation text to the degree of
rotation specified. For more information, see Advanced
Function Printing: Printer Information, G544-3290.

38 IPDS data stream truncation
Nickname syntax:(IPDSTRUN,{NO|YES})

Specifies whether the data stream sent to a 4234 printer is to
be truncated when the storage capacity of the device is
exceeded, or whether the printer should rewind the paper to
cope with excess data.

Subsystems Not IMS
Devices 4234 printers, family-1 and -2
Length: 2 fullwords.

1 The option group code: 38
2 Data stream truncation:

0 (NO) Do not truncate the data stream (the
default for 4234)

1 (YES) Truncate the data stream (the default for
other IPDS printers).

39 IPDS lines per inch
Nickname syntax: (IPDSLPI,{6|8})

Selects printing at 6 or 8 lines per inch.

Do not use this procopt when printing composite documents.
This procopt overrides the printer setting. The printer itself
should be set to the default 8 lines per inch.

Subsystems: Not IMS
Devices: Family-1 and -2 IPDS printers
Length: 2 fullwords.

1 The option group code: 39
2 The number of lines to the inch to be printed:

0 (8) Print at 8 lines to the inch (default)
1 (6) Print at 6 lines to the inch.

40 IPDS paper feed bin
Nickname syntax: (IPDSBIN,m,n)

Specifies the paper-feed bins to be used for the main docu-
ment and header page.

Subsystems: Not IMS
| Devices: 3812 Model 2, 3816, 3112, 3116, 3912, 3916,

4028, and 4224 printers that have auto sheet
feed (ASF) installed, family-1 and -2

Length: 3 fullwords.

1 The option group code: 40
2 Paper feed bin for main document

� Can be in the range 0 through 100

3 Paper feed bin for header page
� Can be in the range 0 through 100.

For the 4224 with ASF, possible source values are:

0 Default bin as specified on the 4224 operator’s
panel

1–3 Automatic input bins
100 Manual feed

and the default is (IPDSBIN,0,0).

For the 3812 Model 2 and 3816, possible source values are:

0 Cassette 1
1–2 Cassettes

and the default is (IPDSBIN,1,2).

| For the 3112, 3116, 3912, 3916, and 4028, the allowable
source values are:

0 Default bin as specified on the 4028 operator’s
panel

1 Primary bin
2 Secondary bin
100 Manual feed

and the default is (IPDSBIN,0,0).

Note: When you print composite documents, this procopt
overrides any bin selection made by CDPDS MMC structured
fields, and all forms of the document are printed from the bin
selected by the procopt.

GDDM determines the paper size for all bins from the device
token or by querying the device. If the token or query reply
does not give the paper size for a particular bin, the values
for bin 1 are used.

41 IPDS Image swathing
Nickname syntax: (IPDSIMSW,{YES|NO})

Enables data to be sent as a series of compressed subim-
ages (swathed).

Subsystems: Not IMS
Devices: 3812 Model 2, 3816, and 4028, family-1 and

-2
Length: 2 fullwords.

1 The option group code: 41.
2 Swathing control:

0 (YES) Data is sent to the printer as a series of
compressed subimages (swathed). This is
the default.

1 (NO) Data is sent to the printer as a single com-
pressed image (unswathed).

Note: The unswathed option normally gives better perform-
ance, especially when used with scanned bilevel documents.
For some images, such as scanned photographs, the
swathed option gives better performance and uses less
storage. Frequent users of such gray-scale images may
choose not to use this procopt.

 Chapter 19. Processing options 407

 processing options

42 Image field initialization
Nickname syntax: (IMGINIT,{BLACK |WHITE|BACKGND})

Specifies the initial value to be used for current device bilevel
images.

Subsystems: All
Devices: Family-1, -2, and -4
Length: 2 fullwords.

1 The option group code: 42
2 Initial value:

0 (BLACK) Black (the default)
1 (WHITE) White
2 (BACKGND) Black on displays and white on

printers.

Note: When specifying this procopt by means of a nick-
name, ensure that the procopt is not applied to programs that
already invert the initial image field in order to get a white
background.

43 IPDS characters per inch
Nickname syntax:
(IPDSCPI,100|120|133|150|167|170|180|200)

Specifies the font pitch in characters per 10 inches. If the
selected pitch is not supported by the printer, the nearest
pitch that ensures the picture fits on the physical page is
selected.

This procopt overrides the printer setting. The printer itself
should be set to the default 10 characters per inch.

Subsystems: Not IMS
Devices: Family-1 and -2 IPDS printers
Length: 2 Fullwords.

1 The option group code: 43
2 The number of print characters per ten inches:

100 (100) 10.0 characters per inch (the default)
120 (120) 12.0 characters per inch
133 (133) 13.3 characters per inch
150 (150) 15.0 characters per inch
167 (167) 16.7 characters per inch
170 (170) 17.0 characters per inch
180 (180) 18.0 characters per inch
200 (200) 20.0 characters per inch.

Note: Use of any pitch other than the default may cause
problems printing programmed symbols, APL, Katakana, and
mode-1 graphics text.

44 Translating user-defined shading patterns
Nickname syntax: (PATTRAN,m,n)

Specifies which tables defined within the ADMDGTRN source
module are to be used to translate user-defined shading pat-
terns in the range 65 through 254 to the 16 GDDM-defined
patterns. GDDM provides three tables, and others may be
added by the user.

Subsystems: All

Devices: Family-1 or -2 IPDS printers, family-4 printers
when procopt OFFORMAT is set to GRIMAGE
or GRCIMAGE,
3179-G, 3192-G, 3472-G, 3270-PC/G,
3270-PC/GX, ASCII graphics displays, and
devices running GDDM-PCLK or
GDDM-OS/2 Link.

Length. 3 fullwords.

1 The option group code: 44.
2 The table number to be used for monochrome

(geometric) shading patterns. This number is padded
on the left with zeros to make a 5-digit field and a
prefix of ADM is added to form the label of a table in
the ADMDGTRN module.

3 The table number to be used for triplane (color)
shading patterns. The format of this table number is
as above.

Three tables are provided by GDDM:

ADM00001 Translates user-defined patterns 65 through 254
to system patterns 1 through 16 in a repeated fashion, with
no change in color. Patterns 65 through 80 are translated to
1 through 16 respectively, patterns 81 through 96 are trans-
lated to 1 through 16, and so on; finally patterns 241 through
254 are translated to 1 through 14.

ADM00002 Translates user-defined patterns 65 through 128
in symbol set ADMPATTC to similar-looking system patterns.
Where two or more user-defined patterns are translated to
the same system pattern, a different color distinguishes
between them. User-defined patterns 129 onwards are
translated to system patterns as in table ADM00001.

ADM00003 Translates the user-defined patterns to combina-
tions of colors and system-defined patterns to simulate the
use of ADMCOLSD. Each user-defined pattern is translated
to a unique combination of a color in the range 1 through
256, and one of the system-defined patterns. This is suitable
for devices using display adapters which support 256 or
more colors (8514/A, for example), running under
GDDM-OS/2 Link.

45 Graphics input key
Nickname syntax: (GINKEY,type,value)

Selects a key for switching from graphics input to alphanu-
meric input on ASCII graphics displays. On ASREAD and
GSREAD calls, if a graphics input device is enabled, the
graphics cursor appears. Having positioned the graphics
cursor, the user can switch to alphanumeric input using the
specified key. The default is the ENTER key.

Subsystems Not IMS
Devices ASCII graphics displays
Length: 3 fullwords.

1 option group code: 45
2 Type of key selected:

0 The ENTER key (default)
1 PF key (see value below)
4 PA key (see value below)

408 GDDM Base Application Programming Reference

 processing options

3 Value, the number of the PF key or PA key selected.

Note: The keyboards for some ASCII graphics displays
require multiple key strokes for some PF keys and PA keys.
You should select a key that is available as a single key
action on the keyboard. For example, you should not select
a key that requires the user to press ESC followed by
another key.

46 Plot file output
Nickname syntax: (TOFILE,{NO|YES},{REP|NOREP})

This option causes graphics output to be stored in GL
(graphics language) format in auxiliary storage in a file or
data set. GL files can be accepted by HP and
HP-compatible plotters. The name of the file or data set is
determined by the name-list parameter of the DSOPEN call
(or as resolved by nickname processing). The user can
specify whether an existing file or data set of the same name
can be overwritten.

Subsystems VM, TSO, and MVS/Batch
Devices All family-1 plotters
Length 3 fullwords.

1 option group code: 46
2 Specifies whether or not plotter output is to be stored

in a file
0 (NO) Plotter output is not to be stored in

file but drawn on an attached plotter
device (default).

1 (YES) Plotter output is to be stored in a file
identified by the DSOPEN namelist
parameter (or nickname). It is not to
be drawn directly on a plotter.

3 Specifies whether the new file can overwrite an
existing file with the same name.
0 (REP) Overwrite existing file (default).
1 (NOREP) Do not overwrite existing file.

Notes:

1. A device token for a plotter device must be specified in
the parameter list of the DSOPEN call.

2. If plot file output is specified, the name-list parameter of
the final DSOPEN call defines the name parts that con-
stitute the name by which the plot file created is to be
known by the underlying subsystem. The data set char-
acteristics of these plot files are described in the GDDM
Base Application Programming Guide.

The format of the name-parts is subsystem-dependent:

Under VM, there are three elements in the array defined
as follows:

1 The CMS filename of the file. Can be any valid
CMS filename.

2 The CMS filetype of the file. Can be any valid CMS
filetype.

3 The CMS filemode of the file. Can be any valid
CMS filemode. If not specified, a filemode of “A” is
assumed. “ñ” is not allowed.

Under TSO or MVS/Batch, the name-list parameter
specifies either:

� An allocated ddname. Plot file output is stored in
the sequential data set or PDS member allocated to
the specified ddname.

or

� A data set name (DSNAME). Plot file output is
stored in the data set identified. The DSNAME is
interpreted according to TSO naming conventions.
If contained in quotes, it is taken as a fully qualified
(complete) data set name. If it is not contained in
quotes (that is, if it is partially qualified), the com-
plete name is formed by prefixing the TSO qualifier
in the normal way.

If the output is to be stored as a member of a parti-
tioned data set, the PDS and member name can be
specified. For example:

 'USERID.MYPLOTS.GL(PIC1)'

or

 MYPLOTS.GL(PIC2)

where PIC1 and PIC2 are the names of the
members to be created in the partitioned data set
USERID.MYPLOTS.GL.

If the name exceeds eight characters, it must be
placed in consecutive elements of the namelist
parameter. Each element contains eight characters
of the name, including any quotes and brackets,
with no embedded blanks.

For information about file formats, refer to the GDDM
Base Application Programming Guide.

| 3. The POSTPROC procopt can be used to perform
| postprocessing of the plot file output.

47 Plot roll medium delay
Nickname syntax: (PLTDELAY,n)

Specifies the delay between successive frames when long
plots are drawn.

This processing option is ignored for short (single-sheet)
plots, and if the plotter does not support roll-feed media.

Subsystems: CICS, TSO, VM
Devices: All family-1 plotters
Length: 2 fullwords.

1 The option group code: 47
2 0 (default) through 1200. The delay, in seconds,

between successive frames when drawing long plots.

Note: Inner layers of non-plastic roll media do not stabilize,
with respect to changes in relative humidity, until fully
exposed to the air. The medium can expand or contract
during plotting, resulting in inaccurate plots.

 Chapter 19. Processing options 409

 processing options

| 48 PostScript grayline attribute
| Nickname syntax: (GRAYLINE,{NO|YES})

| This option specifies how colored text and lines are to be
| drawn when family-4 output is generated using a device
| token for a monochrome PostScript printer. If you use a
| device token for a color printer, the setting of GRAYLINE is
| ignored.

| Subsystems: All
| Devices: Family-4 (PostScript)
| Length: 2 fullwords.

| 1 The option group code: 48
| 2
| 0 (NO) All characters and lines are drawn in black.
| (Default)
| 1 (YES) Characters and lines are drawn in color,
| which a monochrome PostScript printer
| interprets as shades of gray.

| The printed results depend on the device to which the output
| is sent. If it is a color printer, GRAYLINE, YES has no effect
| and full color output is produced. The GRAYLINE procopt
| has no effect on the way monochrome printers deal with
| colored areas .

| 49 PostScript character storage
| Nickname syntax: (PSCHAR,{7|8})

| This option indicates how character data is to be stored in
| the ASCII files generated for PostScript printers.

| Subsystems: All
| Devices: Family-4 (PostScript)
| Length: 2 fullwords.

| 1 The option group code: 49
| 2
| 7 Characters are stored using PostScript
| hexadecimal representation so that the
| generated file can be printed on a
| PostScript printer with either a 7 or 8-bit
| connection. (Default)
| 8 Characters are stored using 8-bit ASCII.
| The generated file can be printed only on a
| PostScript printer with an 8-bit connection.

| Note: To print PostScript files generated by GDDM on your
| workstation-attached printer, you should download
| them to your workstation in binary format.

| 50 Postprocessing of family-4 and GL output
| Nickname syntax: (POSTPROC,xxxxxxxx)

| This option specifies the name of a procedure or program to
| be invoked by GDDM when family-4, or family-1 GL plot file
| output (created with TOFILE), has been generated. The pro-
| cedure or program is then passed the name of the family-4
| or GL plot file as a parameter.

| Subsystems: TSO and VM
| Devices: Family-4, and Family-1 plotters with TOFILE.
| Length: 2 fullwords.

| 1 The option group code: 50
| 2
| xxxxxxxx The name of a procedure or program that
| is to perform post processing on the
| PostScript output.

| If the program is an EXEC running on the CMS subsystem, it
| must be able to operate in CMS SUBSET mode. If the
| program is running on the TSO subsystem, the TSO Service
| facility (IKJEFTSR) is used to invoke a TSO command,
| CLIST or REXX exec.

| 51 Set the device character set
| Nickname syntax: (DEVCSET,n)

| This option specifies the character set that GDDM is to use
| for a device. This character set overrides the one returned
| by the device when GDDM opens it. A character set speci-
| fied in the DEVCSET procopt takes precedence over one
| specified in a DEVCPG procopt.

| Subsystems: All
| Devices: All
| Length: 2 fullwords.

| 1 The option group code: 51
| 2 The identifier of the character set to be used for the
| device.

| Note: If this processing option is not specified, GDDM
| selects the correct table from ADMDATRN using the
| value specified on the DEVCPG procopt or the code-
| page identifier returned by the device query.

1000 CMS PA1/PA2 protocol
Nickname syntax: (CMSINTRP,{PA1PA2 |PA2|PA1|NONE})

Under VM, a user can usually interrupt a running program to
contact the underlying supervisors. A GDDM application can
choose, by this option, whether it requires this capability.
The default is to retain the capability.

Notes:

1. PA2 can cause entry to CMS subset mode only when
GDDM has a read outstanding at the terminal, but not if
a real partition other than partition zero is active.

2. For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for
the real device is used instead.

Subsystems: VM
Devices: Family-1 device from which the program is

being run, or auxiliary device attached to that
device

Length: 2 fullwords.

1 The option group code: 1000
2 The type of PA1/PA2 protocol:

0 (PA1PA2) PA1 causes entry to CP mode; PA2
causes entry to CMS subset mode
(default).

410 GDDM Base Application Programming Reference

 processing options

1 (PA2) PA1 is returned to the application; PA2
causes entry to CMS subset mode.

2 (PA1) PA1 causes entry to CP mode; PA2 is
returned to the application.

3 (NONE) PA1 and PA2 are returned to the appli-
cation.

1001 CMS attention handling
Nickname syntax: (CMSATTN,{BASIC |EXTENDED}, n,addr)

Determines how asynchronous interrupts (attentions) are
handled in a GDDM application.

For a GDDM program running under the control of a task
manager, if this processing option is specified for a virtual
device, it is ignored, and the processing option for the real
device is used instead.

Subsystems: VM
Devices: Family-1 device from which the program is

being run, or auxiliary device attached to that
device

Length: 4 fullwords.

This option group always contains four
fullwords. (If basic attention handling is
requested, the third and fourth fullwords must
still be present even though they are not
inspected.)

1 The option group code: 1001.
2 The type of attention handling:

0 (BASIC)
Basic attention handling (the default); only an unsolic-
ited ENTER causes an attention to be raised.

GDDM passes the attention to the next higher layer
in the stack of attention handlers, and takes no action
on its own behalf. All other interrupts received by
GDDM are ignored.

1 (EXTENDED)
Extended attention handling; all unsolicited interrupts
received by GDDM cause an attention to be raised.

GDDM partially decodes the inbound data stream
causing the attention, and builds an attention feed-
back block . This contains the identifier of the atten-
tion in a similar format to that returned on ASREAD.
After this information is filled in, control is passed to
the next higher attention handler in the stack. The
feedback block is not owned by GDDM, but is sup-
plied by the user by this option group. However, if
either the length or the address of the block is zero,
the feedback block is not filled in.

3 The length of the attention feedback block. See the
description of extended attention handling, above
(Fullword 2).

4 The address of the attention feedback block. See the
description of extended attention handling, above
(Fullword 2).

1002 CMS CP SPOOL parameters
Nickname syntax: (CPSPOOL,xxxxxxxx,xxxxxxxx,....)

Causes a CP SPOOL command to be issued for punch files
that result from opening a family-1 device with a name-list of
“PUNCH”, or a family-4 device with a name-list of
“PRINTER”.

If specified, this option causes a CP SPOOL command of
this form:

CP SPOOL PUNCH xxxxxxxx xxxxxxxx

or this form:

CP SPOOL PRINTER xxxxxxxx xxxxxxxx

to be issued at the time of the DSOPEN call.

A specification of the form (CPSPOOL,TO,RSCS) can be used to
direct punch files to a product capable of processing them
(such as RSCS Networking Version 2).

A specification of the form (CPSPOOL,TO,psfid,

DEST,destname,......) can be used to direct family-4 print
files to a product capable of processing them (such as
PSF/VM 2.1 or CDPF). The DEST value determines the
printer to which PSF directs the output.

GDDM does not restore any previous spooling control
options when the device is closed. The default is a zero
value in fullword 2. If this processing option is not specified
or if fullword 2 is zero, no CP SPOOL command is issued.

Subsystems: VM
Devices: Family-1 device 'PUNCH'

Family-4 device 'PRINTER'

Length: 2+2xN fullwords.

1 The option group code: 1002
2 The number (N, in the range 0 through 16) of

pairs of fullwords that follow
3 – 2+2xN “N” pairs of fullwords, giving the appropriate

spooling information as 8-character tokens.

1003 CMS CP TAG parameters
Nickname syntax: (CPTAG,xxxxxxxx,xxxxxxxx,....)

Causes a CP TAG command to be issued for punch files that
result from opening a family-1 device with a name-list of
“PUNCH”, or a family-4 device with a name-list of “PRINTER”
and a name-count of “1” under VM.

If specified, this option causes a CP TAG command of this
form:

CP TAG DEV PUNCH xxxxxxxx xxxxxxxx

or

CP TAG DEV PRINTER xxxxxxxx xxxxxxxx

to be issued at the time of the DSOPEN call.

GDDM inserts one blank character after each specified
token, removes any extra blank characters, and removes any
blank characters surrounding the character “=”. Thus, a
specification of the form:

(CPTAG,PRINTER1,PRT,=,GRAPH)

 Chapter 19. Processing options 411

 processing options

causes the following CP TAG command to be issued:

CP TAG DEV PUNCH PRINTER1 PRT=GRAPH

A specification like the one above can be used to notify pro-
ducts capable of processing punch files (such as RSCS Net-
working Version 2) that the punch file contains graphics.

GDDM does not restore any previous tag information when
the device is closed. The default is a zero value in fullword
2. If this processing option is not specified or if fullword 2 is
zero, no CP TAG command is issued.

Subsystems: VM
Devices: Family-1 device 'PUNCH'

Family-4 device 'PRINTER'

Length: 2+2xN fullwords.

1 The option group code: 1003
2 The number (N, in the range 0 through 16) of

pairs of fullwords that follow
3 – 2+2xN “N” pairs of fullwords, giving the appropriate

routing (tag) information as 8-character tokens.

1004 Automatic invocation of VM print utility
Nickname syntax: (INVKOPUV,{NO|YES})

Indicates whether GDDM is to invoke the GDDM print utility
automatically after a print file has been created.

If this function is requested, a temporary print file is created,
and the print utility is requested to print this file on the device
specified by the name-list parameter. After printing, the
temporary file is erased.

You can use this procopt as an alternative to entering the
ADMOPUV command.

Subsystems: VM
Devices: Family-2
Length: 2 fullwords.

1 The option group code: 1004
2 Print utility control:

0 (NO) Do not invoke print utility (the default)
1 (YES) Invoke print utility automatically.

2000 TSO CLEAR/PA1 protocol
Nickname syntax: (TSOINTRP,{PA1|NONE})

Under TSO, an end user can usually interrupt a running
program to contact the underlying supervisor. A GDDM
application can choose, by this option, whether it requires
this capability.

Notes:

1. This processing option is valid only for the TSO console.
If it is specified from another device, this processing
option causes an error. Nickname statements that
specify this option should include the parameters FAM=1
and NAME=\.

2. For a GDDM program running under the control of a
task manager, if this processing option is specified for a

virtual device, it is ignored, and the processing option for
the real device is used instead.

For a more detailed discussion of the use of the PA1 and
CLEAR keys in an TSO environment, see the GDDM System
Customization and Administration book.

Subsystems: TSO
Devices: Family-1
Length: 2 fullwords.

1 The option group code: 2000.
2 The type of attention handling:

0 (PA1) PA1 causes attention, CLEAR is ignored
(TSO default action)

1 (NONE) PA1 and CLEAR are returned to the
GDDM application (PA1 does not cause
an attention).

2001 TSO reshow protocol
Nickname syntax: (TSORESHW,n)

Specifies the Attention Identifier (AID) that signals that the
display was corrupted (typically, by line-by-line output). It
can be set to be either the default PA key or a PF key.
Changing it to a PF key releases the default PA key for other
use.

Any key functions specified in this option are not available to
the application program. When pressed by the terminal user,
the specified keys cause the current picture to be rebuilt and
reshown.

Notes:

1. For a GDDM program running under the control of a
task manager, if this processing option is specified for a
virtual device, it is ignored, and the processing option for
the real device is used instead.

2. This processing option is valid only for the TSO console.
If it is specified from another device, this processing
option causes an error. Nickname statements that
specify this option should include the parameters FAM=1
and NAME=\.

Subsystems: TSO
Devices: Family-1
Length: 2 fullwords.

1 The option group code: 2001.
2 The keys treated as “reshow” AIDs:

0 PA2 is treated as the “reshow” AID
(the default)

1 – 24 The number of the PF key to be
treated as the “reshow” AID.

| 2002 TSO family-2 and family-4 print-file destination
Nickname syntax:

| (PRINTDST,{class| ñ},[destname|ddname| ñ|=],[writer],[forms])

| This option controls the destination of the family-2 print
| output and can also place parameters onto the JES spool
| queue.

412 GDDM Base Application Programming Reference

 processing options

The default destination is the ADMPRINT queue.

| Under TSO, this procopt is a convenient way of sending
| family-4 output to a print server, such as PSF/MVS.

Subsystems: TSO (including TSO/Batch and MVS/Batch)
| Devices: Family-2 and family-4

Length: 2+2xN fullwords.

1 The option group code: 2002.
2 The number (N, in the range 1 through 2) of pairs

of fullwords that follow.
3 and 4 An 8-character token containing one of:

class Appropriate output class for the JES
spool system.

ñ Output is to go to ADMPRINT queue
| or a ddname. Not valid for Family 4.

5 and 6 An 8-character token containing one of:
destname The JES Remote workstation name,

associated through JES/328X, with
the required target printer.

ddname The ddname of a DD statement
describing the output data set to be
used.

ñ Output is to go to the ADMPRINT
| queue. Not valid for Family 4.
| = Use the namelist as the destination
| name.
| 7 and 8 An 8-character token consisting of:
| writer The name of the external writer
| program that is to process the
| SYSOUT data set.
| 9 and 10 An 8-character token consisting of:
| forms Identifies the forms on which the
| SYSOUT data set is to be printed or
| punched.

| Note: GDDM processes only the first four charac-
| ters.

| Notes:

| 1. The parameters are positional. At least class must be
| present.

| 2. This processing option is “mergeable,” that is, if a
| parameter is omitted, the current value is not changed.

| 3. Parameters that are not required must be entered as
| blanks in the encoded form.

| 4. The default values for destname, writer, and forms are
| system defined.

| 5. Enterprises with many output devices can use the
| generic form of the print destination, ‘=’ to reduce the
| number of nickname statements in the user defaults
| module.

| See the section on the format of the nickname UDS in
| the GDDM System Customization and Administration
| book for more information.

| 2003 Output type definition
| Nickname syntax:
| (FRCETYPE,{FSFRCE|DSFRCE})

| This option indicates whether the device defined in the
| namelist, which is a partitioned data set, is to be opened so
| that page segments or overlays are saved as members of
| this data set. It also indicates the permitted type of output
| call (FSFRCE or DSFRCE).

| Notes:

| 1. The namelist can be a DDNAME that refers to an
| already allocated partitioned data set.

| 2. If a member name is included in the namelist, it is
| ignored because the member name specified in the
| DSFRCE call takes precedence.

| Subsystems: MVS TSO and MVS/Batch
| Devices: Family-4
| Length: 2 fullwords.

| 1 The option group code: 2003.

| 2 Specifies whether the device is to be opened as
| a partitioned data set for saving multiple page
| segments or overlays.

| 0 Use FSFRCE to output a page to
| the device defined in the namelist.

| 1 Use DSFRCE to output a page to
| be a member of the partitioned data
| set defined in the namelist.

3000 Color-master table identifier
Nickname syntax: (COLORMAS,n)

Identifies the color-master table to be used.

A color-master table defines how each input color is to be
analyzed into one or more color masters. If this option is not

| specified, a single monochrome master is generated. The
| output file format must be IMAGE or BITMAP for color
| masters to be generated correctly. Use processing option 9
| to set it to IMAGE or BITMAP if the device specified by the
| token has function characteristics higher than IMAGE.

Subsystems: TSO, VM, MVS, and VSE Batch
Devices: Family-4
Length: 2 fullwords.

1 The option group code: 3000.
2 The identifier of the color master table: A number

that is placed after the letters “ADM” to create a color
table name. For example, the number 1 results in
color table ADM00001 being used. Specifying 0 (the
default) means that a monochrome master is gener-
ated.

For more information on color separations, see the GDDM
Base Application Programming Guide.

 Chapter 19. Processing options 413

 processing options

414 GDDM Base Application Programming Reference

 name-lists

 Chapter 20. Name-lists

This chapter describes the name-list values that can be
specified for each subsystem and for each GDDM device
family.

A name-list is a means of identifying which physical device
is to be opened for use by a GDDM application program. It
can be a parameter of the DSOPEN call or it can be speci-
fied as a nickname. The naming convention of the name-list
varies according to the subsystem and device family in use.

Reserved names “*” and blanks

In all environments, for all families, there is a convention for
two reserved values of the name-list(1) field.

� When this field is specified but is “ñ”, the terminal used is
as described under the options below for a name-count
of 0, where this is valid. In other words, this is an
explicit way to specify the default device name.

� When the field contains blanks, the device is a dummy
one, that is, no real device is associated with this GDDM
device. GDDM generates the data streams required but
does not send them to any real device, nor does it try to
receive data from a device.

This option can be used to check a GDDM application
when a real device with the necessary features is una-
vailable, or it can be used with the FSSAVE mechanism
to generate SAVE files for a device that is unavailable
when the application is to be run.

When this option is selected, the application program
must provide a device token parameter to supply the
device characteristics that are to be used by GDDM.

 Family-1 name-list

Under all subsystems, the device name can specify the user
console:

� By omitting the name list (by giving a length of 0 in
DSOPEN)

� By setting all name-parts to “ñ”.

Also, (under CICS, TSO, or VMS), the name-list parameter
can identify an auxiliary device, such as a plotter that is
attached to a 3270-PC/G, /GX, or /AT workstation, or a
printer or plotter that is attached to a workstation using
GDDM-PCLK or GDDM-OS/2 Link. In such a case,
name-list(1) identifies the 3270-PC/G, /GX, or /AT, or
GDDM-PCLK workstation, and name-list(2) (other than “ñ”)
identifies the auxiliary device (the plotter or printer). GDDM
uses this name to identify the appropriate port on the
attaching workstation.

Notes:

1. The name given in name-list(2) must be the same as
the name given in the IEEE customization panel when
the 3270-PC/G, /GX, or /AT workstation was set up.
(This is not the same as the device type which must be
of the form “IBMnnnn”.)

2. A name-list(2) value of “ADMPLOT” has a special
meaning. In this case, GDDM uses the first plotter
defined in the IEEE customization panel when the
3270-PC/G, /GX, or /AT workstation was set up, regard-
less of the configured name.

3. In the case of GDDM-PCLK 1.1, only one plotter can be
configured, so ADMPLOT should always be used. The
special value ADMPCPRT should be used to open a
GDDM-PCLK-attached printer; see the GDDM User's
Guide.

4. Use ADMPMOP for the GDDM-OS/2 Link default.
5. Printers attached to 3192-G and 3472-G devices are

supported as separate devices with their own name.
They are not considered auxiliary devices, which are
addressed via their attaching workstation.

 CICS name-list
Family-1 – 3270 terminals

The name-count value must be 0, 1, or 2:

0 The device used is that identified by the Terminal
Control Table (TCT) for the transaction.

1 Name-list(1) must contain either “ñ” or blanks. If it
contains “ñ”, the terminal is used as described for a
name-count of 0.

2 Name-list(1) must contain either “ñ” or blanks.

If name-list(2) contains “ñ”, the terminal is used as
described for a name-count of 1. Otherwise, the
name-list(2) value is the name of an auxiliary device (a
plotter or printer).

Family-2 – queued printer
The name-count value must be 1.

The name-list(1) value is the terminal identifier of the
printer in the TCT.

Family-3 – system printer
The name-count value must be either 0 or 1:

0 A name is taken from the GDDM defaults. The
supplied default is ADMS.

1 A name is taken from name-list(1).

The name is assumed to be the name of a transient
data destination that can route the output to a sub-
system printer. The transient data destination should be
one defined in the CICS destination control table (DCT).

When name-list(1) contains “ñ”, the printer is used as
described for a name-count of 0.

 Copyright IBM Corp. 1980, 1996 415

 name-lists

Family-4 – page-printer files
Not applicable under CICS.

 VSE/Batch name-list

Applicable to family-4 files only.

Family-4 – page-printer files
The name-count value must be 1. The name-list(1)
value must contain the DLBL file-name of 7 characters.

 IMS name-list
Family-1 – 3270 terminals

The name-count value must be either 0 or 1:

0 An LTERM name is taken from the LTERM field of
the I/O PCB.

1 An LTERM name is taken from name-list(1).

There must be at least one TP PCB whose destination
is set to the LTERM name.

If name-list(1) contains “ñ”, the terminal is used as
described for a name-count of 0.

Family-2 – queued printers
The name-count value must be 1.

The name-list(1) value is an LTERM name. This
LTERM must be for a 3270-family printer. There must
be at least one TP PCB whose destination is set to the
name of the GDDM-supplied print utility transaction.

Family-3 – system printers
The name-count value must be either 0 or 1:

0 An LTERM name is taken from the GDDM defaults.
The supplied default is ADMLIST.

1 An LTERM name is taken from name-list(1).

There must be at least one TP PCB whose destination
is set to the LTERM name. This LTERM must be for a
SPOOL printer.

If name-list contains “ñ”, the printer is used as described
for a name-count of 0.

Family-4 – page-printer files
Not applicable under IMS.

 TSO name-list
Note: If output has been redirected using the TOFILE
procopt, the name-list format will be different from the
description in this section. Refer to page 409.

Family-1 – 3270 terminals
The name-count value must be 0, 1, or 2:

0 The device is the TSO console from which the
application is being run.

1 Name-list(1) must contain either “ñ” or blanks. If it
contains “ñ”, the terminal is used as described for a
name-count of 0.

2 Name-list(1) must contain either “ñ” or blanks. If
name-list(2) contains “ñ”, the terminal is used as
described for a name-count of 1. Otherwise, the
name-list(2) value is the name of an auxiliary
device (a plotter or printer).

