Programming Interfaces

This book is intended to help the customer install and tailor Tivoli Information Management for z/OS. It contains information needed to install Tivoli Information Management for z/OS.

This *Tivoli Information Management for z/OS Planning and Installation Guide and Reference* primarily documents information that is NOT intended to be used as Programming Interfaces of Tivoli Information Management for z/OS.

This *Tivoli Information Management for z/OS Planning and Installation Guide and Reference* also documents intended Programming Interfaces that allow the customer to write programs to obtain the services of Tivoli Information Management for z/OS. This information is identified where it occurs, either by an introductory statement to a chapter or section or by the following marking: Programming Interface information.
Contents

Preface .. xv

Who Should Read This Document ... xv
Prerequisite and Related Documentation ... xv
What This Document Contains ... xvi
Typeface Conventions .. xvii
The Use of Panel Style in This Book ... xvii
Contacting Customer Support ... xviii

What’s New in Tivoli Information Management for z/OS? xix

New in Tivoli Information Management for z/OS Version 7.1 xix

Chapter 1. Overview for Planning and Installing 1

General Checklist ... 2
Procedures for New Installations ... 10

Chapter 2. The Base Tivoli Information Management for z/OS Product 19

The Base Product Components .. 19
The BLX Service Provider ... 20
BLX-SP Parameters Member .. 21
Special Notes about the BLX Service Provider .. 21
Modifying the ISPTCM Table .. 21
The Data Sets ... 22
The Databases ... 22
The Panels ... 23
The Dictionary .. 24
The Report Format Table Data Set ... 24
The VSAM Resource Definition Member – Non-Sysplex 25
The Session-Parameters Member ... 25

Chapter 3. Tivoli Information Management for z/OS Features and Options 27

The Installation Tailoring Facility ... 28
Integration with Tivoli Management Software ... 29
TEC Event Adapter .. 32
OS/390 Text Search ... 33
The Remote Environment Servers and Clients ... 33
Web Connector Features .. 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The NetView Bridge Adapter</td>
<td>35</td>
</tr>
<tr>
<td>The NetView AutoBridge and PostProcessor</td>
<td>36</td>
</tr>
<tr>
<td>NetView Hardware Monitor Interface</td>
<td>36</td>
</tr>
<tr>
<td>ODBC Driver</td>
<td>37</td>
</tr>
<tr>
<td>The Desktop</td>
<td>37</td>
</tr>
<tr>
<td>The Integration Facility</td>
<td>38</td>
</tr>
<tr>
<td>Integration Facility Base</td>
<td>38</td>
</tr>
<tr>
<td>Integration with Other Products</td>
<td>38</td>
</tr>
<tr>
<td>Interface to NetView Hardware Monitor</td>
<td>39</td>
</tr>
<tr>
<td>Interface to OPC/ESA</td>
<td>39</td>
</tr>
<tr>
<td>Interface to Service Level Reporter</td>
<td>39</td>
</tr>
<tr>
<td>Multiple BLX Service Providers</td>
<td>39</td>
</tr>
<tr>
<td>Sysplex Support</td>
<td>39</td>
</tr>
<tr>
<td>Sysplex Advantages</td>
<td>40</td>
</tr>
<tr>
<td>Data Sharing</td>
<td>40</td>
</tr>
<tr>
<td>Multiple-Cluster SDDS</td>
<td>41</td>
</tr>
<tr>
<td>Multiple-Cluster SDIDS</td>
<td>41</td>
</tr>
<tr>
<td>SDIDS Keys</td>
<td>42</td>
</tr>
<tr>
<td>Multiple Read Panel Data Sets</td>
<td>43</td>
</tr>
<tr>
<td>Security</td>
<td>43</td>
</tr>
<tr>
<td>Logical Database Partitioning</td>
<td>43</td>
</tr>
<tr>
<td>Automatic Log Save Facility</td>
<td>43</td>
</tr>
<tr>
<td>DB2 Extract Facility</td>
<td>44</td>
</tr>
<tr>
<td>Archiver</td>
<td>44</td>
</tr>
<tr>
<td>Database Formats</td>
<td>45</td>
</tr>
<tr>
<td>National Language Support</td>
<td>45</td>
</tr>
<tr>
<td>Latin and Non-Latin Translate Tables</td>
<td>45</td>
</tr>
<tr>
<td>Uppercase and Lowercase Translate Tables</td>
<td>46</td>
</tr>
<tr>
<td>DBCS Operating Parameter</td>
<td>46</td>
</tr>
<tr>
<td>Graphic Character Substitutions</td>
<td>46</td>
</tr>
<tr>
<td>Sorting with an External Sort Routine</td>
<td>47</td>
</tr>
<tr>
<td>Date and Time-of-Day Formats</td>
<td>47</td>
</tr>
<tr>
<td>Universal Time Support</td>
<td>49</td>
</tr>
<tr>
<td>Enhanced Panel Style</td>
<td>50</td>
</tr>
<tr>
<td>Graphical User Interface (GUI)</td>
<td>53</td>
</tr>
<tr>
<td>The Notification Management Facility</td>
<td>54</td>
</tr>
<tr>
<td>The Panel Modification Facility</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter 4. Evaluating Performance .. 57

An Overview of Tivoli Information Management for z/OS Performance .. 57
I/O Time .. 57
The Processor .. 63
Memory ... 65
Other Performance Factors .. 65
Cognize Enqueue Prioritization (COGENQ) – Non-Sysplex 66
Multiple-Cluster SDDS .. 67
Multiple-Cluster SDIDS.. 67
Multiple BLX-SP Support ... 67
Sysplex Data Sharing .. 68
SRCHLIMIT Function ... 68
Remote Client File Transactions .. 69
Performance Enhancements .. 69
Performance Recommendations ... 70
General Recommendations .. 70
In a Non-Sysplex Environment ... 72
In a Sysplex with Sysplex Mode Enabled 73

Chapter 5. Using VSAM Resources in a Non-Sysplex Environment 75

Using VSAM Resources for Tivoli Information Management for z/OS Data Sets 76
Defining VSAM Resources in the BLX-SP Environment ... 76
Using Resource Pools .. 76
Using VSAM Placeholders .. 77
Recommendations ... 77
When You Can Use LSR ... 78
When You Can Use NSR ... 79
Defining LSR Buffer Pools ... 80
VSAM Buffer Pool Definition Checklist 83

Chapter 6. Determining Storage Requirements 85

Calculating the User’s Address Space Storage Requirements .. 85
Calculating the BLX-SP Region Size .. 86
Sample BLX-SP Region Size Calculation – Non-Sysplex .. 86
Calculating Region Size for Sysplex .. 88

Chapter 7. Ordering the Necessary Hardware and Software 89

Hardware Requirements ... 89
Base Product ... 89
Chapter 8. Assigning and Scheduling Personnel and Systems 99
Assigning Personnel ... 99
Scheduling Education and Training .. 101
Implementing a Test System .. 101

Chapter 9. Migrating from Previous Versions 103
Tivoli Information Management for z/OS Version 7.1 Changes 103
Chapter 10. Setting Up Your BLX-SP 143

Modifying the Program Properties Table 143
Adding a Tivoli Information Management for z/OS Load Library to the APF List. 144
Defining Subsystems for BLX-SPs.. 144
 Naming a Subsystem.. 144
 Defining a Subsystem to MVS... 144
 Defining a Subsystem to the BLX-SP.................................... 145
 Specifying a Subsystem.. 146
Defining a BLX-SP Procedure .. 146
Defining a BLX-SP Parameters Member 147
Defining a VSAM Resource Definition Member 147
Defining Multiple BLX-SPs.. 148
Starting and Stopping the BLX-SP... 148

Chapter 11. Setting Up for Sysplex Data Sharing 151

 What is a Sysplex?.. 151
 Understanding Sysplex Components...................................... 152
 Enabling Sysplex Mode... 156
 What are Shared Databases?... 158
 Enabling Shared Databases... 158
Defining the BLX-SP Procedure .. 159
Global Resource Serialization Considerations............................. 159
 Modifying the GRSRNLa Member of SYS1.PARMLIB..................... 159
Modifying the BLX-SP Parameters Member.................................. 160

Chapter 12. Evaluating Base Product Tailoring Considerations........ 163

 Working with Translate Tables.. 163
 Working with Session-Parameters Members............................. 164
 Working with Panel Buffers.. 165
 SORTIN, SORTOUT, and SORTWK01 Data Sets......................... 165
 SORT Routine... 167
 Working with Databases.. 168
 Working with VSAM Data Sets... 169
Chapter 16. Starting Tivoli Information Management for z/OS 203

Starting Tivoli Information Management for z/OS from ISPF 203
Issuing the ISPSTART Command ... 203
Making an ISPF Selection .. 210
Setting up a Default Profile ... 210
Starting Tivoli Information Management for z/OS in Batch Mode 211
Error Processing .. 213
Starting Tivoli Information Management for z/OS in Batch Mode with the GUI Parameter 214
Starting Tivoli Information Management for z/OS from NetView 217

Chapter 17. Loading Records Provided with Tivoli Information Management for z/OS ... 219

Loading Data Model and Other Records .. 219
 Loading Data Model Records into a Separate Database 221
 Loading Records into Database Partitions .. 222
 Submitting a Batch Job .. 222
 Running the BLHRCDSL TSX ... 223
 Moving Data Model Records .. 224

Appendix A. Enabling Alternative Date and Time-of-Day Formats 227

Enabling Date Formats .. 228
 How Data is Converted and Stored ... 229
 Selecting Date Formats for a New Installation 229
 Specifying Preferences in the User Profile ... 230
 Using HELP STATUS to Show Date Formats 230
 External Date Format ... 231
 Migration Considerations ... 234
 Modifying Date Formats on Panels ... 236
 Four-Digit Year Considerations ... 237
Implementing an External Date Format through User Exits 242
Example of a Date-Conversion Routine — BTNUDATE 245
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Validations</td>
<td>245</td>
</tr>
<tr>
<td>Enabling an Alternate Time-of-Day Format</td>
<td>245</td>
</tr>
<tr>
<td>Implementing a New External Time-of-Day Format</td>
<td>247</td>
</tr>
<tr>
<td>Modifying Time-of-Day Formats on Panels</td>
<td>249</td>
</tr>
<tr>
<td>Implementing Universal Time Processing</td>
<td>251</td>
</tr>
<tr>
<td>Universal Time Concepts</td>
<td>252</td>
</tr>
<tr>
<td>Understanding Independent Fields</td>
<td>256</td>
</tr>
<tr>
<td>Understanding Related Fields</td>
<td>257</td>
</tr>
<tr>
<td>Relating Date and Time Fields</td>
<td>262</td>
</tr>
<tr>
<td>Defining and Using Time Zones</td>
<td>265</td>
</tr>
</tbody>
</table>

Appendix B. Defining Tivoli Information Management for z/OS Data Sets ... 277

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample JCL</td>
<td>277</td>
</tr>
<tr>
<td>Understanding the AMS DEFINE CLUSTER Command Syntax Description</td>
<td>278</td>
</tr>
<tr>
<td>Using REUSE or NOREUSE</td>
<td>278</td>
</tr>
<tr>
<td>Defining the SDDS</td>
<td>278</td>
</tr>
<tr>
<td>Defining the SDIDS</td>
<td>282</td>
</tr>
<tr>
<td>Defining the SDLDS</td>
<td>287</td>
</tr>
<tr>
<td>Defining the DICTDS</td>
<td>289</td>
</tr>
<tr>
<td>Defining the RPANLDS</td>
<td>293</td>
</tr>
<tr>
<td>Defining the WPANLDS</td>
<td>297</td>
</tr>
</tbody>
</table>

Appendix C. Defining VSAM Resources to the BLX-SP in a Non-Sysplex Environment ... 301

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining a VSAM Resource Definition Member</td>
<td>301</td>
</tr>
<tr>
<td>Understanding the Macro Syntax Description</td>
<td>302</td>
</tr>
<tr>
<td>BLXNSR Macro — Specifying the Number of Nonshared Resource Placeholders</td>
<td>303</td>
</tr>
<tr>
<td>Coding the BLX-SP BLXNSR Macro</td>
<td>303</td>
</tr>
<tr>
<td>BLXDSN Macro — Connecting VSAM Resources to a VSAM Data Set</td>
<td>303</td>
</tr>
<tr>
<td>Coding the BLX-SP BLXDSN Macros</td>
<td>305</td>
</tr>
<tr>
<td>BLXGEN Macro — Generating the BLX-SP VSAM Resource Definition Member CSECT</td>
<td>306</td>
</tr>
<tr>
<td>BLDVRP Macro—Defining Buffer Pools</td>
<td>306</td>
</tr>
<tr>
<td>VSAM BLDVRP Macro Keyword Considerations</td>
<td>306</td>
</tr>
<tr>
<td>Coding the VSAM BLDVRP Macros</td>
<td>307</td>
</tr>
<tr>
<td>Sample VSAM Resource Definition Member—BLXVDEF</td>
<td>311</td>
</tr>
</tbody>
</table>

Appendix D. Defining Tivoli Information Management for z/OS Session-Parameters Members ... 317
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining Session-Parameters Members (BLGSESaa)</td>
<td>317</td>
</tr>
<tr>
<td>Defining an Initialization Load Module</td>
<td>318</td>
</tr>
<tr>
<td>Naming the Session-Parameters Member</td>
<td>318</td>
</tr>
<tr>
<td>Understanding the Macro Syntax Description</td>
<td>318</td>
</tr>
<tr>
<td>BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics</td>
<td>318</td>
</tr>
<tr>
<td>BLGCLUST Macro — Defining a Database</td>
<td>333</td>
</tr>
<tr>
<td>BLGCLDSN Macro — Specifying the Name and Attributes of a Data Set</td>
<td>338</td>
</tr>
<tr>
<td>BLGCLKKEY Macro — Defining an SDIDS Key Range String</td>
<td>339</td>
</tr>
<tr>
<td>BLGGGEN Macro — Beginning the Code-Generation Phase</td>
<td>340</td>
</tr>
<tr>
<td>Sample JCL for a Session-Parameters Member</td>
<td>340</td>
</tr>
<tr>
<td>Sample Session-Parameters CSECT</td>
<td>340</td>
</tr>
<tr>
<td>Appendix E. Defining BLX-SP Parameters Members</td>
<td>343</td>
</tr>
<tr>
<td>Defining BLX-SP Parameters Members</td>
<td>343</td>
</tr>
<tr>
<td>Naming a BLX-SP Parameters Member</td>
<td>343</td>
</tr>
<tr>
<td>Understanding the BLX-SP Parameters Member Syntax Description</td>
<td>343</td>
</tr>
<tr>
<td>Using the BLX-SP Parameters</td>
<td>343</td>
</tr>
<tr>
<td>Coding a BLX-SP Parameters Member</td>
<td>349</td>
</tr>
<tr>
<td>Sample BLX-SP Parameters Member</td>
<td>349</td>
</tr>
<tr>
<td>Appendix F. Resource Names That Tivoli Information Management for z/OS Enqueues On</td>
<td>351</td>
</tr>
<tr>
<td>Major Resource Names</td>
<td>351</td>
</tr>
<tr>
<td>Appendix G. Translate Tables</td>
<td>353</td>
</tr>
<tr>
<td>Latin and Non-Latin Translate Tables</td>
<td>353</td>
</tr>
<tr>
<td>Appendix H. Programming Interface Macros</td>
<td>357</td>
</tr>
<tr>
<td>Executable Macros</td>
<td>357</td>
</tr>
<tr>
<td>Mapping Macros</td>
<td>358</td>
</tr>
<tr>
<td>Appendix I. Tivoli Information Management for z/OS Program Data Sets and Sample Members</td>
<td>359</td>
</tr>
<tr>
<td>Program Data Sets</td>
<td>359</td>
</tr>
<tr>
<td>Sample Members</td>
<td>360</td>
</tr>
<tr>
<td>Appendix J. New, Changed, and Removed Panels</td>
<td>369</td>
</tr>
<tr>
<td>New Panels — Tivoli Information Management for z/OS Version 7.1</td>
<td>369</td>
</tr>
<tr>
<td>Changed Panels — Tivoli Information Management for z/OS Version 7.1</td>
<td>370</td>
</tr>
</tbody>
</table>
Appendix K. Relating Publications to Specific Tasks................. 401

Typical Tasks. ... 401

Appendix L. Tivoli Information Management for z/OS Courses 405

Education Offerings. .. 405
 United States .. 405
 United Kingdom .. 405

The Tivoli Information Management for z/OS Library 407

Index ... 411
Preface

This book contains information to help you plan for the installation of Tivoli® Information Management for z/OS and provides instructions to help you install and tailor it. It describes the migration and conversion procedures necessary to move to Tivoli Information Management for z/OS Version 7.1 from previous versions of the product.

Information is provided to assist you with migrating from the following:

- Tivoli Service Desk for OS/390® Version 1.2
- TME 10™ Information/Management Version 1.1
- Information/Management Version 5.1
- Information/Management Version 4.2.2, Version 4.2, Version 4.1

As shown in this list of previous versions of the predecessor product, the version number of Information/Management was reset to Version 1.1 (1997).

Who Should Read This Document

This book is intended for:

- Product planners, who assign personnel to manage Tivoli Information Management for z/OS
- System analysts or programmers, who install Tivoli Information Management for z/OS and provide procedures for using Tivoli Information Management for z/OS
- Database administrators, who maintain databases.

Prerequisite and Related Documentation

The library for Tivoli Information Management for z/OS Version 7.1 consists of these publications. For a description of each, see “The Tivoli Information Management for z/OS Library” on page 407.

- **Tivoli Information Management for z/OS Application Program Interface Guide**, SC31-8737-00
- **Tivoli Information Management for z/OS Client Installation and User’s Guide**, SC31-8738-00
- **Tivoli Information Management for z/OS Data Reporting User’s Guide**, SC31-8739-00
- **Tivoli Information Management for z/OS Desktop User’s Guide**, SC31-8740-00
- **Tivoli Information Management for z/OS Diagnosis Guide**, GC31-8741-00
- **Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications**, SC31-8744-00
- **Tivoli Information Management for z/OS Integration Facility Guide**, SC31-8745-00
- **Tivoli Information Management for z/OS Licensed Program Specification**, GC31-8746-00
- **Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography**, SC31-8747-00
What This Document Contains

- Chapter 1, “Overview for Planning and Installing,” contains a step-by-step procedure and general checklist that guides you through planning and installing Tivoli Information Management for z/OS.

- Chapter 2, “The Base Tivoli Information Management for z/OS Product,” and Chapter 3, “Tivoli Information Management for z/OS Features and Options,” help you to understand Tivoli Information Management for z/OS by describing the many Tivoli Information Management for z/OS functions and features that you can consider for your installation.

- Chapter 4, “Evaluating Performance,” through Chapter 8, “Assigning and Scheduling Personnel and Systems,” help you plan the resources Tivoli Information Management for z/OS requires.

- Chapter 9, “Migrating from Previous Versions,” describes migration tasks that must be performed if you are currently using an earlier version of Tivoli Information Management for z/OS or Information/Management, the predecessor product.

- Chapters 10, “Setting Up Your BLX-SP,” through 16, “Starting Tivoli Information Management for z/OS,” explain the tasks that you must perform to install, tailor and start Tivoli Information Management for z/OS. Examples are included.

- Chapter 17, “Loading Records Provided with Tivoli Information Management for z/OS,” describes how to load the data model records and other types of records that are shipped with Tivoli Information Management for z/OS to support particular applications or interfaces.
The appendixes contain reference material that help you to install Tivoli Information Management for z/OS.

This product is enabled for DBCS support. As a result, this book uses the following terms:

- **DBCS** (double-byte character set)
- **SBCS** (single-byte character set)
- **Mixed data**

The term *mixed data* refers to data strings that can contain only DBCS data, only SBCS data, or any combination of DBCS and SBCS data. SBCS data is the same as EBCDIC data. The term *mixed case data* refers to data strings that can contain uppercase, lowercase, or a combination of uppercase and lowercase SBCS data.

Typeface Conventions

This guide uses several typeface conventions for special terms and actions. These conventions have the following meaning:

Bold Entries that you must use literally, choices, or options that you select appear in bold. The names of titles or screen objects in graphical windows also appear in bold.

Italics Variables and values that you must provide appear in italics. New terms also appear in italics.

Monospace Code examples, output, and messages are in monospace font.

The host panels as presented in this book are not meant to be exact replicas of the way a panel might appear on the screen. The information on the panels is correct, but the spacing is not always exact. The panels shown are examples of the panels as shipped. Changes made during installation are not taken into consideration. Therefore, you may notice differences in your panels.

Commands, such as END, CONTROL, RESUME, or DOWN, appear in all capital letters in text. Although not commands, the user responses YES and NO also appear in capital letters.

Fields designated with `<R>` are required fields. You must enter information in these fields on the current panel before you can continue to the next panel.

A plus (+) sign appearing to the right of the message indicates that more message information is available. If the plus sign appears to the left of the message, there are more messages for you to view. Type `;help` on the command line and then press Enter to view these messages.

The Use of Panel Style in This Book

Two panel styles are available: the standard panel style and the enhanced panel style. The style of panel does not affect the data that must be entered from it.

Except where noted, this book uses the Tivoli Information Management for z/OS standard panel style when showing you how a panel looks.

For more information about the enhanced panel style, refer to the *Tivoli Information Management for z/OS Program Administration Guide and Reference* and the *Tivoli Information Management for z/OS Planning and Installation Guide and Reference*.
Information Management for z/OS User’s Guide. Also see “Enhanced Panel Style” on page 50 for a description of the enhanced panel style and “Selecting the Tivoli Information Management for z/OS Panel Style” on page 199 for information on how to select a panel style.

Contacting Customer Support

For support inside the United States, for this or any other Tivoli product, contact Tivoli Customer Support in one of the following ways:
- Send e-mail to support@tivoli.com
- Call 1-800-TIVOLI8
- Navigate our Web site at http://www.support.tivoli.com

The latest downloads and fixes can be obtained at http://www.tivoli.com/infoman.

When you contact Tivoli Customer Support, be prepared to provide identification information for your company so that support personnel can assist you more readily.
What’s New in Tivoli Information Management for z/OS?

The enhancements made in Tivoli Information Management for z/OS Version 7.1 are listed in "New in Tivoli Information Management for z/OS Version 7.1".

New in Tivoli Information Management for z/OS Version 7.1

<table>
<thead>
<tr>
<th>Base Product Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Parallel Sysplex®</td>
</tr>
<tr>
<td>The cross-memory VSAM I/O design and the Multisystem Database Access (MSDA) feature is replaced with a new design that takes advantage of VSAM record-level sharing (RLS) in a parallel sysplex. The primary benefits of the new design are improved performance, reliability, and ease of installation for VSAM access, especially for shared data sets (although users of nonshared data sets will benefit as well). In support of this, the FREE, REALLOC, QUERY, and BRDCST operator commands are also redesigned and enhanced for the parallel sysplex environment.</td>
</tr>
<tr>
<td>A non-sysplex mode using the previous cross-memory design is still supported, but only for nonshared data sets. If you are currently using MSDA to share data sets in a Tivoli Information Management for z/OS database, you must now use sysplex data sharing to continue sharing data sets. If you do not share data sets, the use of parallel sysplex is optional. You can run without sysplex support, or use RLS and other enhancements if you have a parallel sysplex.</td>
</tr>
<tr>
<td>For more information about setting up for parallel sysplex, see “Setting Up for Sysplex Data Sharing” on page 151. For a description of the changes to the BRDCST, FREE, REALLOC, and QUERY commands, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
</tbody>
</table>
Base Product Enhancements

<table>
<thead>
<tr>
<th>Enhanced date/time support</th>
<th>Enhancements in this release include the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Date/time format enhancements – Date and time values in a database can now be processed by different users using different external formats. Each user can select a preferred date format in the user profile. In addition, if an installation has written multiple time conversion routines, each session member can specify the desired time conversion routine for users of that session member. All dates and times in records are now stored in the database (in the SDDS) in internal format. Dates and times from records created in previous versions (in external format) will be automatically converted to internal format when the record is accessed (for example, displayed, updated, or printed on a report). If you have existing records in your database, and you file the records under this new version, the dates and times in the records will be stored in internal format. For more information about date processing, see “Enabling Alternative Date and Time-of-Day Formats” on page 227.</td>
</tr>
<tr>
<td></td>
<td>- Time zone support – The system administrator can optionally define relationships between date fields and their related time fields. This relationship enables users to work with date and time values in their own local time zone while still storing data in a common time zone to enable accurate reporting of durations. When this feature (called universal time processing) is enabled, date and time values are stored in the database in universal time. For more information about using the universal time processing function, see “Implementing Universal Time Processing” on page 251.</td>
</tr>
<tr>
<td></td>
<td>- Session-parameters member changes – As a result of the date/time format and time zone enhancements, the BLGPARMS macro, which governs the operation of a user’s session, is changed. The DATECNV keyword is modified and the following keywords are added: DATEFMT, ODATEFMT, TIMEZONE, and OTIMEZON. For more information about these keywords, refer to “BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics” on page 318.</td>
</tr>
<tr>
<td></td>
<td>- User profile enhancements – Users can now specify the desired date format and, if universal time processing is enabled, the desired local time zone through the “User and database defaults” option in the user profile. The use of this option is described in “Specifying Preferences in the User Profile” on page 230. More information about user profile options is available in the Tivoli Information Management for z/OS User’s Guide.</td>
</tr>
</tbody>
</table>

Ability to choose whether field numbers for data entry fields are displayed

Users can hide the entry field numbers displayed on Tivoli Information Management for z/OS panels by setting the "Display entry field numbers" option to NO in the screen control defaults section of their user profile.

Note: This change is not compatible with use of the ISPF graphical user interface. If you use the ISPF GUI, you should not use this option.

More information about user profile options is available in the Tivoli Information Management for z/OS User’s Guide.
<table>
<thead>
<tr>
<th>Base Product Enhancements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced entry of change approver/reviewer data</td>
<td>List processor panels are now displayed to accept the entry of a list of privilege classes that should approve or review a new change request. The new panels are displayed when new change records are created, or when existing change records not containing change approver or change reviewer data are updated. If an existing change request record already contains change approver or change reviewer data, the new list processor panels are not invoked and the former approver and reviewer entry and display panels are shown instead.</td>
</tr>
<tr>
<td></td>
<td>If you have modified or customized the following panels, you must modify them as described on page 107 so that they will work with this enhancement: BLG0CU01 (Change Request Summary), BLG0CU00 (Change Request Summary), BLG0S020 (Change Summary Display).</td>
</tr>
<tr>
<td></td>
<td>The new list processor panels include: BLGLAPVR (Change Approver Entry), BLGLAPST (Change Approver Display), BLGLREVR (Change Reviewer Entry), and BLGLREVD (Change Reviewer Display). For illustrations, refer to the Tivoli Information Management for z/OS Problem, Change, and Configuration Management.</td>
</tr>
<tr>
<td></td>
<td>Also, a new program exit, BLG02041, is provided to set approval status for the current change record. The program exit can be used when approver data is entered using the BLGLAPVR list processor panel. For a description of this program exit, refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide.</td>
</tr>
<tr>
<td></td>
<td>If you approve or reject change requests through an API application, you can optionally specify a new API parameter to specify an approver name. If an approver name is specified, it is used in place of the privilege class name specified in the transaction. Applications using the low-level API can specify an approver by setting the PICAAPVR field on Change Record Approval (T112) transactions. Applications using the high-level API can specify the name of an approver through the APPROVERSE parameter in Change Approval (HL10) transactions. For more information about these transactions, refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td></td>
<td>This enhancement does not apply to the Integration Facility.</td>
</tr>
<tr>
<td>Enhanced entry of privilege class users</td>
<td>A list processor panel (BLGLJ300) is now displayed to accept the entry of up to 19 274 eligible users of a privilege class (previously, the limit was 24). The new list processor panel is displayed when entering eligible user IDs for new privilege classes. It is also displayed if you update existing privilege class records that do not contain at least one eligible user. If an existing privilege class record is updated and it contains eligible user data, the former data-entry panel is displayed instead of the new list processor panel.</td>
</tr>
<tr>
<td></td>
<td>To migrate all existing privilege class records in your database to use the new list processor panels (regardless of their contents), you can run the BLGTPRIV TSX. By running this TSX, you can ensure that a consistent set of panels is used to enter, update, or display privilege class records. For more information about entering users of privilege classes, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference. For information about migrating privilege class records with the BLGTPRIV TSX, see [11].</td>
</tr>
</tbody>
</table>
Base Product Enhancements

| **E-mail support for notification processing** | With the improvements made to notification processing, you now have more choices in how you can notify people in your organization who are responsible for resolving problems. You can send e-mail messages quickly to support personnel to help ensure your service level agreements are not compromised.

A new set of terminal simulator EXECs (TSXs) is provided for you to use or customize. You can send e-mail messages immediately or place them on a queue. You can also send escalation notices. Advantages of this new method of notification over former methods include: being able to use an SMTP server on a platform other than MVS™, flexibility in processing messages, support for "hot" queues and normal queues, and ease of defining message content.

The existing notification process is still available if you choose not to use the new TSXs. The new TSXs can be invoked interactively or through the APIs.

For more information about using sending e-mail messages with TSXs, refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](http://www.ibm.com). |
|---|---|
| **Improved problem resolution** | Your help desk analysts can start building a more intelligent database by marking a problem resolution as a "solution." The problem resolution text can be added to a solution knowledge base, and the data can be indexed and queried through use of the Text Search Engine, a component of OS/390 Text Search. Highlights include the following:

- Problem resolution data can be marked as solutions through a 3270, Desktop, or API (Web) interface.
- Administrators can create indexes for the Text Search Engine through a Tivoli Information Management for z/OS panel interface.
- Batch utilities are provided to enable you to add to and update the data in the Text Search indexes and to maintain and get status information for the indexes.
- Users can enter text search arguments, including fuzzy searches, and receive results in a search results list. Searches can be done through the 3270, Desktop, and Web connector interfaces.
- The ability to search the text data has been added to the API search transaction.

For more information about using OS/390 Text Search with Tivoli Information Management for z/OS to create a knowledge base, refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](http://www.ibm.com). Information on how to search for data stored in a knowledge base is available in the [Tivoli Information Management for z/OS User's Guide](http://www.ibm.com). |
Base Product Enhancements

Easier way to create lists of validation data for data model records	You now have an easier way to enter lists of validation data for data attribute records and validation records. A new panel, BLGLVLSB, is available by selecting the "validation data basic" option on panel BLG0VU70 (Data Attribute Summary) or BLG0VU50 (Validation Summary). The new entry panel lets you enter longer fields of validation entry and description text so that you no longer have to use the L line command or scroll the columns to enter longer data. For more information about this new panel refer to the [Tivoli Information Management for z/OS Panel Modification Facility Guide](#). The BLG0VU70 panel is also enhanced to enable you to enter help text for a particular data attribute record. This help text is displayed when the user enters the :HELP command on BLGLVSEL (Validation data).
Data model record panels enhanced	Additional fields are added to certain panels related to data view records and data attribute records. The data entry, display, and inquiry panels for data view records now include a field to specify the name of a child data view attribute record (panels BLG0V600, BLG0VE61, BLG0VQ61). The data entry, display, and inquiry panels for the response processing of data attribute records are enhanced to include a field to specify that a reply is always data (panels BLG0VE710, BLG0VE72, BLG0VQ72). You can now define groups of related list data fields to be managed as tables by the Desktop. A new panel, BLGLTBDL (Desktop Table Definition), is available by selecting the Desktop tables option on panel BLG0VU60 (Data View Summary). This allows you to define table names and associated fields (list processor data) for the Desktop.
Parenthetical freeform searches	Parentheses can be included around freeform search arguments to specify the order in which arguments should be evaluated. Nesting is supported.
HELP STATUS command improved	The output from the HELP STATUS command is improved to display information about optional features or functions you can implement. The output now includes identification of the time zone selected for universal time processing, the trigger character used by data attribute records, and the database containing data model records. Information about the HELP STATUS command is available in the [Tivoli Information Management for z/OS User’s Guide](#).

Publication Changes

| [Tivoli Information Management for z/OS Diagnosis Guide](#) | The [Tivoli Information Management for z/OS Diagnosis Guide](#) is updated with more current information about diagnosing problems related to the use of the most recent functions or interfaces provided in the last few releases of Tivoli Information Management for z/OS. |

API Enhancements

| API transaction for problem resolution searches | Support for using Tivoli Information Management for z/OS with OS/390 Text Search is added to the HLAPI, HLAPI/REXX, and all client HLAPI platforms. Application writers can specify the name of a text search index and search arguments as input parameters on HLAPI transaction HL11 (Record Inquiry) or the HLAPI/REXX transaction SEARCH. |
What’s New in Version 7.1

<table>
<thead>
<tr>
<th>API Enhancements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify privilege class name for change request approver</td>
<td>The HLAPI transaction HL10 (Change Approval), and LLAPI transaction T112 (Change Record Approval) are enhanced to enable you to optionally specify the privilege class name of a change request approver in place of the privilege class name used in the transaction. In HL10 transactions, you can specify a name with the APPROVER parameter. In T112 transactions, you can specify a name through the PICAAPVR field.</td>
</tr>
<tr>
<td>New BLGUT18 utility to build static tables from data model records</td>
<td>If your API applications use data view and data attribute records when interacting with the data base, you can now take advantage of the BLGUT18 utility to reduce the time required to start your application. The BLGUT18 utility creates static program interface data tables (PIDTs) and pattern tables (PIPTs) with data extracted from data view and data attribute records. The utility writes the tables to a partitioned data set which can be read by the API application. For more information about the BLGUT18 utility, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
</tbody>
</table>

For more information, refer to the Tivoli Information Management for z/OS Application Program Interface Guide. Information about the Tivoli Information Management for z/OS clients is provided in the Tivoli Information Management for z/OS Client Installation and User’s Guide.
Desktop Enhancements

<table>
<thead>
<tr>
<th>Enhanced Desktop application</th>
<th>The Java-based Desktop is enhanced with many new features and improvements. The enhancements include changes such as the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration editor improvements and support for user preferences</td>
<td></td>
</tr>
<tr>
<td>Better error handling and help facilities, including field and menu help as well as the ability to customize application help using the Toolkit</td>
<td></td>
</tr>
<tr>
<td>Ability to attach various types of files to a record (such as image, graph, audio, or video)</td>
<td></td>
</tr>
<tr>
<td>Improved security</td>
<td></td>
</tr>
<tr>
<td>Improved sample application help and ability to create customized application help</td>
<td></td>
</tr>
<tr>
<td>Support for parent/child records such as change/activity records</td>
<td></td>
</tr>
<tr>
<td>Enhanced record locking to automatically lock a record when it is retrieved for update. Records can also be manually locked and unlocked.</td>
<td></td>
</tr>
<tr>
<td>Hierarchy names can be different from the user’s privilege class name. Authorization codes from the user’s privilege class are used to restrict access to Desktop fields as needed.</td>
<td></td>
</tr>
<tr>
<td>Support for list processor data (display, insert, and delete)</td>
<td></td>
</tr>
<tr>
<td>Ability to view record history data</td>
<td></td>
</tr>
<tr>
<td>Enhanced search support includes the ability to:</td>
<td></td>
</tr>
<tr>
<td>- Define canned searches and execute those searches from the Desktop</td>
<td></td>
</tr>
<tr>
<td>- Display multiple columns of data in a search results list (SRL)</td>
<td></td>
</tr>
<tr>
<td>- Drag/drop and view record details from an SRL</td>
<td></td>
</tr>
<tr>
<td>- Print one or multiple record details from an SRL. The record details can be printed on any workstation-defined printer associated with a user’s machine (including LAN or Ethernet printers).</td>
<td></td>
</tr>
</tbody>
</table>

For a complete list of the enhancements, refer to the [Tivoli Information Management for z/OS Desktop User’s Guide](#).

Panel Modification Facility (PMF) Enhancements

<table>
<thead>
<tr>
<th>Report enhancements</th>
<th>The p-word list report produced through the Panel Modification Facility now sorts data by prefix and data validation pattern, making it easier to see how data is defined in the dictionary.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Also, PMF reports now include a new header that shows the date, time, data set name (or label). The header makes it easier to identify what a report is for and how current the output is.</td>
</tr>
</tbody>
</table>
Panel Modification Facility (PMF) Enhancements

| Option available to process fields last | An option is added to PMF to allow panel designers to specify that one or more fields on a data entry panel should be processed last after all other fields on the panel are processed in top-to-bottom, left-to-right order. This change can help to improve the usability of applications which have entry fields that have an assisted-entry panel or data attribute record which flows to another panel. This processing order option is available on BLM8CU7B, the Data Collection Processing panel. The option applies to data typed directly in the entry field. It does not apply for immediate response chains (IRCs), terminal simulator panels (TSPs), or TSXs. |

For more information, refer to the [Tivoli Information Management for z/OS Panel Modification Facility Guide](#).

TSX and TSP Enhancements

| Enhanced TSX to view Desktop data model records | If you build data model records for use with the Tivoli Information Management for z/OS Desktop application, you may be interested in the enhanced BLGDVLAY terminal simulator EXEC (TSX). The EXEC provides useful print output of Desktop panel layout information. You can see, at a glance, the fields, groups, and tables that make up a panel layout in a data view record, and route the report output to the screen or to a pre-allocated data set of your choice. For information on how to use this TSX, see the [Tivoli Information Management for z/OS Desktop User’s Guide](#). |

| New BLGTDARL TSX to list data attribute records | A new TSX, BLGTDARL, is provided to enable administrators to generate a list of the data attribute records in their database. The list includes the data attribute record names, description, s-words, s-word index, p-words, p-word index, and other information about the records, such as the panels that use the data attribute records. Using the output, you can, for example, find all instances where a certain attribute is used so you can identify the panels that need updating. The BLGTDARL TSX makes it easier to tailor or change your applications when necessary because it provides a current reference of the data attribute records contained in your database. For more information about using this TSX, refer to the [Tivoli Information Management for z/OS Terminal Simulator Guide and Reference](#). |
TSX and TSP Enhancements

<table>
<thead>
<tr>
<th>New REXX variable and TSX to support character substitution for national languages</th>
</tr>
</thead>
</table>
| If you write TSXs and have a need for national language support, you can now parse the REXX variable BLGSYMB to get the proper values to know for characters which are not universal across all languages. With the BLGSYMB variable you can obtain the proper characters to include in your data for the not sign, or bar, exclamation point, and at sign. BLGSYMB eliminates the need to hardcode characters in your TSXs and helps to ensure that your TSXs are more transportable for processing across languages.

The use of the BLGSYMB variable is recommended if you write TSXs and use the Graphic Character Substitution feature. Even if you are not using the Graphic Character Substitution feature, you can use BLGSYMB to avoid having to type in other characters to artificially achieve the proper mapping of graphic characters to code points.

For more information about BLGSYMB, refer to the [Tivoli Information Management for z/OS Terminal Simulator Guide and Reference](#).

Also provided is a new HLAPI extension TSX called BLGTSPCH. If you write applications that use the high-level API (HLAPI) and need to know what character to use as the not sign or the or bar, you can call this extension through the HL14 (Start User TSP or TSX) transaction. BLGTSPCH parses the not sign and the or bar from BLGSYMB and returns the appropriate characters in the output for use by your application on subsequent transactions. For more information about the BLGTSPCH HLAPI extension, refer to the [Tivoli Information Management for z/OS Application Program Interface Guide](#). |

TSX ADDSDATA control line allows null options

The TSX ADDSDATA control line is enhanced to allow null values to be specified in the option list. If null values are specified, they are ignored. This change makes it easier for TSX writers to code the ADDSDATA control line to handle various types of options. An option can be omitted simply by setting the variable for the option to null. For more information about the ADDSDATA control line, refer to the [Tivoli Information Management for z/OS Terminal Simulator Guide and Reference](#). |

New TSX user exit BLMXSPRM to return session parameter values

The new TSX user exit BLMXSPRM provides the ability to retrieve session parameter values. While the HELP STATUS screen retrieves many session parameter values, BLMXSPRM retrieves values not accessible through the HELP STATUS screen, such as non-panel VSAM data set names and search and sort limits and routine names. For more information about the TSX user exit BLMXSPRM, refer to the [Tivoli Information Management for z/OS Terminal Simulator Guide and Reference](#).
Utility Enhancements

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for unique RNIDs across logical database partitions</td>
<td>If your Tivoli Information Management for z/OS database is logically partitioned, you can now decide how system-assigned record number IDs (RNIDs) are incremented in the partitions. You can have unique RNIDs across partitions or have duplicate RNIDs. The BLGUT1 (Rebuild the SDIDS) and BLGUT9 (Set database options) utilities are enhanced with a new keyword, UNIQUE, which enables you to have unique RNIDs across logical partitions. In addition, a REUSE keyword is added to BLGUT1 to enable you to reuse VSAM sequence numbers.</td>
</tr>
</tbody>
</table>

For more information, refer to the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#).