Family-2 – queued printers
The name-count value must be 1.

The name-list(1) value is the device identifier of the
printer. This device identifier must be one of the names
in the Master Print Queue data set of the GDDM print
utility. Under VTAM, the device identifier must be
included in SYS1.VTAMLIST.

Family-3 – system printers
The name-count value must be either 0 or 1:

0 A ddname for a SYSOUT file is taken from the
GDDM defaults. The supplied default is ADMLIST.

1 A ddname for a SYSOUT file is taken from
name-list(1).

If name-list(1) contains “ñ”, the printer is used as
described for a name-count of 0.

Family-4 – page-printer files
| The name-count value must be in the range 1 through
| 7.

The name-list value defines:

| � The DDNAME for a sequential file or member of a
| partitioned dataset. The DDNAME must be already
| allocated to the sequential file or partitioned dataset
| and member.

| � The DSNAME for a sequential file.

| � The DSNAME of a partitioned dataset and the
| member name, in the form
| pdsname(membername).

More than one data set is generated if a color master
table is being used (as specified by processing option
group 3000).

By allocating the DDNAME to a suitable SYSOUT class,
family-4 output can be sent directly to a print server,
such as PSF/MVS.

Monochrome master

The name-list value must be of one of these:

ñ A name is taken from the GDDM external default
TSOMONO. The supplied default is ADMIMAGE.

The inferred name is searched for as a DDNAME.
If it cannot be found as a DDNAME, it is formed
into a DSNAME of the form “qualifier(s).name”
(where qualifier(s) is the active dsn-prefix, or user
ID, or both of these).

name1.name2[.name3..] , 'name1[.name2.
| name3..] ', or name1.name2[(membername)] The

specified name is taken as a DSNAME, according
to TSO naming conventions. Unless contained in
quotes, the specified name must contain one (and
only one) component of “.ñ”. Whether contained in

416 GDDM Base Application Programming Reference

 name-lists

quotes or not, if any one component of the name is
“ñ”, that component is replaced with a value taken
from the GDDM defaults. The supplied default is
ADMIMAGE.

If contained in quotes, the name is taken as a com-
plete DSNAME. If not contained in quotes, it is
formed into a complete DSNAME of the form:

'qualifier(s).name1.name2...'

where qualifier(s) is the active dsn-prefix, or user
ID, or both of these.

If the specified name is longer than 8 characters, it
must be placed in consecutive members of the
array, and, if necessary, padded with blanks.

For example, if the DSNAME is contained in
quotes and is:

aaaa.bbbb.ccc

then it would look like this:

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

namelist(1) = │ ' │ a │ a │ a │ a │ . │ b │ b │

 └───┴───┴───┴───┴───┴───┴───┴───┘

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

namelist(2) = │ b │ b │ . │ c │ c │ c │ ' │ │

 └───┴───┴───┴───┴───┴───┴───┴───┘

In PL/I, a string can be overlaid on the array to
simplify this (but the name-count must still specify
the number of 8-byte tokens).

Color masters

The name-list value must be of one of these:

ñ A value is taken from the GDDM defaults. The
supplied default is ADMCOL+. The “+” is replaced
by 1, 2, 3, and so on (up to a maximum of 9) for
each color master data set.

The first derived name (for example, ADMCOL1), is
searched for as a ddname. If it is found as a
ddname, all the other derived names must also
exist as ddnames. If it cannot be found as a
ddname, all the derived names are formed into
DSNAMEs of the form:

'qualifier(s).name'

where qualifier(s) is the active dsn-prefix, or user
ID, or both of these.

name1.name2[.name3..] or 'name1[.name2.name3..] '
The specified name is taken to identify DSNAMEs,
according to TSO naming conventions. The speci-
fied name must contain one (and only one) compo-
nent of “ñ”. That component is replaced with a
value taken from the GDDM defaults. The supplied
default is ADMCOL+. The “+” is replaced by 1, 2,
3, and so on, (up to a maximum of 9) for each
color master data set.

If contained in quotes, the derived names are taken
as complete DSNAMEs. If not contained in quotes,

they are formed into complete DSNAMEs of the
form “qualifier(s).name1.name2...” (where
qualifier(s) is the active dsn-prefix, or user ID, or
both of these).

If the specified name is longer than 8 characters, it
must be placed in consecutive members of the
array, and, if necessary, padded with blanks.

For example, if the DSNAME is contained in
quotes and is

aaaa.\.ccc

where “ñ” is replaced by ADMCOL1, ADMCOL2,
and so on, then it would look like this:

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

namelist(1) = │ ' │ a │ a │ a │ a │ . │ \ │ . │

 └───┴───┴───┴───┴───┴───┴───┴───┘

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

namelist(2) = │ c │ c │ c │ ' │ │ │ │ │

 └───┴───┴───┴───┴───┴───┴───┴───┘

In PL/I, a string can be overlaid on the array to
simplify this (but the name-count must still specify
the number of 8-byte tokens).

In this example, the derived DSNAMEs when using
a color table specifying four-color masters would
be:

'aaaa.ADMCOL1.ccc'

'aaaa.ADMCOL2.ccc'

'aaaa.ADMCOL3.ccc'

'aaaa.ADMCOL4.ccc'

 MVS/Batch name-list
Note: If output has been redirected using the TOFILE
procopt, the name-list format will be different from the
description in this section. Refer to page 409.

Family-1 – 3270 terminals
The name-count value must be 1.

Name-list(1) must either contain blanks or the
TSOEMUL external default must be set to “YES”.

Family-2 – queued printers
The name-count value must be 1.

The name-list(1) value is the device identifier of the
printer. This device identifier must be one of the names
in the Master Print Queue data set of the GDDM print
utility. Under VTAM, the device identifier must be
included in SYS1.VTAMLIST.

Family-3 – system printers
The name-count value must be either 0 or 1:

0 A ddname for a SYSOUT file is taken from the
GDDM defaults. The supplied default is ADMLIST.

1 A ddname for a SYSOUT file is taken from
name-list(1).

 Chapter 20. Name-lists 417

 name-lists

If name-list(1) contains “ñ”, the printer is used as
described for a name-count of 0.

Family-4 – page-printer files
The name-count value must be 1 through 6.

The name-list value defines the DDNAME(s) or
DSNAME(s) of the data set(s) that will be generated.
More than one data set is generated if a color master
table is being used (as specified by processing option
group 3000).

SYSOUT(n) is a valid setting.

Monochrome master

The name-list value must be of one of these:

ñ A name is taken from the GDDM defaults. The
supplied default is ADMIMAGE.

The inferred name is searched for as a DDNAME.

For further details about MVS/BATCH name-list,
refer to the TSO name-list section.

 VM name-list
Note: If output has been redirected using the TOFILE
procopt, the name-list format will be different from the
description in this section. Refer to page 409.

Family-1 – IBM 3270 terminals
The name-count value must be 0, 1, or 2:

0 The device is the CMS console from which the
application is being run.

1 Name-list(1) must contain one of these:
 � “ñ”
 � Blanks
 � “PUNCH”
� A character form of device address (for

example “061”).

If name-list(1) contains “ñ”, the terminal is used as
described for a name-count of 0.

If name-list(1) = “PUNCH”, GDDM writes the 3270
device output to the CMS virtual punch, in the form
described in the GDDM Base Application Program-
ming Guide. In this case, the application must
provide a device token parameter to supply the
device characteristics that are to be used by
GDDM.

2 Name-list(1) must contain one of these:
 � “ñ”
 � Blanks
� A character form of device address (for

example “061”).

If name-list(2) contains “ñ”, the terminal is used as
described for a name-count of 1. Otherwise, the
name-list(2) value is the name of an auxiliary
device (a plotter or printer).

Family-2 – queued printers
The name-count value must be in the range 1 through
3.

Unless processing option group 1004 (INVKOPUV) is
specified, the name-list(1), name-list(2), and name-list(3)
values define the file name, file type, and file mode
(respectively) of the print file that is to be generated.
The supplied default for filetype is ADMPRINT.
Filemode defaults to A1.

If automatic invocation of the VM Print Utility is
requested (as specified by INVKOPUV), name-count
and name-list identify a family-1 device, and must there-
fore be as defined for family-1 (above).

Family-3 – system printers
The name-count value must be 0, 1, 2, or 3:

0 The device is the currently defined
printer; that is, device 00E.

1 through 3 Name-list(1), name-list(2), and
name-list(3) define the file name, file
type, and file mode (respectively) of the
print file that is to be generated. The
supplied default for filetype is ADMLIST.
Filemode defaults to A1.

When name-list(1) contains “ñ”, the printer is used as
described for a name-count of 0.

Family-4 – page-printer files
The name-count value must be in the range 1 through
3.

The name-list(1), name-list(2), name-list(3) values define
the file name, file type, and file mode, respectively, of
the CMS file(s) that is generated. More than one file is
generated if a color master table is being used (as
specified by processing option group 3000).

For both monochrome and multicolor masters, “A1” is
assumed if the filemode is omitted.

A family-4 namelist value of “PRINTER” causes subse-
quent output to be directed to the virtual printer, instead
of to a file. It is intended for use only with AFPDS files,
and takes effect only if the name-count value is “1.” If a
namelist value of “PRINTER” is used with non-AFPDS
family-4 files, errors are likely to occur.

Monochrome master
When the filetype is omitted or is speci-
fied as “ñ”, the filetype is taken from the
GDDM external default CMSMONO. The
supplied default is ADMIMAGE.

Color masters
If only one color master is specified in
the MASTERS option of the ADMMCOLT
macro, the filetype can be explicitly
given. Otherwise, when the filetype is
specified, it must be “ñ”. The filetype is
taken from the GDDM defaults. The sup-
plied default is ADMCOL+. The “+” is
replaced by 1, 2, 3, and so on (up to a
maximum of 9) for each color master file.

418 GDDM Base Application Programming Reference

 name-lists

For example, if:

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

namelist(1) = │ a │ a │ a │ a │ │ │ │ │

 └───┴───┴───┴───┴───┴───┴───┴───┘

 ┌───┬───┬───┬───┬───┬───┬───┬───┐

namelist(2) = │ \ │ │ │ │ │ │ │ │

 └───┴───┴───┴───┴───┴───┴───┴───┘

the derived file identifiers when using a
color table specifying four-color masters
would be:

aaaa ADMCOL1 A1

aaaa ADMCOL2 A1

aaaa ADMCOL3 A1

aaaa ADMCOL4 A1

 Chapter 20. Name-lists 419

 name-lists

420 GDDM Base Application Programming Reference

 device tokens

Chapter 21. Device characteristics tokens

This chapter describes the device characteristic tokens
(usually called device tokens) supplied by GDDM. Many
Input/Output tasks in GDDM can be done without using
device tokens at all; however, there are some instances
where they should be used. For example:

� Under IMS/VS, to define the database that links the
characteristics of terminals with logical terminal names,
and so determine the type of data stream that GDDM
sends.

� To specify some special types of device, such as
AFPDS printers, in a DSOPEN call.

� To override the information obtained by GDDM about a
particular device so that device information is taken from
the token rather than from the device itself, which is the
usual source.

Notes:

1. The paper sizes quoted in this chapter generally refer to
the usable area, not the actual sheet size.

2. Tokens for some obsolete devices have been omitted
from the tables in this chapter. These tokens are still
available in the ADMLSYSn modules.

Creating your own device tokens

The GDDM-supplied device tokens are designed to cater for
most requirements. For further information, refer to the
GDDM System Customization and Administration book.

Device tokens for ASCII graphics displays

Device tokens are required to define the characteristics of
ASCII graphics displays. GDDM normally selects the rele-
vant token based on information received from the 3174 con-
troller attached to the ASCII graphics display. Alternatively, a
token may be specified in a DSOPEN call or by means of a
nickname. ASCII device tokens are contained in the module

ADMLSYSA and any extra ones supplied at installation must
be added to this module.

GDDM-supplied device tokens

The GDDM-supplied device tokens are shown in the tables
below.

Note: Your installation may have changed the
GDDM-supplied device tokens or created tokens of their
own.

The meanings of the tokens are shown as the macro defi-
nitions used to create them. You may need to study the
meanings of the macro operands to understand the tokens.
The operands are explained in the GDDM System
Customization and Administration book.

The GDDM-supplied device tokens are grouped as follows:

� Table 47: queriable terminals, plotters, and printers
(family 1 or family 2)

� Table 48 on page 425: Kanji devices, and 8775 and
3290 displays (family 1)

� Table 49 on page 426: ASCII devices (family 1)

� Table 50 on page 426: Nonqueriable diplays and
printers

� Table 51 on page 427: GDDM-PCLK displays, printers,
and plotters (family 1)

� Table 52 on page 428: system printers (family 3)

� Table 53 on page 428: AFPDS printers (family 4)

| � Table 54 on page 429: PostScript printers (family 4)

� Table 55 on page 430: page printers (family 4).

Table 47 (Page 1 of 4). GDDM-supplied device tokens. Device tokens are provided for queriable terminals, plotters, and printers (family
1 or family 2). This set of token definitions is part of ADMLSYS1. The buffer code corresponds to the code in the dev parameter of the
ADMM3270 macro. A device token of ñ is sufficient for printers if they are directly attached.

Locally attached 3179 Models G1 and G2, 3192-G, and 3472-G displays
Device token Model Screen size

Rows by columns
Mouse Tablet

L3179G 3179-G 32 by 80 No No
L3179GM 3179-G 32 by 80 Yes No
L3472G 3472-G 32 by 80 No No
L3472GM 3472-G 32 by 80 Yes No
L3472GT 3472-G 32 by 80 No Yes

 Copyright IBM Corp. 1980, 1996 421

 device tokens

Table 47 (Page 2 of 4). GDDM-supplied device tokens. Device tokens are provided for queriable terminals, plotters, and printers (family
1 or family 2). This set of token definitions is part of ADMLSYS1. The buffer code corresponds to the code in the dev parameter of the
ADMM3270 macro. A device token of ñ is sufficient for printers if they are directly attached.

Locally attached 3270-PC displays
Device token Model
L3270PC 3270-PC displays
Locally attached 3270-PC/G workstations
Device token Model Screen size

Rows by columns
Mouse Tablet

L5279A1 3270-PC/G 32 by 80 No No
L5279A1M 3270-PC/G 32 by 80 Yes No
L5279A1T 3270-PC/G 32 by 80 No Yes
L5279A2 3270-PC/G 49 by 80 No No
L5279A2M 3270-PC/G 49 by 80 Yes No
L5279A2T 3270-PC/G 49 by 80 No Yes
ADMKPCA1
See note 1 on
page 424.

3270-PC/G 32 by 80 No No

Locally attached 3270-PC/GX workstations
Device token Model Screen size

Rows by cols
Mouse Tablet Color Dual screen

L5379CS 3270-PC/GX 32 by 80 No No Yes No
L5379CSM 3270-PC/GX 32 by 80 Yes No Yes No
L5379CST 3270-PC/GX 32 by 80 No Yes Yes No
L5379MS 3270-PC/GX 32 by 80 No No No No
L5379MSM 3270-PC/GX 32 by 80 Yes No No No
L5379MST 3270-PC/GX 32 by 80 No Yes No No
L5379CD 3270-PC/GX 32 by 80 No No Yes Yes
L5379CDM 3270-PC/GX 32 by 80 Yes No Yes Yes
L5379CDT 3270-PC/GX 32 by 80 No Yes Yes Yes
L5379MD 3270-PC/GX 32 by 80 No No No Yes
L5379MDM 3270-PC/GX 32 by 80 Yes No No Yes
L5379MDT 3270-PC/GX 32 by 80 No Yes No Yes
Locally attached 3279 displays.
Device token Model
L79A2 3279–2
L79A3 3279–3
Remotely attached 3279 displays. See note 2 on page 424.
Device token Model
R79A2 3279–2
R79A3 3279–3
Plotters attached to 3179 Models G1 and G2, 3192-G, and 3472-G displays
Device token Plotter
L3179G80 6180
L3179G82 6182
L3179G84 6184
L3179G85 6185
L3179G86 6186
L3179G87 6187
L3G862 6186-2
L3G872 6187-2
L3179G71 7371
L3179G72 7372

| Special plotter tokens for non-IBM plotters (similar to the IBM plotters listed above) attached to IBM 3179 Models G1 and G2,
| 3192-G, and 3472-G displays (see note 3 on page 424.)
| Device token
| L3179A71
| L3179A72
| L3179A80
| L3179A82
| L3179A84
| L3179A85
| L3179A86

422 GDDM Base Application Programming Reference

 device tokens

| Table 47 (Page 3 of 4). GDDM-supplied device tokens. Device tokens are provided for queriable terminals, plotters, and printers (family
| 1 or family 2). This set of token definitions is part of ADMLSYS1. The buffer code corresponds to the code in the dev parameter of the
| ADMM3270 macro. A device token of ñ is sufficient for printers if they are directly attached.

Plotters attached to 3270-PC/G and /GX workstations
Device token Plotter
L6180 6180
L6182 6182
L6184 6184
L6185 6185
L6186 6186
L6187 6187
L61862 6186-2
L61872 6187-2
L7371 7371
L7372 7372
L7374 7374
L7375 7375
Plotters attached to 5550-family workstations
Device token Plotter
L5550G71 7371
L5550G72 7372
Locally attached 3262, 3268, and 3287 printers
Device token Model Protocols Page size

Rows by columns
Comments

L68 3268 LU-3
L68S 3268 LU-3 68 by 132
L68Q 3268 LU-3 88 by 85
L87 3287 LU-3 4-color only
L87S 3287 LU-1 (SCS) 4-color only
L3262 3262 belt printer
Remotely attached 3287 printers. See note 2 on page 424.
Device token Model Protocols Comments
R87 3287 LU-3 4-color only
R87S 3287 LU-1 (SCS) 4-color only
3812 Model 2 IPDS printers with 3270 attachment feature.
Device token Protocols Page size

Rows by columns
Paper

X3812A4 LU-0 93 by 82 A4
X3812Q LU-0 88 by 85 Quarto (U.S. letter)
X3812L LU-0 112 by 85 Legal
S3812A4 LU-1 (SCS) 93 by 82 A4
S3812Q LU-1 (SCS) 88 by 85 Quarto (U.S. letter)
S3812L LU-1 (SCS) 112 by 85 Legal
3816 IPDS printer with 3270 attachment feature.
Device token Protocols Rows by columns Paper
X3816A4 LU-0 93 by 82 A4
X3816Q LU-0 88 by 85 Quarto (U.S. letter)
X3816L LU-0 112 by 85 Legal
S3816A4 LU-1 (SCS) 93 by 82 A4
S3816Q LU-1 (SCS) 88 by 85 Quarto (U.S. letter)
S3816L LU-1 (SCS) 112 by 85 Legal
Image display
Device token Display station
L3193 3193
Image display with attached scanner
Device token Scanner
L319317 3117 flat-bed
L319318 3118 sheet-feed

 Chapter 21. Device characteristics tokens 423

 device tokens

Table 47 (Page 4 of 4). GDDM-supplied device tokens. Device tokens are provided for queriable terminals, plotters, and printers (family
1 or family 2). This set of token definitions is part of ADMLSYS1. The buffer code corresponds to the code in the dev parameter of the
ADMM3270 macro. A device token of ñ is sufficient for printers if they are directly attached.

| 3112, 3116, 3912, and 3916 IPDS printers
| Device token| Protocols| Page size
| Rows by columns
| Paper

| X3912A4 | LU-0 | 90 by 80 | A4
| X3912Q | LU-0 | 84 by 82 | Quarto (U.S. letter)
| X3912L | LU-0 | 108 by 82 | Legal
| S3912A4 | LU-1 (SCS) | 90 by 80 | A4
| S3912Q | LU-1 (SCS) | 84 by 82 | Quarto (U.S. letter)
| S3912L | LU-1 (SCS) | 108 by 82 | Legal

4028 IPDS printers
Device token Protocols Page size

Rows by columns
Paper

X4028A4 LU-0 90 by 80 A4
X4028Q LU-0 84 by 82 Quarto (U.S. letter)
X4028L LU-0 108 by 82 Legal
S4028A4 LU-1 (SCS) 90 by 80 A4
S4028Q LU-1 (SCS) 84 by 82 Quarto (U.S. letter)
S4028L LU-1 (SCS) 108 by 82 Legal
4224 printers
Device token Protocols RAM Paper size

Rows by columns
Loadable alphanumeric
symbol sets

X4224SS LU-0 64KB 68 by 132 No
X4224SE LU-0 512KB 68 by 132 Up to 6
X4224QS LU-0 64KB 88 by 85 No
X4224QE LU-0 512KB 88 by 85 Up to 6
X4224A4S LU-0 28KB 93 by 82 No
X4224A4E LU-0 445KB 93 by 82 No
S4224SS LU-1 (SCS) 64KB 68 by 132 No
S4224SE LU-1 (SCS) 512KB 68 by 132 Up to 6
S4224QS LU-1 (SCS) 64KB 88 by 85 No
S4224QE LU-1 (SCS) 512KB 88 by 85 Up to 6
S4224A4S LU-1 (SCS) 28KB 93 by 82 No
S4224A4E LU-1 (SCS) 445KB 93 by 82 No
4230 printers. See note 4.
Device token Protocols RAM Paper size

Rows by columns
Loadable alphanumeric
symbol sets

X4230S LU-0 128KB 68 by 132 No
X4230Q LU-0 128KB 88 by 85 No
X4230A4 LU-0 128KB 93 by 82 No
S4230S LU-1 (SCS) 128KB 68 by 132 No
S4230Q LU-1 (SCS) 128KB 88 by 85 No
S4230A4 LU-1 (SCS) 128KB 93 by 82 No
4234 printers. See note 4.
Device token Protocols RAM Paper size

Rows by columns
Loadable alphanumeric
symbol sets

X4234S LU-0 512KB 68 by 132 Up to 4
X4234Q LU-0 512KB 88 by 85 Up to 4
X4234A4 LU-0 512KB 93 by 82 Up to 4
S4234S LU-1 (SCS) 512KB 68 by 132 Up to 4
S4234Q LU-1 (SCS) 512KB 88 by 85 Up to 4
S4234A4 LU-1 (SCS) 512KB 93 by 82 Up to 4
Notes:

1. Generated for use by the ADMUPC utility for dummy devices.

2. PS compression is specified, for these controlling attached devices.

| 3. Instead of PLOTTER, these device tokens use PLOTNAO, which specifies that the plotter is not an auxiliary-only plotter. These
| tokens are intended for use only in circumstances where incompatibilities between the plotter and the display terminal prevent GDDM
| from querying the plotter device. The normal PLOTTER device tokens cannot be used because their the “auxiliary-only” attribute
| prevents the attachment of the primary device.

| 4. The device tokens used with LU-1 (SCS) protocols require the printer to be set to 10 characters per inch and 8 lines per inch.

424 GDDM Base Application Programming Reference

 device tokens

Table 48. GDDM-supplied device tokens for Kanji devices, and 3290 displays (family 1). This set of token definitions is part of
ADMLSYS1.

Japanese displays and printers
Device token Model Protocols
K78A2 3278-2 display
K83S 3283 printer LU-1 (SCS)
K83 3283-2 printer LU-1 (SCS)
Japanese 5550-family workstations (non-graphics)
Device token Model Protocols
L5550A 5550 display
L5553A 5553 printer LU-3

| L5553A1 | 5553 printer | LU-1 (SCS)
L5550G4 3270-PC Version 4.0
L5550H4 3270-PC Version 4.0 color
L5553B34 5553 printer LU-3

| L5553B14 | 5553 printer | LU-1 (SCS)
Japanese 5550-family workstations (graphics)
Device token Model Font
L5550GC2 3270-PC/G version 2 display 16 × 24
L5550GH2 3270-PC/G version 2 display 24 × 24
L5550GC3 3270-PC/G version 3 display 16 × 24
L5550GH3 3270-PC/G version 3 display 24 × 24
L5550GC5 3270-PC/G version 5 display 16 × 16
L5550GH5 3270-PC/G version 5 display 24 × 24

| 3290 displays with APL, 16 partitions, whole screen and variable cell sizes
| Device token | Model | Screen size
| rows by cols
| cell size

ADMK9020	model 2	24 × 80	9 × 16
ADMK9030	model 3	32 × 80	9 × 16
ADMK9040	model 4	43 × 80	9 × 16
ADMK9050	model 5	27 × 132	7 × 16
ADMK9060	model 6	62 × 160	6 × 12
8775 terminals with partitions and scrolling			
Device token	Model		

| ADMK7510 | model 1
| ADMK7520 | model 2
| ADMK7530 | model 3
| ADMK7540 | model 4
| |

| 8775 terminals with partitions and programmed symbols
| Device token | Model

| ADMK751S | model 1
| ADMK752S | model 2
| ADMK753S | model 3
| ADMK754S | model 4
| |

 Chapter 21. Device characteristics tokens 425

 device tokens

Table 49. GDDM-supplied device tokens for support of ASCII devices (family 1). These definitions are for ASCII graphics devices. This
set of token definitions is part of ADMLSYSA.

Device token Model Screen size
Rows by cols

Screen size
Pixels

Mouse Graphics colors

DEC240 DEC VT240 24 by 80 240 by 800 No None
DEC241 DEC VT241 24 by 80 240 by 800 No 4
DEC330 DEC VT330 24 by 80 480 by 800 No None
DEC330M DEC VT330 24 by 80 480 by 800 Yes None
DEC340 DEC VT340 24 by 80 480 by 800 No 16
DEC340M DEC VT340 24 by 80 480 by 800 Yes 16
TEK4105 Tektronix 4105 30 by 80 360 by 480 No 8
TEK4205 Tektronix 4205 30 by 80 360 by 480 No 16
TEK4205M Tektronix 4205 30 by 80 360 by 480 Yes 16
TEK4207 Tektronix 4207 32 by 80 480 by 640 No 16
TEK4207M Tektronix 4207 32 by 80 480 by 640 Yes 16
TEK4208 Tektronix 4208 32 by 80 480 by 640 No 16
TEK4208M Tektronix 4208 32 by 80 480 by 640 Yes 16
TEK4209 Tektronix 4209 32 by 80 480 by 640 No 16
TEK4209M Tektronix 4209 32 by 80 480 by 640 Yes 16

| Table 50. GDDM-supplied device tokens for nonqueriable displays and printers (family 1). This set of token definitions is part of
| ADMLSYS1.

| 3277 displays
| Device token | Model
| ADMK7710| 3277 Model 1
| ADMK771A| 3277 Model 1 with APL
| ADMK7720| 3277 Model 2
| ADMK772A| 3277 Model 2 with APL
| 3277 displays
| ADMK7810| 3278 Model 1
| ADMK781A| 3278 Model 1 with APL
| ADMK7820| 3278 Model 2
| ADMK782A| 3278 Model 2 with APL
| ADMK7830| 3278 Model 3
| ADMK783A| 3278 Model 3 with APL
| ADMK7840| 3278 Model 4
| ADMK784A| 3278 Model 4 with APL
| ADMK7850| 3278 Model 5
| ADMK785A| 3278 Model 5 with APL
| Nonqueriable printers
| ADMKQUEP| default token for family-2 (queued) printers
| ADMK8710| 3287 Model 1
| ADMK871A| 3287 Model 1 with APL

426 GDDM Base Application Programming Reference

 device tokens

Table 51. GDDM-supplied device tokens for GDDM-PCLK displays, printers, and plotters (family 1). This set of token definitions is part of
ADMLSYS1.

GDDM-PCLK workstation configurations
Device token Graphics card Rows by columns Pixels Graphics colors
LPCM CGA 24 by 80 640 by 200 None
LPCC1 EGA 24 by 80 640 by 200 16
LPCC2 EGA 24 by 80 640 by 350 16
LPCC3 PS/2 display adapter 24 by 80 640 by 480 16

LPCC4 PS/2 display adapter
8514/A

24 by 80 1024 by 768 16

LPCC5 PS/2 display adapter
MCGA

24 by 80 640 by 480 2

GDDM-PCLK workstation configurations with a locally attached printer
Device token Printer
LPC3852 3852 color ink-jet
LPC4201 4201 Proprinter
LPC42012 4201 Model 2 Proprinter
LPC4202 4202 Proprinter XL
LPC4207 4207 Proprinter X24
LPC4208 4208 Proprinter XL24
LPC5152 5152 monochrome graphics
LPC5182 5182 color impact
LPC5201 5201 Quietwriter
LPC5202 5202 Quietwriter III
GDDM-PCLK workstation configurations with a locally attached plotter
Device token Plotter Pens

LPC7371 7371 2
LPC7372 7372 6
LPC7374 7374 8
LPC7375 7375 8
LPC6180 6180 8
LPC6182 6182 8
LPC6184 6184 8
LPC6185 6185 8
LPC6186 6186 8
LPC6187 6186 8
LPC61862 6186-2 8
LPC61872 6187-2 8

 Chapter 21. Device characteristics tokens 427

 device tokens

Table 52. GDDM-supplied device tokens for system printers (family 3). This set of token definitions is part of ADMLSYS3.

System printers
Device token Comments
ADMKSYSP Default for non-3800 printers
1403 printers
Device token Model Rows by columns Lines per inch
S1403N6 1403 66 by 85 6
S1403N8 1403 88 by 85 8
S1403W6 1403 66 by 132 6
S1403W8 1403 88 by 132 8
3800 printers
Note: Device tokens for 3800 printers can also be used for 3812 and 3820 printers.
Device token Model Rows by columns Lines per inch
S3800N6 3800 60 by 85 6
S3800N8 3800 80 by 85 8
S3800N12 3800 120 by 85 12
S3800W6 3800 60 by 136 6
S3800W8 3800 80 by 136 8
S3800W12 3800 117 by 136 12
S3800N6S 3800 45 by 110 6
S3800N8S 3800 60 by 110 8
S3800W6S 3800 45 by 136 6
S3800W8S 3800 60 by 136 8

Table 53 (Page 1 of 2). GDDM-supplied device tokens for cell-based AFPDS page printers (family 4). This set of token definitions is
part of ADMLSYS4. These tokens support alphanumeric and alternate device functions and are designed to facilitate production of
family-4 AFPDS output from applications that normally produce family-1 or family-2 print output. The tokens define a font and code page,
to be used for alphanumerics, that can be modified to suit your installation. For more information, refer to the GDDM System
Customization and Administration book.

3800 printer at 240 pixels per inch: IM. See note 1 on page 429.
Device token Rows by columns Pixels Lines per inch
A3800S 60 by 110 1800 by 2640 8
A3800Q 85 by 82 2550 by 1968 8
A3800A4 90 by 80 2700 by 1920 8
B3800S 45 by 110 1800 by 2640 6
B3800Q 63 by 82 2520 by 1968 6
B3800A4 67 by 80 2680 by 1920 6
3812 and 3816 printers at 240 pixels per inch: GOCA, IOCA
Device token Rows by columns Pixels Lines per inch
A3816Q 85 by 82 2550 by 1968 8
A3816A4 90 by 80 2700 by 1920 8
B3816Q 63 by 82 2520 by 1968 6
B3816A4 67 by 80 2680 by 1920 6
3812 and 3816 printers supported by VM3812
Device token Rows by columns Pixels Lines per inch
AVM38Q 85 by 82 2550 by 1968 8
AVM38A4 90 by 80 2700 by 1920 8
BVM38Q 63 by 82 2520 by 1968 6
BVM38A4 67 by 80 2680 by 1920 6
3820, 3827, and 3828 printers at 240 pixels per inch: IM
Device token Rows by columns Pixels Lines per inch Comments
A3820Q 85 by 82 2550 by 1968 8
A3820A4 90 by 80 2700 by 1920 8
B3820Q 63 by 82 2520 by 1968 6
B3820A4 67 by 80 2680 by 1920 6
J3820Q 63 by 82 2520 by 1968 6 DBCS Kanji support
J3820A4 67 by 80 2680 by 1920 6 DBCS Kanji support
3825 printer at 240 pixels per inch: GOCA, IOCA. See note 2 on page 429.
Device token Rows by columns Pixels Lines per inch
A3825Q 85 by 82 2550 by 1968 8
A3825A4 90 by 80 2700 by 1920 8
B3825Q 63 by 82 2520 by 1968 6
B3825A4 67 by 80 2680 by 1920 6

428 GDDM Base Application Programming Reference

 device tokens

Table 53 (Page 2 of 2). GDDM-supplied device tokens for cell-based AFPDS page printers (family 4). This set of token definitions is
part of ADMLSYS4. These tokens support alphanumeric and alternate device functions and are designed to facilitate production of
family-4 AFPDS output from applications that normally produce family-1 or family-2 print output. The tokens define a font and code page,
to be used for alphanumerics, that can be modified to suit your installation. For more information, refer to the GDDM System
Customization and Administration book.