Performance Enhancements

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel sysplex offers improved performance</td>
<td>If you run Tivoli Information Management for z/OS in a parallel sysplex, you can take advantage of VSAM RLS. The use of RLS should significantly improve the performance of Tivoli Information Management for z/OS, especially if you are sharing databases (VSAM data sets). Because RLS enables a more precise lock on data in a data set (data is locked at the record level rather than as a data set enqueue), you can achieve a greater interleaving of user transactions with the database than if you used VSAM NSR/LSR. This locking granularity provides advantages in both shared and nonshared database environments. RLS also provides a common cache for the sysplex in the coupling facility, which provides a performance boost over the cross-system buffer invalidation used by Multisystem Database Access in previous releases of the product. For more information about planning for and installing Tivoli Information Management for z/OS in a sysplex, refer to “Setting Up for Sysplex Data Sharing” on page 151.</td>
</tr>
</tbody>
</table>
Overview for Planning and Installing

This chapter contains a step-by-step procedure for planning and installing Tivoli Information Management for z/OS. Tivoli Information Management for z/OS is installed in two phases. The first phase involves installing Tivoli Information Management for z/OS from tape using the System Modification Program/Extended (SMP/E) program. If you have not completed this step of the installation process, refer to the Tivoli Information Management for z/OS Program Directory for instructions on how to install the product from tape. For a list of the Tivoli Information Management for z/OS product data sets that are installed, see “Tivoli Information Management for z/OS Program Data Sets and Sample Members” on page 359.

The second phase of installation begins after the product data sets are loaded on your system. This phase of the installation involves planning and allocating the resources that Tivoli Information Management for z/OS uses and tailoring the environment that Tivoli Information Management for z/OS runs in. The steps involved in this phase of installation are given in Table 1 on page 2. Perform these steps in the order given in Table 1 on page 2 for the best results.
General Checklist

Table 1. Planning and Installation Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Planning</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Select the features and options that you want for your Tivoli Information Management for z/OS installation.</td>
<td>“The Base Tivoli Information Management for z/OS Product” on page 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Tivoli Information Management for z/OS Features and Options” on page 23</td>
</tr>
<tr>
<td>2</td>
<td>Calculate the resources you need for installing and using Tivoli Information Management for z/OS.</td>
<td>“Evaluating Performance” on page 57</td>
</tr>
<tr>
<td></td>
<td>The resources you need to consider include:</td>
<td>“Using VSAM Resources in a Non-Sysplex Environment” on page 75</td>
</tr>
<tr>
<td></td>
<td>- I/O demand, processor usage, memory</td>
<td>“Determining Storage Requirements” on page 85</td>
</tr>
<tr>
<td></td>
<td>- VSAM resources (data sets, placeholders, connection, buffer pools)</td>
<td>“Ordering the Necessary Hardware and Software” on page 89</td>
</tr>
<tr>
<td></td>
<td>- Virtual storage for the user’s address space and BLX-SP(s)</td>
<td>“Setting Up for Sysplex Data Sharing” on page 151</td>
</tr>
<tr>
<td></td>
<td>- Hardware and software for the base product and any optional features</td>
<td>“Assigning and Scheduling Personnel and Systems” on page 99</td>
</tr>
<tr>
<td></td>
<td>- Sysplex environment and a coupling facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Personnel, training, IPL schedule, test system</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tivoli Information Management for z/OS 7.1 has implemented a number of date and time-of-day enhancements. If you are currently using two or more external date formats, it is recommended that you run BLGUT17 before or during the installation process in order to standardize the date formats your organization uses. Information on running BLGUT17 can be found in the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
<td>“Enabling Alternative Date and Time-of-Day Formats” on page 227</td>
</tr>
<tr>
<td></td>
<td>Migration Planning</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>If you are migrating from a previous version of Tivoli Information Management for z/OS, review the material to understand what needs to be changed.</td>
<td>“Migrating from Previous Versions” on page 103</td>
</tr>
<tr>
<td></td>
<td>Installing</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Action</td>
<td>See</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----</td>
</tr>
</tbody>
</table>
| 4 | Set up one or more BLX-SPs.
If you want to share the Tivoli Information Management for z/OS VSAM data sets, set up for data sharing. To share data sets, you must do the following:
- If you are setting up VSAM record-level sharing (RLS) for the first time, define RLS sharing control data sets. Run the BLXRLSCD sample provided in the SBLMSAMP library to do this. BLXRLSCD is a sample IEFBR14 job.
- Set up the coupling facility structures that will enable you to implement data sharing. Run the BLXCFSTR sample to do this. BLXCFSTR is a sample IXCMIAPU job.
- Define the coupling facility cache structures in your SMS base configuration using the ISMF panel interface. | "Setting Up Your BLX-SP" on page 143
"Setting Up for Sysplex Data Sharing" on page 151 |
<p>| 5 | If you are running Tivoli Information Management for z/OS from the link pack area (LPA), update the ISPF ISPTCM table to add an entry for BLGINIT1. | "The Base Tivoli Information Management for z/OS Product" on page 19 |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Consult [Evaluating Base Product Tailoring Considerations” on page 163 for base product considerations. Create and tailor the following items. (Inexperienced installers can use the Installation Tailoring Facility to define these items.)
• Session-parameters members (described in [Defining Tivoli Information Management for z/OS Session-Parameters Members” on page 317).
If you are migrating from a previous release, you must change your existing session-parameters members before reassembling them. New BLGPARMS macro keywords were added and others were changed in this release. For most installations, the new DATEFMT keyword is now required. Refer to the appendix on session-parameters members for information on new or changed keywords.
• VSAM data sets (described in [Defining Tivoli Information Management for z/OS Data Sets” on page 273): SDDS, SDIDS, SDLDS, DICTDS, RPANLDS, WPANLDS.
Note about SDIDS architecture: If you are migrating from Information/Management Version 6.3 or earlier releases and you have an existing SDIDS, you MUST rebuild the SDIDS with the BLGUT1 utility, or migrate it with the BLGUT1M utility to ensure database compatibility. The internal architecture of the SDIDS is different from your existing SDIDS. Tivoli Information Management for z/OS format databases (database 4, 5, 6, 7, 8, and 9) can be rebuilt using the BLGUT1 utility or migrated using the BLGUT1M utility. User-defined format databases (database 0, 1, 2, and 3) can be rebuilt using the BLGOZUD utility or migrated using the BLGUT1M utility.
If you are migrating from TME® 10 Information/Management Version 1.1 or Tivoli Service Desk for OS/390 Version 1.2, the architecture of the SDIDS is not changed, so you need not rebuild or migrate the SDIDS.
Note about Parallel Sysplex: To use Tivoli Information Management for z/OS in a sysplex and exploit sysplex services, you must migrate your existing VSAM data sets to use VSAM RLS. Also, if you are using a previous version of the product and are using Multisystem Database Access (you are sharing databases), you must use Tivoli Information Management for z/OS in a sysplex to continue sharing databases, and your existing VSAM data sets must be enabled for RLS. See [Setting Up for Sysplex Data Sharing” on page 151 for more information about setting up for sysplex.
Create or modify the following if you did not do so in step 4.
• BLX-SP parameters member
• BLX-SP procedure
• VSAM resource definition member (this is not required if you will use Tivoli Information Management for z/OS in a sysplex environment and exploit sysplex services)
Inexperienced installers of Tivoli Information Management for z/OS can use the Installation Tailoring Facility to define these items.</td>
<td>[“Evaluating Base Product Tailoring Considerations” on page 163]
[“Using the Installation Tailoring Facility” on page 185]</td>
</tr>
<tr>
<td>7</td>
<td>Use Resource Access Control Facility (RACF®) to protect your Tivoli Information Management for z/OS data sets. Also use RACF and PMF to ensure the proper usage of sensitive Tivoli Information Management for z/OS Terminal Simulator Panel (TSP) or EXEC (TSX) control lines.</td>
<td>[“Securing Tivoli Information Management for z/OS Information” on page 191]</td>
</tr>
</tbody>
</table>
Table 1. Planning and Installation Steps (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>If you are currently using a subsystem name which is different from the default subsystem name for the new release (BLX1), add the subsystem name. The MVS SETSSI system command can be used to add the subsystem name dynamically. The default subsystem name for Information/Management Version 5.1 was BLX0. Subsequent releases have since used a default subsystem name of BLX1. You can use any four characters as the subsystem name. See “Defining Subsystems for BLX-SPs” on page 144 for more information about subsystem names. If you are performing a new installation you must define a new subsystem name. If you are currently using BLX1 as your subsystem name, you will not need to add a subsystem name.</td>
<td>“Starting and Stopping the BLX-SP” on page 148</td>
</tr>
<tr>
<td>9</td>
<td>Start the BLX-SP procedure. Use the MVS START command.</td>
<td>“Starting and Stopping the BLX-SP” on page 148</td>
</tr>
<tr>
<td>10</td>
<td>Load the read panel data set.</td>
<td>“Loading the Read Panel Data Set” on page 197</td>
</tr>
<tr>
<td>11</td>
<td>If you have customized data-entry, table, or assisted-entry panels for date or time fields, you should change them so that they have a 10-character wide entry and display fields and a validation pattern of IIV63 (or IIV9, at a minimum). This is necessary because users can now use different date formats and your panels need to support the longest possible format. If you have date fields that are 8 characters wide on data-entry or table panels, users will be unable to work with any of the 9- or 10-character date formats. If the validation patterns are not changed on your assisted-entry panels, users will be unable to use any of the formats that do not match the validation pattern in use. For example, if your validation pattern is NNNNNN, users can use only the MM/DD/YY, DD/MM/YY, or YY/MM/DD formats. If you do not change your customized panels, you should make a copy of data attribute record BLG&DFMT and remove all the formats you are unable to support. Then, change panel BLG0P700 to refer to the modified data attribute record. This will prevent users from choosing a format that the customized panels cannot support.</td>
<td>See page 135 for details.</td>
</tr>
<tr>
<td>12</td>
<td>Load the dictionary data set.</td>
<td>“Loading the Dictionary Data Set” on page 199</td>
</tr>
<tr>
<td>13</td>
<td>If you are upgrading from a release prior to TME 10 Information/Management Version 1.1 and are using an existing database, run the BLGUT1 or BLGUT1M utility to convert your SDIDS.</td>
<td>Tivoli Information Management for z/OS Operation and Maintenance Reference</td>
</tr>
<tr>
<td>14</td>
<td>Format the SDLDS.</td>
<td>“Formatting the SDLDS” on page 199</td>
</tr>
<tr>
<td>15</td>
<td>Select an ISPF panel style. Be sure the ISR@PRIM primary options panel is in the ISPLIB concatenation.</td>
<td>“Selecting the Tivoli Information Management for z/OS Panel Style” on page 199</td>
</tr>
<tr>
<td>16</td>
<td>(Optional) Install the graphical user interface.</td>
<td>“Installing the Graphical User Interface” on page 201</td>
</tr>
</tbody>
</table>
Table 1. Planning and Installation Steps (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Define your report format table data sets.</td>
<td>“Defining Report Format Table Data Sets” on page 200</td>
</tr>
<tr>
<td>18</td>
<td>(Optional) Set up a remote printer.</td>
<td>“Setting Up a Remote Printer” on page 201</td>
</tr>
<tr>
<td>19</td>
<td>Copy the BLXABMSG member from the SBLMSAMP library into a data set in the ISPPLIB concatenation.</td>
<td>“Sample Members” on page 360</td>
</tr>
<tr>
<td>20</td>
<td>Copy the BLPVARS member from the SBLMSAMP library into a data set in the ISPPLIB concatenation.</td>
<td>Tivoli Information Management for z/OS Program Administration Guide and Reference (for customization if necessary)</td>
</tr>
</tbody>
</table>
| 21 | (Optional) Perform this step only if you use the PDF editor.
1. Copy the BLGISMAC member from the SBLMSAMP library into a data set in the SYSPROC concatenation.
2. Copy the BLMEDIT member from the SBLMSAMP library into a data set in the ISPPLIB concatenation. | Tivoli Information Management for z/OS Program Administration Guide and Reference (for customization if necessary) |
| 22 | Define a method for starting Tivoli Information Management for z/OS (e.g., interactive or batch mode). | “Starting Tivoli Information Management for z/OS” on page 203 |
| 23 | Perform the following procedure to verify that installation was successful.
1. Verify that the SBLMMOD1 load library is allocated to the ddbname ISPPLIB or STEPLIB concatenation.
2. From the TSO READY prompt, issue ISPSTART PGM(BLGINIT) or ISPSTART PGM(BLGINIT) PARM(SESS(aa)). aa represents the suffix that was chosen for the session-parameters member.
 Note: If you are not using session-parameters member BLGSES00, then to avoid errors, you must specify the SESS(aa) parameter in the ISPSTART command as previously indicated.
The first panel to appear is the proprietary product panel, BLG00002.
If you are migrating from earlier versions of the product and you changed your profile to bypass the proprietary statement, you will not see the Version 7.1 proprietary product panel. You will go directly to the Tivoli Information Management for z/OS Primary Options Menu.
3. Press Enter to view the Tivoli Information Management for z/OS Primary Options Menu. | “Starting Tivoli Information Management for z/OS” on page 203 |
| 24 | (Optional) Complete customization tasks to enable universal time processing, if you want to use that feature:
 - If you have not already done so, ensure that the TIMEZONE keyword is added to the session members through the BLGPARMS macro. See [page 332](#) for more information about this keyword.
 - Determine which date and time fields on your panels are related, and create a DATETIME record to define the relationships. | “Implementing Universal Time Processing” on page 251 |

Other Tasks

<p>| General Checklist | Version 7.1 |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Enable or disable the Notification Management facility for problem, change, and activity records. Tivoli Information Management for z/OS is shipped with the Notification Management facility partially disabled.</td>
<td>Tivoli Information Management for z/OS Program Administration Guide and Reference</td>
</tr>
</tbody>
</table>

Notes:

1. If you have a previous version of the product and you are currently using notification, you can continue to use your existing USERS record.

2. If you have applied all Tivoli-supplied maintenance to your modified notification TSPs, you can continue to use those modified TSPs for problem, change, and activity records. You must still enable or disable notification for activity records if you are migrating from a release earlier than Version 5.1.

As part of enabling the facility, you also need to decide on whether or not to use TSPs for processing, or make use of the TSXs provided which provide support for TCP/IP SMTP, e-mail, and BLX-SP queueing.

If you have not previously used the notification management feature of Tivoli Information Management for z/OS, consider using the message notification function provided with Tivoli Information Management for z/OS to send e-mail messages through an SMTP TCP/IP server on a host or distributed platform.
Table 1. Planning and Installation Steps (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>(Optional) Install the Integration Facility interfaces:</td>
<td>Sample members in SBLMSAMP library</td>
</tr>
<tr>
<td></td>
<td>1. Install the Integration Facility interface to the NetView® Hardware Monitor. See member BTNPNPDA in the SBLMSAMP library.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Install the Integration Facility interface to OPC/A or OPC/ESA. See member BTNX6JOB in the SBLMSAMP library when using OPC user exit EQQUX006. See member BTNX7JOB in SBLMSAMP when using OPC user exit EQQUX007.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Install the Integration Facility interface to SAM. (The following information is provided as a convenience to those customers who may still be using the SAM function in earlier versions of the Resource Management Facility.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. See member BTNAMS in SBLMSAMP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Modify panels BTN0BU00 and BTN0S010. When you installed SAM, the directions required you to tailor two Tivoli Information Management for z/OS problem summary panels by adding selections that take you to two AMS panels where you can access SAM data. If you are using the Integration Facility panels, you must make similar modifications to the BTN0BU00 and BTN0S010 panels. You can flow to the same AMS panels (AMS0S101 and AMS0S100, respectively). When you add these selections, choose a selection number different from those you already used for your panels. Refer to the MVS/ESA™ Resource Measurement Facility (RMF) Program Directory for details on how to modify these panels for your installation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. See members BLGTOAMS and BTNTOAMS in SBLMSAMP.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>(Optional) If you want to use one or more Tivoli Information Management for z/OS clients:</td>
<td>Tivoli Information Management for z/OS Client Installation and User’s Guide for information on planning, installing, and configuring clients and servers.</td>
</tr>
<tr>
<td></td>
<td>1. Decide which clients you want to use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Decide how many clients you want to use on each server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Set up the appropriate servers on z/OS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Install and configure each client.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>(Optional) If you want to use any of the Tivoli Information Management for z/OS Web connectors, install them.</td>
<td>Tivoli Information Management for z/OS World Wide Web Interface Guide</td>
</tr>
<tr>
<td>29</td>
<td>(Optional) If you want to use the Open Database Connectivity (ODBC) driver to generate reports from an ODBC-enabled workstation application, install the ODBC driver on the workstation. The ODBC driver requires installation of the HLAPI/NT. You must also define the data model records that will be used with the ODBC driver.</td>
<td>Tivoli Information Management for z/OS Data Reporting User’s Guide</td>
</tr>
</tbody>
</table>
Table 1. Planning and Installation Steps (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>(Optional) If you intend to use the NetView AutoBridge feature of Tivoli Information Management for z/OS, verify that the FMIDs for NetView AutoBridge have been applied. The Program Directory has more information about installing this feature. For more information about installing the NetView Bridge Adapter and AutoBridge setup and administration, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.</td>
<td>Program Directory for Tivoli Information Management for z/OS Version 7.1</td>
</tr>
<tr>
<td>31</td>
<td>Load the base records shipped with Tivoli Information Management for z/OS. Note: The base records must be loaded because certain base Tivoli Information Management for z/OS functions in this release are dependent on the existence of these records. Additionally, if you are using optional features or functions that require data model records or other types of records to be loaded, load the records required for those functions. For example, data model records are provided to support the use of Tivoli Information Management for z/OS with Tivoli Decision Support, Tivoli Inventory, Tivoli Problem Management, and the Tivoli Information Management for z/OS Desktop.</td>
<td>"Loading Records Provided with Tivoli Information Management for z/OS” on page 219</td>
</tr>
</tbody>
</table>
| 32 | (Optional) If you are integrating with other Tivoli products or components, such as those listed below, install any other necessary components.
- Problem Service
- Tivoli Enterprise Console integration facility
- Tivoli Inventory
- Tivoli Problem Management (the Tivoli Service Desk Bridge)
- Tivoli Software Distribution
Note: If you are integrating with Tivoli Decision Support, you must have Tivoli Decision Support for Information Management (a separate complementary product). For an overview, see the Tivoli Information Management for z/OS Data Reporting User’s Guide. | Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications |
Procedures for New Installations

If you need to install Tivoli Information Management for z/OS in a new environment (for example, in a test or staging environment) and are not interested in customizing or using many of its optional features right away, you can use the following procedures to get Tivoli Information Management for z/OS set up as quickly as possible. It is assumed that you have already used the Program Directory for Tivoli Information Management for z/OS (or the appropriate installation documentation provided with your offering) to install the basic program materials and optional features from program tapes. Therefore, these procedures do not address how to install the product from tape. They do contain information about the second phase of installation, which begins after the product data sets are loaded on your system.

Tivoli Information Management for z/OS contains many features and is highly customizable. The previous General Installation checklist reflects that fact and contains many more steps than are shown in the following procedures. Do not panic if the order of the steps shown here does not match the order of the General Installation checklist. The order of steps in these procedures is a recommended sequence for a new installation where migration considerations or immediate selection and use of optional features are not factors in your environment. Although the order is not critical, you must have the BLX-SP started before you can run any of the Tivoli Information Management for z/OS utility programs as mentioned in these procedures.

Also, because the use of sysplex support is optional if you are not sharing databases, the setup of Tivoli Information Management for z/OS in a sysplex environment is not addressed in this section. Refer to "Setting Up for Sysplex Data Sharing" on page 151 for more information about exploiting sysplex services.

Note: As an alternative, you can use the Installation Tailoring Facility provided with Tivoli Information Management for z/OS to perform many of these tasks. For example, you can define a BLX-SP procedure, VSAM data sets, a VSAM resource definition member, and a session-parameters member using the facility.

By performing these tasks, you can create the following:

- A single BLX-SP (central address space database server)
- A database to hold records (SDDS), a database index (SDIDS), and a log data set to hold database changes (SDLDS)
- Panel data sets (RPANLDS, WPANLDS)
- A dictionary data set (DICTDS) containing control information that is required to modify panels or process reports
- A session-parameters member that identifies the processing options for a Tivoli Information Management for z/OS session, such as which data sets, database, or BLX-SP to use

If you are not familiar with these components, you should review the material provided in this manual in "The Base Tivoli Information Management for z/OS Product" on page 19 for more information.
Additionally, these procedures show you how to create a master privilege class which can be used by an administrator to perform administrative duties such as defining user profiles and other privilege classes.

To install Tivoli Information Management for z/OS in a new environment, follow these procedures:

1. Set up the BLX-SP (the started task):
 a. Modify the Program Properties Table by adding an entry to make the BLX-SP program entry nonswappable. To do this, add the following to the appropriate SCHEDaa members of SYS1.PARMLIB:

   ```
   PPT PGMMNAME(BLXSSP00) /* BLX SERVICE PROVIDER */
   NOSWAP /* PROGRAM IS NOT SWAPPABLE */
   KEY(8) /* PROGRAM IS A KEY(8) TASK */
   ```

 To implement the changes to the table, you must IPL the system or change the SYS1.PARMLIB SCHEDAA member dynamically using the SET command.