3835 printer at 240 pixels per inch: GOCA, IOCA. See note 2.
Device token Rows by columns Pixels Lines per inch
A3835S 60 by 110 1800 by 2640 8
B3835S 45 by 110 1800 by 2640 6

| 3112, 3116, 3912, 3916, and 4028 printers at 300 pixels per inch: GOCA, IOCA
Device token Rows by columns Pixels Lines per inch
A4028Q 84 by 82 3150 by 2460 8
A4028A4 90 by 80 3375 by 2400 8
B4028Q 63 by 82 3150 by 2460 6
B4028A4 67 by 80 3350 by 2400 6
4224, 4230, and 4234 printers at 144 pixels per inch: GOCA, IM
Device token Rows by columns Pixels Lines per inch
A4224S 85 by 132 1530 by 1901 8
A4224Q 84 by 82 1512 by 1181 8
A4224A4 90 by 80 1620 by 1152 8
B4224S 63 by 132 1512 by 1901 6
B4224Q 63 by 82 1512 by 1181 6
B4224A4 67 by 80 1608 by 1152 6
Notes:

1. IBM 3800 device tokens apply to IBM 3800 Model 3, Model 6, Model 8, and 3900 printers.

2. These device tokens are for printers that have the Advanced Function Image and Graphics Feature. For 3825 and 3835 printers
without this feature, use the 3800 or 3820 Device Tokens.

| Table 54 (Page 1 of 2). GDDM-supplied device tokens for PostScript printers (family 4). This set of token definitions is part of
| ADMLSYS4.

| Notes:

| 1. All tokens in this table produce PostScript output files.

| 2. The following device tokens produce output with a line width of 2 by default. A copy of these tokens is also supplied with a suffix of
| “3” so that PostScript output with slightly bolder lines can be produced. For example, using device token P4079B3 gives the same
| characteristics as device token P4079B, but produces output for a 4079 printer (paper size B) with a line width of 3. See the LINEW
| parameter of the ADMMPSCR macro in the GDDM System Customization and Administration book.
| Device token| Paper size - inches
| width by depth
| Resolution
| pixels per inch
| Type| Paper

| Generic level-1 monochrome printer
| PPS1MA4 | 8.0 × 11.7 | 300 | PS1M | A4
| PPS1MQ | 8.5 × 11.0 | 300 | PS1M | Quarto
| Generic level-2 monochrome printer
| PPS2MA4 | 8.0 × 11.7 | 300 | PS2M | A4
| PPS2MQ | 8.5 × 11.0 | 300 | PS2M | Quarto
| Generic level-1 color printer
| PPS1CA4 | 8.0 × 11.7 | 300 | PS1C | A4
| PPS1CQ | 8.5 × 11.0 | 300 | PS1C | Quarto
| Generic level-2 color printer
| PPS2CA4 | 8.0 × 11.7 | 300 | PS2C | A4
| PPS2CQ | 8.5 × 11.0 | 300 | PS2C | Quarto
| PPS2CA3 | 8.0 × 16.0 | 360 | PS2C | A3
| PPS2CB | 11.0 × 17.0 | 360 | PS2C | B

 Chapter 21. Device characteristics tokens 429

 device tokens

| Table 54 (Page 2 of 2). GDDM-supplied device tokens for PostScript printers (family 4). This set of token definitions is part of
| ADMLSYS4.

| 4029 monochrome printer
| P4029A4 | 8.0 × 11.7 | 600 | PS1M | A4
| P4029Q | 8.5 × 11.0 | 600 | PS1M | Quarto
| 4079 color printer
| P4079A3 | 8.0 × 16.0 | 360 | PS1C | A3
| P4079B | 11.0 × 17.0 | 360 | PS1C | B

Table 55. GDDM-supplied device tokens for page printers (family-4). This set of token definitions is part of ADMLSYS4.

Note: All tokens in this table produce AFPDS-type output files for processing by PSF, unless stated otherwise.
Device token Paper size - inches

width by depth
Resolution
pixels per inch

Pixels per unit line
width

Paper

3800, 3812, 3816, or 3820 printer
IMG120 8.5 × 11.0 120 3 Quarto
IMG1201 8.5 × 11.0 120 1 Quarto
FINE120 13.9 × 12.5 120 1
EXECUTIV 7.5 × 10.5 240 3
A4 8.3 × 11.7 240 3 A4
P38PPN1 8.5 × 10.0 240 1
P38PPN3 8.5 × 10.0 240 3
IMG240 8.5 × 11.0 240 3 Quarto
IMG2401 8.5 × 11.0 240 1 Quarto
LETTER 8.5 × 11.0 240 3 Quarto
LEGAL 8.5 × 14.0 240 3 Legal
FINE240 13.9 × 12.5 240 1
IMG240X 13.9 × 12.5 240| 3

| 3112, 3116, 3912, 3916, and 4028 printers
IMG300A4 8.0 × 11.3 300 3 A4
IMG300Q 8.1 × 10.6 300 3 Quarto
IMG300L 8.1 × 13.6 300 3 Legal
4224 and 4230 printers
IMG144A4 8.3 × 11.7 144 1 A4
IMG144Q 8.5 × 11.0 144 1 Quarto
IMG144S 13.2 × 8.5 144 1
4250 printer. See notes 1 and 2.
ADMKHRIG 8.5 × 11.0 600 6
IMG85 8.5 × 11.0 600 6
IMG117 11.7 × 10.0 600 6
IMG600X 11.7 × 14.0 600 6
FINE600 11.7 × 14.0 600 1
IMGA3X 11.7 × 16.5 600 6 A3
IMG600Y 17.0 by 11.0 600 6
Canonical (unformatted) bit image output. See notes 3 and 4.
Device token Pixels
CAN512 512 × 512
CAN1024 1024 × 1024
Notes:

1. ADMKHRIG is the default device token for family 4 (page) printers.

2. The IMGxxxx device tokens produce CDPF-type output files for processing by CDPF.

3. The CAN512 and CAN1024 device tokens produce unformatted (bitmap) output.

4. The values given in DSOPEN’s processing option groups 5, 8, and 9 are overridden when the CAN512 and CAN1024 device tokens
are used.

430 GDDM Base Application Programming Reference

 special-purpose programming

Chapter 22. Special-purpose programming in GDDM

The System Programmer Interface (SPI) is provided for pro-
grammers who want to use GDDM as the basis for a
graphics system of their own. It enables GDDM functions to
be written in a coded form, it gives greater control over the
subsystem environment, and it allows greater programming
flexibility within the subsystem environment.

This chapter describes:

� “Using the system programmer interface,” below,

and

� “Specifying user exits” on page 432.

Using the system programmer interface

The system programmer interface is a special interface avail-
able to “system programming” types of applications. It is
available only in reentrant form, and shares many features
with the application-programmer reentrant interface. The
reentrant interfaces are described in Chapter 1, “GDDM pro-
gramming interface” on page 1.

In the simplest case, the system programmer interface
merely provides a means of accessing a GDDM function by
a function code (the Request Control Parameter, RCP) rather
than by selecting an entry point. Assembler-language
macros defining mnemonics for these function codes are pro-
vided.

Each call takes the form:

where ADMASP is the defined system programmer interface
entry point. ADMASP is a single entry point resolved by the
GDDM interface modules that are link-edited with the appli-
cation.

Note: The sample PL/I declarations do not include this entry
point, because it can only be called using the system pro-
grammer interface. The PL/I application programmer using
this call must, therefore, supply an entry-point declaration for
the system programmer interface, as described in Chapter 3,
“The GDDM calls” on page 21. For example:

DECLARE ADMASP EXTERNAL ENTRY OPTIONS (ASM,INTER);

 Parameters

aab (specified by user) (8-byte control block)
An Application Anchor Block, as described in Chapter 1,
“GDDM programming interface” on page 1.

rcp (specified by user) (fullword integer)
The Request Control Parameter, a 4-byte, fullword-
aligned function code defining the GDDM function to be

called. The GDDM RCP code is given, for each GDDM
call listed and described in Chapter 3, “The GDDM calls”
on page 21, in both hexadecimal and decimal format.
Also, the GDDM Diagnosis book contains a table
defining the RCP codes for all GDDM calls.

RCP codes are the function codes to be specified when
invoking GDDM and GDDM-PGF by means of the
system programmer interface (SPI). The codes are also
set by GDDM in error records passed to user error exits,
or produced in response to FSQERR calls.

Assembler-language tables ADMURCPB and
ADMURCPO define RCP codes. Table ADMURCPB
defines the RCP codes for GDDM only. ADMURCPO
defines the RCP codes for both GDDM and GDDM-PGF.

| (On CMS these tables are in ADMLIB MACLIB; on MVS
| they are in the SADMSAM data set; and on VSE they
| are supplied as member type Z.)

The RCP codes are defined as symbolic Assembler-
language EQUATE statements of mnemonics
(QQxxxxxx) to numeric values. The “xxxxxx” of the
mnemonic is the name of the GDDM or GDDM-PGF
function; for example,

QQFSINIT EQU X'ðCððððð1'

component parameters
The parameters for the function specified in the RCP.
These are as described for the specific function being
called.

Calls to the system programmer and reentrant interfaces can
be mixed, provided that the same application anchor block is
passed on each call.

 Initialization

This interface provides an alternative initialization function
(known as SPINIT) that allows control of environmental
aspects. SPINIT is an alternative to FSINIT and, if used,
must be the first GDDM statement to be run.

Note that your program would not use an explicit call to an
entry point called SPINIT. Instead, like all other system pro-
grammer interface calls, you would code a call to ADMASP.
The function is described for consistency as a SPINIT call,
as it behaves like the other GDDM calls, but it can only be
specified through the system programmer interface. The
GDDM Assembler language tables ADMURCPB and
ADMURCPO include the mnemonic QQSPINIT.

For the syntax of the SPINIT call, see Chapter 3, “The
GDDM calls” on page 21. The details of the spib-block
parameter are listed below.

CALL ADMASP (aab,rcp,component parameters,...)

 Copyright IBM Corp. 1980, 1996 431

 special-purpose programming

Table 56. SPIB format

Offset
(hex)

Length
(bytes)

Label Usage

0 4 SPIBHEAD Spare. Reserved for the application program to use as an eye-catcher.

4 4 SPIBLENG Length of SPIB.

8 4 SPIBUDSL Length of user default specification list.

C 4 SPIBUDSP Address of user default specification list.

10 4 SPIBGSXP Address of application-defined GET STORAGE exit.

14 4 SPIBGSXK User-defined parameter to be passed to the application program’s GET STORAGE exit.

18 4 SPIBFSXP Address of application-defined FREE STORAGE exit.

1C 4 SPIBFSXK User-defined parameter to be passed to the application program’s FREE STORAGE exit.

The system programmer interface block
The system programmer interface block (SPIB or SPIB-block)
is a table giving control information. The contents of this
table are processed by GDDM during initialization. Subse-
quent changes to the contents do not affect GDDM proc-
essing. The storage containing the table can be released
after initialization has been completed.

Note: Since Version 1 Release 4, GDDM supports an
abbreviated format of the SPIB. This is described below. A
number of the functions that were previously available in the
SPIB are now available through other GDDM calls, which
can be issued immediately after the SPINIT call. For
example, the functions of the SPIBOPNF, SPIBPA2F,
SPIBXFBF, SPIBXFBL, and SPIBXFBP fields can now be
specified as DSOPEN processing options; the functions of
many other fields can be specified as input to the SPIB by
means of items in a user default specification list.

The previous format of the SPIB is retained for reasons of
compatibility; it does not contain or provide access to new
function provided since GDDM Version 1 Release 4. It is
described in the edition of the Base Programming Reference
manual for the Release of GDDM for which your program
was written.

Format of the system programmer
interface block

The labels are defined here in more detail:

SPIBLENG
Specifies the length of the SPIB. Must be in the range
16 through 32, which identifies this as a GDDM
Version 1 Release 4 SPIB. The fields after offset
X'10' can be omitted (and thus allowed to default) by
specifying the minimum value of 16.

SPIBUDSL
Specifies the length (in bytes) of an encoded user
default specification list (UDSL). Must be set to 0 if no
UDSL is to be passed.

SPIBUDSP
Specifies the address of an encoded user default spec-
ification list (UDSL). Must be set to 0 if no UDSL is to
be passed.

SPIBGSXP (TSO, MVS batch, VSE batch, and VM/CMS)
Specifies (if present and if not zero) the address of an
application-defined storage exit to be called for GET
STORAGE requests.

SPIBGSXK (TSO, MVS batch, VSE batch, and VM/CMS)
Specifies (if present) a user-defined parameter that
GDDM is to pass when calling a GET STORAGE exit.

SPIBFSXP (TSO, MVS batch, VSE batch, and VM/CMS)
Specifies (if present and if not zero) the address of an
application-defined storage exit to be called for FREE
STORAGE requests.

SPIBFSXK (TSO, MVS batch, VSE batch, and VM/CMS)
Specifies (if present) a user-defined parameter that
GDDM is to pass when calling a FREE STORAGE exit.

The interface specifications for GDDM storage exits are
described under “Storage exit routines – interface
specifications” on page 437.

Specifying user exits

User exits allow a system program to trap specific events
whenever an application program uses a GDDM or system
resource. Such events include task switching in TSO, inter-
cepting some or all GDDM calls, and so on.

A limited number of user exits can be specified using User
Default Specifications (UDSs). UDSs are described in the
GDDM System Customization and Administration book. The
user exits are:

� A Task Switch exit
� A Call Intercept exit
� A Coordination exit.

432 GDDM Base Application Programming Reference

 special-purpose programming

Table 57. GDDM exits — options

Meaning of default

Source syntax of the
ADMMEXIT macro
options Encoded values - list of fullwords

Valid in:
M F S C

Call intercept user exit address CALLINT=(addr) 3,3005,A(CI-UX) N N Y N
Call intercept user exit token value CALLINT=(,token) 3,3006,CI-token N N Y N
Default user exit address DEFAULT=(addr) 3,3001,A(DFT-UX) N N Y N
Default user exit token value DEFAULT=(,token) 3,3002,DFT-token N N Y N
Task switch user exit address (TSO only) TASKSWI=(addr) 3,3003,A(TSW-UX) N N Y N
Task switch user exit token value (TSO only) TASKSWI=(,token) 3,3004,TSW-token N N Y N

Note: In the source-format forms, corresponding pairs can be combined in this way: DEFAULT=(address,token).

This section describes how you specify user exits, the con-
ventions that your exits must follow, and the function of each
type of exit.

It also describes the storage exit routines that can be defined
by using the System Programmer Interface Block (SPIB) in
the SPINIT call. For more information about the SPIB, see
“Initialization” on page 431.

Table 57 shows the defaults that you can specify for GDDM
exits using the SPINIT call. The figure also describes the
corresponding user default specifications (in source and
encoded format). These UDSs must be passed to GDDM
using the SPINIT call in the form of an encoded-UDS list.
The last column shows where the UDS can be specified, as
follows:

M in the External Defaults Module,
F in the External Defaults File,
S in the SPINIT call,
C in the ESEUDS and ESSUDS calls.

 Exit values

The descriptions of these options are:

CALLINT=(address,token)
address gives the fullword address of the Call Inter-
cept exit.

token provides four bytes of data that are passed from
the application program to the exit.

DEFAULT=(address,token)
address gives a fullword address for all user exits.
Specifying an address in this option is equivalent to
specifying it for each user exit explicitly.

token provides four bytes of data that are passed from
the application program to any exit. Specifying a token
in this option is equivalent to specifying it for each user
exit explicitly.

TASKSWI=(address,token)
address gives the fullword address of the Task Switch
exit.

token provides four bytes of data that are passed from
the application program to the exit.

GDDM user-exit conventions

Unless otherwise noted, user exits defined by means of
UDSs must conform to these rules:

� The contents of the registers on entry to the exit are:

R13 -> A 72-byte save area

R14 -> The return address

R15 -> The entry point of the exit

R1 -> The parameter address list, in standard

 variable-list format:

ADDR1 -> AAB (Char(8))

ADDR2 -> UXBLOCK ((3) Fixed(31))

 .

 .

additional parameters as defined for the

 specific exit

AAB
The application’s AAB (application anchor block) (or
in the case of the coordination exit, the
GDDM-provided dummy AAB if the application is
using the nonreentrant interface).

The exit must not use the AAB to issue a GDDM
call. That is to say, the GDDM instance that caused
the exit must not be entered recursively.

UXBLOCK
A user-exit control block of this format:

 UXBLOCK

 +ð ┌────────────┐

│ UXCODE │

 +4 ├────────────┤

 │ UXTOKEN │

 +8 ├────────────┤

│ UXADDR │

 └────────────┘

The contents of UXBLOCK are:

UXCODE
The fullword user-exit code. This code is the
same as the UDS-code used to define the
user exit address. The exit must not change
this parameter.

 Chapter 22. Special-purpose programming in GDDM 433

 special-purpose programming

UXTOKEN
The fullword user-exit token. This field is ini-
tialized to 0. An explicit value for this token
can be specified when the exit is specified.
The exit or application program can change
this parameter; in which case, subsequent
calls to the exit are passed in the changed
parameter.

UXADDR
The fullword user-exit address. On entry to
an exit, this parameter has the same value as
R15 (the address of the exit entry point). The
exit can change this parameter; in which case,
subsequent calls to the exit are to the new
address. If the address is set to 0, GDDM
stops using the exit for as long as the address
remains 0. If the address is subsequently
reset to nonzero (by the application program
or by another exit), GDDM resumes invocation
of the exit.

� The parameter address list is in variable parm-list format
(that is, with the high-order bit of the last address word
set to “1”), and GDDM may pass parameters in addition
to those defined below. Therefore, the exit must not
rely on the high-order bit of a specific parameter address
word always being set to “1.”

� Unless otherwise noted, the exit must not modify any
parameter passed to it. (The only exception is the
UXBLOCK parameter.)

� On return, the exit must set R15 to one of the specified
completion codes.

If any other value is returned, the results are undefined
(nonzero values may be diagnosed, ignored, or
abended).

� It is recommended that you make the exit reentrant and
read-only . Otherwise, careful thought must be given as
to how the operation of GDDM and its calling
application(s) is affected.

� The exit must conform to standard System/370 calling
conventions (including the use of save areas and
restoring registers).

� Under MVS/XA, MVS/ESA, or VM/XA, the exit must be
AMODE(ANY); that is, it must be prepared to accept
control in 24-bit or 31-bit mode, and must return control
in the same mode. If called in 31-bit mode, all
addresses (including R13) must be treated as 31-bit
addresses and may be greater than 16 megabytes.

Under MVS/XA, MVS/ESA, or VM/XA, a 24-bit mode
application program must ensure that the top byte of an
initial value for a user-exit token is cleared to zero if it
intends that this token is to be interpreted as an
address. GDDM considers this token to be a FIXED(31)
variable, and does not clear the top byte of the token
before invoking the exit.

The task switch exit

A Task Switch exit can be defined in an ADMMEXIT UDS.
This exit is valid under TSO only. If it is specified in other
environments, the results are undefined.

Function: By providing a Task Switch exit, an TSO tasking
application program can call GDDM both from its main task
and from any of a number of subtasks. The Task Switch exit
should be coded to switch to a standard task (typically, the
main task) under which specific subsystem-dependent task-
sensitive functions can be performed.

If enabled, the Task Switch exit is invoked before GDDM per-
forms selected task-sensitive functions. The Task Switch exit
has passed to it the address of a GDDM subroutine to be
called after switching tasks, plus the parameters to be
passed to the routine.

The Task Switch exit is returned to when the GDDM subrou-
tine has performed the task-sensitive functions. The Task
Switch exit should then switch tasks back before returning to
GDDM.

The system-dependent functions that are “task protected” in
this manner are:

� Explicit GETMAIN and FREEMAIN requests. (Indirect
requests by means of storage exits or other system-
dependent functions are not “task protected.”)

� DASD OPEN and CLOSE requests. (READ, WRITE,
PUT, and GET requests are not “task protected.”)

� Explicit LOAD and DELETE requests.

Exceptionally, some of the GETMAIN, FREEMAIN, LOAD,
and DELETE requests that are issued by GDDM routines at
initialization and termination are not “task protected.” These
requests should be separately “task protected” by the appli-
cation program, by ensuring that the GDDM FSINIT (or
SPINIT) and FSTERM calls are always issued from the
standard task.

A Task Switch exit should be prepared to be invoked in a
recursive manner in some circumstances. For example:

434 GDDM Base Application Programming Reference

 special-purpose programming

GDDM invokes the Task Switch exit before OPEN.

--> The Task Switch exit calls a GDDM subroutine.

------> The OPEN macro is called, resulting in an

 OPEN error.

----------> The DCB ABEND exit receives control.

----------> Diagnostic processing is initiated.

----------> GDDM invokes the Task Switch exit

before a LOAD for diagnostic routines.

--------------> The Task Switch exit calls a GDDM

 subroutine.

-----------------> The LOAD macro is called for

 diagnostic routines.

-----------------> The subroutine returns to the

Task Switch exit.

--------------> The Task Switch exit returns to

GDDM after the LOAD.

----------> Diagnostic processing completes.

----------> The DCB ABEND exit returns to NSI

after the OPEN.

------> The OPEN macro completes.

------> The subroutine returns to the Task Switch

 exit.

--> The Task Switch exit returns to GDDM after

 the OPEN.

However, a Task Switch exit can prevent such recursion by
disabling itself on entry, by setting the UXADDR field in the
UXBLOCK parameter to 0. GDDM still ensures a return
through the Task Switch exit, which should then reset the
UXADDR field to the address of its entry point, before
returning to GDDM.

How to specify a task switch exit: A Task Switch exit is
specified as follows:

 ADMMEXIT TASKSWI=([address][,token])

Parameters: The parameters for Task Switch exits are as
follows:

 R13 -> A 72-byte save area

 R14 -> The return address

 R15 -> The entry point of the exit

 R1 -> The parameter address list, in standard

variable parm-list format:

ADDR1 -> AAB (Char(8))

ADDR2 -> UXBLOCK ((3) Fixed(31))

ADDR3 -> SUBADDR (Ptr(31))

ADDR4 -> SUBPARM (Format reserved to

 GDDM)

Parameters AAB and UXBLOCK are described under “GDDM
user-exit conventions” on page 433. Additional parameters
are as follows:

SUBADDR
The address of the GDDM subroutine to be called after
switching tasks.

The GDDM subroutine must be called according to full
System/370 calling conventions. Specifically, Register
13 on entry to the subroutine must locate a register
save area, which must not be the same as that passed
to the exit by GDDM. Also, Register 1 on entry to the

subroutine must be the same as was passed to the exit
by GDDM.

The GDDM subroutine saves and restores the exit’s
registers as normal, but does not necessarily conform
to other System/370 calling conventions.

On return from the subroutine, the exit must return to
GDDM according to full System/370 calling con-
ventions. Specifically, the exit must reload Register 14
from GDDM’s save area in order to return. The exit
must not rely on the contents of GDDM’s save area
being the same as on entry (specifically, all saved reg-
isters, including Register 14, and the RSA forward
chain, may have been modified by the GDDM subrou-
tine).

SUBPARM
Additional parameter(s) that may be supplied by
GDDM, for the use of the GDDM subroutine.

The exit should not assume the existence of, nor try to
examine, these parameters. The exit should call the
GDDM subroutine with Register 1 locating the same
parameter address-list as that passed to the exit by
GDDM.

The exit must be AMODE(ANY); that is, it must be prepared
to accept control in 24-bit or 31-bit mode, and must return
control in the same mode. Also, it must call the GDDM sub-
routine in the same mode.

Feedback values: On return, the exit must set R15 as
follows:

0 Successful completion.

The call intercept exit

A Call Intercept exit may be defined by using an ADMMEXIT
UDS. This exit is valid in all environments.

Function: The Call Intercept exit provides a mechanism
whereby a controlling process can monitor the calls issued
by an application program. Other than for its specification by
means of the SPIB, this exit is transparent to an application
program at the API.

The Call Intercept exit is invoked from within GDDM, before
each application-program call is processed (though after
some housekeeping has been performed). Application-
program calls that are grossly in error may be rejected
without giving control to the exit.

The exit has passed to it the parameters provided by the
application program. It cannot change the request or the
parameters, but it can have some control over the subse-
quent execution, as described below.

The exit could operate in a pass-through mode, whereby it
passes the specified requests through to a secondary
instance of GDDM that had been separately initialized. In
this mode, the exit could change or add more calls to the

 Chapter 22. Special-purpose programming in GDDM 435

 special-purpose programming

secondary instance of GDDM in response to a single call
from the application program. However, in this mode the exit
may have difficulty passing-back error diagnostics from the
GDDM secondary instance.

How to specify a call intercept exit: The Call Intercept
exit is specified as follows:

 ADMMEXIT CALLINT=([address][,token])

Parameters: The parameters for the Call Intercept exit are
as follows:

R13 -> A 72-byte save area

R14 -> The return address

R15 -> The entry point of the exit

R1 -> The parameter address list, in standard

variable parm-list format:

ADDR1 -> AAB (Char(8))

ADDR2 -> UXBLOCK ((3) Fixed(31))

ADDR3 -> RCP (Fixed(31))

ADDR4 -> NPARMS (Fixed(31))

ADDR5 -> PLIST(NPARMS) (Array of Ptr(31))

Parameters AAB and UXBLOCK are described under “GDDM
user-exit conventions” on page 433. Additional parameters
are as follows:

RCP The RCP code defining the call issued by the
application program.

NPARMS The number of functional parameters provided
by the application program (excluding the AAB
for RACI, and the AAB and RCP for SPI).

PLIST(NPARMS)
The addresses of the functional parameters pro-
vided by the application program. These
addresses are not in variable parameter-list
format. These addresses should be treated as
read-only. ADDR5 is undefined (and hence
PLIST is not addressable) if NPARMS = 0.

Feedback values: On return, the exit must set R15 as
follows:

0 GDDM is to continue processing the call
8 GDDM is to ignore the call, with no message
12 GDDM is to reject the call, issuing the message:

ADMðð56 E REQUEST REJECTED BY USER EXIT.

 REASON n

If R15 = 12, the exit should set R0 as follows:

n The reason-code to be inserted into message
ADM0056.

Otherwise, R0 should be restored to its value on entry.

The coordination exit

A coordination exit can be defined by specifying the coordi-
nation exit address in the array parameter of the WSCRT
call; for a description of this, see Chapter 3, “The GDDM
calls” on page 21.

Function: By providing a coordination exit when creating an
operator window, a task manager allows the use of that
window by independent applications running their own
instances of GDDM.

Whether a GDDM instance is being used by a task manager,
or by a single application, the basics of a windowing program
are the same:

� The first DSOPEN in a GDDM program opens the real
display device with the (WINDOW,YES) processing
option. This automatically creates a default operator
window, and associates the real display device with it.

� The program then divides the screen of the real display
device into one or more operator windows.

� Subsequent DSOPEN calls open one or more virtual
display devices and associate each with an operator
window. (Under a task manager, the subsequent
DSOPENs would be in each application.)

� Each application (under a task manager) or each func-
tion (under a single application) then communicates with
the terminal user through an operator window conceptu-
ally situated in front of a virtual screen, and can behave
as if it had complete control of a real screen.

A virtual device can itself be opened with the
(WINDOW,YES) processing option. Operator windows
created for this virtual device are further subdivisions of the
real screen. So, although you can conceptually define hier-
archies of operator windows, they do not appear inside each
other. Rather, they are displayed as peers, according to
their priorities.

When you first create a number of overlapping operator
windows in an application, the viewing order depends on the
order that you create the operator windows in. The operator
window that you create first is at the bottom of the viewing
order, and the operator window that you create last is at the
top. On the display screen, each operator window appears
in front of the operator windows that are below it in the
viewing order. The topmost window is the active operator
window.

In a single application not running under a task manager, the
current operator window is always the candidate operator
window; which is the operator window with which the next
virtual device to be opened will be associated.

When you have several applications running concurrently
under a task manager, only one of those applications is actu-
ally executing, while the others are waiting because they
have unsatisfied reads outstanding. Each of the applications
can have a current operator window. But no matter how
many devices or applications there may be, only that oper-
ator window made current by the most recently executed
WSCRT, WSSEL, or WSIO call is the candidate operator
window; which is the operator window with which the next
virtual device to be opened will be associated.

436 GDDM Base Application Programming Reference

 special-purpose programming

The way that GDDM makes it possible for several application
programs to share the screen is by allowing the task
manager to intervene in the execution of the program’s
input/output calls. When each operator window is created,
the task manager specifies (in the first array element of the
last parameter of the WSCRT call) the address of a coordi-
nation exit routine. This runs in the application program
subtask, and is invoked by GDDM whenever the application
calls a function that requires input/output for the terminal –
an ASREAD call, typically. The numbers in the figure repre-
sent the following events:

1. An input/output call is issued by the application, causing
GDDM to invoke the coordination exit routine.

2. The exit routine, when invoked, must post the task-
manager task and wait. The task manager must then
call WSIO, the coordinated output/input call. The WSIO
call updates all the windows on the screen. WSIO also
returns the identifier of the topmost window on the
screen. The task manager uses this to find out which
subtask to post. It then posts that subtask and waits.

3. When the task manager posts the subtask, control
passes back to the coordination exit routine, which in
turn returns control to GDDM.

4. Control then returns to the ASREAD (or other application
input/output call). GDDM completes the processing of
this call, and passes control back to the application
program. Any input data entered by the terminal user is
then available to the application.

The purpose of the coordination exit routine is to switch
control from the subtask to the main task, or the other way
round. There is a direction parameter to tell it which way to
switch.

How to specify a coordination exit: A coordination exit is
specified as part of the WSCRT call. For more information,
see the description of the WSCRT call in the Chapter 3,
“The GDDM calls” on page 21.

Parameters: The parameters for coordination exits are as
follows:

R13 -> A 72-byte save area

R14 -> The return address

R15 -> The entry point of the exit

R1 -> The parameter address list, in standard

variable parm-list format:

ADDR1 -> AAB (Char(8))

ADDR2 -> UXBLOCK ((3) Fixed(31))

ADDR3 -> DIRECTN (Fixed(31))

Parameters AAB and UXBLOCK are described under “GDDM
user-exit conventions” on page 433. Additional parameters
are as follows:

DIRECTN The direction in which the exit is to pass control.
Possible values are:

0 Pass control from the sub-task to the main task
1 Pass control from the main task to the sub-task.

The exit may not change this parameter.

Feedback values: On return, the exit must set R15 as
follows:

0 Successful completion
8 Sub-task terminated abnormally.

Storage exit routines – interface
specifications

Storage exit routines can be defined using explicit fields in
the System Programmer Interface Block (SPIB) passed as a
parameter to GDDM in the SPINIT call.

The following section references fields defined in the Version
1 Release 4 format of the SPIB, but equivalent fields exist in
the pre-Version 1 Release 4 format. For more information,
see “Initialization” on page 431.

Under VM/CMS and TSO, GDDM calls application exit rou-
tines, identified by fields SPIBGSXP and SPIBFSXP (if
defined and nonzero), to GET and FREE storage. The inter-
face to these storage exits is as follows:

Register 0 contains the number of bytes of storage
requested (GET) or to be released (FREE). The high-
order bit of this register is set to indicate a conditional
request. This value is passed to the storage exits for
both GET and FREE.

Register 1 contains the address of the block of storage.
This address is returned by the application exit on GET
and passed to the application exit on FREE.

Register 14 contains the GDDM return address.

Register 15 contains the user-defined parameter specified in
either field SPIBGSXK (GET) or field SPIBFSXK
(FREE). This is passed by GDDM to the appropriate
application exit on each call. Before returning to
GDDM, the application exit should set a return code in
register 15: 0 indicating that the request was suc-
cessful, and, for conditional requests only, 4 indicating
that the request was unsuccessful.

All other registers must be preserved across the call.

Application storage exits must operate without corrupting any
of the registers on entry other than as described above. On
entry to the exit routines, register 13 does not locate a reg-
ister save area. If necessary, the exits should provide for
their own save area, possibly by “anchoring” a user area by
means of the SPIBGSXK or SPIBFSXK, or both, fields
passed in register 15.

 Chapter 22. Special-purpose programming in GDDM 437

 special-purpose programming

Application storage exits must not assume that their entry
point is located by register 15 on entry. Register 15 is set as
described above.

The application GET storage exit must return storage that is
double-word aligned.

GDDM abnormally ends on receiving a return code other
than as described above.

GDDM requests for blocks of local, last-in-first-out, or
instance storage are restricted to a maximum length of 32K
bytes. When storage and exit routines are defined (that is,
“active”), this restriction also applies to extended storage
requests. GDDM never releases “merged” or “split” blocks;
storage is always released in blocks as acquired from the
application GET exit routine.

Under MVS/XA, MVS/ESA, or VM/XA, the top bit of the spec-
ified storage exit address is taken to identify the AMODE of
the exit and causes the exit to be called accordingly (that is,
a top bit of '1'B causes the corresponding exit to be called
in 31-bit addressing mode).

Call format descriptor module

A GDDM call format descriptor module, which is independent
of the subsystem under which GDDM is running, is provided
with GDDM. The module contains information for each
GDDM Call statement, describing the number of parameters
required on the call, and the type of each parameter.

The address of the call format descriptor module can be
acquired by an application program by using the CALLINF
external defaults option in a SPINIT call.

The call format descriptor module is in three sections. The
first section provides an address table locating the descrip-
tors for call statements with a given first two characters. The
second section (the call descriptor table) provides descriptors
for all GDDM calls that have the same first two letters in their
name. The third section (the parameter descriptor table) pro-
vides descriptors for the parameters for a specific call state-
ment.

The address table

The address table is located at offset 0 from the entry point
of the module. The format of the address table is:

RCPPIDEN
An eight-byte table identifier containing the character
string “ADMADCP ”. Note the mandatory terminating
blank.

RCPPVERS
A four-byte (fullword) integer identifying the version
number of the call format descriptor module. If this field
is set to ‘1’, the extended call descriptor table is present.
Applications that use the calls in the extended call
descriptor table should test the version code, and if this
is set to ‘1’, they should scan the call descriptor table
until they reach X'FFFE'. Applications that do not use
the extension scan the call descriptor table only until
they reach X'FFFF'.

RCPPTABP(h)
This consists of:

RCPPFTWO(h)
A two-byte character string containing the first two
characters of the GDDM call statements described
by the call descriptor table addressed by
RCPPSPTR(h).

A value of X'FFFF' in this field indicates the end of
the address table.

(Reserved field)
Two bytes.

RCPPSPTR(h)
The address of the call descriptor table, contained in
four bytes, which defines all GDDM call statements
that start with the two characters identified by field
RCPPFTWO(h).

The call descriptor table

The call descriptor tables are addressed from the address
table, There is a call descriptor table for each group of
GDDM call statements that have the first two letters in
common. The structure of a call descriptor table is illustrated
in Table 59 on page 439.

Table 58. Call format descriptor module – address table

Field name Field offset Field length

RCPPIDEN 0 8
RCPPVERS 8 4
RCPPTABP(1) C 8
 RCPPFTWO(1) C 2
 (reserved) E 2
 RCPPSPTR(1) 10 4
RCPPTABP(2) 14 8
 RCPPFTWO(2) 14 2
 (reserved) 16 2
 RCPPSPTR(2) 18 4
...

...
...

RCPPTABP(n) 4+(8×n) 8
 RCPPFTWO(n) 4+(8×n) 2
 (reserved) 6+(8×n) 2
 RCPPSPTR(n) 8+(8×n) 4

438 GDDM Base Application Programming Reference

 special-purpose programming

Table 59. Call format descriptor module – call descriptor table

Field name Field offset Bit pattern Field length

RCPPSTAB(1) 0 RCPPLENG(1)
 RCPPLENG(1) 0 2
 RCPPFLAG(1) 2 2
 RCPPIO (1) x... bit within RCPPFLAG
 RCPPOGP(1) .x.. bit within RCPPFLAG
 RCPPGIO(1) ..x. bit within RCPPFLAG
 RCPPDIO(1) ...x bit within RCPPFLAG
 RCPPIIO(1) x... bit within RCPPFLAG
 RCPPCPAG(1) x.. bit within RCPPFLAG
 RCPPHCNG(1) x. bit within RCPPFLAG
 RCPPAPLS(1) x bit within RCPPFLAG
 RCPPNAME(1) 4 4
 RCPPRCP(1) 8 4
 RCPPDESC(1) C RCPPNARG(1)−12
RCPPSTAB(2) RCPPLENG(1) RCPPLENG(2)
 RCPPLENG(2) RCPPLENG(1) 4
) . .

) as above, . .
) with ...(2) . .

) . .
. . .
. . .
. . .
RCPPSTAB(n) &Sigma(RCPPLENG(1) ... (n-1)) RCPPLENG(n)

 RCPPSTAB(j)
There is one entry in the call descriptor table for each GDDM
call statement.

RCPPLENG(j)
A two-byte field containing the length of this entry in the
call descriptor table. The next entry in the table is at
offset RCPPLENG from this field.

A value of X'FFFF' indicates the end of the version 0
call descriptor table. If RCPPVERS is set to 1, the call
descriptor table extension is present; a value of
X'FFFE' indicates the end of the call descriptor table
extension.

RCPPFLAG(j)
A set of two-byte flags to indicate features of the CALL
statement.

RCPPIO(j) (bit 0)

0 The call cannot cause a terminal I/O.

1 The call may cause I/O to the terminal. This
flag is set if any of the flags RCPPGIO,
RCPPDIO, or RCPPIIO are set to 1.

RCPPOGP(j) (bit 1)

0 The call is available in the base function of
GDDM.

1 The call is available only through another
licensed program in the GDDM family of
licensed programs.

RCPPGIO(j) (bit 2)

0 No I/O is performed to the device (unless
either flag RCPPDIO or flag RCPPIIO is set to
1).

1 The call causes I/O to the terminal. For
example, FSFRCE outputs data to the device,
ASREAD outputs data and awaits terminal
operator input.

RCPPDIO(j) (bit 3)

0 No data-set I/O that causes terminal activity
can result from this call.

1 The call may cause I/O activity to a data set.
It may result in a terminal I/O operation on
some subsystems; for example, a password
prompt in opening a data set.

 Chapter 22. Special-purpose programming in GDDM 439

 special-purpose programming

RCPPIIO(j) (bit 4)

0 Data is never sent to the terminal for the call
(unless either flag RCPPGIO or flag
RCPPDIO is set to one).

1 The call may cause data to be output to the
terminal by GDDM if specific conditions are
met. Currently, this can only occur if the
device is a 3270-PC/G, /GX, or /AT work-
station, and the application is drawing
graphics primitives outside segments. Implicit
I/O occurs whenever too much data stream is
accumulated, or a change is made to primi-
tives within segments when primitives outside
segments have been drawn.

RCPPCPAG(j) (bit 5)

0 The call applies to GDDM pages other than
the current one.

1 The call applies to the current GDDM page
only.

RCPPHCNG(j) (bit 6)

0 The call does not cause any change to the
hierarchical structure.

1 The call may cause a change to the hierar-
chical structure of GDDM. One or more of a
page, a partition, a partition set, or a device
are affected. The flag is set if any of the
current elements in the hierarchy may be
changed, or an entry may be added to or
deleted from the set of hierarchical entities.

RCPPAPLS(j) (bit 7)

0 The call does not require any special proc-
essing by APL.

1 The call may require special processing by
APL.

RCPPNAME(j)
The last four characters (four bytes) of the GDDM call
statement name.

RCPPRCP(j)
A four-byte (fullword) integer specifying the GDDM
request control parameter (RCP) code associated with
the call statement.

RCPPDESC(j)
This variable-length array contains the descriptors for the
arguments that may be passed on to GDDM. See “The
parameter descriptor table” for information about this
array.

The parameter descriptor table

The parameter descriptor tables are imbedded within the call
descriptor tables as described above. The structure of a
parameter descriptor table is shown in Table 60 on
page 441.

 RCPPPDES(n)
For each GDDM call statement, there are one or more sets
of parameter descriptors, one for each parameter. Multiple
descriptors are also provided when the contents of a param-
eter list may vary depending upon the contents of the first
argument in the parameter list.

RCPPNARG(n)
A one-byte field containing the number of elements in
the array RCPPDARG described below. This field con-
tains a value of zero if no parameters are passed to, or
received from, GDDM.

The value of this field may be greater than the number
of parameters passed to or received from GDDM. In
this case, the argument descriptors contain dummy
entries used to copy length information between the
accumulators used to determine the length of passed or
returned data.

With the exception of the dummy entries, each succes-
sive element in the array RCPPDARG(n) describes suc-
cessive arguments passed to or received from GDDM on
the call statement.

RCPPDFLG(n)
A one-byte set of flags, only one of which is currently
used, to indicate features of the parameters passed to or
received from GDDM.

RCPPMATC(n) (bit 0)

0 The parameter descriptors provided in the
array RCPPDARG(n) are valid regardless of
the contents of the first argument passed to
GDDM.

1 The parameter descriptors provided in the
array RCPPDARG described below are only
valid if the contents of the first parameter,
which are always a fixed-point number, are
the same as the value specified in the field
RCPPMVAL(n). If the contents of the passed
parameter do not match those in RCPPMVAL,
the next set of parameter descriptors,
RCPPPDES(n+1), must be used to test for a
matching argument value, or to describe the
argument list, depending upon the value of
flag RCPPMATC(n+1).

Other flags are reserved for future use.

RCPPMVAL(n)
If flag RCPPMATC(n) = 1, this two-byte field contains
the value that the first parameter passed to GDDM must

440 GDDM Base Application Programming Reference

 special-purpose programming

Table 60. Call format descriptor module – parameter descriptor table

Field name Field offset Bit pattern Field length

RCPPPDES(1) 0 4×(1+RCPPNARG(1))
 RCPPNARG(1) 0 1
 RCPPDFLG(1) 1 1
 RCPPMATC x... bit within RCPPDFLG
 (reserved) .xxx xxxx 7 bits within RCPPDFLG
 RCPPMVAL(1) 2 2
 RCPPDARG(1,1) 4 4
 RCPPAFLG 4 1

(parameter data-type flags) xxxx xx.. 6 bits within RCPPAFLG
 RCPPINP x. bit within RCPPAFLG
 RCPPOUT x bit within RCPPAFLG
 RCPPLACC(1,1) 5 1
 RCPPLVAL(1,1) 6 2
 RCPPDARG(1,2) 8 4
) . .

) as above, . .
) with ...(1,2) . .

) . .
 RCPPDARG(1,m) 4×m 4
) . .

) as above, . .
) with ...(1,m) . .

) . .
RCPPPDES(2) 4×(1+RCPPNARG(1)) 4×(1+RCPPNARG(2))
) . .

) as above, . .
) with ...(2) . .

) . .
. . .
. . .
. . .
RCPPPDES(n) 4×(n+Σ(RCPPNARG(1)...(n))) 4×(1+RCPPNARG(n))

match if the parameter descriptors in array
RCPPDARG(n) are the correct descriptors for the
instance of the call statement.

RCPPDARG(n,m)
This is an array of dimension RCPPNARG(n). Each
element of the array is four bytes long, and is either a
descriptor for an argument passed to or received from
GDDM, or is a dummy entry used to prime the length
accumulators.

RCPPAFLG(n,m)
A one-byte set of flags to indicate the type of the
data passed to or received from GDDM.

The parameter data-type flags (in RCPPAFLG, bits
0..5) are set as combinations of these bits, with the
meaning shown below:

1ððððð.. The parameter contains character data.
ð1ðððð.. The parameter contains fullword fixed

point data.
ð1ð1ðð.. The parameter contains halfword fixed

point data.
ðð1ððð.. The parameter contains floating point

data.

ððð1ðð.. The parameter contains undefined format
data. The structure of the argument is
too complex to describe with a control
block structure, probably because the
length of the data item cannot be deter-
mined without knowledge of the values of
the contents of one or more fields
imbedded within a prior argument passed
to GDDM.

ðððð1ð.. The data passed in this parameter is a
fullword fixed-point number that is used
as either a length or an array dimension.
Field RCPPLACC(n,m) contains the
number of an accumulator into which the
length should be multiplied.

ððððð1.. The parameter being described contains
a fullword length or dimension. Field
RCPPLACC(n,m) contains an accu-
mulator number into which the length
should be multiplied. Parameter
descriptor RCPPDARG(n,m+1) also
describes the same passed parameter.
This parameter descriptor is therefore
used to prime two or more length accu-
mulators from the same argument
passed to GDDM.

 Chapter 22. Special-purpose programming in GDDM 441

 special-purpose programming

All unlisted combinations are reserved for future
use.

RCPPINP(n,m) (bit 6)

0 The data passed in the parameter is not input
to GDDM.

1 The data passed in this parameter is input to
GDDM.

RCPPOUT(n,m) (bit 7)

0 The data passed in the parameter is not
output from GDDM.

1 The data passed in this parameter is output
from GDDM.

RCPPLACC(n,m)
This one-byte field contains an accumulator number.
Accumulators are used to define the length of character
strings or the number of elements in an array of

numbers. Nine accumulators are provided, and all accu-
mulators are assumed to start with an initial value of
one.

If either bit 2 or bit 3 in RCPPAFLG(n,m) is set to 1, this
field contains the accumulator number that the argument
passed to GDDM should be multiplied into.

If both bit 2 and bit 3 in RCPPAFLG(n,m) are set to 0,
the accumulator contains the number of characters in a
character argument, or the number of fullwords in a
numeric array. If an accumulator number of zero is
specified, the length or dimension is assumed to be 1.
This length or dimension is subject to modification by the
contents of field RCPPLVAL(n,m).

RCPPLVAL(n,m)
This two-byte field contains a modifier to be applied to
the length of character strings or the dimension of
numeric arrays. The total length of the character string,
or dimension of a numeric array is obtained by multi-
plying the contents of the accumulator specified in field
RCPPLACC(n,m) with the value of the field
RCPPLVAL(n,m).

442 GDDM Base Application Programming Reference

 glossary

 Glossary

This glossary defines technical terms used in GDDM doc-
umentation. If you do not find the term you are looking for,
refer to the index of the appropriate GDDM manual or view
the IBM Dictionary of Computing, located on the Internet at:

 http:\\www.networking.ibm.com/nsg/nsgmain.htm

A
AAB . Application anchor block.

ACB . Application control block.

active operator window . In GDDM, the operator window
with the highest priority in the viewing order.

active partition . The partition containing the cursor. Con-
trast with current partition.

advanced function printing . The ability of licensed pro-
grams to use the all-points-addressable concept to print text
and illustrations.

adjunct . In mapped alphanumerics, one of a set of optional
subfields in an application data structure that specifies some
attribute of a data field; for example, that it is highlighted. An
adjunct enables the attribute to be varied at run time.

ADMGDF. See graphics data format (GDF).

ADS. Application data structure.

AFPDS. Advanced-function presentation data stream.

AIC. Application interface component.

alphanumeric character attributes . In GDDM, the high-
lighting, color, and symbol set to be used for individual char-
acters.

alphanumeric cursor . A physical indicator on a display. It
can be moved from one hardware cell to another.

alphanumeric field . A field (area of a screen or printer
page) that can contain alphabetic, numeric, or special char-
acters. In GDDM, contrast with graphics field.

alphanumeric field attributes . In GDDM, the intensity,
highlighting, color, and symbol set to be used for field type,
field end, output conversion, input conversion, translate table
assignment, transparency, field outlining, and mixed-string
fields.

alphanumerics . Pertaining to alphanumeric fields. In
GDDM there are three types of alphanumerics:

 � Procedural alphanumerics
 � Mapped alphanumerics
� High performance alphanumerics (HPA)

alternate device . In GDDM, a device to which copies of the
primary device’s output are sent. Usually the alternate
device is a printer or plotter. See also primary device.

annotation . An added descriptive comment or explanatory
note.

APA . All points addressable.

aperture . See pick aperture.

API. Application programming interface.

APL . One of the programming languages supported by
GDDM.

application data structure (ADS) . A structure created by
GDDM-IMD that contains an entry for each variable field
within a map. The data to be displayed in a mapped field is
placed into the application data structure by the user’s
program.

application image . In GDDM, an image contained in
GDDM main storage, and independent of any device or
GDDM page. Contrast with device image.

application programming interface (API) . The formally
defined interface used by an application programmer to pass
commands to, and get responses from, an IBM system
control program or licensed program.

area. In GDDM, a shaded shape, such as a solid rectangle.
It is created by opening the area, defining its outline, and
closing the area.

aspect ratio . The width-to-height ratio of an area, symbol,
or shape.

attention identifier . A number indicating which button the
operator pressed to satisfy a read operation. For example, 0
(returned from GDDM to the application program) means that
the operator pressed the Enter key.

attribute byte . The screen position that precedes an alpha-
numeric field on a 3270-family device and holds the attribute
information. See also trailing attribute byte.

attributes . Characteristics or properties that can be con-
trolled, usually to obtain a required appearance; for example,
the color of a line. See also alphanumeric character attri-
butes, alphanumeric field attributes, and graphics attributes.

axis . In a chart, a line that is drawn to indicate units of
measurement against which items in the chart can be
viewed.

A3. A paper size, more common in Europe than in the U.S.
It measures 297mm by 420mm, and is twice the size of A4.
See also A4.

 Copyright IBM Corp. 1980, 1996 443

 glossary

A4. A paper size, more common in Europe than in the U.S.
It measures 210mm by 297mm, and is half the size of A3.
Compare with quarto. See also A3.

B
background color . Black on a display, white on a printer.
The initial color of the display medium. Contrast with neutral
color.

bar code . A code representing characters by sets of vertical
parallel bars of varying thickness and separation that are
read optically by transverse scanning.

BASIC . One of the programming languages supported by
GDDM.

BDAM . Basic Direct Access Method.

bi-level image . An image in which each pixel is either black
or white (value 0 or 1). Contrast with gray-scale image and
halftone image.

BMS. Basic Mapping Support (CICS).

BPAM . Basic Partitioned Access Method.

business graphics . The methods and techniques for pre-
senting commercial and administrative information in chart
form; for example, the creation and display of a sales bar
chart. Contrast with general graphics.

C
CALS . Continuous Acquisition and Life-Cycle Support.

CDPDS. Composite Document Presentation Data Stream.

CDPF. Composed Document Print Facility.

CDPU. Composite Document Print Utility.

CECP. Country-extended code page.

cell . See character cell.

CGM. Computer Graphics Metafile. A file that contains
information about the content of a picture, and conforms to
the International Standard, ISO 8632, or is of a similar
format.

channel-attached . Pertaining to devices that are attached
directly to a computer by means of data (I/O) channels. Syn-
onymous with local. Contrast with link-attached.

character . A letter, digit, or other symbol.

character attributes . See alphanumeric character
attributes. See also graphics text attributes.

character box . In GDDM, the rectangle or (for sheared
characters) the parallelogram boundaries that govern the

size, orientation, spacing, and italicizing of individual symbols
or characters to be shown on a display screen or printer
page.

The box width, height, and, if required, shear are specified in
world coordinates and can be program-controlled. See also
character mode. Contrast with character cell.

character cell . The physical, rectangular space in which
any single character or symbol is displayed on a screen or
printer device. The size and position of a character cell are
fixed. Size is usually specified in pixels on a given device;
for example, 9 by 12 on an IBM 3279 Model 3 display. Posi-
tion is addressed by row and column coordinates. Synony-
mous with hardware cell and symbol cell. Contrast with
character box.

character code . The means of addressing a symbol in a
symbol set, sometimes called code point.

The particular form and range of codes depends on the
GDDM context. For example:

� For the Image Symbol Editor, a hexadecimal constant in
the range X'41' through X'FE', or its EBCDIC char-
acter equivalent

� For the Vector Symbol Editor, a hexadecimal constant in
the range X'00' through X'FF', or its EBCDIC char-
acter equivalent

� For the GDDM API, a decimal constant in the range 0
through 239, or subsets of this range (for example, a
marker symbol code range of 1 through 8)

character grid . A notional grid that covers the graphics
field. The size of the grid determines the basic size of the
characters in all text constructed by presentation graphics
routines. It is the fundamental measurement in chart layout,
governing the spacing of mode-2 characters and the size of
mode-3 characters. It also governs the size of the chart
margins and thus the plotting area.

character matrix . Synonym for dot matrix.

character mode . In GDDM, the type of characters to be
used. There are three modes:

� Mode-1 characters are loadable into PS and are of
device-dependent fixed size, spacing, and orientation, as
are hardware characters.

� Mode-2 characters are image (ISS) characters. Size
and orientation are fixed. Spacing is variable by
program.

� Mode-3 characters are vector (VSS) characters. Box
size, position, spacing, orientation, and shear of indi-
vidual characters are variable by program.

chart . In GDDM, usually means business chart; for
example, a bar chart.

choice device . A logical input device that enables the appli-
cation program to identify keys pressed by the terminal oper-
ator.

444 GDDM Base Application Programming Reference

 glossary

CICS. Customer Information Control System. A subsystem
of MVS or VSE under which GDDM can be used.

clipping . In computer graphics, removing parts of a display
image that lie outside a viewport. Synonymous with
scissoring.

CMS. Conversational Monitor System. A time-sharing sub-
system that runs under VM/SP.

COBOL . One of the programming languages supported by
GDDM.

code page . Defines the relationship between a set of code
points and graphic characters. This relationship covers both
the standard alphanumeric characters and the national lan-
guage variations. GDDM supports a set of code pages used
with typographic fonts for the IBM 4250 page printer.

code point . Synonym for character code.

Composite Document Presentation Data Stream
(CDPDS). A data stream containing graphics, image, and
text that is the input to the GDDM Composite Document Print
Utility (CDPU).

Composed Document Print Facility (CDPF) . An IBM
licensed program for processing documents destined for the
IBM 4250 page printer.

composed-page image file . An intermediate form, residing
on disk, of a picture destined for a page printer.

composed-page printer . See page printer.

composed-page printer format . A general term describing
the format of print data destined for output by using either
CDPF or PSF.

composite document . A document that contains both for-
matted text, such as that produced by the DCF program, and
graphic or image data, such as that produced by GDDM. It
is a combination of text and pictures on a page or set of
pages. The pictures can be computer graphics or images
created by scanning paper originals.

Composite Document Print Utility (CDPU) . A utility that
can print or display composite documents

compressed data stream . A data stream that has been
made more compact by use of a data-compression algorithm.

constant data . In GDDM, data that is defined in a map and
need not be known to the application program.

correlation . The translation (by GDDM) of a screen position
into a part of the user’s picture. This follows a pick opera-
tion.

country-extended code page (CECP) . An extension of a
normal EBCDIC code page that includes definitions of all

code points in the range X'41' through X'FE'. Each code
page contains the same 190 characters, but the mapping
between code points and graphics characters depends on
the country for which the code page is defined. This is a
method of marking a GDDM object so that the environment
in which it was created can be identified. It enables auto-
matic translation to a different environment.

CSD. (1) Under MVS or VSE, CICS system definition.
(2) In personal computer systems, Corrective Service
Diskette; the means by which service is applied to the per-
sonal computer system.

current partition . The partition selected for processing by
the application program. Contrast with active partition.

current position . In GDDM, the end of the previously
drawn primitive. Unless a “move” is performed, this position
is also the start of the next primitive.

cursor . A physical indicator that can be moved around a
display screen. See alphanumeric cursor and graphics
cursor.

CUT. Control unit terminal.

D
DASD. Direct access storage device.

data stream compatibility (DSC) . In IBM 8100 systems,
the facility that provides access to System/370 applications
that communicate with IBM 3270 Information Display System
terminals.

data stream compression . The shortening of an I/O data
stream for the purpose of more efficient transmission
between link-attached units.

data set . The major unit of data storage and retrieval, con-
sisting of a collection of data in one of several prescribed
arrangements and described by control information to which
the system has access.

DBCS. Double-byte character set.

DCF. Document Composition Facility.

DCSS. Discontiguous saved segment (VM/SP).

DCT. Destination control table (CICS).

default value . The value of an attribute chosen by GDDM
when no value is explicitly specified by the user. For
example, the default line type is a solid line. The default
value is sometimes device-dependent. See also drawing
default and standard default.

denibblized data . The decoded data stream used between
the GDDM DOS Support feature in the host and
GDDM-PCLK on the workstation.

 Glossary 445

 glossary

designator character . The first byte of a light-pen-
detectable field that indicates whether or not the field has
been selected.

device echo . A visual identification of the position of the
graphics cursor. The form of the device echo is defined by
the application program.

device family . In GDDM, a device classification that
governs the general way in which I/O will be processed. See
also processing option. For example:

� Family 1: 3270 display or printer
� Family 2: queued printer
� Family 3: system printer (alphanumerics only)
� Family 4: page printer

device image . In GDDM, an image contained in a device or
GDDM page. Contrast with application image.

device suffix . In GDDM-IMD, a suffix to a mapgroup name
that indicates the device class.

device token . In GDDM, an 8-byte code giving entry to a
table of pre-established device hardware characteristics that
are required when the device is opened (initialized).

DIF. In GDDM terms, data interchange format.

digital image . A two-dimensional array of picture elements
(pixels) representing a picture. A digital image can be stored
and processed by a computer, using bits to represent pixels.
In GDDM, pixels have the value black or white. Often called
simply image.

direct transmission . In GDDM image processing, the
transfer of image data direct from a source outside GDDM to
an image device, including manipulation by a projection in
the device, and without GDDM maintaining a copy or buffer
of the data.

display device . Any output unit that gives a visual repre-
sentation of data; for example, a screen or printer. More
commonly, the term is used to mean a screen and not a
printer.

display point . Synonym for pixel.

display-point matrix . Synonym for dot matrix.

display terminal . An input/output unit by which a user com-
municates with a data processing system or subsystem. It
usually includes a keyboard and always provides a visual
presentation of data. For example, an IBM 3179 display.

DL/1. Data language 1. A language for database proc-
essing operations.

dot matrix . In computer graphics, a two-dimensional pattern
of dots used for constructing a display image. This type of
matrix can be used to represent characters by dots. Synony-
mous with character matrix and display-point matrix.

double-byte characters . See double-byte character set
(DBCS).

double-byte character set (DBCS) . A set of characters in
which each character occupies two byte positions in internal
storage and in display buffers. Used for oriental languages;
for example, Kanji or Hangeul. Contrast with single-byte
character set.

DPCX. Distributed Processing Control Executive. An IBM
8100 system control program.

DPPX. Distributed Processing Programming Executive. An
IBM 8100 system control program.

drawing default . The value of a graphics attribute chosen
by GDDM when no value is explicitly specified by the user.
The drawing default may be altered by the user.

DSC. Data stream compatibility.

dual characters . See double-byte characters.

dummy device . An output destination for which GDDM
does all the normal processing but for which no actual output
is generated. Used, for example, to test programming for an
unavailable output device.

E
EBCDIC. Extended binary coded decimal interchange code.
A coded character set consisting of 8-bit coded characters.

echo . In interactive graphics, the visible form of the locator
or other logical input device.

ECSA. Extended character set adapter.

edit . To enter, modify, or delete data.

editing grid . In the GDDM Image and Vector Symbol
Editors, a grid used as a guide for editing a symbol. In the
Image Symbol Editor, it is a dot matrix. In the Vector Symbol
Editor, it is a grid of lines.

enterprise . An organization or company that undertakes
local, national, or international business ventures.

extended data stream . For IBM 3179, 3192, 3278, 3279,
and 3287 devices, input/output data formatted and encoded
in support of color, programmed symbols, and extended
highlighting. These features extend the IBM 3270 data
stream architecture.

extended highlighting . The emphasizing of a displayed
character’s appearance by blinking, underscore, or reverse
video.

external defaults . GDDM-supplied values that users can
change to suit their own needs.

446 GDDM Base Application Programming Reference

 glossary

extracted image . In GDDM, an image on which transform
element calls operate. It may imply the whole source image
or just a part of it, depending on whether a define sub-image
transform element has been applied in its derivation.

F
FCT. File control table (CICS).

field . An area on the screen or the printed or plotted page.
See alphanumeric field, graphics field, and mapped field.

field attributes . See alphanumeric field attributes.

field list . The high performance alphanumerics data struc-
ture used to define alphanumeric fields.

fillet . A curve that is tangential to the end points of two
adjoining lines.

flat file . A file that contains only data; that is, a file that is
not part of a hierarchical data structure. A flat file can
contain fixed-length or variable-length records.

floating area . The part of a page reserved for floating
maps.

floating map . A map whose absolute position on the
GDDM page is not fixed. During execution, a floating map
takes the next available space that satisfies its specification.

floating-point feature . A processing unit feature that pro-
vides four 64-bit floating-point registers to perform floating-
point arithmetic calculations.

foil . A transparency for overhead projection.

font . A particular style of typeface (for example, Gothic
English). In GDDM, a font can exist as a programmed
symbol set.

formatted document . A type of file containing text, images,
and graphics.

FORTRAN. One of the programming languages supported
by GDDM.

four-button cursor . A hand-held device, with cross-hair
sight, used on the surface of a tablet to indicate position on a
screen. Synonymous with puck.

frame . In GDDM-IMD, a synonym for panel.

full-screen alphanumeric operation . Full-screen proc-
essing operations on alphanumeric fields.

full-screen mode . A form of screen presentation in which
the contents of an entire terminal screen can be displayed at
once. Full-screen mode is often used for fill-the-blanks
prompting, and is an alternative to line-by-line I/O.

full-screen processor . A host software component that,
together with display terminal functions, supports display ter-
minal input/output in full-screen mode.

G
GDDM. Graphical Data Display Manager. A series of IBM
licensed programs, running in a host computer, that manage
communications between application programs and display
devices, printers, plotters, and scanners for graphics applica-
tions.

GDDM-GKS. GDDM Graphical Kernel System. A member
of the GDDM family that runs under TSO and CMS and pro-
vides an alternative graphics programming interface to that of
the GDDM base product. It is an implementation of the
Graphical Kernel Standard, ISO 7942, of the International
Organization for Standardization.

GDDM/graPHIGS . A member of the GDDM family used for
creating hierarchical three-dimensional structures on the IBM
5080 Graphics System. It is based on the proposed ANSI
standard for the Programmer’s Hierarchical Interactive
Graphics System (PHIGS).

GDDM Interactive Map Definition . GDDM-IMD. A member
of the GDDM family of licensed programs. It enables users
to create alphanumeric layouts at the terminal. The user
defines the position of each field within the layout and may
assign attributes, default data, and associated variable
names to each field. The resultant map can be tested from
within the utility.

GDDM-IVU. GDDM Interactive View Utility. A member of
the GDDM family of licensed programs. It enables users to
view, create, modify, store, and print images.

GDDM-OS/2. A licensed program that enables IBM PS/2
and other personal-computer systems with OS/2 installed to
run GDDM application programs in the host computer.

GDDM-PCLK . A licensed program that enables IBM PS/2
and other personal computers with graphics-display adapters,
and IBM 3270 terminal emulators to run GDDM application
programs in the host computer.

GDDM-PGF. GDDM-Presentation Graphics Facility. A
member of the GDDM family of licensed programs. It is con-
cerned with business graphics, rather than general graphics.

GDDM storage . The portion of host computer main storage
used by GDDM.

GDF. Graphics data format.

general graphics . The methods and techniques for con-
verting data to or from graphics display in mathematical, sci-
entific, or engineering applications; that is, in any application
other than business graphics. See also business graphics.

 Glossary 447

 glossary

generated mapgroup . The output produced when a source
GDDM-IMD mapgroup is generated. It contains the informa-
tion needed by GDDM at execution to position the mapped
fields on the GDDM page.

| GIF. Graphics Interchange Format.

GKS. Graphical Kernel System. See GDDM-GKS.

GL. Graphical Language.