 Reference: “Modifying the Program Properties Table” on page 143.

 b. Add the Tivoli Information Management for z/OS load library to the APF list. This requires changing the appropriate IEAAPFaa or PROGaa member. You may have one or more libraries that contain Tivoli Information Management for z/OS load modules. The SBLMMOD1 library is the one that should be APF-authorized.

 To implement changes to the PROGaa member, you can use the SET command. To implement changes to the IEAAPFaa member, you must IPL the system.

 Reference: “Adding a Tivoli Information Management for z/OS Load Library to the APF List” on page 144.

 c. Define the subsystem for the BLX-SP.

 During Tivoli Information Management for z/OS installation, you must identify each of your BLX-SPs as an MVS subsystem. You must give your BLX-SP a subsystem name. Define the subsystem to MVS and define each subsystem to its respective BLX-SP. The subsystem name must have 4 characters. The first character must be an alphabetic or national (#, $, @) character. The remaining characters can be alphabetic, numeric, or national characters.

 Reference: “Defining Subsystems for BLX-SPs” on page 144.

1) Define a subsystem to MVS (for example: BLX1, which is the subsystem name for BLX1PROC.)

 Add this subsystem name to the appropriate IEFSSNaa member of SYS1.PARMLIB. For example:

   ```
   BLX1
   ```

 - or -

   ```
   SUBSYS SUBNAME(BLX1)
   ```

 To implement this change you will need to perform an IPL or use the SETSSI command.

 Reference: “Defining a Subsystem to MVS” on page 144.

2) Define a subsystem to the BLX-SP.
All Tivoli Information Management for z/OS initialization code uses a load module named BLXSSINM that defines the subsystem to be used by the BLX-SP and all user sessions. A sample of this module is provided in the SBLMMOD1 library. This sample uses the subsystem name BLX1. The sample is already assembled and link-edited for you.

Reference: “Defining a Subsystem to the BLX-SP” on page 145

If you decide to create a new BLXSSINM with a different subsystem name, you can use the following source code to rebuild BLXSSINM:

```
BLXSSINM CSECT
   DC CL4('BLX1') Define the BLX subsystem name.
END
```

The source code is also available in the SBLMSRC1 library (member BLXSSINM)

Then, reassemble the source with code similar to the following:

```
//MBACONT JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=R
//ASM EXEC PGM=ASMA90,REGION=1024K,PARM='NODECK'
//SYSPRINT DD SYSOUT**
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(3,1))
//SYSLIB DD DSN=BLM.SBLMMACS,DISP=SHR
  // DD DSN=SYS1.MACLIB,DISP=SHR
//SYSLIN DD DSN=&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
  // SPACE=(80,(200,50))
//SYSIN DD DSN=BLM.SBLMSRC1(SOURCEcode),DISP=SHR
//LINK1 EXEC PGM=IEWL,PARM='LIST,XREF,LET,NORENT'
//SYSPRINT DD SYSOUT**
//SYSLMOD DD DSN=BLM.SBLMMOD1,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(50,10))
//SYSLIN DD DSN=&LOADSET,DISP=(OLD,DELETE)
  // DD *
NAME BLXSSINM(R)
/*
```

Notes:

a) The SYSLMOD DD card must specify the desired load library for the new BLXSSINM load module.

d. Define a procedure for each BLX-SP in SYS1.PROCLIB.

```
//BLX1PROC PROC PRM=00
//BLXSPCAS EXEC PGM=BLXXSP00,REGION=6M,TIME=14400,PARM=&PRM
//STPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 APF AUTHORIZED
//BLXPRM DD DISP=SHR,DSN=BLM.SBLMSAMP BLX-SP PARMS (b1x100)
```

If your BLX-SP subsystem is named BLX1, you can use the sample procedure BLX1PROC contained in your SBLMSAMP library. If your BLX-SP subsystem is named something else, use the Installation Tailoring Facility to create a procedure. Or, insert a DD statement for the load library containing your copy of BLXSSINM into the STEPLIB concatenation ahead of the DD statement for SBLMMOD1.

Reference: “Defining a BLX-SP Procedure” on page 146

e. Define a BLX-SP parameters member. See “Defining BLX-SP Parameters Members” on page 343 for parameters if creating a new BLX-SP such as BLX200.

If you are using BLX1PROC you can use the BLX100 sample that is provided in the SBLMSAMP sample library. The BLXPRM DD card in the BLX1PROC sample points to SBLMSAMP.
2. Define the VSAM data sets

 a. Define data sets for the database (SDDS, SDIDS, SDLDS). A sample (BLGDATAB) is provided in the SBLMSAMP library to help you do this:

   ```
   //BLGDATAB JOB
   //DEFINE EXEC PGM=IDCAMS
   //SYSPRINT DD SYSOUT=*  
   //SYSIN DD *
   DELETE (BLM.SDDS) CLUSTER PURGE
   DELETE (BLM.SDIDS) CLUSTER PURGE
   DELETE (BLM.SDLDS) CLUSTER PURGE
   DEFINE
   CLUSTER(NAME(BLM.SDDS)
   INDEXED
       KEYS(7 0)
       SHAREOPTIONS(1)
       LOG(NONE)
       VOLUMES(vvvvvv)
       UNIQUE
   )
   DATA(NAME(BLM.SDDS.DATA) -
       CYLINDERS(2 1)
       CISZ(4096)
       RECORDSIZE(4000 4089)
       SPEED) -
   INDEX(NAME(BLM.SDDS.INDEX) -
       NOIMBED
       NOREPLICATE )
   DEFINE
   CLUSTER(NAME(BLM.SDIDS) -
   INDEXED
       KEYS(34 0)
       SHAREOPTIONS(1)
       LOG(NONE)
       VOLUMES(vvvvvv)
       UNIQUE
   )
   DATA(NAME(BLM.SDIDS.DATA) -
       CYLINDERS(1 1)
       CISZ(26624)
       RECORDSIZE(54 26617)
       FREESPACE(20 20)
       SPEED) -
   INDEX(NAME(BLM.SDIDS.INDEX) -
       NOIMBED
       NOREPLICATE )
   DEFINE
   CLUSTER(NAME(BLM.SDLDS) -
   NUMBERED
       SHAREOPTIONS(1)
       LOG(NONE)
       VOLUMES(vvvvvv)
       UNIQUE
   )
   DATA(NAME(BLM.SDLDS.DATA) -
       CYLINDERS(15 0)
       RECORDSIZE(4089 4089)
       CISZ(4096))
   ```

 Reference: "Defining Tivoli Information Management for z/OS Data Sets" on page 277

 b. Define the panel data sets.

 1) Write panel data set (WPANLDS) – Use the BLGWPNL sample JCL provided in the SBLMSAMP sample library to define and allocate an empty panel data set.
2) For Tivoli-supplied panels (IBM® panel data set) – Use the BLGRPNL sample JCL provided in the SBLMSAMP sample library.

Reference: “Defining the WPANLDS” on page 297

3) For your modified panel data set. This data set will contain all your modified panels as you customize them.

Reference: “Defining the RPANLDS” on page 293
c. Define the dictionary data set (DICTDS). Use the BLGDICT sample provided in the SBLMSAMP sample library.

```
DELETE (BLM.DICT) CLUSTER PURGE
DEFINE -
CLUSTER(NAME(BLM.DICT) -
  KEYS(3 0) -
  SHAREOPTIONS(1) -
  LOG(NONE) -
  VOLUMES(vvvvvv) -
  UNIQUE) -
DATA(NAME(BLM.DICT.DATA) -
  CYLINDERS(3 1) -
  CISZ(4096) -
  RECORDSIZE(115 115) -
  FREESPACE(0 0) -
  SPEED) -
INDEX(NAME(BLM.DICT.INDEX) -
  NOIMBED -
  NOREPLICATE )
/*
Reference: “Defining the DICTDS” on page 289
```

3. Define a VSAM resource definition member (BLXVDEF) – required only if sysplex support will not be used.

- You can modify and compile the BLXVDEF sample member in the SBLMSAMP sample library. The VSAM resource definition member is a load module that defines the following:
 - The VSAM local shared resource (LSR) pools used by the VSAM data sets.
 - The number of nonshared resource (NSR) placeholders needed by the VSAM data sets.
 - The connection of the VSAM data sets to VSAM resources.
 - The type of VSAM data set (key-sequenced or relative record).

- Define separate resource pools for the following Tivoli Information Management for z/OS VSAM datasets: RPANLDS, SDDS, SDIDS, SDLDS (if used).

Use LISTCAT output from these data sets to help you enter the correct key lengths. Also, the buffer size must be equal to or greater than the CISIZE of the data set you are defining.

Note: If you do not properly build the BLXVDEF, you may encounter slow responsiveness and various abends.

Reference: “Defining a VSAM Resource Definition Member” on page 301
4. Select a panel style. Copy BLGISPFD from the SBLMSAMP library to a new
BLGISPFM member that is concatenated to the user’s ISPPLIB ddname. (Copy
BLGISPFE instead of BLGISPFD if you want users to default to the enhanced windows
style.)

If you are using the enhanced windows style, copy BLG0CMDS and BLG0KEYS from
the SBLMSAMP library to a data set concatenated to the user’s ISPTLIB data set.
Reference: "Selecting the Tivoli Information Management for z/OS Panel Style" on
page 199

5. Copy the BLXABMSG member from the SBLMSAMP library to a data set in the
ISPPLIB concatenation.

6. Protect the data sets using z/OS RACF or an equivalent product. Ensure that the BLX-SP
procedure (BLX1PROC) has the correct RACF authority.
Reference: "Securing Tivoli Information Management for z/OS Information" on page 191

7. Start the BLX-SP (BLX1PROC) using the MVS START command.
$ BLX1PROC
Reference: "Starting and Stopping the BLX-SP" on page 148

8. After the task is running, you can run the utility programs.

 Use the BLGUT6J sample to run the BLGUT6 utility to load the panels from the
 Tivoli-supplied partitioned data set to the VSAM data set you defined in step 2b2 on
 page 14. The input is the SBLMPNLS data set.
   ```
   //LOAD EXEC PGM=BLGUT6,REGION=2048K
   //STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1
   //SYSPRINT DD SYSOUT=A
   //BLGPDOS DD DISP=SHR,DSN=BLM.SBLMPNLS
   //BLGPNSL DD DISP=SHR,DSN=BLM.IBMPNLS
   //SYSIN DD*
       NODBC AETYPE(M,BYP)
   /*
   Use the BLGUT5J sample to run the BLGUT5 utility to load the dictionary data set
   you defined in step 2c on page 15. The input is the SBLMDICT(BLMVDICT) data
   set.
   ```
   ```
   //BLG EXEC PGM=BLGUT5,REGION=2048K
   //STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1
   //SYSPRINT DD SYSOUT=A
   //BLGSDS DD DISP=SHR,DSN=BLM.SBLMDICT(BLMVDICT)
   //BLGDICT DD DISP=SHR,DSN=BLM.DICT
   ```
Reference: Tivoli Information Management for z/OS Operation and Maintenance

9. Create a session-parameters member that points to your panel data sets, dictionary,
SDDS, SDIDS, and SDLDS names. Then, assemble the session-parameters member.
There are two samples that can be modified for use to accomplish these tasks.
You can use the BLGSES00 sample (in this example, the modified panel data set is also
included):
```
**********************************************************************
* SAMPLE SESSION-PARAMETERS MEMBER WITH ONE READ PANEL DATA SET,   *
* ONE WRITE PANEL DATA SET, AND A SINGLE-CLUSTER SDDS.               *
**********************************************************************
TITLE 'BLGSES00 - SESSION PARAMETERS'
BLGSES00 CSECT
```
Procedures for New Installations

1. **Overview for Planning and Installing**

 BLGPARMS

 DICTDS=DICTDS, NAME THE DICTIONARY

 RFTDS=RFTS, NAME THE REPORT FORMAT TABLES

 DATEFMT=MM/DD/YYYY, EXT DATE FORMAT

 RPANLDS=(MPANELS,RPANEL1), NAME THE READ PANEL DATA SET

 WPANLDS=WPANELS, NAME THE WRITE PANEL DATA SET

 CAS=BLX1, SPECIFY TARGET BLX-SP SERVER

 * UNCOMMENT THE ABOVE LINE AND ADD IT TO THE BLGPARMS MACRO INVOCATION

 * IF YOU WANT TO USE THIS MEMBER WITH A BLX-SP SERVER OTHER THAN THE

 * DEFAULT BLX-SP SERVER

 *

 MGMT BLGCLUST NAME=5, READ/WRITE CLUSTER

 SDDS=MGTSDDS, NAME THE SDDS

 SDIDS=MGTSDIDS, NAME THE SDIDS

 SDLDS=MGTSDLDS, NAME THE SDLDS

 MGTSDDS BLGCLDSN DSN=BLM.SDDS

 MGTSDIDS BLGCLDSN DSN=BLM.SDIDS

 MGTSDLDS BLGCLDSN DSN=BLM.SDLDS

 DICTDS BLGCLDSN DSN=BLM.DICT

 RFTS BLGCLDSN DSN=BLM.SBLMFMT,FILE=RFTDD

 RPANEL1 BLGCLDSN DSN=BLM.IBMPNLS,RDONLY=YES

 WPANELS BLGCLDSN DSN=BLM.WPANELS

 MPANELS BLGCLDSN DSN=BLM.MPANELS

 BLGEN

 END

 Reference: "Sample Session-Parameters CSECT" on page 340

The BLGALSPM sample is as shown:

```plaintext
//BLGALSPM JOB

//********************************************************************
//* SAMPLE JCL TO ASSEMBLE AND LINK-EDIT SESSION MODULE USING SESSION
//* MODEL BGSES00. IN THIS EXAMPLE, THE SOURCE IS LOCATED IN
//* BLM.SBLMSAMP(BLGSES00), THE INFORMATION MANAGEMENT for z/OS MACROS
//* ARE LOCATED IN BLM.SBLMMACS AND THE MODULE IS PLACED IN
//* BLM.SBLMMOD1
//*
//********************************************************************

//ASM EXEC PGM=ASMA90,REGION=1024K,PARM='NODECK'
//SYSPRINT DD SYSOUT=*  
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(3,1))
//SYSLIB DD DISP=SHR,DSN=BLM.SBLMMACS
//  DD DISP=SHR,DSN=SYS1.MACLIB   
//SYSLIN DD DISP=(MOD,PASS),DSN=BLM.SBLMSAMP,LOADSET,UNIT=SYSDA,
//  SPACE=(80,(200,50))  
//SYSIN DD DISP=SHR,DSN=BLM.SBLMSAMP(BLGSES00)
//LINK1 EXEC PGM=IEWL,PARM='LIST,XREF,LET,NORENT'
//SYSPRINT DD SYSOUT=*  
//SYSLMOD DD DISP=SHR,DSN=BLM.SBLMMOD1
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(50,10))
//SYSLIN DD DISP=(OLD,DELETE),DSN=BLM.SBLMSAMP,LOADSET
//  DD *
//ENTRY BLGSES00
//NAME BLGSES00(R)
//*
```

Reference: "Sample JCL for a Session-Parameters Member" on page 340

10. Use the BLGUTRJ sample to run the BLGUTR utility to format a recovery log data set (SDLDS). You will not need to run this again. It is used only once to initialize the log data set to make it ready for use.
//STEP1 EXEC PGM=BLGUTR,PARM='SESS=00,NAME=5',REGION=4096K
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1
//BLGSL DD DISP=SHR,DSN=BLM.SDLDS
//SYSPRINT DD SYSOUT=A

Reference: Tivoli Information Management for z/OS Operation and Maintenance

11. Define a startup CLIST or logon procedure that invokes the session for users.
 Reference: "Sample CLISTS to Start Tivoli Information Management for z/OS" on page 207

12. Log on to Tivoli Information Management for z/OS and enter a master privilege class record. To do this, follow these steps:

 a. Log on to your session through the CLIST.
 b. On the BLG0EN20 panel, select option 3. Application.
 c. On the BLG00030 panel, select option 1. System.
 d. On the BLG00030 panel, select option 5. Entry.
 e. On the BLG00010 panel, select option 1. Class.

 You should see the following panel displayed:

 | Entry privilege class data; cursor placement or input line entry allowed. |
 | 1. Privilege class name..<R> ________ |
 | 3. Transfer-to class........ ________ |
 | 4. Contact name............. _______________ |
 | 5. Contact phone............ _____________ |
 | 6. Contact department....... ___________ |
 | 7. Location code............ ________ |
 | 8. Description...........<R> ___ |
 | 9. Primary partition id..... _________ |

 When you finish, type END to save or CANCEL to discard any changes.

 On this panel:

 1) Tab to field 1 and type MASTER.
 2) Type your user ID in field 2.
 3) Type a description in field 8.
 4) Press PF3 until the record is filed.
 5) Quit out of the session by typing Q in the command line.

 Go back into the session using your user ID. It should automatically bring you up in the MASTER privilege class. You will need to create new classes later and add users to these classes. The MASTER privilege class is for administrators only and has all authority available to the session. You will mostly likely want to create classes that have more limited authority for users. For more information about privilege classes, see the Tivoli Information Management for z/OS Program Administration Guide and Reference.
The Base Tivoli Information Management for z/OS Product

This chapter provides an overview of the following:
- The base product components
- The BLX-Service Provider (BLX-SP) and BLX-SP parameters member
- The data sets
 - The databases
 - The panels
 - The dictionary
 - The report format table data set
- The VSAM resource definition member
- The session-parameters member

This chapter is designed to give you a better understanding of the components of Tivoli Information Management for z/OS that must be defined and tailored during installation of the base product.

The Base Product Components

Tivoli Information Management for z/OS consists of various components:
- BLG
- BLM
- BLX
- BLH
- BTN
- EYL
- EYM

The BLG and BLM components provide all the functional capability of Tivoli Information Management for z/OS. They are the parts of the product that logically connect the VSAM data sets (structured description data set, structured description index data set, and structured description log data set) into an entity called the Tivoli Information Management for z/OS database. The BLG and BLM portions of the product deal with the meaning and content of the data in each separate data set and how they interconnect with each other. They also contain functional capabilities of searching the database, creating or deleting records, and all the other functions that make up Tivoli Information Management for z/OS.

The BLX component has nothing to do with the system functional capabilities. It provides supervisor and data management services to the other components. It provides functions such as virtual storage allocation and deallocation, timing services, enqueue and dequeue services, data set allocation and deallocation, data set open and close functions, and record retrieval. It
does not manipulate the content of a physical record. The BLX component simply provides
the capability to get the requested function done.

The BLG and BLM components make all requests for VSAM input/output (I/O) through the
BLX component. These requests are processed through the BLX-Service Provider (or in a
sysplex, through the SMSVSAM server and a coupling facility).

The BLH component was formerly associated with a product called Information/Access. Now, it supports the integration of Tivoli Information Management for z/OS with other products including Tivoli Inventory, OS/390 Text Search, and the Tivoli Information Management for z/OS Desktop.

The BTN component provides the functional capability for the Integration Facility, which is an application provided with Tivoli Information Management for z/OS that models a typical problem and change management system to help you initiate your system management tasks.

The EYL and EYM components provide the function for the NetView AutoBridge and NetView AutoBridge Postprocessor. The NetView AutoBridge is a NetView application interface to the NetView Bridge Adapter and is used to automate network monitoring. The NetView AutoBridge receives data from specific NetView alerts, messages, and other applications and uses the data to build and perform Tivoli Information Management for z/OS transactions.

The BLX Service Provider

Every user of Tivoli Information Management for z/OS has a self-contained user address space. A user can be an interactive TSO user, a batch job or utility program, or a user interfacing with Tivoli Information Management for z/OS through NetView or an API.

Before Information/Management Version 5.1, each of these self-contained address spaces did all of its own VSAM I/O operations (for the database data sets, panels, and so on) through its own VSAM buffers. Currently, in a non-sysplex environment, Tivoli Information Management for z/OS uses a central address space server to perform the actual VSAM I/O operations for all users’ address spaces. This central address space server, known as the BLX-Service Provider (BLX-SP), controls the actual physical resources needed to perform VSAM I/O functions.

A user’s address space is connected to the BLX-SP during the initialization of Tivoli Information Management for z/OS in the user’s address space. You can connect many users’ address spaces to the same BLX-SP. The BLX-SP receives requests from the users’ address spaces, performs the appropriate functions, and manages resources it obtains for each user.

In a sysplex, the BLX-SP is not used to control resources needed for VSAM I/O functions. Users open and access VSAM data sets directly instead of sending requests through the BLX-SP. VSAM processing is done through use of an SMSVSAM server which handles communications with a coupling facility to maintain VSAM buffers. The role of the BLX-SP is therefore limited to performing other functions, such as handling operator commands or sending notifications to users.

[Figure 1 on page 21] shows the approaches used before and since Information/Management Version 5.1.
With Tivoli Information Management for z/OS, you can have multiple BLX-SPs on a single z/OS system (for more information on using multiple BLX-SPs, see "Multiple BLX Service Providers" on page 39).

BLX-SP operator commands enable you to change a BLX-SP’s operating characteristics. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for complete information about these commands. The operator commands work with the MVS MODIFY command to perform functions. With these commands, you can include or remove data sets, query statistical information, and more.

BLX-SP Parameters Member

The operation of the BLX-SP is controlled by a BLX-SP parameters member. The BLX-SP parameters member is a standard text file that contains the operating parameters you want your BLX-SP to run with. You must define at least one BLX-SP parameters member for your BLX-SP. If your system supports multiple BLX-SPs, then you must define at least one BLX-SP parameters member for each BLX-SP.

For an explanation of all the parameters that are specified in a BLX-SP parameters member, you can view the online introduction that the Installation Tailoring Facility provides (see “Using Online Help Information” on page 187), or read about the parameters, in “Defining BLX-SP Parameters Members” on page 343.

Special Notes about the BLX Service Provider

Users must be connected to the BLX-SP before they can use the Tivoli Information Management for z/OS database.

Modifying the ISPTCM Table

LIBDEF support enables you to dynamically change which load libraries are allocated to ISPLLIB. If you want to run Tivoli Information Management for z/OS from the link pack area (LPA), you must modify the ISPF TSO command table (ISPTCM). The ISPF sample library contains an example of this table. Its member name is ISPTCMA.

Add the following entry to the table used by your installation:

![Diagram of BLX-SP Approach](image-url)
Once you update the table, you must assemble and link-edit the ISPTCMA member.

If you use the Program Control Facility II (PCF II), 5798-CLW, you must also add BLGINIT1 to the PCF II command table.

For more information about changing the ISPF command table, refer to *ISPF Planning and Customizing*.

The Data Sets

Tivoli Information Management for z/OS uses the following types of data sets for its operations:

- The structured description data set (SDDS)
- The structured description index data set (SDIDS)
- The structured description log data set (SDLDS)
- The dictionary data set (DICTDS)
- The read panel data set (RPANLDS)
- The write panel data set (WPANLDS)
- The report format table data set (RFTDS)
- The TSX data set (SBLMTSX)

The SDDS, SDIDS, and SDLDS are VSAM data sets that make up the database that Tivoli Information Management for z/OS uses. The DICTDS is a VSAM data set that serves as a dictionary for Tivoli Information Management for z/OS, and the RPANLDS and WPANLDS are VSAM data sets that contain the Tivoli Information Management for z/OS panels.

The RFTDS is a partitioned data set that holds report format tables, application program interface (API) tables, and relational data mapping tables (RDMTs) used by Tivoli Information Management for z/OS. The SBLMTSX data set is a partitioned data set containing terminal simulator EXECs (TSXs) written in REXX. Some functions provided in Tivoli Information Management for z/OS use TSXs.

You can share VSAM data sets among BLX-SPs. For more information on sharing data sets, see “Data Sharing” on page 40.

For detailed information on the VSAM data sets that are used by Tivoli Information Management for z/OS, you can view the online introduction provided with the Installation Tailoring Facility (see “Using Online Help Information” on page 187). To read about the parameters that are used in defining the data sets, see “Defining Tivoli Information Management for z/OS Data Sets” on page 277.

The Databases

Tivoli Information Management for z/OS uses two types of databases: Tivoli Information Management for z/OS format databases and user-defined format databases (known as the Information/MVS format in previous versions). Databases 0, 1, 2, and 3 are user-defined format databases; databases 4, 5, 6, 7, 8, and 9 are Tivoli Information Management for z/OS format databases. Database 5 is a read/write database. The other databases are read-only databases. For information about the different formats, see “Database Formats” on page 45.

The databases contain the following data sets:

- **SDDS** The SDDS is made up of VSAM key-sequenced data sets (clusters) that contain the
The Data Sets

For a Tivoli Information Management for z/OS format database, the SDDS contains the information supplied by the user (either interactively through panels or using API programs) or collected by Tivoli Information Management for z/OS. Each Tivoli Information Management for z/OS logical record can be one of several types and can consist of one or more VSAM records. For a user-defined format database, the SDDS contains the text entries that you load from a sequential file or from a tape you create in the Information/MVS format.

Tivoli Information Management for z/OS requires that you define an SDDS. The SDDS of a Tivoli Information Management for z/OS format database can consist of from 1 to 100 VSAM clusters. A 100-cluster SDDS enables users to store up to 400GB (GB equals 1 073 741 824 bytes) of information in a database. For information about using a multiple-cluster SDDS, see "Multiple-Cluster SDDS" on page 41.

The SDDS of a user-defined format database can consist of only 1 VSAM cluster.

SDIDS

The SDIDS is a special high-performance index that accelerates the search for records in the SDDS. It contains the words that you use as search keywords for records in the SDDS. The SDIDS is sometimes called the glossary. Each record in the SDIDS contains a searchable word and position markers to indicate which records in the SDDS contain that word. This is true for both Tivoli Information Management for z/OS and user-defined format databases.

The SDIDS is made up of from 1 to 100 VSAM key-sequenced data sets (clusters). You define one or more clusters, depending on your needs. The number of SDIDS clusters and SDDS clusters do not have to be the same, since they are independent of one another. For information on using a multiple-cluster SDIDS, see "Multiple-Cluster SDIDS" on page 41.

The information in the SDIDS is created and managed by Tivoli Information Management for z/OS and is in addition to the index component that VSAM defines for any key-sequenced data set.

SDLDS

The SDLDS is an optional data set that stores copies of the records written to the SDDS. The SDLDS provides a backup for changes made to the SDDS. If the SDDS is damaged, you can use the records in the SDLDS to reconstruct the changes made to the SDDS since its last backup.

The SDLDS is a VSAM relative record data set that consists of a single VSAM cluster and contains fixed-length records. Only the Tivoli Information Management for z/OS read/write database (database 5) has an SDLDS.

For a more detailed discussion of the Tivoli Information Management for z/OS databases and your database options, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference.

The Panels

Tivoli Information Management for z/OS provides a set of panels that you can use for navigation and data-entry purposes. Tivoli Information Management for z/OS accesses the panels it uses from VSAM key-sequenced data sets. The two types of panel data sets are:

RPANLDS

The RPANLDS is a VSAM key-sequenced data set that contains the Tivoli...
Information Management for z/OS panels that are displayed to the user. You must define at least one RPANLDS to hold the Tivoli Information Management for z/OS panels. Use the BLGUT6 utility to load the panels from the Tivoli Information Management for z/OS product data set into the RPANLDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information about the BLGUT6 utility.

To read about using multiple read panel data sets, see “Using One or More Read Panel Data Sets” on page 198. If you have more than one RPANLDS, then Tivoli Information Management for z/OS logically concatenates multiple RPANLDSs in the order specified in the session-parameters member (see “Multiple Read Panel Data Sets” on page 43).

WPANLDS
The WPANLDS is an optional data set that contains the Tivoli Information Management for z/OS panels that you create or modify using the Tivoli Information Management for z/OS Panel Modification Facility (PMF). Tivoli Information Management for z/OS reads and displays panels from the WPANLDS during PMF panel modification and panel testing (see “The Panel Modification Facility (PMF)” on page 53). The WPANLDS is a VSAM key-sequenced data set that consists of a single VSAM cluster.

The Dictionary
The Tivoli Information Management for z/OS dictionary contains the following control information:

- Structured words (s-words) and prefix words (p-words) that are used to search the SDIDS and to control the display of data on Tivoli Information Management for z/OS panels for all databases
- Validation patterns that are used to control the syntax of values entered into Tivoli Information Management for z/OS panels.

The dictionary data set (DICTDS) is a VSAM key-sequenced data set that consists of a single VSAM cluster. Use the BLGUT5 utility to load the dictionary from the Tivoli Information Management for z/OS product data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information about the BLGUT5 utility program. You must define a DICTDS for Tivoli Information Management for z/OS if you want to use PMF or if you want to process reports.

The Report Format Table Data Set
The RFTDS is a partitioned data set (PDS) that contains:

- The report format tables (RFTs) used to define the content and format of the print record and report output listings for the Tivoli Information Management for z/OS and user-defined format databases.
- Data tables used by the Tivoli Information Management for z/OS APIs. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for details about the API tables.
- Relational data mapping tables (RDMTs) used by the DB2 Extract Facility. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for details about the DB2 Extract Facility.
The VSAM Resource Definition Member – Non-Sysplex

Note

The following information applies to a non-sysplex environment. The VSAM resource definition member is not used in a sysplex to define VSAM resources. In a sysplex, resources are defined through coupling facility structures to support record-level sharing, rather than through VSAM resource definitions to support nonshared resources or local shared resources. For more information about how VSAM is used in a sysplex, see “Setting Up for Sysplex Data Sharing” on page 151.

In a non-sysplex BLX-SP environment, the VSAM resources that are used by the Tivoli Information Management for z/OS VSAM data sets are allocated in the BLX-SP and are used by all Tivoli Information Management for z/OS users’ address spaces. The VSAM resources are defined to the BLX-SP by the VSAM resource definition member.

A VSAM resource definition member is a load module that defines the following:
- The VSAM local shared resource (LSR) pools used by the VSAM data sets
- The number of nonshared resource (NSR) placeholders needed by the VSAM data sets
- The connection of the VSAM data sets to VSAM resources
- The type of VSAM data set (key-sequenced or relative record)

For more information about defining VSAM resources, see “Using VSAM Resources in a Non-Sysplex Environment” on page 75. For information about defining a VSAM resource definition member, you can view the online introduction that is provided with the Installation Tailoring Facility (see “Using Online Help Information” on page 187). To read about the macros that are used to create a VSAM resource definition member, see “Defining VSAM Resources to the BLX-SP in a Non-Sysplex Environment” on page 301.

The Session-Parameters Member

A session-parameters member is a load module that specifies the parameters that define various processing options for a Tivoli Information Management for z/OS session. It also specifies the data sets that the session accesses for its databases, panels, and dictionary.

You can define as many session-parameters members as you need. Users who have common session needs can share the same members. Or each user can have a unique member. Or users can have several members that they are authorized to use. Each user specifies a single session-parameters member when starting a Tivoli Information Management for z/OS session.

For an explanation of all the parameters that are specified in a session-parameters member, you can view the online introduction that is provided with the Installation Tailoring Facility (see “Using Online Help Information” on page 187). To read about these parameters and the Tivoli Information Management for z/OS macros that are used to create a session-parameters member, see “Defining Tivoli Information Management for z/OS Session-Parameters Members” on page 317. For session-parameters member installation considerations, see “Working with Session-Parameters Members” on page 164. For performance considerations,
see “Evaluating Performance” on page 57. Some session parameters can have a significant
effect on the performance of a user session and on the performance of Tivoli Information
Management for z/OS as a whole.
This chapter assumes that you understand the base Tivoli Information Management for z/OS product, and it provides an overview of the following features and options. Unless otherwise noted, these features and options are available with Tivoli Information Management for z/OS and do not need to be ordered separately.

This chapter is designed to help you determine which features and options of Tivoli Information Management for z/OS you want to include in your installation of Tivoli Information Management for z/OS.

Installation
- Installation Tailoring Facility

Interfaces
- Integration with Tivoli management software
- TEC Event Adapter
- OS/390 Text Search
- Remote Environment Servers and clients
- Web connector features
- NetView Bridge Adapter
- NetView AutoBridge and the AutoBridge PostProcessor facility
- NetView Hardware Monitor Interface
- Open Database Connectivity (ODBC) driver

Applications
- Desktop
- Integration Facility

System Performance
- Multiple BLX Service Providers
- Sysplex support
- Multiple-cluster SDDS
- Multiple-cluster SDIDS
18- or 34-byte SDIDS keys
Multiple read panel data sets

Data access
- RACF protection
- Logical database partitioning

Data backup, propagation, or archival
- Automatic Log Save Facility
- DB2® Extract Facility
- Archiver

Preferences
- Database formats
- National Language Support (NLS)
- Alternate date and time-of-day formats
- Enhanced panel style
- Graphical user interface
- Notification Management facility

Customization
- Panel Modification Facility (PMF)

The Installation Tailoring Facility

The Installation Tailoring Facility is designed to help an inexperienced installer of Tivoli Information Management for z/OS tailor Tivoli Information Management for z/OS. The Installation Tailoring Facility takes you through a series of interactive ISPF dialogs that step you through the installation tailoring process.

Note: The Installation Tailoring Facility has not been updated to support the new setup tasks for Sysplex Data Sharing. Information about these setup tasks can be found in "Setting Up for Sysplex Data Sharing" on page 151.

Using the Installation Tailoring Facility, you can set system defaults and create or modify customized JCL and text members to:
- Tailor the base Tivoli Information Management for z/OS product. This includes working with:
 - VSAM data sets (SDDS, SDIDS, SDLDS, DICTDS, RPANLDS, WPANLDS)
 - Session-parameters members
 - BLX-SP parameters members
 - BLX-SP procedures
 - BLX-SP VSAM resource definition members (for use in a non-sysplex environment only)
Tailor optional Tivoli Information Management for z/OS product features. This includes working with:

- MRES parameters members
- MRES procedures
- National language support

For information on using the Installation Tailoring Facility, see "Using the Installation Tailoring Facility" on page 185.

Note: The online introduction to the Installation Tailoring Facility can be useful in providing the experienced installer with detailed information about new or changed Tivoli Information Management for z/OS parameters. See "Using Online Help Information" on page 187 for more information about accessing the online introduction.

Integration with Tivoli Management Software

Tivoli Information Management for z/OS is a Tivoli management software product in the Tivoli Enterprise™ application segment. Tivoli products provide highly scalable, open and cross-platform solutions for enterprise systems management environments that extend from the data center to the desktop. The object-oriented Tivoli Management Framework provides a foundation for integrating these disciplines into an overall network computing solution and integrating Tivoli applications with third-party solutions. Tivoli Information Management for z/OS provides help desk, problem management, change management, and configuration management services to z/OS customers using Tivoli management software products.

Tivoli Information Management for z/OS integrates with Tivoli products in these key areas:

- **Tivoli NetView for z/OS**
 Tivoli Information Management for z/OS has a built-in interface to NetView for z/OS—the NetView Bridge Adapter. The NetView Bridge Adapter connects the “bridge” in NetView for z/OS to the Tivoli Information Management for z/OS high-level application program interface. This interface enables NetView alerts and messages to be collected so that network problems can be logged and updated in the Tivoli Information Management for z/OS database.

 For centralized network management within a distributed environment, you can also connect Tivoli Information Management for z/OS with NetView running on an AIX® platform through the NetView for z/OS program. For a description of the Tivoli Information Management for z/OS interfaces to NetView, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.

 In addition to communicating with NetView for z/OS through the NetView Bridge Adapter, Tivoli Information Management for z/OS can receive NetView alert and message processing through a program-to-program interface provided through use of the Tivoli Global Enterprise Manager. Commands can be sent to NetView for z/OS by clicking on a Tivoli Information Management for z/OS icon displayed in a window in the Application Policy Manager program of Tivoli Global Enterprise Manager.

- **Tivoli Operations Planning and Control**
 Tivoli Operations Planning and Control (OPC) plans, controls, and automates z/OS batch production workloads. The Event Manager subsystem of OPC tracks and logs events. A customization tool is provided by OPC to identify the types of problems that can be automatically entered into the Tivoli Information Management for z/OS database through
the Tivoli Information Management for z/OS Integration Facility. Problems that are
detected by OPC that match the identification criteria specified in the OPC database are
forwarded to Tivoli Information Management for z/OS for recording and storage. For
information on using the OPC user exits (EQQUX006, EQQUX007) that enable this
integration, refer to *OPC/ESA Customization and Tuning*.

- **Tivoli Decision Support**
 Tivoli Decision Support is a workstation-based solution that helps managers, executives,
 and analysts gain insight into their enterprise’s data to facilitate their decision-making
 process. Analysis tools and business intelligence models are provided to enable you to
 quickly find and use the data stored in your enterprise’s database. Tivoli Decision
 Support for Information Management (a separately orderable product) enables you to use
 Tivoli Decision Support with Tivoli Information Management for z/OS data. For an
 overview of the Tivoli Decision Support for Information Management, refer to the
 Tivoli
 Information Management for z/OS Data Reporting User’s Guide. Installation and usage
 instructions are provided in the softcopy documentation provided on the Tivoli Decision
 Support for Information Management CD-ROM.

- **Tivoli Business Systems Manager for OS/390**
 TBSM is a business systems management tool which enables you to perform distributed
 management, OS/390 management, or both. Even when a business system spans multiple
 platforms, TBSM enables you to graphically monitor and control interconnected business
 components and operating system resources. A business component and its resources are
 referred to as a Line of Business (LOB). Using the LOB concept, TBSM helps you plan,
 define, and control your business system. TBSM, together with other Tivoli management
 components, helps you manage the dependencies between business components and their
 underlying infrastructure.

- **Tivoli Enterprise Console**
 The Tivoli Enterprise Console acts as a central resource that receives information from
 many sources, such as systems, databases, and other applications. It integrates with
 major network management platforms and collects, processes, and automatically initiates
 corrective actions to system, application, network and database events.
 Tivoli Enterprise Console events can automatically open problem records in the Tivoli
 Information Management for z/OS database. The creation, update, or deletion of problem
 records can be initiated from the Tivoli Enterprise Console or automatically initiated
 through Tivoli Enterprise Console rules and tasks.
 Tivoli Information Management for z/OS provides an integration facility which
 integrates the Tivoli Enterprise Console into the Tivoli Information Management for
 z/OS problem management application. For more information on using the TEC
 integration facility, refer to the Tivoli
 Information Management for z/OS Guide to
 Integrating with Tivoli Applications.
 In addition, through the use of terminal simulator EXEC control lines (such as
 OPENERRES, CLOSERRES, and GETRDATA), you can create a remote data resource in
 the Tivoli Information Management for z/OS BLX-SP address space. The remote data
 resource enables you to temporarily store and retrieve data used to send requests to the
 Tivoli Enterprise Console for processing. Refer to the Tivoli
 Information Management
 for z/OS Terminal Simulator Guide and Reference for more information on the TSX
 control lines used to set up and manage remote data resources.

- **Problem Service**
Problem Service is a component of Tivoli Information Management for z/OS that provides applications with an interface to Tivoli Information Management for z/OS in a distributed networking environment. It enables Tivoli Enterprise Console events to be sent to Tivoli Information Management for z/OS as problem records. For more information on Problem Service, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.

Tivoli Inventory

Tivoli Inventory is a hardware and software inventory-gathering application designed to help system administrators and accounting personnel manage the complexity of PC and UNIX® systems in a distributed client/server enterprise. You can use Tivoli Inventory to scan target machines to receive information on the hardware or software used by those machines, system configurations, and physical inventory. You can receive an extract of Tivoli Inventory data on your Tivoli Information Management for z/OS database, copy data to your customized Tivoli Information Management for z/OS panels, and use the data in your problem and change management applications.

Special data model records are provided with the base Tivoli Information Management for z/OS product to define the Tivoli Inventory views and associated data. An interface program (i2i program) is available to enable you to map the data extracted from Tivoli Inventory to Tivoli Information Management for z/OS fields, and to load the data into the Tivoli Information Management for z/OS host database. For more information on setting up the host database to use Tivoli Inventory data and installing the necessary components, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.

Tivoli Problem Management (Tivoli Service Desk)

As a core application in the Tivoli Service Desk suite of applications, Tivoli Problem Management is a network help desk system that enables help desk analysts to register calls and resolve problems. With Tivoli Problem Management, help desk analysts can simultaneously access a large database of problems and solutions to provide a high level of service to help desk customers. Online problem resolution tools called diagnostic aids are available to enable help desk agents find solutions quickly for a wide range of problems. Help desk agents can use Tivoli Problem Management to track customer calls and problems and transfer calls and problems to other help desk analysts. Users can submit problems through e-mail or on the Web without calling the help desk, and can even resolve many problems themselves.

Tivoli Information Management for z/OS users can exchange problem records stored in the Tivoli Information Management for z/OS database with records stored in a Tivoli Problem Management database through the Tivoli Service Desk Bridge. Whether a problem record resides in Tivoli Information Management for z/OS or in Tivoli Problem Management, a help desk analyst working either from the Tivoli Information Management for z/OS host (or API application) or Tivoli Problem Management workstation can request transfer of the record in order to work on it.

From Tivoli Information Management for z/OS, you can transfer problem records to users in Tivoli Problem Management, and update records sent from Tivoli Problem Management. Likewise, you can transfer problem records from Tivoli Problem Management to users in Tivoli Information Management for z/OS, and update records sent from Tivoli Information Management for z/OS. In addition, you can send solution data from Tivoli Information Management for z/OS to Tivoli Problem Management. From Tivoli Problem Management, you can create change records in Tivoli Information Management for z/OS. Refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications for more information about integrating with Tivoli.
Integration with Tivoli Management Software

Service Desk applications and setup instructions for Tivoli Information Management for z/OS. Refer to the *Tivoli Service Desk Networking Guide* for information about setting up Tivoli Service Desk to use the Tivoli Service Desk Bridge.