Graphical Data Display Manager . See GDDM.

graphics . A picture defined in terms of graphics primitives
and graphics attributes.

graphics area . Part of a mapped field that is reserved for
later insertion of graphics.

graphics attributes . In GDDM, color selection, color mix,
line type, line width, graphics text attributes, marker symbol,
and shading pattern definition.

graphics cursor . A physical indicator that can be moved
(often with a joystick, mouse, or stylus) to any position on the
screen.

graphics data format (GDF) . A picture definition in an
encoded order format used internally by GDDM and,
optionally, providing the user with a lower-level programming
interface than the GDDM API.

graphics data stream . The data stream that produces
graphics on the screen, printer, or plotter.

graphics field . A rectangular area of a screen or printer
page, used for graphics. Contrast with alphanumeric field.

graphics input queue . A queue associated with the
graphics field onto which elements arrive from logical input
devices. The program can remove elements from the queue
by issuing a graphics read.

graphics primitive . A single item of drawn graphics, such
as a line, arc, or graphics text string. See also graphics
segment.

graphics read . A form of read that solicits graphics input or
removes existing elements from the graphics input queue.

graphics segment . A group of graphics primitives (lines,
arcs, and text) that have a common window and a common
viewport and associated attributes. Graphics segments allow
a group of primitives to be subject to various operations.
See also graphics primitive.

graphics text attributes . In GDDM, the symbol (character)
set to be used, character box size, character angle, character
mode, character shear angle, and character direction.

graPHIGS . See GDDM/graPHIGS.

gray-level . A digitally encoded shade of gray, normally (and
always in GDDM) in the range 0 through 255. See also
gray-scale image.

gray-scale image . An image in which the gradations
between black and white are represented by discrete gray-
levels. Contrast with bi-level image and halftone image.

green lightning . The name given to the flashing streaks on
an IBM 3270 screen while a programmable symbol set is
being loaded.

H
halftone image . A bi-level image in which intermediate
shades of gray are simulated by patterns of adjacent black
and white pixels. Contrast with gray-scale image.

Hangeul . A character set of symbols used in Korean
ideographic alphabets.

hardware cell . Synonym for character cell.

hardware characters . Synonym for hardware symbols.

hardware symbols . The characters that are supplied with
the device. The term is loosely used also for GDDM mode-1
symbols that are loaded into a PS store for subsequent
display. Synonymous with hardware characters.

hexadecimal . Pertaining to a numbering system with base
sixteen.

host . See host computer.

high performance alphanumerics . The creation of alpha-
numeric displays using field list data structures. Contrast
with procedural and mapped alphanumerics.

host computer . The primary or controlling computer in a
multiple-computer installation.

I
ICU. Interactive Chart Utility.

identity projection . In GDDM image processing, a
projection that is transferred from source image to target
image without any processing being performed on it.

image . Synonym for digital image.

image data stream . The internal form of the GDDM data in
an image environment.

image field . A rectangular area of a screen or printer page,
used for image. Contrast with alphanumeric field and
graphics field.

448 GDDM Base Application Programming Reference

 glossary

Image Object Content Architecture (IOCA) . An archi-
tected collection of constructs used to interchange and
present images.

image symbol . A character or symbol defined as a dot
pattern.

Image Symbol Editor (ISE) . A GDDM-supplied interactive
editor that enables users to create or modify their own image
symbol sets (ISS).

image symbol set (ISS) . A set of symbols each of which
was created as a pattern of dots. Contrast with vector
symbol set (VSS).

IMD. See GDDM Interactive Map definition.

IMS/VS. Information Management System/Virtual Storage.
A subsystem of MVS under which GDDM can be used.

include member . A collection of source statements stored
as a library member for later inclusion in a compilation.

input queue . See graphics input queue.

integer . A whole number (for example, −2, 3, 457).

Intelligent Printer Data Stream (IPDS) . A structured-field
data stream for managing and controlling printer processes,
allowing both data and controls to be sent to the printer.
GDDM uses IPDS to communicate with the IBM 4224 printer.

Interactive Chart Utility (ICU) . A GDDM-PGF menu-driven
program that allows business charts to be created interac-
tively by nonprogrammers.

interactive graphics . In GDDM, those graphics that can be
moved or manipulated by a user at a terminal.

Interactive Map definition . A member of the GDDM family
of licensed programs. It enables users to create alphanu-
meric layouts at the terminal. The operator defines the posi-
tion of each field within the layout and may assign attributes,
default data, and associated variable names to each field.
The resultant map can be tested from within the utility.

interactive mode . A mode of application operation in which
each entry receives a response from a system or program,
as in an inquiry system or an airline reservation system. An
interactive system can also be conversational, implying a
continuous dialog between the user and the system.

interactive subsystem . (1) One or more terminals,
printers, and any associated local controllers capable of
operation in interactive mode. (2) One or more system pro-
grams or program products that enable user applications to
operate in interactive mode; for example, CICS.

intercept . In a chart, a method of describing the position of
one axis relative to another. For example, the x axis can be
specified so that it intercepts (crosses) the y axis at the
bottom, middle, or top of the plotting area of a chart.

inter-device copy . The ability to copy a page or the
graphics field from the current primary device to another
device. The target device is known as the alternate device.

IOCA. See Image Object content Architecture.

IPDS. See Intelligent Printer Data Stream.

ISE. Image Symbol Editor.

ISO. International Organization for Standardization.

ISPF. Interactive System Productivity Facility.

ISS. Image symbol set.

IVU. Image View Utility. See GDDM-IVU.

J
joystick . A lever that can pivot in all directions in a hori-
zontal plane, used as a locator device.

K
Kanji . A character set of symbols used in Japanese
ideographic alphabets.

Katakana . A character set of symbols used in one of the
two common Japanese phonetic alphabets; Katakana is
used primarily to write foreign words phonetically. See also
Kanji.

key . In a legend, a symbol and an associated data group
name. A key might, for example, indicate that the blue line
on a graph represents “Predicted Profit.” See also legend.

key symbol . A small part of a line (from a line graph) or an
area (from a shaded chart) used in a legend to identify one
of the various data groups.

L
Latin . Of or pertaining to the Western alphabet. In GDDM,
a synonym for single-byte character set.

legend . A set of symbolic keys used to identify the data
groups in a business chart.

line attributes . In GDDM, color, line type, and line width.

link pack area . An MVS term that describes an area of
shared storage.

link-attached . Pertaining to devices that are connected to a
controlling unit by a data link. Synonymous with remote.
Contrast with channel-attached.

local . Synonym for channel-attached.

 Glossary 449

 glossary

local character set identifier . A hexadecimal value stored
with a GDDM symbol set, which can be used by symbol-set-
loading means other than GDDM in the context of local copy
on a printer.

locator . A logical input device used to indicate a position on
the screen. Its physical form may be the alphanumeric
cursor or a graphics cursor moved by a joystick.

logical input device . A concept that allows application pro-
grams to be written in a device-independent manner. The
logical input devices to which the program refers may be
subsequently associated with different physical parts of a ter-
minal, depending on which device is used at run time.

LPA . Link pack area.

LTERM. In IMS/VS, logical terminal.

M
map . A predefined format of alphanumeric fields on a
screen. Usually constructed outside of the application
program.

map specification library (MSL) . The data set in which
maps are held in their source form.

mapgroup . A data item that contains a number of maps
and information about the device on which those maps are to
be used. All maps on a GDDM page must come from the
same mapgroup.

mapped alphanumerics . The creation of alphanumeric dis-
plays using predefined maps. Contrast with procedural
alphanumerics and high performance alphanumerics.

mapped field . An area of a page whose layout is defined
by a map.

mapped graphics . Graphics placed in a graphics area
within a mapped field.

mapped page . A GDDM page whose content is defined by
maps in a mapgroup.

mapping . The use of a map to produce a panel from an
output record, or an input record from a panel.

marker . In GDDM, a symbol centered on a point. Line
graphs and polar charts can use markers to indicate the
plotted points.

MDT. Modified data tag.

menu . A displayed list of logically grouped functions from
which the user can make a selection. Sometimes called a
menu panel.

menu-driven . Describes a program that is driven by user
response to one or more displayed menus.

MFS. Message format service.

MICR. Magnetic ink character recognition.

mixed character string . A string containing a mixture of
Latin (one-byte) and Kanji or Hangeul (two-byte) characters.

Mixed Object Document Content Architecture
(MO:DCA) . An architected, device-independent data stream
for interchanging documents.

mode-1/-2/-3 characters . See character mode.

mountain shading . A method of shading surface charts
where each component is shaded separately from the base
line, instead of being shaded from the data line of the pre-
vious component.

mouse . A device that a user moves on a flat surface to
position a pointer on a screen.

MSHP. Maintain System History Program. A software
process for installing licensed programs on VSE systems.

MSL. Map specification library.

MVS. IBM Multiple Virtual Storage. A system under which
GDDM can be used.

MVS/XA. Multiple Virtual Storage/Extended Architecture. A
subsystem under which GDDM can be used.

N
name-list . A means of identifying which physical device is
to be opened by a GDDM program. It can be used as a
parameter of the DSOPEN call, or in a nickname.

National Language Support (NLS) . A special feature that
provides translations of the ICU panels and some of the
GDDM messages into a variety of languages, including US
English.

negate . In bi-level image data, setting zero bits to one and
one bits to zero.

neutral color . White on a display, black on a printer. Con-
trast with background color.

nibblized data . The encoded data stream used between
the GDDM DOS Support feature in the host and
GDDM-PCLK on the workstation.

nickname . In GDDM, a means of referring to a device, the
characteristics and identity of which have been already
defined.

NLS. National Language Support.

nonqueriable printer . A printer about which GDDM cannot
obtain any information.

NSS. Named saved system (VM/XA and VM/ESA).

450 GDDM Base Application Programming Reference

 glossary

null character . An empty character represented by X'00'
in the EBCDIC code. Such a character does not occupy a
screen position.

O
operator reply mode . In GDDM, the mode of interaction
available to the operator (display terminal user) with respect
to the modification (or not) of alphanumeric character attri-
butes for an input field.

operator window . Part of the display screen’s surface on
which the GDDM output of an application program can be
shown. An operator window is controlled by the end user;
contrast with partition. A task manager may create a window
for each application program it is running.

outbound structured field . An element in IBM 3270 data
streams from host to terminal with formatting that allows
variable-length and multiple-field data to be sequentially
translated by the receiver into its component fields without
the receiver having to examine every byte.

P
page . In GDDM, the main unit of output and input. All
specified alphanumerics and graphics are added to the
current page. An output statement always sends the current
page to the device, and an input statement always receives
the current page from the device.

page printer . A printer, such as the IBM 3820 or IBM 4250,
to which the host computer sends data in the form of a suc-
cession of formatted pages. Such devices can print pictorial
data and text, and can position all output to pixel accuracy.
The pixel density and the general print quality both often
suffice as camera-ready copy for publications. Also known
as composed-page printer.

page segment . A picture file in a form that can be printed.
It can only be printed if it is embedded in a primary docu-
ment. Also known as a PSEGo file.

panel . A predefined display that defines the locations and
characteristics of alphanumeric fields on a display terminal.
When the panel offers the operator a selection of alternatives
it may be called a menu panel. Synonymous with frame.

partition . Part of the display screen’s surface on which a
page, or part of a page, of GDDM output can be shown.
Two or more partitions can be created, each displaying a
page, or part of a page, of output. A partition is controlled by
the GDDM application; contrast with operator window.

partition set . A grouping of partitions that are intended for
simultaneous display on a screen.

partitioned data set (PDS) . A data set in direct access
storage that is divided into partitions, called members, each
of which can contain a program, part of a program, or data.

PCB. In GDDM, program communication block (IMS/VS).

PCLK . See GDDM-PCLK.

PDS. Partitioned data set (MVS).

pel . Picture element. See pixel.

PGF. Presentation Graphics Facility. A member of the
GDDM family of licensed programs. It is concerned with
business graphics, rather than general graphics.

PHIGS. Programmer’s Hierarchical Interactive Graphics
System.

pick . The action of the operator in selecting part of a
graphics display by placing the graphics cursor over it.

pick aperture . A rectangular or square box that is moved
across the screen by the graphics cursor. An item must lie
at least partially within the pick aperture before it can be
picked.

pick device . A logical input device that allows the applica-
tion to determine which part of the picture was selected (or
picked) by the operator.

picture interchange format (PIF) file . In graphics systems,
the type of file, containing picture data, that can be trans-
ferred between GDDM and an IBM 3270-PC/G, /GX, or /AT
workstation.

picture space . In GDDM, an area of specified aspect ratio
that lies within the graphics field. It is centered on the
graphics field and defines the part of the graphics field in
which graphics will be drawn.

PIF. Picture interchange format.

pixel . The smallest area of a display screen capable of
being addressed and switched between visible and invisible
states. Synonymous with display point, pel, and picture
element.

PL/I. One of the programming languages supported by
GDDM.

plotter . An output device that uses pens to draw its output
on paper or transparency foils.

pointings . Pairs of x-y coordinates produced by an operator
defining positions on a screen with a locator device, such as
a mouse.

polar chart . A form of business chart where the x axis is
circular and the y axis is radial.

 Glossary 451

 glossary

polyfillet . In GDDM, a curve based on a sequence of lines.
It is tangential to the end points of the first and last lines, and
tangential also to the midpoints of all other lines.

polyline . A sequence of adjoining lines.

popping . A method of ordering data whereby each item in
a list or sequence takes the value of the previous item in the
list or sequence, and is then removed from the list; when this
happens, the list or sequence of data is said to be “popped.”

ppi . Pixels per inch.

PQE. Printer queue element.

presentation graphics . Computer graphics products or
systems, the functions of which are primarily concerned with
graphics output presentation. For example, the display of
business planning bar charts.

preview chart . A small version of the current chart that can
be displayed on ICU menu panels.

primary device . In GDDM, the main destination device for
the application program’s output, usually a display terminal.
The default primary device is the user console. See also
alternate device.

primitive . See graphics primitive.

primitive attribute . A specifiable characteristic of a
graphics primitive. See graphics attributes and graphics text
attributes.

Print Services Facility (PSF) . An IBM licensed program for
processing documents destined for the IBM 3800 Model 3
page printer.

print utility . A subsystem-dependent utility that sends print
files from various origins to a queued printer.

procedural alphanumerics . The creation of alphanumeric
displays using the GDDM alphanumeric API. Contrast with
mapped alphanumerics and high performance
alphanumerics.

processing option . Describes how a device’s I/O is to be
processed. It is a device-family-dependent and subsystem-
dependent option that is specified when the device is opened
(initialized). An example is the choice between CMS
attention-handling protocols.

procopt . Processing option.

profile . In GDDM, a file that contains information about how
GDDM is to process requests for services to devices or other
functions.

program library . (1) A collection of available computer pro-
grams and routines. (2) An organized collection of computer
programs.

programmed symbols (PS) . Dot patterns loaded by GDDM
into the PS stores of an output device.

projection . In GDDM image processing, an application-
defined function that specifies operations to be performed on
data extracted from a source image. Consists of one or
more transforms. See also transform element.

PS. Programmed symbols.

PS overflow . A condition where the graphics cannot be dis-
played in its entirety because the picture is too complex to be
contained in the device’s PS stores.

PSB. Program specification block (IMS).

PSEG. See page segment.

PSF. Print Services Facility.

PSP bucket . A database containing descriptions of faults
found in programs. Used by Service personnel.

PS/2. Personal System/2.

puck . Synonym for four-button cursor.

PUT. Program update tape.

Q
quarto . A paper size, more common in the U.S. than in
Europe. It measures 8.5 inches by 11.0 inches. Also known
as A size. Compare with A4.

queued printer . A printer belonging to the subsystem under
which GDDM runs, to which output is sent indirectly by
means of the GDDM Print Utility program. In some subsys-
tems, this may allow the printer to be shared between mul-
tiple users. Contrast with system printer.

R
raster device . A device with a display area consisting of
dots. Contrast with vector device.

rastering . The transforming of graphics primitives into a dot
pattern for line-by-line sequential use. In GDDM PS devices,
this is done by transforming the primitives into a series of
programmed symbols (PS).

real device . A GDDM device that is not being windowed by
means of operator window functions. Contrast with virtual
device.

reentrant . The attribute of a program or routine that allows
the same copy of the program or routine to be used concur-
rently by two or more tasks.

remote . Synonym for link-attached.

reply mode . See operator reply mode.

452 GDDM Base Application Programming Reference

 glossary

resolution . In graphics and image processing, the number
of pixels per unit of measure (inch or meter).

reverse clipping . Where one graphics primitive overlaps
another, removing any parts of the underlying primitive that
are overpainted by the overlying primitive.

reverse video . A form of alphanumeric highlighting for a
character, field, or cursor, in which its color is exchanged
with that of its background. For example, changing a red
character on a black background to a black character on a
red background.

REXX. Restructured Extended Executor Language. One of
the programming languages supported by GDDM.

Roman . Relating to the Latin type style, with upright charac-
ters.

S
SBCS. Single-byte character set.

scanner . A device that produces a digital image from a
document.

scissoring . Synonym for clipping.

scrolling . In computer graphics, moving a display image
vertically or horizontally in a manner such that new data
appears at one edge as existing data disappears at the
opposite edge.

SCS. SNA character string.

segment . See graphics segment.

segment attributes . Attributes that apply to the segment as
an entity, rather than to the individual primitives within the
segment. For example, the visibility, transformability, or
detectability of a segment.

segment library . The portion of auxiliary storage where
segment definitions are held. These definitions are GDDM
objects in graphics data format (GDF) and are managed by
GDDM API calls. GDDM handles the file accesses to and
from auxiliary storage.

segment priority . The order in which segments are drawn;
also the order in which they are detected.

segment transform . The means to rotate, scale, and repo-
sition segments without re-creating them.

selector adjunct . A subfield of an application data structure
that qualifies a data field.

shear . The action of tilting graphics text so that each char-
acter leans to the left or right while retaining a horizontal
baseline.

single-byte character set (SBCS) . A set of characters in
which each character occupies one byte position in internal
storage and in display buffers. Used for example, in most
non-Oriental symbols. Contrast with double-byte character
set.

SMP/E. System Modification Program/Extended. A software
process for installing licensed programs on MVS systems.

SNA. System Network Architecture.

source image . An image that is the data input to image
processing or transfer.

spill file . A means of reducing storage requirements at the
cost of processing time, when creating high-resolution output
files for page printers, for example.

stand-alone (mode) . Operation that is independent of
another device, program, or system.

standard default . The value of a graphics attribute chosen
by GDDM when no value is explicitly specified by the user.
The standard default cannot be altered by the user, although
it may be overridden by the user.

string device . A logical input device that enables an appli-
cation program to process character data entered by the ter-
minal operator.

stroke device . A logical input device that enables an appli-
cation program to process a sequence of x,y coordinate data
entered by the terminal operator.

stylus . A pen-like pointer used on the surface of a tablet to
indicate position on a screen.

surface chart . A chart similar to a line graph, except that
no markers appear and the areas between successive lines
are shaded.

swathe . A horizontal slice of printer output, forming part of
a complete picture. Page printer images are often con-
structed in swathes to reduce the amount of storage
required.

symbol . Synonymous with character. For example, the fol-
lowing terms all have the same meaning: vector symbols,
vector characters, vector text.

symbol cell . Synonym for character cell.

symbol matrix . Synonym for dot matrix.

symbol set . A collection of symbols, usually but not neces-
sarily forming a font. GDDM applications may use the hard-
ware device’s own symbol set. Alternatively, they can use
image or vector symbol sets that the user has created.

symbol set identifier . In GDDM, an integer (or the equiv-
alent EBCDIC character) by which the programmer refers to
a loaded symbol set.

 Glossary 453

 glossary

system printer . A printer belonging to the subsystem under
which GDDM runs, to which output is sent indirectly by use
of system spooling facilities. Contrast with queued printer.

T
tablet . (1) A locator device with a flat surface and a mech-
anism that converts indicated positions on the surface into
coordinate data. (2) The IBM 5083 Tablet Model 2, which,
with a four-button cursor or stylus, allows positions on the
screen to be addressed and the graphics cursor to be moved
without use of the keyboard.

tag . In interactive graphics, an identifier associated with one
or more primitives that is returned to the program if such
primitives are subsequently picked.

target image . An image that is the destination of processed
or transferred data.

target position . In the GDDM Vector Symbol Editor, the
grid coordinates of a point on the editing grid to which a
vector is to be drawn.

task manager . A program that supervises the concurrent
running of other programs.

temporary graphics . Graphics created outside a segment.

terminal . A device, usually equipped with a keyboard and a
display unit, capable of sending and receiving information
over a link. See also display terminal.

terminal emulator . A program that enables a device such
as a personal computer system to enter and receive data
from a host computer system as if it were a particular type of
attached terminal.

test symbol . In the GDDM Image and Vector Symbol
Editors, an area on the Symbol Edit panel in which the cur-
rently chosen symbol is displayed.

text . Characters or symbols sent to the device. GDDM pro-
vides alphanumeric text and graphics text.

text attributes . See graphics text attributes.

tilted pie chart . A pie chart drawn in three dimensions,
which has been tilted away from full face to reveal its three-
dimensional properties.

trailing attribute byte . The screen position following an
alphanumeric field. This attribute byte can specify, for
example, that the cursor should auto-skip to the next field
when the current field is filled.

transfer operation . In GDDM image processing, an opera-
tion in which a projection is applied to a source image, and
the result placed in a target image. The source and target
images can be device or application images in any combina-
tion, or one or other of them (but not both) can be image
data within the application program.

transform . (1) The action of modifying a picture for display;
for example, by scaling, rotating, or displacing. (2) The
object that performs or defines such a modification; also
referred to as a transformation. (3) In GDDM image proc-
essing, a definition of three aspects of the data manipulation
to be done by a projection:

1. A transform element or sequence of transform elements
2. A resolution conversion or scaling algorithm
3. A location within the target image for the result

Only the third item is mandatory.

See also projection and transform element.

transform element . In GDDM image processing, a specific
function in a transform, which can be one of the following:
define sub-image, scale, orient, reflect, negate, define place
in target image.

A given transform element can be used only once in a trans-
form.

transformable . A segment must be defined as trans-
formable if it will subsequently be moved, scaled, or rotated.

transparency . (1) A document on transparent material suit-
able for overhead projection. (2) An alphanumeric attribute
that allows underlying graphics or image to show.

TSO. Time Sharing Option. A subsystem of MVS under
which GDDM can be used.

TWA. Transaction work area.

U
UDS. User default specification.

UDSL. A list of user default specifications (UDSs).

unformatted data . In GDDM image processing, com-
pressed or uncompressed binary image data that has no
headers, trailers, or embedded control fields other than any
defined by the compression algorithm, if applicable. The
data is in row major order, beginning with the top left of the
picture.

User Control . A GDDM function that enables the terminal
or workstation to perform some functions without the need for
application programming. The actions include: moving and
zooming graphics; manipulating windows; printing, plotting,
and saving pictures.

user default specification (UDS) . The means of changing
a GDDM external default value. The external default values
that a UDS can change are those of the GDDM or sub-
system environment, GDDM user exits, and device defi-
nitions.

user exit . A point in GDDM execution where a user routine
will gain control if such has been requested.

454 GDDM Base Application Programming Reference

 glossary

V
variable cell size . In most devices, the hardware cell size
is fixed, but the IBM 3290 Information Panel has a cell size
that can be varied. This, in turn, causes the number of rows
or columns on the device to alter.

vector . (1) In computer graphics, a directed line segment.
(2) In the GDDM-PGF Vector Symbol Editor, a straight line
between two points.

vector device . A device capable of displaying lines and
curves directly. Contrast with raster device.

vector symbol . A character or shape composed of a series
of lines or curves.

Vector Symbol Editor . A program supplied with
GDDM-PGF, the function of which is to create and edit
vector symbol sets (VSS).

vector symbol set (VSS) . A set of symbols, each of which
was originally created as a series of lines and curves.

Venetian blind effect . The name given to the appearance
of bars across shaded patterns on an IBM 3270-PC when
GDDM tries to match the image symbol sets.

Venn diagram . A form of business chart in which, in
GDDM, two or more populations and their intersection are
represented by overlapping circles.

viewport . A subdivision of the picture space, most often
used when two separate pictures are to be displayed
together.

virtual device . A GDDM device that is being windowed by
use of operator window functions. Contrast with real device.

virtual screen . The presentation space viewed through an
operator window.

VM/ESA. IBM Virtual Machine Enterprise Systems Architec-
ture.

VM/SP CMS. IBM Virtual Machine/System Product Conver-
sational Monitor System; a system under which GDDM can
be used.

VMXA. IBM Virtual Machine Extended Architecture; a
system under which GDDM can be used.

VSE. Virtual storage extended; an operating system con-
sisting of VSE/Advanced Functions and other IBM programs.

Note: In GDDM, the abbreviation VSE has sometimes been
used to refer to the Vector Symbol Editor, but to avoid con-
fusion, this usage is deprecated.

VSS. Vector symbol set.

W
Ward . One of the 190 matrices used to contain the symbols
of a double-byte character set. The value in the first byte of
each double-byte character code refers to the ward in which
the character is contained. The value in the second byte
denotes the character’s position in the matrix.

window . In GDDM, the term window has three distinct
meanings:

1. The “graphics window” is the coordinate space used for
defining the primitives that make up a graphics picture.
By default, both x and y coordinates run from 0 through
100. The graphics window can be regarded as a set of
coordinates that are overlaid on the viewport.

2. An “operator window” is an independent rectangular sub-
division of the screen. Several can exist at the same
time, and each can receive output from, and send input
to, either a separate GDDM program or a separate func-
tion of a single GDDM program.

3. The “page window” defines which part should be dis-
played of a page that is deeper or wider than its parti-
tion.

workstation . A display screen together with attachments
such as a local copy device or a tablet.

world coordinates . The user application-oriented coordi-
nates used for drawing graphics. See also window.

wrap-around field . An alphanumeric field that extends to
the right-hand edge of the page and continues at the start of
the next row.

WTP. Write-to-programmer.

 Glossary 455

 glossary

456 GDDM Base Application Programming Reference

 index

 Index

Numerics
3112 and 3116 IPDS printers 424
3270-PC/G and /GX work stations

character set usage 263
GDF files 315
PIF files 315
symbol set usage 263

3270-PC/G and /GX workstations
LCLMODE procopt 403
load device or GDDM default symbol sets 402
LOADDSYM procopt 402
local interactive graphics mode 403
retained/nonretained mode 402
zooming and panning pictures 403

3912 and 3916 IPDS printers 424
4224 printer picture overflow 263
4250 high-resolution printer

spill file usage 399
5080 graphics system 403
5550 multistation 367
6090 graphics system 403

A
ABNDRET, external default 384
address table, APL 251
addresses for call intercept exit 436
adjunct fields

base attribute 362
color 362
cursor 361
example of specification of 358
extended highlighting 362
introduction 357
length 363
names 358
programmed symbols 362
selector 361
summary 357
validation 362
values 358—363

ADMDVECP default vector symbol set, illustration of 267
ADMOPUV, the GDDM/VM Print Utility

automatic invocation of 412
INVKOPUV processing option 412

ADMUCG 324
return codes 325

ADMUGC 325
return codes 327

ADMUGIF 343
return codes 345

ADMUPC
GDF-ADMGDF conversion utility 281
GDF-PIF conversion utility 315

ADMUPCT
GDF-ADMGDF conversion utility under TSO 281
GDF-PIF conversion utility for TSO 315

ADMUPCV
GDF-ADMGDF conversion utility under VM/CMS 281
GDF-PIF conversion utility for VM/CMS 317

ADMUPINx (PL/I declare statements) 6
ADMUUxxx sample CECP vector symbol sets

illustrations 267
ADMUUxxx sample CECP vector symbol sets, illustrations

of 267
Advanced Function Printer Datastream

See AFPDS
advanced function printers

device tokens 428
AFPDS

CDPU support
structured fields 356

structured fields
CDPU support 356

alphanumeric field attributes 245
alternate device

close (FSCLS) 72
copy picture to (DSCOPY) 57
open (FSOPEN) 78
send character string to (FSLOG) 77
send character string with carriage-control character to

(FSLOGC) 77
send graphics to (GSCOPY) 109
send page to (FSCOPY) 72

always-unlock-keyboard mode 397
AM3270, external default 384
APL

address table 251
CMSAPLF external default, VM APL feature 385
codes 252—254
request code table 251
request codes module 251
using with GDDM 2

APPCPG, external default 384
application anchor block 1, 433
application anchor block anchor pointer 1
application data structure (ADS)

adjunct field names 358
adjunct fields 357
adjunct values 358
assembler-language example 358
attribute adjunct fields 361
base attribute adjuncts 362
character attributes 363

 Copyright IBM Corp. 1980, 1996 457

 index

application data structure (ADS) (continued)
COBOL example 358
copying into program 366
cursor adjunct 361
description 357
designator characters 364
editing, mapped data 365
generating large structure 366
PL/I example 358
query definition (MSQADS) 213
selector adjunct 361

application group
create (ESACRT) 64
delete (ESADEL) 65
query current (ESAQRY) 65
select (ESASEL) 65

arc
draw circular (GSARC) 96
draw elliptical (GSELPS) 117
draw, GDF order 286
parameters, GDF orders 286
set default parameters, PSC GDF order 302

area
GDF orders 286
shaded, end (GSENDA) 119

ASCII
GINKEY processing option 408
graphics-input key 408

aspect-ratio control (for copy), specify (GSARCC) 97
assembler language

example application data structure 358
using with GDDM 3

assign translation table set to field (ASFTRN) 37
attention-handling for VM 411
attribute adjunct fields

introduction 357
usage 361

AUNLOCK, external default 384
AUNLOCK, processing option 397

B
background color-mix mode

GDF orders 286
query (GSQBMX) 145
set (GSBMIX) 98
set default, PSC GDF order 302

background color, GDF and CGM conversion 330
badge reader 45
bar codes 349
BASIC, using with GDDM 3
bilevel images, initial value 408
blank-to-null conversion on output, define (ASFOUT) 35
BMSCOORD, processing option 397

C
C programming language

pragma linkage 3—5
using with GDDM 3—5

call intercept user exit option 433
call statement syntax

assembler 3
C programming language 3
COBOL programming language 5
FORTRAN programming language 5
GDDM_REXX 6
PL/I programming language 6

call statements
detailed descriptions 21—239
syntax conventions 21

CALLINF, external default 384
CDPDS

document structure 347—348
structured field formats 347—356

CDPFTYPE, processing option 398
CDPU (Composite Document Print Utility)

AFPDS support 356
API call 50
file format 347—356

CECPINP, external default 385
cell-size dimensions for devices 243
CGM

applications 323
content 323
conversion between CGM and ADMGDF formats 323
file format 327
load a picture from (CGLOAD) 323
output 323
picture, load from 51
save segments in (CGSAVE) 324
segments, save in (CGSAVE) 54
support 323

CGM profile
customizing

character-height factor 337
character-width factor 337
color mapping 331

chained attributes, set initial (GSSATI) 166
change field status (ASFMOD) 34
change resolution flag of an image (IMARF) 186
changing GDDM supplied values

defaults 379
character angle

GDF order 287
query (GSQCA) 146
set (GSCA) 99
set default, PSC GDF order 302

character attributes
introduction 357
setting from the terminal 364

458 GDDM Base Application Programming Reference

 index

character attributes (continued)
setting within a program 363

character box
GDF order 287
query size (GSQCB) 146
query spacing (GSQCBS) 147
set default, PSC GDF order 303
set size (GSCB) 102
set spacing (GSCBS) 103

character colors for field, query (ASQCOL) 39
character direction

Arabic text (GSCD) 104
Chinese text (GSCD) 104
GDF order 288
query (GSQCD) 147
Roman text (GSCD) 104
set (GSCD) 103
set default, PSC GDF order 303

character mode
query (GSQCM) 148
set (GSCM) 108

character pitch, processing option 408
character precision

GDF order 288
set default, PSC GDF order 304

character shear
GDF order 288
query (GSQCH) 147
set (GSCH) 105
set default, PSC GDF order 304

character string
draw at current position (GSCHAP) 105
draw at specified point (GSCHAR) 106
GDF order 289
send to alternate device (FSLOG) 77
send to alternate device with carriage-control character

(FSLOGC) 77
character-code assignments, override (ASTYPE) 48
CICAUD, external default 385
CICDECK, external default 385
CICDFPX, external default 385
CICGIMP, external default 385
CICIADS, external default 385
CICIFMT, external default 385
CICPRNT, external default 385
CICS