- **Tivoli Software Distribution**

 Tivoli Software Distribution automates the process of distributing software to clients and servers throughout an enterprise. It allows you to install and update applications and software in a coordinated, consistent manner across platforms, for timely client/server application deployment.

 When a change request is approved in Tivoli Information Management for z/OS, you can generate a Tivoli Enterprise Console event to trigger the distribution of workstation software packages or upgrades to target machines in a Tivoli management software environment. The target machines can be on any workstation platform supported by Tivoli Software Distribution.

 For example, you can define the type of software to install in a Tivoli Software Distribution package file. It could be an in-house application, shrink-wrapped software, or an upgrade to existing workstation software. You can define the target machines in a named Tivoli Inventory query. Functions provided by Tivoli Information Management for z/OS enable you to associate the package file name and query name with a given change request record and initiate a Tivoli Enterprise Console event that will trigger the distribution of software to the target machines when the change request is approved in Tivoli Information Management for z/OS.

 Using Tivoli Software Distribution, you can also remotely install the Tivoli Information Management for z/OS HLAPI client software.

 For more information on using Tivoli Information Management for z/OS with Tivoli Software Distribution, refer to the *Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications*.

TEC Event Adapter

The Tivoli Information Management for z/OS TEC Event Adapter is a C program that runs under OS/390 UNIX System Services and provides an interface to the Tivoli Enterprise Console. The TEC Event Adapter can be installed as an optional component during SMP/E installation, and is required if you are integrating with the following Tivoli products as indicated:

- **Tivoli Software Distribution** – The TEC Event Adapter is required to enable Tivoli Enterprise Console to distribute software after a change request is approved in Tivoli Information Management for z/OS.

- **Tivoli Service Desk** – If you are using the Tivoli Service Desk Bridge to exchange problem records with Tivoli Problem Management, the TEC Event Adapter is required only if you want to create TEC events for Service Desk Bridge errors.

The Tivoli Information Management for z/OS TEC Event Adapter receives data sent by a TSX, builds a Tivoli Enterprise Console map, and uses TCP/IP to send data to the Tivoli Enterprise Console. For more information about the TEC Event Adapter (BLGTECAD) program, refer to the *Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications*.
If you use Tivoli Information Management for z/OS for problem management, you can take advantage of the problem resolution data collected in your Tivoli Information Management for z/OS database by building a knowledge base. Your help desk analyst can search the problem resolution text to find solutions that are likely to apply to future incoming problems. Tivoli Information Management for z/OS can be set up to use the Text Search Engine component of OS/390 Text Search. The Text Search Engine is used to index and query the solution text, and to create the solution knowledge base. For example, you can do the following:

- A system administrator can use a Tivoli Information Management for z/OS panel to create and maintain the text search index that is used to build the solution knowledge base.
- A batch utility is run to identify existing problem records as solutions and add these to the solution knowledge base.
- A help desk analyst handles and resolves a new problem, and marks a problem record as having a valid solution. The solution text is added to the solution knowledge base where it can be searched by other help desk analysts.
- A help desk analyst can search the solution knowledge base through a Tivoli Information Management for z/OS panel or through some other interface such as a Tivoli Information Management for z/OS Desktop or Web connector application. The analyst can enter fuzzy searches or searches using AND, OR, or NOT operators to find possible relevant solutions to a problem. The Text Search Engine, with its powerful linguistic capabilities, retrieves the information from the solution knowledge base.

By taking advantage of your existing data and providing your help desk agents with a robust text searching tool, you can build a knowledge base that can help to improve the productivity of your help desk analysts.

An API search transaction is also provided for the Tivoli Information Management for z/OS HLAPI, HLAPI/REXX, and all client HLAPI platforms.

For more information about building a solution knowledge base, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference. For instructions on how to search for data stored in a knowledge base, refer to the Tivoli Information Management for z/OS User’s Guide. Information about the API search transaction is provided in the Tivoli Information Management for z/OS Application Programming Interface Guide.

The Remote Environment Servers and Clients

You can access Tivoli Information Management for z/OS functions from remote environments using the High-Level Application Program Interface (HLAPI) and one of the remote environment servers.

You can access Tivoli Information Management for z/OS functions from the following clients using the protocols listed:

<table>
<thead>
<tr>
<th>Client</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS/2® clients</td>
<td>APPC or TCP/IP</td>
</tr>
</tbody>
</table>
The client for CICS® (HLAPI/CICS) and OS/390 UNIX System Services (HLAPI/USS) can be used in either a local or remote environment.

To use a remote environment, you must first install the appropriate client feature on the client. The OS/2, UNIX (AIX, HP-UX, Sun Solaris), and Windows NT client features are available on a CD-ROM that you receive when you order the base Tivoli Information Management for z/OS product. The OS/390 UNIX System Services and the CICS/ESA client features are installed from host tape using SMP/E. Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for client installation instructions.

The servers come with the base Tivoli Information Management for z/OS product. A server must be set up for each BLX-SP that the client needs to access. Either APPC or TCP/IP must be set up on both the client and the server machines. Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for details on how to install and set up your client/server environment.

Client application programs use the client feature to communicate with the Tivoli Information Management for z/OS server through APPC or TCP/IP. The server uses the HLAPI to access and use Tivoli Information Management for z/OS functions.

Java™ programs can interface with Tivoli Information Management for z/OS clients on the following operating systems, which must also support the Java run-time environment:
- AIX
- HP-UX
- Sun Solaris
- OS/2
- Windows NT

Java wrappers and a sample Java program are provided with the HLAPI clients for these operating systems to simplify the task of writing a HLAPI program.

Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for a description of the Tivoli Information Management for z/OS clients.

Web Connector Features

The Tivoli Information Management for z/OS Web connector features enable you to access a Tivoli Information Management for z/OS database using a Web browser as a client. Transactions are received by TCP/IP and queued for processing by the Web connector feature server. The server interprets requests from clients, retrieves data from Tivoli Information Management for z/OS, and returns response data to the client machine in Hypertext Markup Language (HTML) code or plain text.
The design of the Web connector features assume there are multiple client machines communicating asynchronously with a Web connector server. The client and server machines are part of the same network and communicate using TCP/IP protocol. The network could be the Internet itself, or a private network (intranet) that has no external connections or is connected to the Internet through a firewall.

The three types of Web connector features available with Tivoli Information Management for z/OS are described below and are available with the base Tivoli Information Management for z/OS product.

- **REXX Web connector for OS/2**
 Allows client Web browsers to access Tivoli Information Management for z/OS databases through a connection that runs on an OS/2 platform. As a stand-alone OS/2 application, it implements the IBM Internet Connection Secure Server (ICSS) as well as the REXX HLAPI/2 client feature.

- **REXX Web connector for MVS**
 Allows client Web browsers to access Tivoli Information Management for z/OS databases through a connection that runs as a started task on an MVS system.

- **REXX Web connector for OS/390**
 Allows client Web browsers to access Tivoli Information Management for z/OS databases through a connection that runs on an OS/390 system. This connector provides additional capabilities such as multithreading and increased security and runs on the IBM HTTP Server. This connector does not require any of the Tivoli Information Management for z/OS HLAPI client programs to function.

For more information on installing or using these Web connector features, refer to the [Tivoli Information Management for z/OS World Wide Web Interface Guide](#).

The NetView Bridge Adapter

The Tivoli Information Management for z/OS NetView Bridge Adapter enables the NetView and Tivoli Information Management for z/OS products to work together. Together with the NetView Bridge, NetView enables automated message-handling functions. These functions consist of message routing and transmission within the NetView address space (the NetView Bridge) and message processing and submission to the Tivoli Information Management for z/OS HLAPI (the NetView Bridge Adapter). The HLAPI, in turn, interfaces with the Tivoli Information Management for z/OS Low-Level API (LLAPI), which accesses the Tivoli Information Management for z/OS database.

The Adapter provides the connection between the NetView Bridge and the HLAPI. It transforms user-written NetView automation command procedures or requests into HLAPI transactions and responses. Through the NetView Bridge Adapter, you can use NetView to:

- Create records in a centralized Tivoli Information Management for z/OS database
- Update records in a centralized Tivoli Information Management for z/OS database in a manner that protects the integrity of the records
- Retrieve a list of records or a single record from a centralized Tivoli Information Management for z/OS database based upon a set of search criteria
- Perform user-defined tasks on records in a centralized Tivoli Information Management for z/OS database.
If you decide to use the NetView Bridge Adapter, you must have the prerequisite software listed in "Ordering the Necessary Hardware and Software" on page 89. You can use the NetView Bridge Adapter with or without the NetView AutoBridge.

For more information on the NetView Bridge Adapter, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.

The NetView AutoBridge and PostProcessor

The Tivoli Information Management for z/OS NetView AutoBridge is a set of routines, panels, and tables that serve as an application enabler for the Tivoli Information Management for z/OS NetView Bridge Adapter. The AutoBridge requires use of the NetView Bridge Adapter. AutoBridge receives data from specific alerts, messages, and other applications through its application programming interface and uses this data to build and perform Tivoli Information Management for z/OS transactions.

Available as an optional feature you can install with the base Tivoli Information Management for z/OS product, the AutoBridge can help automate network management tasks such as monitoring the network for specific events, creating and updating Tivoli Information Management for z/OS records, searching for duplicate records, and notifying vendors of the status of their products.

AutoBridge uses the Tivoli Information Management for z/OS application programming interface which bypasses panels that allow operators to add record data. If your Problem Management panels invoke control panels, program exits, or terminal simulator panels or EXECs to modify Tivoli Information Management for z/OS records, you should use the NetView AutoBridge PostProcessor facility to supplement the records created by AutoBridge with additional data to complete each record as though it had been entered on a terminal by an operator. The NetView AutoBridge PostProcessor facility is a component of the base Tivoli Information Management for z/OS product.

For more information on planning for AutoBridge, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications. For instructions on installing the AutoBridge feature, refer to the Tivoli Information Management for z/OS Program Directory.

NetView Hardware Monitor Interface

You can use the NetView Hardware Monitor with some problem management functions. A user of the NetView Hardware Monitor Interface can create or update a Tivoli Information Management for z/OS problem record representing a NetView Hardware Monitor Interface event and file it in the Tivoli Information Management for z/OS database. You can make minor or major changes to the interface. Although the NetView Hardware Monitor Interface is retained for compatibility reasons, the NetView Bridge Adapter provides a more current interface and provides greater function through use of the Tivoli Information Management for z/OS HLAPI.

For more information, refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.
The Tivoli Information Management for z/OS Open Database Connectivity (ODBC) driver enables the Tivoli Information Management for z/OS host database to serve as a source of data for workstation applications that are enabled to use ODBC. From an ODBC-enabled database, spreadsheet, or text processing application running on a Windows NT workstation, you can click on the Tivoli Information Management for z/OS data fields you want to search on. You can specify a filter or query to limit the search to the Tivoli Information Management for z/OS data you need for reporting purposes. The ODBC driver uses standardized structured query language (SQL) to initiate search transactions of the data on the host, and enables you to retrieve the data at your workstation where you can use the power of your application to format the data into various types of reports, including graphical reports with pie charts and bar charts.

To use the ODBC driver, you must have the Tivoli Information Management for z/OS High-Level Application Program Interface Client for Windows NT installed at the workstation, and data model records created in Tivoli Information Management for z/OS to support ODBC access. Refer to the Tivoli Information Management for z/OS Data Reporting User’s Guide for more information.

The ODBC driver is also a prerequisite if you are using Tivoli Decision Support for Information Management.

The Desktop

The Tivoli Information Management for z/OS Desktop is an optional feature that enables users to create or interact with records in the Tivoli Information Management for z/OS database through a customizable starter application that uses a Java framework to present data in a graphical user interface. The Desktop provides a set of icons users can click on to enter problem or call record information, or to search for data in Tivoli Information Management for z/OS. Using the Desktop, users can use graphical task panels to submit call or problem records without having to use traditional 3270 host panels.

The sample GUI application provided with the Desktop can be customized to fit your business needs through the use of enhanced data model records. The data model records, residing on the host database, provide a centralized location for administrators to use to make changes or updates to the design of the application. Once the design is updated, users can automatically pick up the changes when they start up and log on to their Desktop application. Validation of data is performed at the workstation using validation information obtained from Tivoli Information Management for z/OS when the Desktop application is started.

A Toolkit is provided with the Desktop to enable administrators to customize the appearance and function of the application. Administrators can use the Toolkit to add or delete processes or task panels, define the transactions associated with tasks, and specify the name and function of buttons visible to users. A configuration editor is also provided to enable both users and administrators to identify themselves for login purposes and transactions with the database.
The Integration Facility

The Integration Facility is an optional facility of Tivoli Information Management for z/OS. It includes a base set of panels for problem, change, and configuration management as well as CLISTs and jobs to interface to:

- NetView Hardware Monitor
- System Availability Management (SAM) function of the Resource Measurement Facility (RMF)
- Service Level Reporter (SLR)
- Operations Planning and Control/ESA (OPC/ESA)

The Integration Facility base panels are installed automatically when you load Tivoli Information Management for z/OS panels. The interface functions are contained in the SBLMSAMP library. For more information about the Integration Facility, refer to the Tivoli Information Management for z/OS Integration Facility Guide.

Integration Facility Base

The Integration Facility provides a formal process to manage systems management data. To implement this process, some of the basic Tivoli Information Management for z/OS panels are modified and others are added. Your organization must fully understand the systems management process as described in the Tivoli Information Management for z/OS Integration Facility Guide and decide whether to use it before attempting to use the base Integration Facility panels. If your organization’s systems management process matches the one implemented for the Integration Facility, or if you do not have a formal systems management process, this facility may be of use to your organization. It has panels that provide additional functions and new reports for additional analysis.

You can use an existing Tivoli Information Management for z/OS database with the Integration Facility. However, stored response chains (SRCs) and terminal simulator panels (TSPs) created with the standard Tivoli Information Management for z/OS panels do not work with the Integration Facility panels because the panels are structured differently.

In addition, the data model and flow control information contained in the records built by the Integration Facility differs from the data model and flow control information contained in the records built by the standard Tivoli Information Management for z/OS panels. Therefore, if you have both kinds of data in a database (that is, data from standard Tivoli Information Management for z/OS panels and data from the Integration Facility), users may be taken to panels they are unfamiliar with and may get into a flow that they may not know how to recover from.

The problem dialog assisted-entry panels for Integration Facility are modified to accept an external date format of DDMMYY (for example, 05JUN00). For more information, see “Alternate Date Format for the Integration Facility” on page 236.

Integration with Other Products

The Integration Facility provides jobs and CLISTs in the SBLMSAMP library. These jobs and CLISTs are used to interface to other products and build problem records that can be used with the Integration Facility panels.
Interface to NetView Hardware Monitor

The Integration Facility provides a ready-to-use interface to pass NetView Hardware Monitor alert data to build incident records with the Integration Facility. The following summarizes what the Integration Facility can do when you select this option:

- Provides Hardware Monitor access to the Integration Facility load modules
- Defines Hardware Monitor users to the Integration Facility
- Converts the format of any dates sent to the Integration Facility, if necessary

Interface to OPC/ESA

The Integration Facility provides a ready-to-use interface to record selected OPC/ESA incidents in your Tivoli Information Management for z/OS database. It provides OPC/ESA with JCL:

- To initialize Tivoli Information Management for z/OS
- To submit an immediate response chain (IRC) to create and store a record in a format needed by the Integration Facility panels

Interface to Service Level Reporter

The Integration Facility provides a ready-to-use interface to produce Service Level Reporter (SLR) reports from your Tivoli Information Management for z/OS database. It extracts data from the Tivoli Information Management for z/OS database using RFTs and passes it to SLR for processing.

Note: Placing the Integration Facility SLR modules in a data set concatenated before your current table definitions is the same as changing the table definitions; thus, SLR cannot empty your data tables. If necessary, you can use the DBMAINT facility to correct any problems, but you may not be able to recover data.

Multiple BLX Service Providers

Tivoli Information Management for z/OS supports the use of multiple BLX-SPs on a single z/OS system. You can run a test system and production system simultaneously or run different versions of Tivoli Information Management for z/OS simultaneously. Running multiple BLX-SPs also makes maintenance easier. For example, you can support user groups that have different maintenance schedules by connecting each group to a different BLX-SP.

For information on setting up multiple BLX-SPs, see "Defining Multiple BLX-SPs" on page 148.

Sysplex Support

You can run Tivoli Information Management for z/OS in a non-sysplex or z/OS Parallel Sysplex environment. A sysplex is a set of MVS systems that communicate and cooperate with each other through certain hardware and software components and software services to process workloads. A parallel sysplex has one or more coupling facilities that enable multiple central processor complexes to simultaneously process a workload. By allowing two or more processors to share the same data you can maximize performance while minimizing cost, improve system availability and concurrency, expand system capacity, and configure your system environment more flexibly.
Tivoli Information Management for z/OS takes advantage of parallel sysplex, with its superior processing capabilities.

Note: Throughout this document, references to sysplex are meant to imply parallel sysplex rather than base sysplex. Tivoli Information Management for z/OS provides support for parallel sysplex only.

Sysplex Advantages

Tivoli Information Management for z/OS exploits the benefits of a parallel sysplex environment in the following ways:

- It takes advantage of VSAM record-level sharing (RLS).
- It offers performance benefits, especially if you are sharing Tivoli Information Management for z/OS databases. VSAM data sets are allocated and opened directly by the Tivoli Information Management for z/OS user rather than by the BLX-SP.
- It eliminates the need for setup of APPC/MVS when using shared databases. With record-level sharing, applications running on more than one Tivoli Information Management for z/OS system can read from and write to the same set of data concurrently. VSAM handles all cross-system buffer invalidation.
- It enables you to execute operator commands on one or more BLX-SPs.

For more information about Tivoli Information Management for z/OS sysplex support, see “Setting Up for Sysplex Data Sharing” on page 151.

Data Sharing

Tivoli Information Management for z/OS enables users on different BLX-SPs to concurrently share Tivoli Information Management for z/OS VSAM data sets without compromising data integrity. The BLX-SPs that share the data sets can reside either on the same z/OS system or on multiple z/OS systems in the same sysplex.

Data sharing in Tivoli Information Management for z/OS helps you satisfy the requirement of needing very high levels of availability. With data sharing, you can run applications on many Tivoli Information Management for z/OS systems and access the same shared data. If one system must come down, either for planned maintenance or because of a failure, the database can be accessed from another Tivoli Information Management for z/OS system with no perceived outage to end users.

Data sharing in Tivoli Information Management for z/OS is an integrated hardware and software solution. It requires the z/OS parallel sysplex, which provides lower-cost, scalable computing power, and the use of VSAM RLS.

Note: In previous releases of Tivoli Information Management for z/OS, the facility that enabled data sharing to take place in Tivoli Information Management for z/OS was called Multisystem Database Access (MSDA). MSDA is being replaced with the term sysplex data sharing in this manual. MSDA required advanced program-to-program communication (APPC/MVS) on all z/OS systems that shared data sets, even if all the BLX-SPs were on a single z/OS system. With the use of sysplex support, Tivoli Information Management for z/OS no longer requires APPC for data sharing. The data and index buffers are maintained in the SMSVSAM data space and in the coupling facility. VSAM handles any necessary communication with the coupling facility to maintain integrity of the VSAM buffers.
No other programs or non-Tivoli Information Management for z/OS utilities can share the data sets with Tivoli Information Management for z/OS unless they access the data sets through the Tivoli Information Management for z/OS APIs. As an exception, under RLS, if read integrity is not required, a SHAREOPTIONS(2) data set can be opened in read-only mode by a nonshared resource application (such as IDCAMS REPRO). For information on setting up data sharing, see “Setting Up for Sysplex Data Sharing” on page 151.

Multiple-Cluster SDDS

The data component of a VSAM key-sequenced data set (KSDS) can hold a maximum of 4GB (GB equals 1,073,741,824 bytes) of information. In Tivoli Information Management for z/OS, the SDDS component of your database is usually the largest data set. If you expect the SDDS to exceed 4GB, you can use up to 100 VSAM clusters for your SDDS, giving you enough space for 400GB of information. Unless you have more than a million logical records in your SDDS, you probably need not worry about exceeding the single-cluster limit. You may want to use multiple SDDS clusters for performance reasons.

Using a multiple-cluster SDDS does not change the way you use Tivoli Information Management for z/OS. The only exceptions are backup procedure changes, some session-parameters member changes, some VSAM resource definition changes, and some syntax changes needed for activating multiple SDDS clusters when running the BLGUT7 utility program. For information on the BLGUT7 utility program, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.

You can run BLGUT20 to obtain statistics that can help you determine the total SDDS size and the number of logical records it contains. You can use these statistics to determine how close your SDDS is to 4GB and the number of logical records your database holds. For information on the BLGUT20 utility program, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.