ADMGIMP name, CICGIMP external default 385
ADS name, CICIADS external default 385
audit trail anchor block 385
coordination mode 397
defaults file temporary storage 385
device query temporary storage prefix, CICTQRY external

default 385
GDDM-IMD staging data file name, CICSTGF external

default 385
print utility, CICPRNT external default 385

CICS (continued)
pseudoconversational mode control 404
staging data file-type, CICIFMT external default 385
system printer name, CICSYSP external default 385
temporary storage prefix, CICTSPX external default 385
trace transient data name, CICTRCE external

default 385
CICSTGF, external default 385
CICSYSP, external default 385
CICTIF, external default 385
CICTQRY, external default 385
CICTRCE, external default 385
CICTSPX, external default 385
clear

current page (FSPCLR) 79
field (ASFCLR) 31
graphics field (GSCLR) 108
graphics input queue (GSFLSH) 121
rectangle in image (IMACLR) 179

CLEAR/PA1 protocol in TSO 412
clipping

enable and disable (GSCLP) 107
query state (GSQCLP) 148

close
alternate device (FSCLS) 72
current segment (GSSCLS) 167
device (DSCLS) 56

CMSAPLF, external default 385
CMSATTN, processing option 411
CMSCOLM, external default 386
CMSDECK, external default 386
CMSDFTS, external default 386
CMSIADS, external default 386
CMSIFMT, external default 386
CMSINTRP, processing option 410
CMSMONO, external default 386
CMSMSLT, external default 386
CMSPRNT, external default 386
CMSSYSP, external default 386
CMSTEMP, external default 386
CMSTRCE, external default 386
COBOL programming language

example application data structure 358
using with GDDM 5

code conversion on character string (FSTRAN) 94
code page

for CGM applications 328
GDDM object, set (ESSCPG) 70
query (GSQCPG) 149
set (GSCPG) 113

color
adjunct and attribute 362
characters within field, query (ASQCOL) 39
characters within field, specify (ASCCOL) 25
field, define (ASFCOL) 32
graphics, query (GSQCOL) 148

 Index 459

 index

color (continued)
graphics, set (GSCOL) 109

color mapping
customizing CGM profile 331
keyword, COLOR_MAPPING 331

color master table identifier 413
COLOR_MAPPING, keyword 331
color, graphics

extended, set default, PSC GDF order 305
GDF order 289

COLORMAS, processing option 413
COMMENT, external default 386
complex pictures 263
Composite Document Presentation Data Stream (CDPDS)

see CDPDS
composite documents

file format 347—356
print (CDPU) 50

Computer Graphics Metafiles
see CGM

Computer Graphics Metafiles (CGM) 323
conditional load (PSLSSC) 221
contents of data buffer 372
control echoing of scanner image (ISESCA) 201
control internal trace (FSTRCE) 95
control use of mixed fields by mapping (SPMXMP) 231
conversion profile, CGM

example format 327
picture adjustment factors 335
picture mapping information 329

convert
ADMGDF to CGM file (ADMUGC utility) 325
ADMGDF to GIF file (ADMUGIF utility) 343
CGM to ADMGDF file (ADMUCG utility) 324
resolution attributes of an image (IMARES) 186

coordination exit control direction parameter 437
coordination exit routine 436, 437
coordination mode for CICS BMS 397
copy a segment (GSSCPY) 168
correlate segments and tags (GSCORS) 111
correlate tag to primitive (GSCORR) 110
CPN4250, external default 386
CPSPOOL, processing option 411
CPTAG, processing option 411
create

application group (ESACRT) 64
empty projection (IMPCRT) 189
image (IMACRT) 179
mapped field (MSDFLD) 210
operator window (WSCRT) 233
page (FSPCRT) 79
page for mapping (MSPCRT) 211
partition (PTNCRT) 223
partition set (PTSCRT) 227
segment (GSSEG) 170

CTLFAST, processing option 404
CTLKEY, processing option 405
CTLMODE, processing option 405
CTLPRINT, processing option 405
CTLSAVE, external default 386
CTLSAVE, processing option 405
current position

GDF order 290
move without drawing (GSMOVE) 137
query (GSQCP) 149
set (GSCP) 112

cursor
alpanumeric, query position (ASQCUR) 40
alphanumeric, query position (GSQCUR) 150
alphanumerics, position within field (ASFCUR) 32
control with mapping requests 361
image box, initialize (ISIBOX) 202
image locator, initialize (ISILOC) 203
image locator, query position (ISQLOC) 206
image, enable or disable (ISENAB) 200
query position in map (MSQPOS) 218
selection 364
set position in mapped field (MSCPOS) 209

cursor adjunct fields
introduction 357
usage 361

customization
color mapping 331

D
data boundary

define (GSBND) 99
query (GSQBND) 146

data streams
truncation processing option, IPDS printers 407

DATEFRM, external default 386
DATRN, external default 387
DBCS fields

control use of mixed fields by mapping (SPMXMP) 231
get contents (ASGGET) 38
in GDDM-IMD 366
in mapped data 367
in mapping 366
MIXSOSI external default 390
selection 387
SOSI emulation character, SOSIEMC external

default 391
specify contents (ASGPUT) 39
symbol set component threshold 387
symbol set language option 387
symbol sets 264

DBCSDFT, external default 387
DBCSDNM, external default 387
DBCSLIM, external default 387

460 GDDM Base Application Programming Reference

 index

DBCSLNG, external default 387
default user exit option 433
defaults

changing GDDM-supplied values 379
drawing, end definition (GSDEFE) 114
drawing, start definition (GSDEFS) 114
encoded UDS, query (ESQEUD) 68
GDDM-supplied values 379
source-format UDS, specify (ESSUDS) 71
UDS, specify encoded (ESEUDS) 66
user exits 432

deferred device name-list for print utility 402
define

bi-level conversion algorithm (IMRCVB) 192
brightness conversion algorithm (IMRBRI) 191
contrast conversion algorithm (IMRCON) 191
field attributes (ASRATT) 45
field color (ASFCOL) 32
field end action (ASFEND) 33
field mixed-string attribute (ASFSEN) 36
field type (ASFTYP) 38
graphics field (GSFLD) 120
graphics window (GSWIN) 178
image field (ISFLD) 201
picture space (GSPS) 142
place position in pixel coordinates (IMRPL) 195
place position in real coordinates (IMRPLR) 195
primary symbol set for field (ASFPSS) 35
rectangular sub-image in pixel coordinates (IMREX) 193
rectangular sub-image in real coordinates (IMREXR) 193
segment viewing limits (GSSVL) 174
single field (ASDFLD) 28
uniform graphics window (GSUWIN) 176
viewport (GSVIEW) 177

delete
application group (ESADEL) 65
image (IMADEL) 180
mapped field (MSDFLD) 210
operator window (WSDEL) 234
page (FSPDEL) 80
partition (PTNDEL) 224
partition set (PTSDEL) 228
projection (IMPDEL) 189
segment (GSSDEL) 169

descriptor modules for call formats 438
designator characters

introduction 357
values 364

DEVCPG, processing option 406
DEVCSET, processing option 410
device

close (DSCLS) 56
input, enable or disable (FSENAB) 73
query unique identifier (DSQUID) 63
query usage (DSQUSE) 63
reinitialize (DSRNIT) 63

Device character set
overriding with procopt 410

device characteristic tokens
see device tokens

device characteristics
query (DSQDEV) 62
query (FSQDEV) 82
query (FSQURY) 85

device code page
processing option (DEVCPG) 406

device stores, query status (PSQSS) 222
device tokens

advanced function printers 428
ASCII devices (family 1) 426
defining 421
displays 421
GDDM-PCLK displays 427
GDDM-PCLK plotters 427
GDDM-PCLK printers 427
IBM 3290 displays 425
IBM 8775 displays 425
Kanji devices 425
nonqueriable displays 426
nonqueriable printers 426
page printers (cell-based family 4) 428
page printers (family 4) 430
plotters 421
PostScript (family 4) 429
printers 421
queriable terminals 421
scanners 421
system printers (family 3) 428

device usage
discontinue (DSDROP) 58
specify (DSUSE) 64

device variations
alphanumerics 245
area, shading 247
background color-mix mode 246
check picture complexity before output (FSCHEK) 243
color wrapping 245
color-mix mode 246
double-byte character sets (DBCS) 245
dual screen devices 241
field color 245
foreground color-mix mode 246
fractional line width, set (GSFLW) 247
GDF, saved as 2-byte integers (GSSAVE) 242
graphics image 247
graphics text 242
image 249
line type (GSLT) 247
line width, set (GSLW) 247
locator device, initialize (GSILOC) 247
logical input devices 247
pick device, initialize (GSIPIK) 248

 Index 461

 index

device variations (continued)
picture, display saved (FSSHOW or FSSHOR) 242
picture, save 242
programmed symbol sets 242
PS overflow check 243
screen redraw 242
screen size, alphanumeric 241
screen size, alternate 241
screen size, primary 241
segments, primitives outside 242
string device, initialize (GSISTR) 249
stroke device, initialize (GSISTK) 248

DFTXTNA, external default 387
disable 200

clipping (GSCLP) 107
device input (FSENAB) 73
image cursor (ISENAB) 200
logical input device (GSENAB) 118

display
mapped data (MSREAD) 219
saved picture 242
saved picture (FSSHOW) 93
saved picture – extended FSSHOW (FSSHOR) 93
update (DSFRCE) 58
update (FSFRCE) 74
update (FSGETE) 75
update (FSGETS) 76

document name 403
double-byte character set

See DBCS fields
draw

character string at current position (GSCHAP) 105
character string at specified point (GSCHAR) 106
circular arc (GSARC) 96
curved fillet (GSPFLT) 140
elliptical arc (GSELPS) 117
graphics image (GSIMG) 126
scaled graphics image (GSIMGS) 127
series of lines (GSPLNE) 141
series of markers (GSMRKS) 138
single marker (GSMARK) 135
straight line (GSLINE) 130

E
EBCDIC character codes 49
enable 200

clipping (GSCLP) 107
device input (FSENAB) 73
image cursor (ISENAB) 200
logical input device (GSENAB) 118

end
data entry into image (IMAPTE) 184
drawing defaults definition (GSDEFE) 114
retrieval of data from an image (IMAGTE) 182
retrieval of graphics data (GSGETE) 122

end (continued)
shaded area (GSENDA) 119

enter data into image (IMAPT) 183
ERRFDBK, external default 387
error exits

error record structure 83
specify (FSEXIT) 74

error last, query (FSQERR) 83
error messages 21
ERRTHRS, external default 388
ESLIB (library management) 208
external default options 384—393
external defaults

abend/return processing 384
ABNDRET 384
alphanumeric defaults module control 387
always-unlock-keyboard 384
AM3270 384
APL specification for TSO 392
APPCPG 384
application code-page 384
AUNLOCK 384
call information block 384
CALLINF 384
CECPINP 385
CGM conversion filetype for TSO 392
CGM conversion filetype for VM 386
CICAUD 385
CICDECK 385
CICDFPX 385
CICGIMP 385
CICIADS 385
CICIFMT 385
CICPRNT 385
CICS ADMGIMP name 385
CICS ADS name 385
CICS audit trail anchor 385
CICS deck name 385
CICS defaults file temporary storage 385
CICS device query temporary storage prefix 385
CICS GDDM-IMD staging data file name 385
CICS GDDM-IMD staging data file-type 385
CICS print utility name 385
CICS system printer name 385
CICS temporary storage prefix 385
CICS transaction independence 385
CICSTGF 385
CICSYSP 385
CICTIF 385
CICTQRY 385
CICTRCE 385
CICTSPX 385
CMSAPLF 385
CMSCOLM 386
CMSCPT 386
CMSDECK 386

462 GDDM Base Application Programming Reference

 index

external defaults (continued)
CMSDFTS 386
CMSIADS 386
CMSIFMT 386
CMSMONO 386
CMSMSLT 386
CMSPRNT 386
CMSSYSP 386
CMSTEMP 386
CMSTRCE 386
color master ddname/high-level qualifier for TSO 392
color master file name 393
color master filetype for VM 386
COMMENT 386
compressed PS loads 390
conversion between CGM and ADMGDF 327
CPN4250 386
CTLSAVE 386
DATEFRM 386
dates punctuation convention 386
DATRN 387
DBCS selection 387
DBCSDFT 387
DBCSDNM 387
DBCSLIM 387
DBCSLNG 387
ddname for TSO 392
deck output LTERM for IMS 388
default symbol-set names 387
device attachment 384
DFTXTNA 387
dynamic allocation size 393
ERRFDBK 387
error exit 387
error thresholds 388
ERRTHRS 388
exit character string for IMS 389
FF3270P 388
File Control dataset names 391
file name for VSE 393
force evaluation of HPA 388
form feed 388
format 379
FRCEVAL 388
FSSAVE buffer size 391
IBM 4250 code page name 386
ICU format 388
ICU transaction name for IMS 389
ICUFMDF 388
ICUFMSS 388
ICUISOL 388
ICUISOL, isolate value for ICU 388
ICUPANC 388
ICUPANC, use of panel color value for ICU 388
IMS shutdown LTERM name 389
IMSDECK 388

external defaults (continued)
IMSEXIT 389
IMSICU 389
IMSISE 389
IMSMAST 389
IMSMODN 389
IMSPRNT 389
IMSSDBD 389
IMSSEGS 389
IMSSHUT 389
IMSSYSP 389
IMSTRCE 389
IMSUISZ 389
IMSUMAX 389
IMSVSE 389
IMSWTOD 389
IMSWTOR 389
in-storage trace table size 392
input area size for IMS 389
INSCPG 389
installation code-page 389
IOBFSZ 390
IOCOMPR 390
IOSYNCH 390
ISE transaction name for IMS 389
keyboard input of CECP characters 385
mapgroup storage threshold 390
MAPGSTG 390
maximum number of users for IMS 389
message output descriptor name 389
mixed fields 390
MIXSOSI 390
monochrome file name for VSE 393
national language support 391
NATLANG 391
numbering convention 391
NUMBFRM 391
OBJFILE 391
parameter verification 391
PARMVER 391
print utility name 389
SAVBFSZ 391
segment names for IMS 389
short-on-storage processing 392
shutdown string for IMS 389
SOSI emulation character 391
SOSIEMC 391
STGRET 392
symbol set component threshold 387
symbol set language 387
synchronized I/O 390
system printer name for IMS 389
system-definition database definition (DBD) name 389
time punctuation convention 392
TIMEFRM 392
TRACE 392

 Index 463

 index

external defaults (continued)
trace control 392
trace ddname for IMS 389
trace ddname for TSO 393
trace file name for VSE 393
trace output width control 392
trace share 392
trace word value 392
transmission buffer size 390
TRCESTR 392
TRCEWID 392
TRTABLE 392
TSO ADMGIMP ddname 393
TSO ADS ddname 393
TSO deck ddname 392
TSO export utility ddname 393
TSO I/O Emulation 392
TSO monochrome ddname or low-level qualifier 393
TSO print data-set qualifier 393
TSO reserve master print queue DASD 393
TSO system printer ddname 393
TSOAPLF 392
TSOCOLM 392
TSOCPT 392
TSODECK 392
TSODFTS 392
TSOEMUL 392
TSOGIMP 393
TSOIADS 393
TSOIFMT 393
TSOMONO 393
TSOPRNT 393
TSORESV 393
TSOS99S 393
TSOS99U 393
TSOSYSP 393
TSOTRCE 393
unit specification for TSO 393
use of symbol sets in formats value for ICU 388
User Control SAVE function control 386
Vector Symbol Editor transaction name for IMS 389
VM ADS filetype 386
VM APL feature 385
VM deck filetype 386
VM export utility filetype 386
VM filename and filetype 386
VM monochrome filetype 386
VM MSL filetype 386
VM print filetype 386
VM system printer filetype 386
VM trace filename/filetype 386
VM work-file filetype 386
VSE batch printing 387
VSECOLM 393
VSEDFTS 393
VSEMONO 393

external defaults (continued)
VSETRCE 393
write-to-operator descriptor codes for IMS 389
write-to-operator routing codes for IMS 389

external interfaces
nonreentrant 1
reentrant 1
system programmer 2
system programmer interface 431

F
family-2 and -4 print-file destination in TSO 412
fast update mode 404
FASTUPD, processing option 404
feedback values

call intercept exit 436
task switch exit 435

FF3270P, external default 388
field

assign translation table set to (ASFTRN) 37
change status (ASFMOD) 34
character colors, specify within (ASCCOL) 25
character highlights within, specify (ASCHLT) 26
character symbol sets, specify within (ASCSS) 27
clear (ASFCLR) 31
contents, specify (ASCPUT) 27
define attributes (ASRATT) 45
define color (ASFCOL) 32
define input null-to-blank conversion (ASFIN) 34
define mixed-string attribute (ASFSEN) 36
define or delete single (ASDFLD) 28
define output blank-to-null conversion (ASFOUT) 35
define primary symbol set for (ASFPSS) 35
define type (ASFTYP) 38
end action, define (ASFEND) 33
get contents (ASCGET) 26
get double-character contents (ASGGET) 38
graphics, clear (GSCLR) 108
highlight, define (ASFHLT) 33
image, query (ISQFLD) 205
intensity, define (ASFINT) 34
modified, query number (ASQNMF) 44
multiple, define (ASDFMT) 29
outline, define (ASFBDY) 31
outlining in maps 363
position cursor within (ASFCUR) 32
query attributes (ASQFLD) 41
query character colors (ASQCOL) 39
query character highlights for (ASQHLT) 42
query character symbol sets (ASQSS) 44
query length of contents (ASQLEN) 42
query maximum number (ASQMAX) 43
query modified (ASQMOD) 43
redefine (ASRFMT) 47
set default attributes (ASDFLT) 29

464 GDDM Base Application Programming Reference

 index

field (continued)
specify double-character contents (ASGPUT) 39
transparency attribute, define (ASFTRA) 37

field attributes for mapping
alphanumeric 362
autoskip 362
base 362
blinking 362
color 362
detectable 362
extended highlighting 362
intensified-display 362
introduction 357
mandatory enter 362
mandatory fill 363
MDT 362
nondetectable 362
nondisplay 362
normal-display 362
numeric 362
programmed symbols 362
protected 362
reverse video 362
trigger 363
underscore 362
unprotected 362
validation 362

field list
define (APDEF) 21
delete (APDEL) 22
modify (APMOD) 23
query (APQRY) 24
query identifiers (APQIDS) 23
query numbers (APQNUM) 24
query size (APQSIZ) 25
query unique identifier (APQUID) 25

field, mapped
create or delete (MSDFLD) 210
mixed, control use of (SPMXMP) 231
place data into (MSPUT) 212
query (MSQFLD) 216
query modified (MSQMOD) 218
retrieve data from (MSGET) 211

fillet
curved, draw (GSPFLT) 140
GDF order 291

foreground color-mix mode
GDF order 291
query (GSQMIX) 153
set (GSMIX) 136
set default, PSC GDF order 305

FORTRAN programming language, using with GDDM 5
FRCETYPE, processing option 413
FRCEVAL, external default 388
FSLOG

maximum characters for each line 398

FSLOG (continued)
page sizes for 398

FSLOGC
maximum characters for each line 398
page sizes for 398

functions
control 14
copy 15
detailed descriptions 21—239
device 15
graphics 15
graphics segments 16
high-performance alphanumerics 17
image 17
interactive graphics 17
mapped alphanumerics 18
operator window 18
page 19
partition 19
procedural alphanumeric 19
summary 13—20
symbol set 20
utility call 20

G
GDDM

changing default user exits
call intercept exit 435
task switch exit 434

changing supplied default values 379
object file format 279—280
supplied declarations for mapping constants tables 367
supplied device tokens 421, 429
user-exit conventions 433

GDDM Internet home page xix
GDDM-REXX

command and subcommands summary 255
differences from other programming languages

FSINIT 10
FSTERM 10

ERXMSVAR utility EXEC 258
GDDMREXX command 255
GXGET subcommand 256—257
GXSET subcommand 257—258
programming interface 255—258
restrictions in

CHART 10
SPINIT 10

subcommands 256—258
using with GDDM 6—11

GDF
description of orders 281
end retrieval of (GSGETE) 122
format of objects 282
handling of orders during CGM to GDF conversion 340

 Index 465

 index

GDF (continued)
handling of orders during GDF to CGM conversion 339
list of orders 282
loading objects from library (GSLOAD) 130
restore (GSPUT) 143
retrieve fam-4 datastream (FSGET) 75
retrieve graphics data as (GSGET) 121
start retrieval of (GSGETS) 122

GDF orders
arc 286
arc parameters 286
arc parameters, set default 302
area 286
attributes 285
background color mix mode, set default 302
background color-mix mode 286
begin image 292
begin picture prolog 302
call segment 287
character angle 287
character angle, set default 302, 303
character box 287
character box spacing 287
character direction 288
character direction, set default 303
character precision 288
character precision, set default 304
character shear 288
character shear, set default 304
character string 289
character-box spacing, set default 303
color 289
comment 290
coordinate type, set default 304
current position 290
default PSC 302—309
draw fillet 291
draw full arc (circle or ellipse) 292
draw line 293
draw relative line 297
end area 291
end image 293
end picture prolog 302
end symbol-set mapping 302
extended color, set default, PSC GDF order 305
foreground color-mix mode 291
foreground color-mix mode, set default 305
format 283
fractional line width 292
line type 294
line type, set default 306
line width 294
line width, fractional, set default 305
map symbol-set identifiers 301
marker 294
marker box 294

GDF orders (continued)
marker box, set default 306
marker scale 295
marker type 295
marker type, set default 306
model transformation 295
padding 283
pattern, set default 306
pick identifier, set default identifier 307
picture boundary, set default 308
picture origin, set default 309
picture scale, set default 307
pop 296
PSC definition 300—309
representation of graphics primitives 283
segment attributes 297
segment attributes, modify 297
segment end 298
segment origin 298
segment position 298
segment prolog, end 298
segment viewing window 300
shading patterns 296
start segment 299
symbol set mapping 301
symbol set, set default, PSC GDF order 304
symbol sets 288
tag identifier 296
text alignment 300
text alignment, set default 307
transform graphics 295
use of current position 285
viewing window, set default 308
write image data 293

GDF-ADMGDF conversion utility 281
get and reserve, image (IMAGID) 180
get and reserve, projection (IMPGID) 189
get field contents (ASCGET) 26
GIF

content 343
output 343
support 343

GIF (graphics interchange format files) 343
GINKEY, processing option 408
GL (graphics language) plot file 409
graphics

loading symbol sets 262
using PS with 262

graphics attributes
query mode (GSQAM) 144
restore (GSPOP) 142
set mode (GSAM) 96

graphics data format
See GDF

graphics field
define (GSFLD) 120

466 GDDM Base Application Programming Reference

 index

graphics field (continued)
query (GSQFLD) 150

graphics image
begin, GDF order 292
draw (GSIMG) 126
draw scaled (GSIMGS) 127
end, GDF order 293
write data, GDF order 293

graphics input key on ASCII graphics devices 408
graphics input queue, clear (GSFLSH) 121
graphics input, wait for (GSREAD)
graphics interchange format files (GIF) 343
graphics primitives

outside segments 242
representation through GDF 283

graphics segments
call or transform (GSCALL) 100
close current (GSSCLS) 167
copy (GSSCPY) 168
correlate to tags (GSCORS) 111
create (GSSEG) 170
define viewing limits (GSSVL) 174
delete (GSSDEL) 169
geometric attributes, set (GSSAGA) 164
geometric attributes, set for current (GSSCT) 168
include (GSSINC) 171
modify attributes (GSSATS) 166
query all geometric attributes (GSQAGA) 143
query attributes (GSQATS) 145
query initial attributes (GSQATI) 144
query number (GSQMAX) 152
query origin (GSQORG) 154
query position (GSQPOS) 155
query priority (GSQPRI) 155
query viewing limits (GSQSVL) 159
save (GSSAVE) 166
set geometric attributes (GSSTFM) 173
set initial attributes (GSSATI) 165
set origin (GSSORG) 171
set position (GSSPOS) 172
set priority (GSSPRI) 172
set transform (GSSTFM) 173
transform current (GSSCT) 168

graphics text
alignment, GDF order 300
alignment, set default, PSC GDF order 307
query alignment (GSQTA) 159
query box (GSQTB) 160
query mixed-string attribute (GSQSEN) 156
set alignment (GSTA) 175
set mixed-string attribute (GSSEN) 170

graphics window
define (GSWIN) 178
uniform, define (GSUWIN) 176

GRAYLINE, processing option 410

H
Hangeul fields (see DBCS fields)
heading page 398
high-performance alphanumerics

bundle definition 373
bundle-list contents 373
bundle-list header 373
contents of field-list header 369
data buffer 372
data structure 369
data-buffer attributes

color 372
highlight 372
symbol set 372

data-buffer contents 372
dynamic fields 376
enlarging structures 377
example of bundle list 375
example of data buffer 373
example of field list 372
field list 369
field-definition contents 369
functions 17
how to use 375
input 376
locate mode 375
move mode 375
output 376
reshow 376
restrictions

FRCEVAL call 377
on running with validation set 377
on use of shared storage 377
on use with interpreted languages 377
on use with read-only storage 377

updating a bundle list 376
updating a data buffer 376
updating a field list 376

highlight field, define (ASFHLT) 33
home page for GDDM xix
HRIDOCNM, processing option 403
HRIFORMT, processing option 399
HRIPSIZE, processing option 399
HRISPILL, processing option 399
HRISWATH, processing option 399

I
I/O translation tables, define (ASDTRN) 30
IBM 4250 printer

code page name 386
IBM-GL output 409
ICU (Interactive Chart Utility)

isolate value, ICUISOL external default 388
use of panel color, ICUPANC external default 388

 Index 467

 index

ICUFMDF, external default 388
ICUFMSS, external default 388
ICUISOL, external default 388
ICUPANC, external default 388
identify program communication block (ESPCB) 68
IEEE customization panel 415
image

box cursor, query (ISQBOX) 204
clear rectangle (IMACLR) 179
control echoing of scanner image (ISESCA) 201
convert resolution attributes (IMARES) 186
create (IMACRT) 179
create an empty projection (IMPCRT) 189
cursors, query device characteristics (FSQURY) 90
data compression types 311
define bi-level conversion algorithm (IMRCVB) 192
define brightness conversion algorithm (IMRBRI) 191
define contrast conversion algorithm (IMRCON) 191
define field (ISFLD) 201
define place position in pixel coordinates (IMRPL) 195
define place position in real coordinates (IMRPLR) 195
define rectangular sub-image in pixel coordinates

(IMREX) 193
define rectangular sub-image in real coordinates

(IMREXR) 193
delete (IMADEL) 180
delete projection (IMPDEL) 189
displays, query device characteristics (FSQURY) 89
enable or disable cursor (ISENAB) 200
end data entry (IMAPTE) 184
end retrieval of data (IMAGTE) 182
enter data (IMAPT) 183
field, query (ISQFLD) 205
file formats 311
format, query (ISQFOR) 206
initial value of bilevel 408
initialize box cursor (ISIBOX) 202
initialize locator cursor (ISILOC) 203
negate pixels of extracted image (IMRNEG) 194
orientate (IMRORN) 194
projection, unique identifier, get and reserve

(IMPGID) 189
query attributes (IMAQRY) 185
query compressions (ISQCOM) 205
query locator cursor position (ISQLOC) 206
query scanner (ISQSCA) 207
query supported resolutions (ISQRES) 207
read-only, load external (ISLDE) 204
reflect (IMRREF) 197
resolution flag, change (IMARF) 186
restore from auxiliary storage (IMARST) 187
restore projection from auxiliary storage (IMPRST) 190
retrieve data (IMAGT) 181
save on auxiliary storage (IMASAV) 188
save projection on auxiliary storage (IMPSAV) 190
scale (IMRSCL) 197

image (continued)
scanners, query device characteristics (FSQURY) 90
set current resolution/scaling algorithm (IMRRAL) 196
set extended quality control parameters (ISXCTL) 208
set quality-control parameters (ISCTL) 199
start data entry (IMAPTS) 184
start retrieval of data (IMAGTS) 182
swathing 407
transfer data between, applying a projection

(IMXFER) 198
trim to rectangle (IMATRM) 188
unique identifier, get and reserve (IMAGID) 180

Image Symbol Editor API call (ISSE) 208
image symbol sets 276
IMGINIT, processing option 408
IMS

deck output LTERM, IMSDECK external default 388
exit character string, IMSEXIT external default 389
ICU transaction name, IMSICU external default 389
input area size, IMSUISZ external default 389
ISE transaction name, IMSISE external default 389
maximum number of users, IMSUMAX external

default 389
message output descriptor name, IMSMODN external

default 389
print utility name, IMSPRNT external default 389
segment names, IMSSEGS external default 389
shutdown LTERM name, IMSMAST external default 389
shutdown string, IMSSHUT external default 389
system printer name, IMSSYSP external default 389
system-definition database definition (DBD) name,

IMSSDBD external default 389
trace ddname (IMSTRCE default) 389
Vector Symbol Editor transaction name, IMSVSE external

default 389
write-to-operator descriptor codes, IMSWTOD external

default 389
write-to-operator, routing codes, IMSWTOR external

default 389
IMSDECK, external default 388
IMSEXIT, external default 389
IMSICU, external default 389
IMSISE, external default 389
IMSMAST, external default 389
IMSMODN, external default 389
IMSPRNT, external default 389
IMSSDBD, external default 389
IMSSEGS, external default 389
IMSSHUT, external default 389
IMSSYSP, external default 389
IMSTRCE, external default 389
IMSUISZ, external default 389
IMSUMAX, external default 389
IMSVSE, external default 389
IMSWTOD, external default 389

468 GDDM Base Application Programming Reference

 index

IMSWTOR, external default 389
include segment (GSSINC) 171
IND$FILE

CLIST 316
EXEC 317

initial data value for device
float (GSIDVF) 123
integer (GSIDVI) 124

initial value for bilevel images 408
initialize

GDDM processing (FSINIT) 76
GDDM with SPIB

call intercept exit 433
task switch exit 433
user exit definition 433

GDDM with SPIB (SPINIT) 231
image box cursor (ISIBOX) 202
image locator cursor (ISILOC) 203
locator (GSILOC) 125
pick device (GSIPIK) 128
string device (GSISTR) 129
stroke device (GSISTK) 128

input/output, device (ASREAD) 45
INRESRCE, processing option 405
INSCPG, external default 389
intensity, field, define (ASFINT) 34
Interactive Map Definition (GDDM-IMD) 357
interfaces

external 1
nonreentrant 1

Internet home page for GDDM xix
INVKOPUV, processing option 412
invoking VM print utility automatically 412
IOBFSZ, external default 390
IOCOMPR, external default 390
IOSYNCH, external default 390
IPDS printers

characters per inch 408
data stream truncation processing option 407
image swathing 407
paper feed bin selection 407
quality processing option 406
rotation processing option

IPDSROT 406
IPDSBIN, processing option 407
IPDSCPI, processing option 408
IPDSIMSW, processing option 407
IPDSLPI, processing option 407
IPDSQUAL, processing option 406
IPDSROT, processing option 406
IPDSTRUN, processing option 407
ISS

see image symbol sets

J
Japan (Latin) extended character codes 50

K
Kanji fields (see DBCS fields)
Katakana character codes 49
keyboard, unlocking in DSOPEN 397

L
LCLMODE, processing option 403
length adjunct

introduction 357
usage 363

library management (ESLIB) 67
line

draw relative, GDF order 297
draw, GDF order 293

line type
GDF order 294
query (GSQLT) 151
set (GSLT) 134
set default, PSC GDF order 306

line width
fractional, GDF order 292
fractional, set default, PSC GDF order 305
GDF order 294
query (GSQLW) 152
query fractional (GSQFLW) 150
set (GSLW) 134
set fractional (GSFLW) 121

line-pitch processing option 407
lines-per-inch processing option 407
load

external read-only image (ISLDE) 204
graphics segments (GSLOAD) 130
graphics symbol set from auxiliary storage (GSLSS) 133
graphics symbol sets from application program

(GSDSS) 117
picture from a CGM (CGLOAD) 323
PS sets, using mapping 362
symbol set into PS store from application program

(PSDSS) 219
symbol set into PS store from auxiliary storage

(PSLSS) 220
LOADDSYM, processing option 402
loading

workstation or GDDM default symbol sets 402
local interactive graphics mode 403
locator device

initialize (GSILOC) 125
query data (GSQLOC) 151

lock keyboard mode 397

 Index 469

 index

logical input device
enable or disable (GSENAB) 118
initial data value, float (GSIDVF) 123
initial data value, integer (GSIDVI) 124
initialize pick device (GSIPIK) 128
query (GSQLID) 151