For information on setting up a multiple-cluster SDDS, see “Working with Multiple-Cluster SDDS” on page 172. For information regarding the performance of a multiple-cluster SDDS, see “Multiple-Cluster SDDS” on page 67.

Multiple-Cluster SDIDS

The data created by Tivoli Information Management for z/OS is stored in the SDDS. The SDIDS is a cross-reference to the searchable words stored in the SDDS. It contains index keywords that are used to locate records in the SDDS. Like the SDDS, the SDIDS is a key-sequenced VSAM data set that can consist of either a single or multiple clusters. Each SDIDS can contain up to 4GB of data. The maximum number of records you can store in the SDIDS is 400GB.

A multiple-cluster SDIDS can be useful to help improve your overall database performance by reducing the amount of data that is locked when the SDIDS is accessed, since the clusters can be accessed in parallel. If you store significant amounts of searchable data, you may benefit from setting up a multiple-cluster SDIDS to divide your records based on key contents. For example, you might choose to separate s-words from p-words, or some other arrangement.
For information on setting up a multiple-cluster SDIDS, see "Working with SDIDSs" on page 176.

SDIDS Keys

Starting with TME 10 Information/Management Version 1.1, the 16- and 32-byte SDIDS keys that were provided in earlier releases of Information/Management, which supported the use of VSAM spanned and non-spanned records, are no longer supported. Only the use of 18- and 34-byte keys and non-spanned data sets are supported.

If you are migrating from Information/Management Version 6.3 or earlier releases and you have an existing SDIDS, you must use either the BLGUT1 to rebuild the SDIDS or the BLGUT1M utility to convert the SDIDS to the new SDIDS data structure and key format. The internal architecture of the SDIDS is different, and therefore a rebuild or conversion is required. If you are migrating from TME 10 Information/Management Version 1.1 or later releases, you do not have to rebuild or migrate the SDIDS because the architecture of the SDIDS is not changed.

The data structure and key format allows Tivoli Information Management for z/OS to:

- Completely eliminate the need for spanned records
- Have an unlimited number of database records from a practical point of view
- Provide information that can help you tune database performance
- Improve overall performance
- Allow multiple SDIDS clusters to be used.

The data structure of the SDIDS is not backward compatible; however, the structure of the SDDS is backward compatible. If necessary, your back-level BLGUT1 utility can be used to rebuild the SDIDS.

You need to determine what SDIDS key size to use—18 or 34 bytes. The key size is specified when you define the SDIDS, and detected when you start Tivoli Information Management for z/OS.

For search purposes, both the 18- and 34-byte key can be used with single-byte character set (SBCS) or double-byte character set (DBCS) data. The 34-byte key is highly recommended for DBCS users. The 18-byte key is not recommended for DBCS because it supports only 7 DBCS characters when doing a DBCS search. The 34-byte key supports up to 15 characters on a DBCS search. For more information on searching and the use of SDIDS keys, see "Effects of SDIDS Key Length Settings on Searches" on page 177.

If you use SBCS characters, you can use either an 18-byte or a 34-byte key. With the 18-byte, the keyword size can be up to 16 characters. The keyword can be up to 32 characters with the 34-byte key.

If you decide to change key sizes, you must run the BLGUT1 utility to create the SDIDS using the new key size, or use the BLGUT1M utility to copy the data from the old SDIDS to the new SDIDS.

Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on the BLGUT1 or BLGUT1M utility programs.
Multiple Read Panel Data Sets

You can use one or more read panel data sets, depending on the compromises you make between performance, ease of maintenance, and DASD space. The fewer read panel data sets you have, the better Tivoli Information Management for z/OS performs, because Tivoli Information Management for z/OS must search each read panel data set in a specified order to find a panel.

One read panel data set results in the best performance; multiple read panel data sets reduce that performance, yet having more than one read panel data set simplifies maintenance for the panels because you can separate panels used for different purposes into different panel data sets. For maintenance reasons, it is best to have two read panel data sets: one for Tivoli-supplied panels and one for user-modified panels.

For more information, see "Using One or More Read Panel Data Sets" on page 198.

Security

If you use a security product, such as RACF, to protect or restrict your database and VSAM data sets from unauthorized access, evaluate the effect of using RACF with Tivoli Information Management for z/OS.

For further details about using RACF, see "Using RACF to Protect Tivoli Information Management for z/OS VSAM Data Sets" on page 191 or refer to the RACF product publications.

Logical Database Partitioning

You can organize data in the Tivoli Information Management for z/OS database into "logical partitions". These partitions can be completely isolated from each other when viewed by a user in a given partition, but accessible as a single database to selected authorized personnel. The ability to partition the Tivoli Information Management for z/OS database provides an additional measure of administrative control. For example, if you provide service to different divisions, you can separate the records of one division from the records of another division. This is done by assigning logical partitions to records.

The database administrator controls which users have access to which databases by assigning partitions to privilege classes. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for more information.

Automatic Log Save Facility

The Tivoli Information Management for z/OS Automatic Log Save Facility provides the capability for:

- Automatic, near real-time maintenance of a copy (local or remote) of a Tivoli Information Management for z/OS database
- Regular, automatic capture of SDLDS data and management of the SDLDS

These capabilities improve reliability, availability, and performance for Tivoli Information Management for z/OS users in the following ways:
Automatic Log Save Facility

- Users can use the Automatic Log Save Facility to automatically back up their Tivoli Information Management for z/OS production database. The backup database can be used for reports or recovery.
- Users can specify an automatic, time-driven offload of the SDLDS.
- Users can easily tailor the Automatic Log Save Facility for their installation including:
 - Scheduling of the SDLDS offload from the source (send) database
 - Scheduling of the upload to the destination (receive) database
 - Selection criteria for records that are to be uploaded.

If you are currently using the Automatic Log Save Facility, or if you are planning to use it, you should also evaluate the BLGUT23 series of utilities that are available in Tivoli Information Management for z/OS to back up the database while users are updating the database. Refer to the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#) for details on these utilities.

Refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](#) for more information about the Automatic Log Save Facility.

DB2 Extract Facility

The DB2 Extract Facility extends the capability of the Automatic Log Save Facility to DB2. Some of these capabilities include:

- Automatic, near real-time maintenance of a copy (local or remote) of Tivoli Information Management for z/OS data in a DB2 database
- Regular, automatic capture of SDLDS data and management of the SDLDS

These capabilities provide for improved reliability, availability, and performance for Tivoli Information Management for z/OS users in the following ways:

- A user can issue SQL queries against Tivoli Information Management for z/OS data that is stored in a DB2 database.
- The production Tivoli Information Management for z/OS database does not suffer the performance degradation that is commonly associated with random user queries.
- A user can specify an automatic, time-driven offload of the SDLDS.
- Users can easily tailor the DB2 Extract Facility for their installation including:
 - Customizing the mapping of Tivoli Information Management for z/OS record constructs, such as s-words and p-words
 - Scheduling of the SDLDS offload from the source (send) database

For more information about the DB2 Extract Facility, refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](#).

Archiver

The Archiver function enables you to migrate (archive or copy) records from one Tivoli Information Management for z/OS database to another. In the process of migrating records, you can specify whether you want to delete the records from the "live" database or leave the records intact. Other functions of the Archiver include the ability to perform the following tasks:
- Copy records back to the same database but with the next system-assigned record number identifier
- Transfer records between two databases in the same session-parameters member
- Compress records, or uncognize or delete specific data items before the archival
- Keep the user-defined relationships intact on the archived records

Additionally, the Archiver provides ample logging functions, including:
- The parameters that you specified when you invoked the Archiver
- Messages related to each record processed
- A completion summary of what the Archiver did
- Full low-level application programming interface (LLAPI) logging

For more information, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference.

Database Formats

Tivoli Information Management for z/OS databases can be in one of two formats:

- Tivoli Information Management for z/OS format
- User-defined format (previously known as the Information/MVS format).

Both types of databases are made up of SDDS and SDIDS clusters. Your Tivoli Information Management for z/OS read/write database can also contain an SDLDS cluster. The two formats differ in the way that you enter data into the databases. You enter data into a Tivoli Information Management for z/OS format read/write database interactively through Tivoli Information Management for z/OS panels and dialogs or through an API. You use the BLGOZUD utility to load data from a sequential data set into a user-defined format database. Any data that must be searchable and does not change frequently is a candidate for a user-defined database.

For more information on creating a user-defined format database, see “Working with Databases” on page 168. For information on using the BLGOZUD utility, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.

National Language Support

Tivoli Information Management for z/OS supports national languages other than English by providing translate tables, DBCS support, graphic character substitutions, and the ability to sort search results lists with an external sort routine.

Latin and Non-Latin Translate Tables

The English language and other Germanic languages, as well as the Romance languages, use the Latin alphabet. Languages that are not Romance or Germanic-based (for example, the Japanese Katakana alphabet) use non-Latin alphabetic characters. Tivoli Information Management for z/OS provides translate tables to enable the use of Latin or non-Latin alphabetic characters.
Latin translate table: Enables you to store all upper and lowercase Latin alphabet characters as searchable uppercase, mixed case, or lowercase Latin alphabet characters in your database.

The Latin translate table is required for use if you elect to collect, display, or store Tivoli Information Management for z/OS data in mixed case.

Non-Latin translate table: Enables you to store searchable non-Latin in your database.

Note: You must select the table you want to use when you install Tivoli Information Management for z/OS; you cannot change tables at a later time. For more information on using translate tables, see “Working with Translate Tables” on page 163. To look at the translate tables used for display and for blank substitution in string data fields, see “Translate Tables” on page 353.

Uppercase and Lowercase Translate Tables

Tivoli Information Management for z/OS enables you to tailor the uppercase and lowercase translate tables for Latin alphabets; you can convert your country unique alphabet from lowercase to uppercase, or uppercase to lowercase. The non-Latin translate table does not have a corresponding uppercase or lowercase translate table because non-Latin alphabets do not have case.

Update your uppercase or lowercase translate table only if you require special national language support. You tailor your translate tables by using the Installation Tailoring Facility. See “Using the Installation Tailoring Facility” on page 185 for information on using the Installation Tailoring Facility.

DBCS Operating Parameter

A parameter in the BLX-SP parameters member indicates whether the BLX-SP and all users connected to the BLX-SP support DBCS data. This parameter enables customers who do not require DBCS support to enjoy better performance than those customers who do require DBCS support. Those Tivoli Information Management for z/OS installations supporting only SBCS data need not perform any additional processing in support of DBCS data. Because of this performance consideration, it is recommended that you not run the BLX-SP with DBCS support if you only require SBCS support.

For more information about defining a BLX-SP parameters member, see the online introduction of the Installation Tailoring Facility or “Defining BLX-SP Parameters Members” on page 343.

Graphic Character Substitutions

Tivoli Information Management for z/OS enables you to use substitute characters for four of the graphic characters that Tivoli Information Management for z/OS uses. The code points for these four characters are X'5F', X'4F', X'5A', and X'7C' (the ¬, |, !, and @ characters on code page 37). In earlier releases of the product, the characters that you used were the ones that were at those code points on your code page. Now, you can specify other characters as substitutes. For example, you can substitute the ¬, |, !, and @ characters from your code page for the characters that are at code points X'5F', X'4F', X'5A', and X'7C'.

Use graphic character substitutions only if you require special national language support. The substitutions apply to all of your Tivoli Information Management for z/OS users. If you decide to use graphic character substitutions, you must review and modify your RFTs (including Tivoli-supplied RFTs), SRCs, and TSPs so that they reflect the substitutions. You
must also modify your TSXs and API programs. For TSXs, you can obtain the graphic
characters that should be used from the REXX variable BLGSYMB. For API programs, you
can obtain the graphic characters that the programs should use from the HLAPI extension
TSX BLGTSPCH. For more information about using the REXX variable BLGSYMB, refer to
the *Tivoli Information Management for z/OS Terminal Simulator Guide and Reference*.
For more information about the HLAPI extension TSX BLGTSPCH, refer to the *Tivoli
Information Management for z/OS Application Program Interface Guide*.

Note: This enhancement applies to graphic characters that are entered by a user, an API, or
a report. Information that is displayed to the user (such as text on Tivoli Information
Management for z/OS panels) may not reflect the substitution.

You can substitute any or all of these characters. You specify substitution characters through
the Installation Tailoring Facility. For information on using the Installation Tailoring Facility see
"Using the Installation Tailoring Facility" on page 185.

If you write TSXs to process data with the Tivoli Information Management for z/OS
database, you can use a special REXX variable provided with Tivoli Information
Management for z/OS to ensure your TSXs process the correct substitution character. For
example, instead of hardcoding the "not" sign and the "or bar" characters in a TSX, you can
parse the BLGSYMB REXX variable to obtain the proper substitution characters when the
TSX is initialized. For more information on using the BLGSYMB REXX variable, refer to
the *Tivoli Information Management for z/OS Terminal Simulator Guide and Reference*.

Additionally, an HLAPI extension TSX BLGTSPCH is provided if you use high-level API
applications with Tivoli Information Management for z/OS and need to know what character
to use for the "not sign" or the "or bar. For more information about this HLAPI extension,
refer to the *Tivoli Information Management for z/OS Application Program Interface Guide*.

Sorting with an External Sort Routine

With Tivoli Information Management for z/OS, you can sort search results lists with the sort
routine that you specify in your session-parameters member. You specify this external sort
routine by specifying a value in the Sort load module field and YES in the Use for Search
Results Lists? field when you define a session-parameters member using the Installation
Tailoring Facility. See "Using the Installation Tailoring Facility" on page 185 for information
on using the Installation Tailoring Facility. You can also specify an external sort routine by
specifying values in the SORT and EXTSORT parameters of the BLGPARMS macro. See
"BLGPARMS Macro — Defining Tivoli Information Management for z/OS's Operating
Characteristics" on page 318 for more information on the BLGPARMS macro.

Note: Using this external sort routine for sorting list data and searching the search results
list is not as efficient as using the Tivoli Information Management for z/OS internal
sort routine. Consider specifying an external sort routine only if you find that the
Tivoli Information Management for z/OS internal sort routines do not sort the list
data and search results list in the right order for your language.

Date and Time-of-Day Formats

The *internal* date format used by Tivoli Information Management for z/OS is
YYYY/MM/DD.
Tivoli Information Management for z/OS also provides various external date formats to suit preferences for many regions of the world. A description of date formats is provided in "Enabling Alternative Date and Time-of-Day Formats" on page 227. The external date formats provided by Tivoli Information Management for z/OS can help to eliminate the need to write your own external date routine to support special date format requirements. Users sharing a single database can each select a preferred format from a list of supported formats by making a selection in their user profile. If users want to use a format that is not provided, you can write your own external date conversion routine; however, this is not recommended unless absolutely necessary because it usually degrades performance slightly and also requires that all users sharing a session member use the same external date format.

Tivoli Information Management for z/OS ships product panels that support any of the product-supplied date formats. To support all of the product-supplied formats, your customized panels must follow these rules:

1. All entry and display fields for date values on data-entry and table panels must be at least 10 characters wide (the longest product-supplied date format is 10 characters).
2. The validation patterns on data attribute records and assisted-entry panels for date fields must allow any of the formats. The product panels use a pattern of IIV63, which will support all of the product-supplied formats, plus any valid user-defined format. It is recommended that you use a validation pattern of IIV63. You can use IIV9, which will support any of the current product-supplied formats, but you may need to change this pattern later if you want to write you own format or if subsequent releases of Tivoli Information Management for z/OS support longer formats.

If you choose to use panels that do not support all of the product-supplied formats, you should make a copy of data attribute record BLG&DFMT and remove the formats that your panels cannot support. Then, modify data-entry panel BLG0P700 to use your modified attribute record. This action will prevent users from choosing a format that your panels cannot handle.

Note: Whether or not you use panels that support all of the product-supplied formats, it is suggested that you modify the text or help information for all assisted-entry panels so as to make them independent of any one date format. See the following panel BLG60CCD for an example.
A migration utility, BLGUT6M, is available to help you change panels containing date fields regardless of the external date format you use. For example, if your external date format is DDMMMYY (e.g., 30NOV00) and you would like to change it to DDDMMYYYY for your panels, you can use this migration utility to expand all the date fields on your panels. Or, if you have customized the Tivoli Information Management for z/OS product panels, you can use BLGUT6M to make the changes to your copy of the panels. You can use this migration utility to expand date fields to 10 characters, if necessary, and change validation patterns on your panels.

If you do not want to use the available Tivoli Information Management for z/OS date or time-of-day formats, you can use your own user exit routine to select another date or time-of-day format.

For more information on using date formats, see "Enabling Date Formats" on page 228. For more information on using an alternate time-of-day format, see "Enabling an Alternate Time-of-Day Format" on page 245.

Universal Time Support

If your company has locations that are spread geographically, such as in different countries or time zones, you can enable universal time processing in Tivoli Information Management for z/OS. The support for universal time (also known as Greenwich Mean Time) enables users at different locations to enter and view dates and times in records in their own time zone. This option eliminates the need for users to remember that a certain company location is "ahead" or "behind" their own location by a certain number of hours when reviewing records in the database. For example, a user in Boston can view a problem record and the dates and times in the record reflect Boston time, while a user in Frankfurt can view the same record with the dates and times reflecting Frankfurt time.

To enable universal time processing, the TIMEZONE keyword must be specified on the BLGPARMS macro in the session member. In addition, date and time fields must be defined...
Universal Time Support

As related pairs so that they have a relationship to one another. This relationship between date and time is important if you want users to see the data in their own local time.

A set of time zone definitions is provided in a TIMEZONE record with Tivoli Information Management for z/OS. These time zone definitions cover many geographic locations around the world. You can modify these definitions, if necessary, or create your own. In addition, you can define the rules you would like to use for daylight savings time. Users can also specify in what time zone they would like to enter and view times on panels by specifying a user and database default option.

For more information about enabling universal time processing, see "Implementing Universal Time Processing" on page 251.

Enhanced Panel Style

The enhanced panel style provides a graphically oriented method of selecting Tivoli Information Management for z/OS functions. To make Tivoli Information Management for z/OS more familiar to users of CUA® compliant interfaces, the enhanced panels can appear with an action bar at the top, pull-down menus, and context-specific function keys. These Tivoli Information Management for z/OS user interface controls provide a user the opportunity to perform an action by moving the cursor to the desired selection and pressing Enter. It is recommended that you select the enhanced panel style if you plan to enable the Tivoli Information Management for z/OS graphical user interface that is available through ISPF (see "Graphical User Interface (GUI)" on page 53).

An enhanced panel on a display with more than 26 lines and with the function keys showing appears similar to Figure 2 on page 51.
If your screen displays fewer than 26 lines, the enhanced panel is similar to Figure 3 on page 52. The MORE: + designation at the end of the line separating the action bar from the rest of the panel means that the panel has more lines than appear on your screen. The + indicates that you must scroll down to see the hidden lines.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Dialog</th>
<th>Record</th>
<th>Window</th>
<th>ISPF</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>--- PRIMARY OPTIONS MENU ---</td>
<td>APPLICATION: MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPTIONS:

1. OVERVIEW.......Display general information and product enhancements.
2. PROFILE........Display or alter invocation or session defaults.
3. APPLICATION....Change application, list available applications.
4. CLASS............Change current class, list available classes.
5. ENTRY............Create a record.
6. INQUIRY.........Search for records.
7. UTILITY.........Copy, display, print, delete, and update records.
8. GLOSSARY.......Display a list of searchable words in the database.
9. PMF.............Modify or create panels.

Select an option, enter a command, or type QUIT to exit.

Tivoli Information Management for z/OS Version 7 Release 1

Figure 2. Tivoli Information Management for z/OS Primary Options Menu with 27 Lines

If your screen displays fewer than 26 lines, the enhanced panel is similar to Figure 3 on page 52. The MORE: + designation at the end of the line separating the action bar from the rest of the panel means that the panel has more lines than appear on your screen. The + indicates that you must scroll down to see the hidden lines.
After scrolling down to see the hidden lines, the MORE: + notation changes to MORE: - (see Figure 4). This still means the panel has more lines that do not appear on your screen. The - indicates that you must scroll up to see the hidden lines.

Figure 3. Tivoli Information Management for z/OS Primary Options Menu with 24 Lines

Figure 4. Tivoli Information Management for z/OS Primary Options Menu after Scrolling
To select a panel style, see “Selecting the Tivoli Information Management for z/OS Panel Style” on page 199. For information on tailoring the enhanced panel style panels, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference. The Tivoli Information Management for z/OS User’s Guide and the Tivoli Information Management for z/OS Program Administration Guide and Reference contain additional information on the enhanced panel style panels.

Graphical User Interface (GUI)

ISPF enables you to display Tivoli Information Management for z/OS panels in a workstation window. ISPF uses TCP/IP or APPC protocols to present ISPF panels in a remote graphical workstation environment. Tivoli Information Management for z/OS users reap the benefits of graphical windows without having to learn a new application. ISPF automatically transforms the Tivoli Information Management for z/OS panels into graphical form; no panel translation or rewriting is required. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for information about using the ISPF GUI.