M
magnetic stripe (badge) reader 45
MAPGSTG, external default 390
mapped alphanumerics

application data structures 357—367
create or delete mapped field (MSDFLD) 210
create page for mapping (MSPCRT) 211
display data (MSREAD) 219
place data into mapped field (MSPUT) 212
query application data structure definition

(MSQADS) 213
query cursor position in map (MSQPOS) 218
query map characteristics (MSQMAP) 217
query map fit (MSQFIT) 216
query mapgroup characteristics (MSQGRP) 217
query mapped field (MSQFLD) 216
query modified fields (MSQMOD) 218
query page (MSPQRY) 212
retrieve data from mapped field (MSGET) 211
set cursor position in mapped field (MSCPOS) 209

mapping
adjunct field names 358
adjunct fields 357
adjunct values 358
attribute adjunct fields 361
base attribute adjunct fields 362
character attributes 363
color adjunct 362
copy application data structure into program 366
create or delete mapped field (MSDFLD) 361
cursor adjunct 361
detectable fields 364
extended highlighting 362
field attributes 362
generating large application data structures 366
Hangeul (DBCS) fields 366
Kanji (DBCS) fields 366
left-justify fields 365
length adjunct 363
locating cursor (MSQPOS) 361
mandatory enter attribute 362
mandatory fill attribute 363
map-defined input editing

AID translation 365
AID-receiver field 365
folding input data 365
justify/pad fields 365

MSCPOS call 361

mapping (continued)
MSGET and MSPUT calls 358
new functions 367
overlaying application data areas 366
PS adjunct 362
receive requests 360
REWRITE and REJECT requests 361
right-justify fields 365
selector adjunct 361
send requests 360
setting character attributes from terminal 364
supplied declarations 367
transforms 365
trigger field attribute 363
validation adjunct 362
WRITE requests 361

margin sizes 398
marker box

query size (GSQMB) 152
set size (GSMB) 135

markers
box, GDF order 294
box, set default, PSC GDF order 306
draw a series of (GSMRKS) 138
draw single (GSMARK) 135
draw, GDF order 294
query scale (GSQMSC) 153
query type (GSQMS) 153
scale, GDF order 295
set scale (GSMSC) 138
set type (GSMS) 138
type, GDF order 295
type, set default, PSC GDF order 306

mixed double-byte and single-byte character 372
mixed fields

control use by mapping (SPMXMP) 231
introduction 367
with position 372
with-position 367
without position 372
without-position 367

MIXSOSI, external default 390
modify

current operator window (WSMOD) 235
partition (PTNMOD) 225
segment attributes (GSSATS) 166

move current position without drawing (GSCP) 112
move without drawing (GSMOVE) 137
multi-line text strings 339
multiple fields define (ASDFMT) 29
MVS/XA, usage of FSEXIT 74

N
name-lists

family-1 415

470 GDDM Base Application Programming Reference

 index

name-lists (continued)
name-count values in DSOPEN

CICS 415
IMS 416
MVS/Batch 417
TSO 416
VM 418
VSE 416

reserved names “*” and blanks 415
NATLANG, external default 391
negate pixels of extracted image (IMRNEG) 194
nicknames

encoded-UDS format 66
ESQUNL call 69
ESQUNS call 69
list 69

nonchained attributes, set initial (GSSATI) 166
nonreentrant interface 1
null-to-blank conversion on input, define (ASFIN) 34
number of copies printed 398
NUMBFRM, external default 391

O
OBJFILE, external default 391
OFDSTYPE, processing option 398
OFFORMAT, processing option 399
open

alternate device (FSOPEN) 78
device (DSOPEN) 59

operator reply mode (ASMODE) 39
operator windows 404

create (WSCRT) 233
creating default 436
delete (WSDEL) 234
device variations 241
modify (WSMOD) 235
query (WSQRY) 236
query identifiers (WSQWI) 237
query numbers (WSQWN) 237
query unique identifier (WSQUN) 237
query viewing priorities (WSQWP) 238
select (WSSEL) 238
set viewing priorities (WSSWP) 239
virtual devices 436
virtual screen 436
windowed deviceinput/output (WSIO) 235

orientate extracted image (IMRORN) 194
origin-identification option 403
ORIGINID, processing option 403
outline, field, define (ASFBDY) 31
overflow

caused by picture complexity 263
PS, check (FSCHEK) 71

P
PA1 usage

TSO 412
VM 410

PA2 usage under CMS 410
page

clear current (FSPCLR) 79
create (FSPCRT) 79
delete (FSPDEL) 80
query (FSPQRY) 80
query current identifier (FSQCPG) 82
query unique identifier (FSQUPG) 85
query window (FSQWIN) 91
save current contents (FSSAVE) 92
select (FSPSEL) 81
set window (FSPWIN) 81
sizes 398

page feed for plotters
processing option 400

panning and zooming 403
paper feed bin selection processing option 407
paper-size option, plotters 401
parameters for call intercept exit 436
PARMVER, external default 391
partition sets

create (PTSCRT) 227
delete (PTSDEL) 228
query attributes (PTSQRY) 229
query unique identifier (PTSQUN) 230
select (PTSSEL) 230

partitions
create (PTNCRT) 223
delete (PTNDEL) 224
device variations 241
modify (PTNMOD) 225
query current (PTNQRY) 225
query device characteristics (FSQURY) 86
query identifiers (PTSQPI) 228
query numbers (PTSQPN) 228
query unique identifier (PTNQUN) 226
query viewing priorities (PTSQPP) 229
select (PTNSEL) 226
set viewing priorities (PTSSPP) 230

patterns
set default, PSC GDF order 306
shading, set (GSPAT) 139

PATTRAN, processing option 408
PCLK, processing option 406
PCLKEVIS, processing option 406
pens for plotters

pressure option 401
velocity option 400
width option 400

personal computers processing option 406

 Index 471

 index

Personal System/55 367
pick devices

correlate tag to primitive (GSCORR) 110
initialize (GSIPIK) 128
query data (GSQPIK) 154
query structure (GSQPKS) 155
query tag (GSQTAG) 160
set default identifier, PSC GDF order 307
set tag (GSTAG) 176
tag identifier, GDF order 296

picture adjustment factors 335
picture complexity before output, check (FSCHEK) 71
picture mapping information 329
picture overflow, 4224 printer 263
picture prolog

begin, PSC GDF order 302
end, PSC GDF order 302
PSC GDF orders 301, 302—309

picture space
define (GSPS) 142
query (GSQPS) 156

picture-orientation option, plotters 402
PIF (picture interchange format) files 315
PL/I programming language

example application data structure 358
using with GDDM 6

place data into mapped field (MSPUT) 212, 358
plotters

page feed 400
paper size 401
pen pressure 401
pen velocity 400
pen width 400
picture orientation 402
plotting-area size 401
query device characteristics (FSQURY) 89

plotting-area option 401
PLTAREA, processing option 401
PLTDELAY, processing option 409
PLTFORMF, processing option 400
PLTPAPSZ, processing option 401
PLTPENP, processing option 401
PLTPENV, processing option 400
PLTPENW, processing option 400
PLTROTAT, processing option 402
position cursor (ASFCUR) 32
POSTPROC, processing option 410
PostScript

grayline 410
post processing 410
pschar 410

PostScript printers
rotation processing option

PRTROT 406
preloaded PS sets 262

print control option (PRINTCTL) 397
PRINTCTL, processing option 397
PRINTDST, processing option 412
printing bar codes 349
processing options

dummy 396
format 395
full descriptions 396—413
STAGE2ID 402
summary 395
using with DSOPEN 395
using with nicknames 395

processing options (procopts)
AUNLOCK 397
BMSCOORD 397
CDPFTYPE 398
CMSATTN 411
CMSINTRP 410
COLORMAS 413
CPSPOOL 411
CPTAG 411
CTLFAST 404
CTLKEY 405
CTLMODE 405
CTLPRINT 405
CTLSAVE 405
DEVCPG 406
DEVCSET 410
FASTUPD 404
FRCETYPE 413
GINKEY 408
GRAYLINE 410
HRIDOCNM 403
HRIFORMT 399
HRIPSIZE 399
HRISPILL 399
HRISWATH 399
IMGINIT 408
INRESRCE 405
INVKOPUV 412
IPDSBIN 407
IPDSCPI 408
IPDSIMSW 407
IPDSLPI 407
IPDSQUAL 406
IPDSROT 406
IPDSTRUN 407
LCLMODE 403
LOADDSYM 402
OFDSTYPE 398
OFFORMAT 399
ORIGINID 403
OUTONLY 397
PATTRAN 408
PCLK 406
PCLKEVIS 406

472 GDDM Base Application Programming Reference

 index

processing options (procopts) (continued)
PLTAREA 401
PLTDELAY 409
PLTFORMF 400
PLTPAPSZ 401
PLTPENP 401
PLTPENV 400
PLTPENW 400
PLTROTAT 402
POSTPROC 410
PRINTCTL 397
PRINTDST 412
PRTPSIZE 399
PRTROT 406
PSCHAR 410
PSCNVCTL 404
SEGSTORE 402
SPECDEV 403
STAGE2ID 402
TOFILE 409
TSOINTRP 412
TSORESHW 412
WINDOW 404

procopts
See processing options

programmed symbols (PS)
adjunct 362
attribute 362
code 362
loading 362
overflow check (FSCHEK) 71
overflow of complex pictures 263
sets 262, 362
store 362

programmed symbols set identifier (PSID) 362
programming language considerations 2—11
projection

apply, while transfering data between images
(IMXFER) 198

create an empty (IMPCRT) 189
image, delete (IMPDEL) 189
restore from auxiliary storage (IMPRST) 190
save on auxiliary storage (IMPSAV) 190
unique identifier, get and reserve (IMPGID) 189

PRTPSIZE, processing option 399
PRTROT, processing option 406
PS overflow check 243
PS stores

conditionally load symbol set into, from auxiliary storage
(PSLSSC) 221

load symbol set into, from application program
(PSDSS) 219

load symbol set into, from auxiliary storage (PSLSS) 220
loading 261
numbers 261
query status (PSQSS) 222

PS stores (continued)
release symbol sets from (PSRSS) 222
reserve or release (PSRSV) 223

PSCHAR, processing option 410
PSCNVCTL, processing option 404

Q
quasi-reentrancy 1, 2
query

all geometric attributes (GSQAGA) 143
application data structure definition (MSQADS) 213
attributes of image (IMAQRY) 185
background color-mix mode (GSQBMX) 145
character angle (GSQCA) 146
character colors for field (ASQCOL) 39
character direction (GSQCD) 147
character highlights for field (ASQHLT) 42
character shear (GSQCH) 147
character symbol sets for field (ASQSS) 44
character-box size (GSQCB) 146
character-box spacing (GSQCBS) 147
choice device data (GSQCHO) 148
clipping state (GSQCLP) 148
code page (GSQCPG) 149
code page of GDDM object (ESQCPG) 68
current application group (ESAQRY) 65
current character mode (GSQCM) 148
current color (GSQCOL) 148
current page identifier (FSQCPG) 82
current partition (PTNQRY) 225
current position 149
current symbol-set identifier (GSQCS) 149
current viewport definition (GSQVIE) 161
cursor position (MSQPOS) 361
cursor position in map (MSQPOS) 218
cursor position, alphanumeric (ASQCUR) 40
cursor position, alphanumeric (GSQCUR) 150
data boundary definition (GSQBND) 146
default graphics cell size (GSQCEL) 147
device characteristics (DSQDEV) 62
device characteristics (FSQDEV) 82
device characteristics (FSQURY) 85
device stores status (PSQSS) 222
device usage (DSQUSE) 63
encoded user default specification (ESQEUD) 68
existence of GDDM object (ESQOBJ) 69
field attributes (ASQFLD) 41
field list (APQRY) 24
field list identifier (APQUID) 25
field list identifiers (APQIDS) 23
field list numbers (APQNUM) 24
field list size (APQSIZ) 25
foreground color-mix mode (GSQMIX) 153
fractional line width (GSQFLW) 150
graphics attribute mode (GSQAM) 144

 Index 473

 index

query (continued)
graphics field (GSQFLD) 150
image box cursor (ISQBOX) 204
image compressions (ISQCOM) 205
image field (ISQFLD) 205
image formats (ISQFOR) 206
image locator cursor position (ISQLOC) 206
image scanner device (ISQSCA) 207
initial segment attributes (GSQATI) 144
last error (FSQERR) 83
length of field contents (ASQLEN) 42
line type (GSQLT) 151
line width (GSQLW) 152
loaded symbol sets (GSQSS) 157
locator data (GSQLOC) 151
logical input device (GSQLID) 151
map characteristics (MSQMAP) 217
map fit (MSQFIT) 216
mapgroup characteristics (MSQGRP) 217
mapped field (MSQFLD) 216
mapped page (MSPQRY) 212
marker box size (GSQMB) 152
marker scale (GSQMSC) 153
marker type (GSQMS) 153
mixed-string attribute of graphics text (GSQSEN) 156
modified fields (ASQMOD) 43
modified mapped fields (MSQMOD) 218
number of fields (ASQMAX) 43
number of loaded symbol sets (GSQNSS) 153
number of modified fields (ASQNMF) 44
number of segments (GSQMAX) 152
operator window (WSQRY) 236
operator window identifiers (WSQWI) 237
operator window numbers (WSQWN) 237
operator window viewing priorities (WSQWP) 238
page window (FSQWIN) 91
partition identifiers (PTSQPI) 228
partition numbers (PTSQPN) 228
partition set attributes (PTSQRY) 229
partition viewing priorities (PTSQPP) 229
pick data (GSQPIK) 154
pick structure (GSQPKS) 155
picture space (GSQPS) 156
segment attributes (GSQATS) 145
segment origin (GSQORG) 154
segment position (GSQPOS) 155
segment priority (GSQPRI) 155
segment transform (GSQTFM) 161
segment viewing limits (GSQSVL) 159
shading pattern (GSQPAT) 154
simultaneous queue entry (GSQSIM) 157
specified page (FSPQRY) 80
string data (GSQSTR) 159
stroke data (GSQSTK) 158
supported image resolutions (ISQRES) 207
symbol set data (GSQSSD) 157

query (continued)
symbol set on auxiliary storage (SSQF) 232
systems environment (FSQSYS) 84
tag (GSQTAG) 160
text alignment (GSQTA) 159
text box (GSQTB) 160
unique device identifier (DSQUID) 63
unique operator window identifier (WSQUN) 237
unique page identifier (FSQUPG) 85
unique partition identifier (PTNQUN) 226
unique partition-set identifier (PTSQUN) 230
update mode (FSQUPD) 84
user control status (DSQCMF) 62
user defined nicknames (ESQUNL) 69
user defined nicknames (ESQUNS) 69
window definition (GSQWIN) 161

R
RCP

call intercept exit 436
in ADMASP call 2, 431
introduction 2, 431

read symbol set from auxiliary storage (SSREAD) 232
redefine fields (ASRFMT) 47
reentrant interface 1
reflect extracted image (IMRREF) 197
reinitialize GDDM (FSRNIT) 91
release a symbol set from a PS store (PSRSS) 222
release graphics symbol set (GSRSS) 163
reply mode, operator, define (ASMODE) 39
request code table, APL 251
request codes module, APL 251
reserve or release PS store (PSRSV) 223
reshow protocol in TSO 412
restore

attributes (GSPOP) 142
graphics data (GSPUT) 143
image from auxiliary storage (IMARST) 187
projection from auxiliary storage (IMPRST) 190
screen contents (FSREST) 91

retrieve
data from mapped field (MSGET) 211, 358
fam-4 datastream(FSGET) 75
graphics data (GSGET) 121
image data from an image (IMAGT) 181

return codes
ADMUCG 325
ADMUGC 327
ADMUGIF 345

REXX
See GDDM-REXX

rotation processing option, PostScript printers 406
run the Image Symbol Editor (ISSE) 208

474 GDDM Base Application Programming Reference

 index

S
sample program ERXPROTO 9
SAVBFSZ, external default 391
save

current page contents (FSSAVE) 92
graphics segment (GSSAVE) 166
image on auxiliary storage (IMASAV) 188
projection on auxiliary storage (IMPSAV) 190
segments in a CGM (CGSAVE) 324

saved picture, display
FSSHOR 93
FSSHOW 93

SBCS (single-byte character set) 367, 372
scale extracted image (IMRSCL) 197
scanner

control echoing of image (ISESCA) 201
query (ISQSCA) 207

screen contents, restore (FSREST) 91
segment, graphics

attributes, GDF order 297
attributes, modify, GDF order 297
end prolog, GDF order 298
end, GDF order 298
origin, GDF order 298
position, GDF order 298
query transform (GSQTFM) 161
start, GDF order 299
viewing window, GDF order 300

SEGSTORE, processing option 402
select

operator window (WSSEL) 238
page (FSPSEL) 81
partition (PTNSEL) 226
partition set (PTSSEL) 230

selector adjunct fields
introduction 357
usage 361

send
character string to alternate device

with carriage-control character (FSLOGC) 77, 398
without carriage-control character (FSLOG) 77, 398

graphics to alternate device (GSCOPY) 109
page to alternate device (FSCOPY) 72

set
all geometric attributes (GSSAGA) 164
character angle (GSCA) 99
character attributes from terminal 364
character direction (GSCD) 103
character mode (GSCM) 108
character shear (GSCH) 105
character-box size (GSCB) 102
character-box spacing (GSCBS) 103
code page (GSCPG) 113
code page of GDDM object (ESSCPG) 70
color (GSCOL) 109

set (continued)
current line type (GSLT) 134
current position (GSCP) 112
current primitive tag (GSTAG) 176
current resolution/scaling algorithm (IMRRAL) 196
current symbol set (GSCS) 113
current transform (GSSCT) 168
cursor position (MSCPOS) 209, 361
cursor with mapping request 361
default field attributes (ASDFLT) 29
extended image quality control parameters (ISXCTL) 208
foreground color-mix mode (GSMIX) 136
fractional line width (GSFLW) 121
graphics attribute mode 96
image quality-control parameters (ISCTL) 199
initial segment attributes (GSSATI) 165
line width (GSLW) 134
marker scale (GSMSC) 138
marker type (GSMS) 138
marker-box size (GSMB) 135
mixed string attribute of graphics text (GSSEN) 170
operator window viewing priorities (WSSWP) 239
page window (FSPWIN) 81
partition viewing priorities (PTSSPP) 230
segment origin (GSSORG) 171
segment position (GSSPOS) 172
segment priority (GSSPRI) 172
segment transform (GSSTFM) 173
shading pattern (GSPAT) 139
text alignment (GSTA) 175
update mode (FSUPDM) 95

set default PSC GDF orders
arc parameters, set default 302
background color-mix mode 302
character angle 302
character box 303
character direction 303
character precision 304
character shear 304
character-box spacing 303
color, graphics 305
coordinate type 304
foreground color-mix mode 305
graphics text 307
line type 306
line width, fractional 305
marker box 306
marker type 306
pattern 306
pick devices 307
picture boundary 308
picture origin 309
picture scale 307
symbol sets 304
viewing window 308

 Index 475

 index

shaded area, start (GSAREA) 97
shading patterns

GDF order 296
query (GSQPAT) 154

shading patterns, user-defined 408
simultaneous queue entry, query (GSQSIM) 157
SOSIEMC, external default 391
sound terminal alarm (FSALRM) 71
source-format user default specification (ESSUDS) 71
SPECDEV, processing option 403
special device 403
specify

device usage (DSUSE) 64
encoded user default specification) (ESEUDS) 66
error thresholds (FSEXIT) 74
field contents (ASCPUT) 27

SPI interface entry point 2, 431
spill file usage (4250 printers) 399
start

data entry into image (IMAPTS) 184
drawing defaults definition (GSDEFS) 114
retrieval of data from an image (IMAGTS) 182
retrieval of graphics data (GSGETS) 122
shaded area (GSAREA) 97

STGRET, external default 392
stored object file format 279—280
string devices, query data (GSQSTR) 159
stroke devices, query data (GSQSTK) 158
structure correlation (GSCORS) 111
structured field formats

bar codes 349—352
documents 350
environment groups 349—351
graphics data 351
graphics objects 350—351
image data 351
image objects 350—351
image pictures 352
map coded fonts 352
map medium 353
no operation 353
object area 353
pages 350—354
presentation text 350—356

substitution character in symbol-set name 262
swathes, number of 399
symbol sets

character, query for field (ASQSS) 44
character, set default, PSC GDF order 304
character, specify within field (ASCSS) 27
color shading pattern 265
component threshold for DBCS, DBCSLIM external

default 387
conditional loading of 262
conditionally load into PS store from auxiliary storage

(PSLSSC) 221

symbol sets (continued)
DBCS 264
default names DBCS, DBCSDNM external default 387
double-byte character 265
end mapping, PSC GDF order 302
format of VSS 277—278
GDF order 288
geometric shading pattern 265
graphics, load from application program (GSDSS) 117
graphics, load from auxiliary storage (GSLSS) 133
graphics, release (GSRSS) 163
handling by GDDM 261
identification 261
ISS format 276
ISS samples 265
Katakana character 265
language for DBCS, DBCSLNG external default 387
load into PS store from application program

(PSDSS) 219
load into PS store from auxiliary storage (PSLSS) 220
loaded, query (GSQSS) 157
loading from workstation or GDDM defaults 402
loading graphics sets 262
loading PS stores 261
map identifier, PSC GDF order 301
mapping, PSC GDF order 301
naming convention 264
primary, define for fields (ASFPSS) 35
PS overflow 263
PS store numbers 261
PSC GDF orders 300, 301—302
query current identifier (GSQCS) 149
query data (GSQSSD) 157
query number loaded (GSQNSS) 153
query on auxiliary storage (SSQF) 232
read from auxiliary storage (SSREAD) 232
release from a PS store (PSRSS) 222
script CECP character 265
selecting by device type 262
selection for DBCS, DBCSDFT external default 387
set current (GSCS) 113
standard CECP character 265
standard marker 265
standard shading pattern 265
using in printing 263
using preloaded PS sets 262
using PS with graphics 262
VSS samples 265
VSS typeface illustrations 267—274
write to auxiliary storage (SSWRT) 233

syntax conventions 21
assembler-language linkage 3
C programming language 3
COBOL programming language 5
FORTRAN programming language 5
GDDM-REXX 6—10

476 GDDM Base Application Programming Reference

 index

syntax conventions (continued)
in manuals 10
PL/I programming language 6

system programmer interface 2, 431
system programmer interface block (SPIB)

SPINIT call 231, 431
user exit definition 433

systems environment, query (FSQSYS) 84

T
task switch user exit option 433
terminal alarm, sound (FSALRM) 71
terminate GDDM processing (FSTERM) 94
TIMEFRM, external default 392
TOFILE, processing option 409
trace, control internal (FSTRCE) 95
TRACE, external default 392
transaction work area 2
transfer data between two images, applying a projection

(IMXFER) 198
transfer file

host to workstation (RECEIVE) 327
workstation to host (SEND) 327

translate character string (FSTRAN) 94
translating AID values 365
translating user-defined shading patterns 408
translation tables for I/O, define (ASDTRN) 30
transparency, field, define (ASFTRA) 37
TRCESTR, external default 392
TRCEWID, external default 392
trim image to rectangle (IMATRM) 188
TRTABLE, external default 392
TSO

APL external default specification, TSOAPLF external
default 392

CGM conversion profile filetype, TSOCPT external
default 392

CLEAR/PA1 protocol 412
color master ddname/high-level qualifier 392
dynamic allocation size, TSOS99S external default 393
family-2 and -4 print-file destination 412
I/O Emulation, TSOEMUL external default 392
reshow protocol 412
storage exit routines 437
task switch exit 434
TSOTRCE external default, trace ddname for TSO 393
unit specification, TSOS99U external default 393

TSOAPLF, external default 392
TSOCOLM, external default 392
TSOCPT, external default 392
TSODECK, external default 392
TSODFTS, external default 392
TSOEMUL, external default 392
TSOGIMP, external default 393

TSOIADS, external default 393
TSOIFMT, external default 393
TSOINTRP, processing option 412
TSOMONO, external default 393
TSOPRNT, external default 393
TSORESHW, processing option 412
TSORESV, external default 393
TSOS99S, external default 393
TSOS99U, external default 393
TSOSYSP, external default 393
TSOTRCE, external default 393

U
UDS (user default specification)

encoded, specify (ESEUDS) 66
query encoded (ESQEUD) 68
source-format, specify (ESSUDS) 71

unique identifier
update mode, query (FSQUPD) 84
user control 405

automatic entry (DSCMF) 57
fast path mode 404
query status (DSQCMF) 62

user default specification
See UDS

user exits 432
call intercept exit 435
control block, UXBLOCK 433
GDDM conventions 433
storage exit routines 437
UDS (user default specification) 433
user exits 432

user-defined shading patterns, translation of 408

V
vector operations (GSVECM) 177
vector symbol sets

format 277—278
samples of 265
typeface illustrations 267—274

viewport
define (GSVIEW) 177
query current definition (GSQVIE) 161

VM
APL feature, CMSAPLF external default 385
attention handling 411
automatic invocation of print utility 412
CGM conversion profile filetype, CMSCPT external

default 386
color master filetype, CMSCOLM external default 386
CP SPOOL parameters 411
CP TAG parameters 411
filename and filetype, CMSDFTS external default 386
monochrome color master, CMSMONO external

default 386

 Index 477

 index

VM (continued)
MSL (map specification library) name, CMSMSLT external

default 386
PA1 and PA2 protocol 410
print filetype, CMSPRNT external default 386
storage exit routines 437
trace filename/filetype, CMSTRCE external default 386
work-file filetype, CMSTEMP external default 386

VSE
batch printing default, DFTXTNA external default 387
color master file name, VSECOLM external default 393
file name, VSEDFTS external default 393
monochrome file name, VSEMONO external default 393
trace file name, VSETRCE external default 393

VSECOLM, external default 393
VSEDFTS, external default 393
VSEMONO, external default 393
VSETRCE, external default 393
VSS

see vector symbol sets

W
wait for graphics input (GSREAD) 162
WINDOW, processing option 404
windowed device input/output (WSIO) 235
write symbol set to auxiliary storage (SSWRT) 233

Z
zooming and panning pictures 403

478 GDDM Base Application Programming Reference

Sending your comments to IBM
GDDM

Base Application Programming Reference

SC33-0868-02

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organiza-
tion, subject matter, or completeness of this book. Please limit your comments to the information in this
book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
GDDM

Base Application Programming Reference

SC33-0868-02
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

GDDM

GDDM Base Application Programming Referenc e SC33-0868-02

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-ð868-ð2

	Table of contents
	Figures
	Tables
	Notices
	Programming interface information
	Trademarks and service marks

	Preface
	What this book is about
	Who this book is for
	What you need to know
	How to use this book
	Terminology used

	Summary of changes
	Summary of changes for GDDM 3.1

	More GDDM information
	GDDM publications
	Books from related libraries

	Chapter 1. GDDM programming interface
	The nonreentrant interface
	The reentrant interface
	The system programmer interface
	Application programming language considerations
	APL
	Assembler language
	BASIC (IBM)
	C
	Declaring variables

	COBOL
	FORTRAN
	PL/I
	REXX
	GDDM call syntax
	Methods of passing parameters
	Values that can be passed
	Types of parameters
	Strings
	Passing array parameters
	Parameters that are too short
	Parameters that are too long
	Omitting parameters
	Finding syntax from reference sources
	Interdependent parameters, array dimensions, string lengths
	Parameter syntax in ERXPROTO
	Parameter syntax in the reference manuals
	Dependency between parameters
	Restrictions
	Differences

	Chapter 2. A summary of the calls by function
	Types of functions
	Control functions
	Copy functions
	Device functions
	Graphics functions
	Graphics segment functions
	Interactive graphics functions

	High-performance alphanumeric functions
	Image functions
	Image management
	Image presentation

	Mapped alphanumeric functions
	Operator window functions
	Page functions
	Partition functions
	Procedural alphanumeric functions
	Symbol set functions
	Utility call functions

	Chapter 3. The GDDM calls
	Format of the GDDM call descriptions
	Syntax of GDDM calls
	Error messages in GDDM calls
	Alphabetic list of GDDM calls
	APDEF
	Function
	Parameters
	Description
	Principal errors

	APDEL
	Function
	Parameters
	Description
	Principal errors

	APMOD
	Function
	Parameters
	Description
	Principal errors

	APQIDS
	Function
	Parameters
	Description
	Principal errors

	APQNUM
	Function
	Parameters
	Description
	Principal errors

	APQRY
	Function
	Parameters
	Description
	Principal errors

	APQSIZ
	Function
	Parameters
	Description
	Principal errors

	APQUID
	Function
	Parameters
	Description
	Principal errors

	ASCCOL
	Function
	Parameters
	Description
	Principal errors

	ASCGET
	Function
	Parameters
	Description
	Principal errors

	ASCHLT
	Function
	Parameters
	Description
	Principal errors

	ASCPUT
	Function
	Parameters
	Description
	Principal errors

	ASCSS
	Function
	Parameters
	Description
	Principal errors

	ASDFLD
	Function
	Parameters
	Description
	Principal errors

	ASDFLT
	Function
	Parameters
	Description
	Principal errors

	ASDFMT
	Function
	Parameters
	Description
	Principal errors

	ASDTRN
	Function
	Parameters
	Description
	Principal errors

	ASFBDY
	Function
	Parameters
	Description
	Principal errors

	ASFCLR
	Function
	Parameters
	Description
	Principal errors

	ASFCOL
	Function
	Parameters
	Description
	Principal errors

	ASFCUR
	Function
	Parameters
	Description
	Principal errors

	ASFEND
	Function
	Parameters
	Description
	Principal errors

	ASFHLT
	Function
	Parameters
	Description
	Principal errors

	ASFIN
	Function
	Parameters
	Description
	Principal errors

	ASFINT
	Function
	Parameters
	Description
	Principal errors

	ASFMOD
	Function
	Parameters
	Description
	Principal errors

	ASFOUT
	Function
	Parameters
	Description
	Principal errors

	ASFPSS
	Function
	Parameters
	Description
	Principal errors

	ASFSEN
	Function
	Parameters
	Description
	Principal errors

	ASFTRA
	Function
	Parameters
	Description
	Principal errors

	ASFTRN
	Function
	Parameters
	Description
	Principal errors

	ASFTYP
	Function
	Parameters
	Description
	Principal errors

	ASGGET
	Function
	Parameters
	Description
	Principal errors

	ASGPUT
	Function
	Parameters
	Description
	Principal errors

	ASMODE
	Function
	Parameters
	Description
	Principal errors

	ASQCOL
	Function
	Parameters
	Description
	Principal errors

	ASQCUR
	Function
	Parameters
	Description
	Principal errors

	ASQFLD
	Function
	Parameters
	Description
	Principal errors

	ASQHLT
	Function
	Parameters
	Description
	Principal errors

	ASQLEN
	Function
	Parameters
	Description
	Principal errors

	ASQMAX
	Function
	Parameters
	Description
	Principal errors

	ASQMOD
	Function
	Parameters
	Description
	Principal errors

	ASQNMF
	Function
	Parameters
	Description
	Principal errors

	ASQSS
	Function
	Parameters
	Description
	Principal errors

	ASRATT
	Function
	Parameters
	Description
	Principal errors

	ASREAD
	Function
	Parameters
	Description
	Principal errors

	ASRFMT
	Function
	Parameters
	Description
	Principal errors

	ASTYPE
	Function
	Parameters
	Description
	Principal errors

	CDPU
	Function
	Parameters
	Description
	Principal errors

	CGLOAD
	Function
	Parameters
	Description
	Principal errors

	CGSAVE
	Function
	Parameters
	Description
	Principal errors

	DSCLS
	Function
	Parameters
	Description
	Principal errors

	DSCMF
	Function
	Parameters
	Description
	Principal errors

	DSCOPY
	Function
	Parameters
	Description
	Principal errors

	DSDROP
	Function
	Parameters
	Description
	Principal errors

	DSFRCE
	Function
	Parameters
	Description
	Principal errors

	DSOPEN
	Function
	Parameters
	Description
	Principal errors

	DSQCMF
	Function
	Parameters
	Description
	Principal errors

	DSQDEV
	Function
	Parameters
	Description
	Principal errors

	DSQUID
	Function
	Parameters
	Description
	Principal errors

	DSQUSE
	Function
	Parameters
	Description
	Principal errors

	DSRNIT
	Function
	Parameters
	Description
	Principal errors

	DSUSE
	Function
	Parameters
	Description
	Principal errors

	ESACRT
	Function
	Parameters
	Description
	Principal errors

	ESADEL
	Function
	Parameters
	Description
	Principal errors

	ESAQRY
	Function
	Parameters
	Description
	Principal errors

	ESASEL
	Function
	Parameters
	Description
	Principal errors

	ESEUDS
	Function
	Parameters
	Description
	Encoded format of a nickname UDS

	Principal errors

	ESLIB
	Function
	Parameters
	Description
	Principal errors

	ESPCB
	Function
	Parameters
	Description
	Principal errors

	ESQCPG
	Function
	Parameters
	Description
	Principal errors

	ESQEUD
	Function
	Parameters
	Description
	Principal errors

	ESQOBJ
	Function
	Parameters
	Description
	Principal errors

	ESQUNL
	Function
	Parameters
	Description
	Principal errors

	ESQUNS
	Function
	Parameters
	Description
	Principal errors

	ESSCPG
	Function
	Parameters
	Description
	Principal errors

	ESSUDS
	Function
	Parameters
	Description
	Principal errors

	FSALRM
	Function
	Parameters
	Description
	Principal errors

	FSCHEK
	Function
	Parameters
	Description
	Principal errors

	FSCLS
	Function
	Parameters
	Description
	Principal errors

	FSCOPY
	Function
	Parameters
	Description
	Principal errors

	FSENAB
	Function
	Parameters
	Description
	Principal errors

	FSEXIT
	Function
	Parameters
	Description
	Principal errors

	FSFRCE
	Function
	Parameters
	Description
	Principal errors

	FSGET
	Function
	Parameters
	Description
	Principal errors

	FSGETE
	Function
	Parameters
	Description
	Principal errors

	FSGETS
	Function
	Parameters
	Description
	Principal errors

	FSINIT
	Function
	Parameters
	Description
	Other forms for CICS, IMS, and TSO

	Principal errors

	FSLOG
	Function
	Parameters
	Description
	Principal errors

	FSLOGC
	Function
	Parameters
	Description
	Principal errors

	FSOPEN
	Function
	Parameters
	Description
	Principal errors

	FSPCLR
	Function
	Parameters
	Description
	Principal errors

	FSPCRT
	Function
	Parameters
	Description
	Principal errors

	FSPDEL
	Function
	Parameters
	Description
	Principal errors

	FSPQRY
	Function
	Parameters
	Description
	Principal errors

	FSPSEL
	Function
	Parameters
	Description
	Principal errors

	FSPWIN
	Function
	Parameters
	Description
	Principal errors

	FSQCPG
	Function
	Parameters
	Description
	Principal errors

	FSQDEV
	Function
	Parameters
	Description
	Principal errors

	FSQERR
	Function
	Parameters
	Description
	Principal errors

	FSQSYS
	Function
	Parameters
	Description
	Principal errors

	FSQUPD
	Function
	Parameters
	Description
	Principal errors

	FSQUPG
	Function
	Parameters
	Description
	Principal errors

	FSQURY
	Function
	Parameters
	Description
	Principal errors

	FSQWIN
	Function
	Parameters
	Description
	Principal errors

	FSREST
	Function
	Parameters
	Description
	Principal errors

	FSRNIT
	Function
	Parameters
	Description
	Principal errors

	FSSAVE
	Function
	Parameters
	Description
	Principal errors

	FSSHOR
	Function
	Parameters
	Description
	Principal errors

	FSSHOW
	Function
	Parameters
	Description
	Principal errors

	FSTERM
	Function
	Parameters
	Description
	Principal errors

	FSTRAN
	Function
	Parameters
	Description
	Principal errors

	FSTRCE
	Function
	Parameters
	Description
	Principal errors

	FSUPDM
	Function
	Parameters
	Description
	Principal errors

	GSAM
	Function
	Parameters
	Description
	Principal errors

	GSARC
	Function
	Parameters
	Description
	Principal errors

	GSARCC
	Function
	Parameters
	Description
	Principal errors

	GSAREA
	Function
	Parameters
	Description
	Principal errors

	GSBMIX
	Function
	Parameters
	Description
	Principal errors

	GSBND
	Function
	Parameters
	Description
	Principal errors

	GSCA
	Function
	Parameters
	Description
	Principal errors

	GSCALL
	Function
	Parameters
	Description
	Principal errors

	GSCB
	Function
	Parameters
	Description
	Principal errors

	GSCBS
	Function
	Parameters
	Description
	Principal errors

	GSCD
	Function
	Parameters
	Description
	Principal errors

	GSCH
	Function
	Parameters
	Description
	Principal errors

	GSCHAP
	Function
	Parameters
	Description
	Principal errors

	GSCHAR
	Function
	Parameters
	Description
	Principal errors

	GSCLP
	Function
	Parameters
	Description
	Principal errors

	GSCLR
	Function
	Parameters
	Description
	Principal errors

	GSCM
	Function
	Parameters
	Description
	Principal errors

	GSCOL
	Function
	Parameters
	Description
	Principal errors

	GSCOPY
	Function
	Parameters
	Description
	Principal errors

	GSCORR
	Function
	Parameters
	Description
	Principal errors

	GSCORS
	Function
	Parameters
	Description
	Principal errors

	GSCP
	Function
	Parameters
	Description
	Principal errors

	GSCPG
	Function
	Parameters
	Description
	Principal errors

	GSCS
	Function
	Parameters
	Description
	Principal errors

	GSDEFE
	Function
	Parameters
	Description
	Principal errors

	GSDEFS
	Function
	Parameters
	Description
	Principal errors

	GSDSS
	Function
	Parameters
	Description
	Principal errors

	GSELPS
	Function
	Parameters
	Description
	Principal errors

	GSENAB
	Function
	Parameters
	Description
	Principal errors

	GSENDA
	Function
	Parameters
	Description
	Principal errors

	GSFLD
	Function
	Parameters
	Description
	Principal errors

	GSFLSH
	Function
	Parameters
	Description
	Principal errors

	GSFLW
	Function
	Parameters
	Description
	Principal errors

	GSGET
	Function
	Parameters
	Description
	Principal errors

	GSGETE
	Function
	Parameters
	Description
	Principal errors

	GSGETS
	Function
	Parameters
	Description
	Principal errors

	GSIDVF
	Function
	Parameters
	Description
	Principal errors

	GSIDVI
	Function
	Parameters
	Description
	Principal errors

	GSILOC
	Function
	Parameters
	Description
	Principal errors

	GSIMG
	Function
	Parameters
	Description
	Principal errors

	GSIMGS
	Function
	Parameters
	Description
	Principal errors

	GSIPIK
	Function
	Parameters
	Description
	Principal errors

	GSISTK
	Function
	Parameters
	Description
	Principal errors

	GSISTR
	Function
	Parameters
	Description
	Principal errors

	GSLINE
	Function
	Parameters
	Description
	Principal errors

	GSLOAD
	Function
	Parameters
	The elements of opt-array

	Description
	Principal errors

	GSLSS
	Function
	Parameters
	Description
	Principal errors

	GSLT
	Function
	Parameters
	Description
	Principal errors

	GSLW
	Function
	Parameters
	Description
	Principal errors

	GSMARK
	Function
	Parameters
	Description
	Principal errors

	GSMB
	Function
	Parameters
	Description
	Principal errors

	GSMIX
	Function
	Parameters
	Description
	Principal errors

	GSMOVE
	Function
	Parameters
	Description
	Principal errors

	GSMRKS
	Function
	Parameters
	Description
	Principal errors

	GSMS
	Function
	Parameters
	Description
	Principal errors

	GSMSC
	Function
	Parameters
	Description
	Principal errors

	GSPAT
	Function
	Parameters
	Description
	Principal errors

	GSPFLT
	Function
	Parameters
	Description
	Principal errors

	GSPLNE
	Function
	Parameters
	Description
	Principal errors

	GSPOP
	Function
	Parameters
	Description
	Principal errors

	GSPS
	Function
	Parameters
	Description
	Principal errors

	GSPUT
	Function
	Parameters
	Description
	Principal errors

	GSQAGA
	Function
	Parameters
	Description
	Principal errors

	GSQAM
	Function
	Parameters
	Description
	Principal errors

	GSQATI
	Function
	Parameters
	Description
	Principal errors

	GSQATS
	Function
	Parameters
	Description
	Principal errors

	GSQBMX
	Function
	Parameters
	Description
	Principal errors

	GSQBND
	Function
	Parameters
	Description
	Principal errors

	GSQCA
	Function
	Parameters
	Description
	Principal errors

	GSQCB
	Function
	Parameters
	Description
	Principal errors

	GSQCBS
	Function
	Parameters
	Description
	Principal errors

	GSQCD
	Function
	Parameters
	Description
	Principal errors

	GSQCEL
	Function
	Parameters
	Description
	Principal errors

	GSQCH
	Function
	Parameters
	Description
	Principal errors

	GSQCHO
	Function
	Parameters
	Description
	Device variations

	Principal errors

	GSQCLP
	Function
	Parameters
	Description
	Principal errors

	GSQCM
	Function
	Parameters
	Description
	Principal errors

	GSQCOL
	Function
	Parameters
	Description
	Principal errors

	GSQCP
	Function
	Parameters
	Description
	Principal errors

	GSQCPG
	Function
	Parameters
	Description
	Principal errors

	GSQCS
	Function
	Parameters
	Description
	Principal errors

	GSQCUR
	Function
	Parameters
	Description
	Principal errors

	GSQFLD
	Function
	Parameters
	Description
	Principal errors

	GSQFLW
	Function
	Parameters
	Description
	Principal errors

	GSQLID
	Function
	Parameters
	Description
	Principal errors

	GSQLOC
	Function
	Parameters
	Description
	Principal errors

	GSQLT
	Function
	Parameters
	Description
	Principal errors

	GSQLW
	Function
	Parameters
	Description
	Principal errors

	GSQMAX
	Function
	Parameters
	Description
	Principal errors

	GSQMB
	Function
	Parameters
	Description
	Principal errors

	GSQMIX
	Function
	Parameters
	Description
	Principal errors

	GSQMS
	Function
	Parameters
	Description
	Principal errors

	GSQMSC
	Function
	Parameters
	Description
	Principal errors

	GSQNSS
	Function
	Parameters
	Description
	Principal errors

	GSQORG
	Function
	Parameters
	Description
	Principal errors

	GSQPAT
	Function
	Parameters
	Description
	Principal errors

	GSQPIK
	Function
	Parameters
	Description
	Principal errors

	GSQPKS
	Function
	Parameters
	Description
	Principal errors

	GSQPOS
	Function
	Parameters
	Description
	Principal errors

	GSQPRI
	Function
	Parameters
	Description
	Principal errors

	GSQPS
	Function
	Parameters
	Description
	Principal errors

	GSQSEN
	Function
	Parameters
	Description
	Principal errors

	GSQSIM
	Function
	Parameters
	Description
	Principal errors

	GSQSS
	Function
	Parameters
	Description
	Principal errors

	GSQSSD
	Function
	Parameters
	Description
	Principal errors

	GSQSTK
	Function
	Parameters
	Description
	Principal errors

	GSQSTR
	Function
	Parameters
	Description
	Principal errors

	GSQSVL
	Function
	Parameters
	Description
	Principal errors

	GSQTA
	Function
	Parameters
	Description
	Principal errors

	GSQTAG
	Function
	Parameters
	Description
	Principal errors

	GSQTB
	Function
	Parameters
	Description
	Principal errors

	GSQTFM
	Function
	Parameters
	Description
	Principal errors

	GSQVIE
	Function
	Parameters
	Description
	Principal errors

	GSQWIN
	Function
	Parameters
	Description
	Principal errors

	GSREAD
	Function
	Parameters
	Description
	Principal errors

	GSRSS
	Function
	Parameters
	Description
	Principal errors

	GSSAGA
	Function
	Parameters
	Description
	Principal errors

	GSSATI
	Function
	Parameters
	Description
	Principal errors

	GSSATS
	Function
	Parameters
	Description
	Principal errors

	GSSAVE
	Function
	Parameters
	Description
	Principal errors

	GSSCLS
	Function
	Parameters
	Description
	Principal errors

	GSSCPY
	Function
	Parameters
	Description
	Principal errors

	GSSCT
	Function
	Parameters
	Description
	Principal errors

	GSSDEL
	Function
	Parameters
	Description
	Principal errors

	GSSEG
	Function
	Parameters
	Description
	Principal errors

	GSSEN
	Function
	Parameters
	Description
	Principal errors

	GSSINC
	Function
	Parameters
	Description
	Principal errors

	GSSORG
	Function
	Parameters
	Description
	Principal errors

	GSSPOS
	Function
	Parameters
	Description
	Principal errors

	GSSPRI
	Function
	Parameters
	Description
	Principal errors

	GSSTFM
	Function
	Parameters
	Description
	Principal errors

	GSSVL
	Function
	Parameters
	Description
	Principal errors

	GSTA
	Function
	Parameters
	Description
	Principal errors

	GSTAG
	Function
	Parameters
	Description
	Principal errors

	GSUWIN
	Function
	Parameters
	Description
	Principal errors

	GSVECM
	Function
	Parameters
	Description
	Principal errors

	GSVIEW
	Function
	Parameters
	Description
	Principal errors

	GSWIN
	Function
	Parameters
	Description
	Principal errors

	IMACLR
	Function
	Parameters
	Description
	Principal errors

	IMACRT
	Function
	Parameters
	Description
	Principal errors

	IMADEL
	Function
	Parameters
	Description
	Principal errors

	IMAGID
	Function
	Parameters
	Description
	Principal errors

	IMAGT
	Function
	Parameters
	Description
	Principal errors

	IMAGTE
	Function
	Parameters
	Description
	Principal errors

	IMAGTS
	Function
	Parameters
	Description
	Principal errors

	IMAPT
	Function
	Parameters
	Description
	Principal errors

	IMAPTE
	Function
	Parameters
	Description
	Principal errors

	IMAPTS
	Function
	Parameters
	Description
	Principal errors

	IMAQRY
	Function
	Parameters
	Description
	Principal errors

	IMARES
	Function
	Parameters
	Description
	Principal errors

	IMARF
	Function
	Parameters
	Description
	Principal errors

	IMARST
	Function
	Parameters
	Description
	Principal errors

	IMASAV
	Function
	Parameters
	Description
	Principal errors

	IMATRM
	Function
	Parameters
	Description
	Principal errors

	IMPCRT
	Function
	Parameters
	Description
	Principal errors

	IMPDEL
	Function
	Parameters
	Description
	Principal errors

	IMPGID
	Function
	Parameters
	Description
	Principal errors

	IMPRST
	Function
	Parameters
	Description
	Principal errors

	IMPSAV
	Function
	Parameters
	Description
	Principal errors

	IMRBRI
	Function
	Parameters
	Description
	Principal errors

	IMRCON
	Function
	Parameters
	Description
	Principal errors

	IMRCVB
	Function
	Parameters
	Description
	Principal errors

	IMREX
	Function
	Parameters
	Description
	Principal errors

	IMREXR
	Function
	Parameters
	Description
	Principal errors

	IMRNEG
	Function
	Parameters
	Description
	Principal errors

	IMRORN
	Function
	Parameters
	Description
	Principal errors

	IMRPL
	Function
	Parameters
	Description
	Principal errors

	IMRPLR
	Function
	Parameters
	Description
	Principal errors

	IMRRAL
	Function
	Parameters
	Description
	Principal errors

	IMRREF
	Function
	Parameters
	Description
	Principal errors

	IMRSCL
	Function
	Parameters
	Description
	Principal errors

	IMXFER
	Function
	Parameters
	Description
	Principal errors

	ISCTL
	Function
	Parameters
	Description
	Principal errors

	ISENAB
	Function
	Parameters
	Description
	Principal errors

	ISESCA
	Function
	Parameters
	Description
	Principal errors

	ISFLD
	Function
	Parameters
	Description
	Principal errors

	ISIBOX
	Function
	Parameters
	Description
	Device variations

	Principal errors

	ISILOC
	Function
	Parameters
	Description
	Principal errors

	ISLDE
	Function
	Parameters
	Description
	Principal errors

	ISQBOX
	Function
	Parameters
	Description
	Principal errors

	ISQCOM
	Function
	Parameters
	Description
	Principal errors

	ISQFLD
	Function
	Parameters
	Description
	Principal errors

	ISQFOR
	Function
	Parameters
	Description
	Principal errors

	ISQLOC
	Function
	Parameters
	Description
	Principal errors

	ISQRES
	Function
	Parameters
	Description
	Principal errors

	ISQSCA
	Function
	Parameters
	Description
	Principal errors

	ISSE
	Function
	Parameters
	Description
	Principal errors

	ISXCTL
	Function
	Parameters
	Description
	Principal errors

	MSCPOS
	Function
	Parameters
	Description
	Principal errors

	MSDFLD
	Function
	Parameters
	Description
	Principal errors

	MSGET
	Function
	Parameters
	Description
	Principal errors

	MSPCRT
	Function
	Parameters
	Description
	Principal errors

	MSPQRY
	Function
	Parameters
	Description
	Principal errors

	MSPUT
	Function
	Parameters
	Description
	Principal errors

	MSQADS
	Function
	Parameters
	Description
	Description of sections

	Principal errors

	MSQFIT
	Function
	Parameters
	Description
	Principal errors

	MSQFLD
	Function
	Parameters
	Description
	Principal errors

	MSQGRP
	Function
	Parameters
	Description
	Principal errors

	MSQMAP
	Function
	Parameters
	Description
	Principal errors

	MSQMOD
	Function
	Parameters
	Description
	Principal errors

	MSQPOS
	Function
	Parameters
	Description
	Principal errors

	MSREAD
	Function
	Parameters
	Description
	Principal errors

	PSDSS
	Function
	Parameters
	Description
	Principal errors

	PSLSS
	Function
	Parameters
	Description
	Principal errors

	PSLSSC
	Function
	Parameters
	Description
	Principal errors

	PSQSS
	Function
	Parameters
	Description
	Principal errors

	PSRSS
	Function
	Parameters
	Description
	Principal errors

	PSRSV
	Function
	Parameters
	Description
	Principal errors

	PTNCRT
	Function
	Parameters
	Description
	Principal errors

	PTNDEL
	Function
	Parameters
	Description
	Principal errors

	PTNMOD
	Function
	Parameters
	Description
	Principal errors

	PTNQRY
	Function
	Parameters
	Description
	Principal errors

	PTNQUN
	Function
	Parameters
	Description
	Principal errors

	PTNSEL
	Function
	Parameters
	Description
	Principal errors

	PTSCRT
	Function
	Parameters
	Description
	Principal errors

	PTSDEL
	Function
	Parameters
	Description
	Principal errors

	PTSQPI
	Function
	Parameters
	Description
	Principal errors

	PTSQPN
	Function
	Parameters
	Description
	Principal errors

	PTSQPP
	Function
	Parameters
	Description
	Principal errors

	PTSQRY
	Function
	Parameters
	Description
	Principal errors

	PTSQUN
	Function
	Parameters
	Description
	Principal errors

	PTSSEL
	Function
	Parameters
	Description
	Principal errors

	PTSSPP
	Function
	Parameters
	Description
	Principal errors

	SPINIT
	Function
	Parameters
	Description
	Principal errors

	SPMXMP
	Function
	Parameters
	Description
	Principal errors

	SSQF
	Function
	Parameters
	Description
	Principal errors

	SSREAD
	Function
	Parameters
	Description
	Principal errors

	SSWRT
	Function
	Parameters
	Description
	Principal errors

	WSCRT
	Function
	Parameters
	Description
	Principal errors

	WSDEL
	Function
	Parameters
	Description
	Principal errors

	WSIO
	Function
	Parameters
	Description
	Principal errors

	WSMOD
	Function
	Parameters
	Description
	Principal errors

	WSQRY
	Function
	Parameters
	Description
	Principal errors

	WSQUN
	Function
	Parameters
	Description
	Principal errors

	WSQWI
	Function
	Parameters
	Description
	Principal errors

	WSQWN
	Function
	Parameters
	Description
	Principal errors

	WSQWP
	Function
	Parameters
	Description
	Principal errors

	WSSEL
	Function
	Parameters
	Description
	Principal errors

	WSSWP
	Function
	Parameters
	Description
	Principal errors

	Chapter 4. Device variations
	Operator windows, partitions, primary, alternate, and dual screens
	Operator windows
	Partitions
	Primary and alternate screen sizes
	Dual screen devices
	Dual screen size

	Device-specific saved pictures
	GDF saved as 2-byte integers
	ADMSAVE files

	Screen redraw
	Graphics primitives outside segments

	Programmed symbol sets (PS) and graphics text
	Character mode 1 (hardware character sets)
	Character mode 2 (image symbol sets)
	PS stores and device cell-size dimensions
	FSCHEK call

	Alphanumerics
	Alphanumeric field attributes
	Double-byte character sets (DBCS)
	Cursor position within mixed fields

	3278–52
	Alphanumeric colors

	Graphics colors
	Color mixing
	Foreground color mix mode
	"Mix" mode
	"Underpaint" mode
	"Exclusive-OR" mode
	"Transparent" mode
	"Mix" mode

	Combinations of foreground and background mix modes

	Graphics line types and widths
	Line types (GSLT)
	Line widths (GSFLW and GSLW)

	Graphics area shading
	Graphics image
	Graphics logical input devices
	Choice devices
	Locator devices (GSILOC)
	Echo types
	Trigger keys

	Pick devices (GSIPIK)
	Echo
	Trigger keys

	Stroke devices (GSISTK)
	String devices (GSISTR)

	Image

	Chapter 5. APL request codes module
	The address table
	The request code table
	GDDM Base APL codes, in numeric order

	Chapter 6. GDDM-REXX programming interface
	GDDM-REXX commands, subcommands, and utilities
	Summary
	Commands
	Subcommands
	Utility EXEC

	Syntax conventions

	GDDMREXX command
	GDDMREXX INIT
	Parameters

	GDDMREXX TERM
	Parameters

	GDDMREXX VERSION
	Parameters

	GXGET subcommand
	GXGET AAB
	Parameters

	GXGET CDT
	Parameters

	GXGET LASTMSG
	Parameters

	GXGET MSG
	Parameters

	GXGET NAMES
	Parameters

	GXGET TRACE
	Parameters

	GXSET subcommand
	GXSET AAB
	Parameters

	GXSET MSADS
	Parameters

	GXSET MSG
	Parameters

	GXSET MSVARS
	Parameters

	GXSET TRACE
	Parameters

	GDDM calls
	ERXMSVAR EXEC
	Parameters
	Description
	Field naming rules
	Sample output
	Possible pitfalls

	Chapter 7. Symbol sets
	How GDDM handles symbol sets
	Loading programmed symbol stores
	PS store numbers
	Symbol-set identification
	Using preloaded PS sets
	Selecting symbol sets by device type
	Using PS with graphics
	Loading graphics symbol sets
	Devices other than 3179-Gs, 3192-Gs, 3472-Gs, 4224s, ASCII graphics displays, GDDM-PCLK, and GDDM-OS/2 Link devices
	3270-PC/Gs, 3270-PC/GXs, 3179-Gs, 3192-Gs, and 3472-Gs

	PS overflow caused by picture complexity
	Using symbol sets in printing
	Using DBCS symbol sets

	Naming conventions for sample image symbol sets
	Sample image symbol sets
	Sample vector symbol sets
	Illustrations of vector typefaces

	Chapter 8. Symbol set formats
	Image symbol set component format
	Vector symbol set component format

	Chapter 9. GDDM object file formats
	Record structure
	The record identification field
	The header record information field
	Data records

	Chapter 10. GDF order descriptions
	Compatibility
	Saving GDF orders
	Format of GDF objects
	Coordinates and aspect ratio
	GDF orders: summary
	General structure
	Order formats
	Normal format
	Short format

	Padding
	Coordinate data

	Primitives
	Current position

	Attributes

	GDF orders: full descriptions
	Format of tables
	Format of examples
	Arc
	Arc parameters
	Area
	Background color mix
	Call segment
	Character angle
	Character box
	Character box spacing
	Character direction
	Character precision
	Character set
	Character shear
	Character string
	Color
	Comment
	Current position
	End area
	Fillet
	Foreground color mix
	Fractional line width
	Full arc
	Image – begin
	Image – data
	Image – end
	Line
	Line type
	Line width
	Marker
	Marker box
	Marker scale
	Marker type
	Model transform
	Pattern
	Pick (tag) identifier
	Pop
	Process specific control
	Relative line
	Segment attribute
	Segment attribute modify
	Segment characteristics
	Segment end
	Segment end prolog
	Segment position
	Segment start
	Segment viewing window
	Text alignment

	Process specific control orders (PSC)
	Symbol-set process specific control orders
	Picture prolog process specific control orders

	Symbol-set PSC orders
	Begin symbol-set mapping
	Map symbol-set identifier
	End symbol-set mapping

	Picture prolog
	Begin picture prolog
	End picture prolog
	Set default arc parameters
	Set default background mix
	Set default character angle
	Set default character box
	Set default character-box spacing
	Set default character direction
	Set default character precision
	Set default character set
	Set default character shear
	Set default coordinate type
	Set default extended color
	Set default foreground mix
	Set default fractional line width
	Set default line type
	Set default marker box
	Set default marker type
	Set default pattern
	Set default pick identifier
	Set default picture scale
	Set default text alignment
	Set default viewing window
	Set picture boundary
	Set picture origin

	Chapter 11. Image file formats
	Formats and compression types
	3193 data stream and page printer formats
	Unformatted data

	Chapter 12. Picture interchange format files
	Processing PIF files under TSO
	The conversion operation
	The GDF file-conversion utility

	The transfer operation
	The IND$FILE CLIST
	The IND$FILE file transfer command

	Commands to use under TSO
	To transfer a PIF file from the workstation to host
	To transfer a GDDM GDF picture from the host to the workstation
	To convert a PIF file into a GDDM ADMGDF object
	To convert a GDDM ADMGDF object into a PIF file

	The format of a PIF file

	Processing PIF files under VM/CMS
	The conversion operation
	The GDF file-conversion utility

	The transfer operation
	The IND$FILE EXEC
	The IND$FILE file transfer command

	Commands to use under VM/CMS
	To transfer a PIF file from the workstation to host
	To transfer a GDDM GDF picture from the host to the workstation
	To convert a PIF file into a GDDM ADMGDF object
	To convert a GDDM ADMGDF object into a PIF file

	The format of a PIF file

	Creating PIF data under GDDM
	Creating PIF data at a workstation
	How PIF data relates to GDF data
	Base PIF
	Restrictions and considerations
	Creating files
	The spool print function
	The GDDM sample program ADMUSP4
	ADMUPCV and ADMUPCT utilities
	LCLMODE processing option
	GGXA file conversion
	DisplayGraphics

	The structure of a PIF file

	Chapter 13. Computer Graphics Metafiles
	Application program calls
	CGLOAD
	CGSAVE

	Utility programs
	ADMUCG
	ADMUGC
	SEND and RECEIVE

	External defaults
	CGM file format
	National language code pages
	Conversion profiles
	Format of a conversion profile
	Picture mapping information
	Picture adjustment factors
	Conversion Profiles supplied with GDDM
	Creating conversion profiles for other applications

	GDF order processing (CGSAVE call)
	CGM order processing (CGLOAD call)

	Chapter 14. Graphics Interchange Format (GIF) files
	GIF file structure
	ADMUGIF
	Keyword parameters
	Invoking ADMUGIF under VM/CMS
	Example VM/CMS invocations

	Invoking ADMUGIF under MVS/TSO
	Example MVS/TSO invocations

	For both VM/CMS and MVS/TSO
	Return codes

	Chapter 15. Format of a Composite Document Presentation Data Stream
	Document structure
	Structured fields
	Summary of structured fields
	Structured field formats
	Begin active environment group (D3A8C9) BAG
	Begin bar code object (D3A8EB) BBC
	Bar code data (D3EEEB) BDA
	Bar-code-data descriptor (D3A6EB) BDD
	Begin document (D3A8A8) BDT
	Begin graphics object (D3A8BB) BGR
	Begin image object (D3A8FB) BIM
	Begin master environment group (D3A8C8) BMG
	Begin object environment group (D3A8C7) BOG
	Begin page (D3A8AF) BPG
	Begin presentation text (D3A89B) BPT
	End active environment group (D3A9C9) EAG
	End bar code object (D3A9EB) EBC
	End document (D3A9A8) EDT
	End graphics object (D3A9BB) EGR
	End image object (D3A9FB) EIM
	End master environment group (D3A9C8) EMG
	End object environment group (D3A9C7) EOG
	End page (D3A9AF) EPG
	End presentation text (D3A99B) EPT
	Graphics data (D3EEBB) GAD
	Graphics data descriptor (D3A6BB) GDD
	Image data descriptor (D3A6FB) IDD
	Invoke master environment group (D3AFC8) IMG
	Image picture data (D3EEFB) IPD
	Map bar code (D3ABEB) MBC
	Medium copy count (D3B188) MCC
	Map coded font (D3AB8A) MCF/2
	Medium descriptor (D3A688) MDD
	Medium modification control (D3A788) MMC
	Map medium overlay (D3ABDF) MMO
	No operation (D3EEEE) NOP
	Object area descriptor (D3A66B) OBD
	Object area position (D3AC6B) OBP
	Page descriptor (D3A6AF) PGD
	Page position (D3B1AF) PGP
	Presentation text descriptor (D3A69B) PTD
	Presentation text data (D3EE9B) PTX

	AFPDS structured fields supported by the CDPU
	Summary of AFPDS structured fields supported by the CDPU

	Chapter 16. Application data structure for mapping
	Adjunct fields
	COBOL example
	Assembler language example
	PL/I example
	Adjunct field names
	Adjunct values
	Selector adjunct
	Cursor adjunct
	Attribute adjuncts
	Base attribute adjunct
	Extended highlighting adjunct
	Color adjunct
	Programmed symbols adjunct
	Validation adjunct
	Field outlining
	Length adjunct

	Character attributes
	Setting character attributes from the terminal

	Designator characters for light-pen or cursor selection
	Map-defined input editing
	AID translation
	Folding
	Justification and padding

	Copying the application data structure into the program
	Overlaying application data areas

	Double-byte character string fields
	Mixed double-byte and single-byte character fields in maps
	GDDM-supplied mapping constants

	Chapter 17. GDDM high-performance alphanumerics
	HPA data structure
	The field list
	The field list header row
	The field definition row
	Example

	The data buffer
	Mixed double-byte and single-byte character fields
	Character attributes
	Example

	The bundle list
	Bundle list header row
	Bundle definition row
	Example

	How to use high-performance alphanumerics
	Move mode and locate mode
	Output
	Input
	Reshow
	Field list update rules
	Data buffer update rule
	Bundle list update rule
	Dynamic fields
	Interpreted languages
	Read-only storage
	Shared storage
	Validation

	Chapter 18. External defaults
	GDDM's default values
	Changing GDDM's default values

	External defaults: format
	Alphabetical list of GDDM external defaults

	Chapter 19. Processing options
	Processing options
	Processing options: format
	Processing options: full descriptions

	Chapter 20. Name-lists
	Reserved names "*" and blanks
	Family-1 name-list
	CICS name-list
	VSE/Batch name-list
	IMS name-list
	TSO name-list
	MVS/Batch name-list
	VM name-list

	Chapter 21. Device characteristics tokens
	Creating your own device tokens
	Device tokens for ASCII graphics displays
	GDDM-supplied device tokens

	Chapter 22. Special-purpose programming in GDDM
	Using the system programmer interface
	Initialization
	The system programmer interface block
	Format of the system programmer interface block

	Specifying user exits
	Exit values
	GDDM user-exit conventions
	The task switch exit
	The call intercept exit
	The coordination exit
	Storage exit routines – interface specifications

	Call format descriptor module
	The address table
	The call descriptor table
	RCPPSTAB(j)

	The parameter descriptor table
	RCPPPDES(n)

	Glossary
	Index