Figure 5 shows the Tivoli Information Management for z/OS Primary Options Menu displayed using the Tivoli Information Management for z/OS enhanced panel style in GUI mode.
Graphical user interface controls, such as sizable, movable, and scrollable windows, push button function keys, action bars, and pull-down menus, are automatically available when the user runs in ISPF’s graphical user interface (GUI) mode. Push buttons, mnemonic choice selections, accelerator keys, unavailable pull-down choices, and separator bars are also available. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for more information about the ISPF GUI mode. See "Installing the Graphical User Interface" on page 200 for information on installing GUI.

Note: It is recommended that you select the Tivoli Information Management for z/OS enhanced panel style if you decide to run Tivoli Information Management for z/OS in GUI mode.

The Notification Management Facility

With the Notification Management facility of Tivoli Information Management for z/OS, you can be notified whenever a record is changed. Notification processing can be done through the use of TSPs, as with previous releases of Tivoli Information Management for z/OS, or with terminal simulator EXECs (TSXs), which provide similar but enhanced capabilities.
Using TSXs, you can send electronic mail (e-mail) messages to your users whenever any record is created or updated, regardless of whether the record was created interactively by a user or through an API.

You can send mail messages through MVS TCP/IP simple mail transfer protocol (SMTP) from a TSX running in a user’s address space, or you can queue the mail to the BLX-SP, where it can be extracted and sent at a later time. Mail sent through the TCP/IP SMTP can be routed to a workstation e-mail software package, such as Lotus® Notes™, through gateway software that links the product with SMTP mail.

A new set of TSXs is provided with Tivoli Information Management for z/OS Version 7.1 for you to use or customize. These sample TSXs are provided for notification of problem, change, change activity, and Integration Facility problem and change records. You can modify the TSXs that come with Tivoli Information Management for z/OS to invoke mail processing on your system.

Using the new set of TSXs, you can send e-mail messages immediately or place them on a queue. You can also send escalation notices. Advantages of this new method of notification over former methods include the ability to use an SMTP server on a platform other than MVS, increased flexibility in processing messages, support for both “hot” queues and normal queues, and greater ease of defining message content.

Tivoli Information Management for z/OS is shipped with the Notification Management facility partially disabled. You must decide whether you want to enable or totally disable this facility for problem, change, and activity records. You must either enable or totally disable this facility during installation, regardless of whether you elect to use TSPs or TSXs for notification processing. Refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](#) for further details.

The Panel Modification Facility (PMF)

The Panel Modification Facility (PMF) enables you to tailor panels to meet the needs of your organization. You can use PMF to improve the performance of the system and consequently the productivity of your end users. Consider the following:

Panel Consolidation

You can use PMF to consolidate groups of Tivoli Information Management for z/OS panels into unique organization-tailored panels. Thus, by satisfying your requirements through consolidation, end users’ productivity is improved. This can result in generating a higher system workload for each end user.

Mixed Case Support

If you need to collect, store, or display data in mixed case, you can use PMF to specify whether or not data entered by users should match a validation pattern, how the data should be collected or stored in the SDDS, and whether or not the data is recognized in mixed case (stored in the SDIDS) for searching.

Selective Indexing

You can also use PMF to reduce the number of fields of a record that are cognized during a file/update operation. Refer to the [Tivoli Information Management for z/OS Panel Modification Facility Guide](#) for further details. Fields that you do not want searchable need not be cognized, thereby reducing the EXCP activity to the SDIDS during a file, update, or delete operation. The reduction in SDIDS I/O activity can result in improved response time.
Optional S-Word Cognizing
When you collect both s-word and p-word data, cognizing s-words is optional. This enables you to eliminate unnecessary input/output (I/O) to your SDIDS, resulting in shorter response times, especially when filing new or changed records and copying or deleting records. Eliminating unnecessary s-word cognizing also makes your SDIDS smaller and improves the effectiveness of VSAM buffering. For more information on optional s-word cognizing, refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide.

Automatic Panel Migration
When you use PMF, panels are automatically migrated from previous versions to this version. Assisted-entry panels now contain a Data type field. This field enables you to specify whether the data-entry fields accept SBCS, DBCS, or mixed data. The Data type field is displayed on the Assisted-Entry Summary Panel (BLM8CU53) and can be specified on the Response Processing panel (BLM8CU5D).

Installing PMF does not require any special tasks or selections. For more information about PMF, refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide.
This chapter discusses performance considerations for Tivoli Information Management for z/OS. It provides:
- An introduction to performance in Tivoli Information Management for z/OS
- An overview of recent performance changes
- A summary of important performance recommendations

This chapter assumes that you have a general knowledge of:
- The z/OS system environment
- VSAM resources
- Tivoli Information Management for z/OS functional capabilities

This chapter is designed to:
- Help you plan a system environment that will optimize Tivoli Information Management for z/OS performance
- Familiarize you with the types of system resources that Tivoli Information Management for z/OS requires to maintain optimal performance

Note: Estimates and measurements provided in this chapter do not predict the performance of your system.

An Overview of Tivoli Information Management for z/OS Performance

As with any application, resources are used by Tivoli Information Management for z/OS to accomplish a task. This section introduces the key resources and discusses the performance ramifications of each related to interactive workloads in the Tivoli Information Management for z/OS product. The key resources are I/O time, processor, and memory.

I/O Time

Three types of VSAM data sets can have significant I/O processing performed on them during an interactive workload: the SDIDS, the SDDS, and one or more read panel data sets. Your goal in setting up your Tivoli Information Management for z/OS system for the best performance is to reduce or speed up the I/O to these data sets.

SDDS and SDIDS I/O by Type of Transaction

The SDDS and the SDIDS are usually the most important sources of I/O delays. These two data sets contain the data (problem, change, configuration) you are managing. The SDDS actually contains the information, and the SDIDS contains an inverted index pointing to all the cognized data in the SDDS.
Table 2 shows the approximate number of GETs and PUTs required for each of these data sets for several sample types of transactions. Of course, as your workload varies, the pattern of I/O required to these data sets changes. Normally, for interactive mixes, the SDIDS is the busier data set. The SDDS values in the table are for a 7-byte key. An 8-byte key produces higher counts for the SDDS, but in most cases, the net activity for the SDDS in a mixed workload does not exceed the activity of the SDIDS.

<table>
<thead>
<tr>
<th>Transaction Type</th>
<th>SDDS Gets</th>
<th>SDDS Puts</th>
<th>SDIDS Gets</th>
<th>SDIDS Puts</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE (SMALL)</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CREATE (LARGE)</td>
<td>5</td>
<td>5</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>UPDATE (SMALL)</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>UPDATE (LARGE)</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>SEARCH (SIMPLE)</td>
<td>See Note</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEARCH (RANGE)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEARCH (SORTED)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEARCH (API)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>REPORT (SORTED)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Estimated SDDS and SDIDS GETs and PUTs

Overview of Performance

Table 2 Estimated SDDS and SDIDS GETs and PUTs

<table>
<thead>
<tr>
<th>Transaction Type</th>
<th>SDDS Gets</th>
<th>SDDS Puts</th>
<th>SDIDS Gets</th>
<th>SDIDS Puts</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE (SMALL)</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CREATE (LARGE)</td>
<td>5</td>
<td>5</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>UPDATE (SMALL)</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>UPDATE (LARGE)</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>SEARCH (SIMPLE)</td>
<td>See Note</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEARCH (RANGE)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEARCH (SORTED)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEARCH (API)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>REPORT (SORTED)</td>
<td>See Note</td>
<td>0</td>
<td>See Note</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Must read a full screen of SDDS search results - usually 14 to 44 records, but it depends on screen size.

Must read a full screen of SDDS search results, and must read each cognized item within range from the SDIDS. See LINECNT parameter description, page 323, for more information.

Same as for simple or range searches, plus must read all of the SDDS search results or up to all of the SDIDS sort range. See SORTPFX parameter description, page 323, for more information.

Same as for simple, range, or sorted searches except that, before Information/Management Version 6.1, must read all of the SDDS search results (not just the displayed ones). Now, an option exists to limit search result reads from API search results list.

SDIDS same as simple or range searches; must also read all the SDDS search results twice (once for sorting and once for inclusion in the report).
Table 2. Estimated SDDS and SDIDS GETs and PUTs (continued)

<table>
<thead>
<tr>
<th>Transaction Type</th>
<th>SDDS Gets</th>
<th>SDDS Puts</th>
<th>SDIDS Gets</th>
<th>SDIDS Puts</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCROLL</td>
<td>See Note</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Normally includes one screen of records; see LINECNT parameter description, page 323 for more information.</td>
</tr>
<tr>
<td>DISPLAY (RNID)</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DISPLAY (search results list)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SDDS and SDIDS I/O Demand by Data Set Component

Most workloads tend to cause a lot of activity to the SDIDS. Workloads that are predominantly changes to the database can cause nearly as many PUTs as they cause GETs to the SDIDS. Because most workloads consist of a large percentage of transactions that do not change the database, they tend to cause many more reads than writes to the SDIDS.

Activity to the SDDS usually consists of many more reads than writes. Usually the SDIDS is busier than the SDDS. However, in organizations that have numerous sorted searches or reports, the SDDS can be the busier data set.

The SDDS and SDIDS are both VSAM key-sequenced data sets, so they each have a data component and an index component. This is important because substantial numbers of physical DASD reads can be avoided by optimizing VSAM buffers.

SDDS records tend to be relatively large; they probably average between 3000 and 4000 bytes each, but can in some cases be much larger. Most SDIDS records are very small (many are less than 50 bytes), but a few of the SDIDS records become very large for databases containing many SDDS records. The number of (and time required for) the reads and writes of the SDDS and SDIDS records is perhaps the most important performance factor for Tivoli Information Management for z/OS.

It generally takes longer to write or read larger control intervals to and from DASD (rather than cache or DASD fast write). Some transfer delay is associated with large control intervals. Smaller control intervals take less I/O time and any delays in doing GETs or PUTs are typically seek or rotational in nature. Faster I/O time is achieved by reading control intervals from cache, where delays are mostly related to transfer. The same holds true when writing control intervals to DASD (DASD fast write). The I/O time for GETs and PUTs is decreased further when reading control intervals from LSR buffers, where there are no delays and only CPU time is involved.

In a sysplex, where VSAM record-level sharing (RLS) is the method of access, the cache consists of whole control intervals. RLS caching occurs in the SMVSAM dataspace and in coupling facility (CF) cache structures. RLS caching provides advantages similar to the use of LSR buffer pools, and it offers the additional advantage of sharing data sets across BLX-SPs in one or more systems.

Avoiding physical I/O is important, and the best way to avoid I/O delay is to not cause the I/O. You have some control over how many I/Os your Tivoli Information Management for z/OS transactions cause. Of course, some I/O is necessary, so the next best thing is to make...
it faster. You can do this by applying cache, DASD fast write (DFW), and, in a non-sysplex environment, LSR buffering to your data sets to your best advantage.

Figure 6 on page 61 graphs a typical pattern of I/O for the SDDS and the SDIDS. The graph shows the number of GETs or PUTs that are required for the data components of the data sets, and it shows the approximate amount of physical I/O that would be required to the index components under NSR processing.

Caching reduces the amount of actual I/O needed to satisfy GET and PUT requests. For example:

- By using an LSR buffer pool sufficient to contain the entire index component, you eliminate most of the physical I/O because most of the I/O is reads rather than writes.
- By using an LSR buffer pool that can contain many of the control intervals (CIs) in the SDIDS data component, you can eliminate a large percentage of the physical reads. Because the SDIDS is normally the first resource to saturate, reducing its utilization not only reduces response times, but it increases maximum throughput.
- Using an LSR buffer pool that contains a small number of SDDS CIs generally provides good performance. When a record is read from the SDDS, it is typically retrieved more than once while it is still in the buffer. For example, when you perform a search, the search results list is built by reading records from the SDDS. When you update one or more of the records in the search results list, the records are apt to still be in the buffer because they were so recently read.
- Using cache can cut the I/O time of some reads that are not satisfied in the LSR buffer pool.
- DFW can cut the I/O time for many writes.

In general, these recommendations also apply if you are using RLS because your goal is the same—to buffer some amount of data to achieve good performance. If you are using RLS, however, the setup is less granular. You can set up one or several large cache structures in the coupling facility instead of individual buffer pools. Follow the recommendations in the DFSMS/MVS DFSMSdfp Storage Administration Reference to determine the total size of your coupling facility cache structures. The cache structures should be equal to or larger than the total size of all your LSR buffer pools.
Spanning Records

The use of VSAM spanned records for any VSAM data set used by Tivoli Information Management for z/OS is not supported, regardless of the environment (sysplex or not). Only the 18- and 34-byte SDIDS key lengths are provided. Tivoli Information Management for z/OS creates only nonspanned records through use of the 18- or 34-byte SDIDS keys. The 16- and 32-byte keys which previously could be used with spanned records are no longer available. You may be using spanned SDIDS clusters if you are currently using a release of the Tivoli Information Management for z/OS product that existed before TME 10 Information/Management Version 1.1. If your SDIDS cluster is defined as spanned, you must remove the SPANNED keyword definition from your data sets by redefining them with the AMS (IDCAMS) DEFINE CLUSTER command. The DEFINE CLUSTER command is described in “Understanding the AMS DEFINE CLUSTER Command Syntax Description” on page 278.

Sorting Search Results Lists

If desired, the database can be kept in system-assigned record number identifier (RNID) order. Keeping the database in RNID order may reduce or eliminate the need for users to perform sorting of search results lists by RNID. By reducing the need for sorting, you can also reduce the number of I/O transactions with the SDIDS. Refer to the description of the BLGUT9 utility in the Tivoli Information Management for z/OS Operation and Maintenance Reference for more information on setting up your database to keep records in system-assigned RNID order.
Sorting search results lists or reports can significantly change the SDDS and SDIDS I/O patterns. Sorting can be performed in several different ways in Tivoli Information Management for z/OS.

Reports

Reports are sorted by an external sort routine that you specify. The sort is performed by reading each SDDS record in the report, extracting the sort field data, and building a sorted table. The records are then read from the SDDS (based on the sorted table) and the report is constructed. Because sorting doubles the number of SDDS records read, sorting can significantly increase the activity of the SDDS depending on the number (and size) of the reports you submit.

Search Results Lists

Search results lists can be sorted either internally within Tivoli Information Management for z/OS or with the external sort routine that you use to sort reports. For more information on using an external sort routine with search results lists, see "Sorting with an External Sort Routine" on page 47. If you do not specify that you want to sort with an external sort routine, the following methods are used for sorting the search results lists:

- Search results lists with fewer records than defined in the SORTPFX n3 parameter of your BLGPARMS macro are sorted very much like reports. (See "BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics" on page 318 for information about the BLGPARMS macro and its parameters.) However, they are sorted internally by Tivoli Information Management for z/OS. If you perform many searches that result in large search results lists (but fewer than identified in SORTPFX n3, which defaults to 500), a significant number of SDDS reads may be required and can alter the typical pattern shown in Figure 6 on page 61.

- Search results lists with more records than defined in the SORTPFX n3 parameter of your BLGPARMS macro are sorted internally by Tivoli Information Management for z/OS by using the SDIDS. (See "BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics" on page 318 for information about the BLGPARMS macro and its parameters.) Actual sorting is not performed; the sort range in the SDIDS is read to identify the matching SDDS records. The required SDDS records are then read in sorted order and put in the search results list. If only a few thousand SDIDS reads are required, this method of sorting can be very efficient. However, if more than a few thousand reads are required, performance can be adversely impacted. See "Performance Recommendations" on page 70 for ways to avoid large range sorts. It is important for you to consider how you can avoid or minimize the impact of sorting large search results lists.

If you do need to sort search results list, be sure to read "Performance Recommendations" on page 70. Consider limiting search processing using SORTPFX parameters to end the sorting of a search results list, if it has more than a certain number of matches. Implementing training or procedural guidelines on how to limit the search criteria can help speed up sorting and prevent high read activity to the SDDS.

Panel Data Sets

The panel data sets are usually easy to keep from becoming a source of significant delays. When a user enters a transaction in Tivoli Information Management for z/OS, panels are required for control, flow, and display. These panels reside in read panel data sets and are read as follows:
In a non-sysplex environment, the panels needed are read by the BLX-SP during normal interactive workloads and presented to the user. Because the panels themselves are not usually changed, they are accessed in read mode. When panels are accessed this way, they require a shared enqueue on the read panel data set.

In a sysplex environment, the panels are read directly by the user. VSAM RLS gets a shared lock on an individual record when doing a read, so an enqueue is not required.

Regardless, multiple users can proceed simultaneously using the same panels, limited only by your DASD configuration.

Tivoli Information Management for z/OS also has special user buffers to store the most frequently used panels for each user, so when a panel is needed, it can be obtained without I/O. The default number of panel buffers is 50, but the actual number for each user can be changed in the session-parameters member (see description of the PNLBCNT keyword, page 327). Users who do several different types of things, but who tend to repeat those activities can benefit from additional panel buffers.

If you have sufficient panel buffers for your users, then panel I/O should not be a serious problem. You can verify that this is true by monitoring the activity to the panel data sets using measurement tools such as RMF™ or by using the Access Method Services (AMS) LISTCAT command. You can apply other techniques to supplement the benefits of the user panel buffers. For example, in a non-sysplex environment you can use larger VSAM LSR buffer pools, a controller cache, and combine data sets to reduce the overhead of concatenated data sets. In a sysplex, when sysplex mode is enabled, it is possible to use dedicated and/or larger RLS cache structures in the coupling facility. Either situation may help, but the user panel buffer is your first line of defense against panel read activity.

Putting TSPs and commonly used message panels into a separate panel data set, and placing this TSP/message panel data set as the first panel data set in the RPANELS concatenation, can improve performance. In a non-sysplex environment especially, performance can be improved if the panel data set has its own unique LSR buffer pool with enough LSR buffers to contain the entire data set. When running in sysplex mode, performance can be improved if the panel data set has a dedicated RLS cache structure for the sysplex.

Tivoli Information Management for z/OS produces a message in the BLX-SP log of the panel activity for each user that QUITs out of Tivoli Information Management for z/OS. The message shows how many panels were needed by each user and how many panels were obtained from the user panel buffers without having to make the call to VSAM. The record includes the number of buffers allocated for each user and the maximum number used. This information helps you tailor your user panel buffer sizes.

The Processor

Normally, the amount of processor power is not the most significant factor in Tivoli Information Management for z/OS performance. For example, a representative mix of interactive transactions may require only about 30 percent of an otherwise empty processor, even when the SDIDS is saturated because of enqueue delays. Tivoli Information Management for z/OS (without sysplex data sharing) can run more than double that workload (with sufficient VSAM buffering) before the processor approaches saturation. Of course, if the availability of that processor is reduced by other work, then performance is affected earlier.
On a larger processor, with an average Tivoli Information Management for z/OS workload, more processor power is available than Tivoli Information Management for z/OS can use by itself, even when the SDIDS enqueues are totally saturated. For example, the processor may be utilized only 20 percent (or more if you are using cache and DFW) even with SDIDS saturation. This leaves up to 80 percent of that processor available for other work before the processor becomes a serious bottleneck. However, even with a large or dedicated processor, the processor utilization can be much higher if the environment consists of hundreds of users and significantly large databases. A heavy use environment can include 1000 or more users of the system at any given time.

In a sysplex environment with sysplex mode enabled, even higher throughput and processor usage is possible because enqueue delays are reduced.

Of course, no matter what the power of the processor, if most of the processor is normally busy, then the processor can be the most critical resource for any application, including Tivoli Information Management for z/OS. In such a case, you can help your Tivoli Information Management for z/OS users access the processor resource by assigning them a higher priority. This action may not seriously impact lower priority users because, in most cases, Tivoli Information Management for z/OS uses the processor frequently but does not use it for long. Typically, Tivoli Information Management for z/OS uses only a small amount of the processor to initiate I/O, and then the processor is interrupted for the I/O to occur, thus freeing the processor for lower priority classes.

Estimating Processor Requirements

You can estimate the Tivoli Information Management for z/OS processor requirements for a non-DBCS, interactive workload in a sysplex or non-sysplex environment. In general, based on the sample measurements specified in Table 3 on page 65, for the workload specified, Tivoli Information Management for z/OS uses about 0.3 to 0.6 processor seconds per significant transaction assuming a single processor. This number represents total processor time. This number also includes the cost of related trivial transactions that do not access the SDDS or SDIDS. This number is not valid for very small Tivoli Information Management for z/OS workloads where the latent MVS overhead is much larger than the cost of the actual work.

To estimate the processor cost per significant transaction for a projected workload:

1. Choose a starting number between 0.3 and 0.6; use the lower number for busy workloads and the higher number for medium workloads.

2. Adjust your starting number for the relative power of the processor that you are using. If the processor is extremely powerful, the starting number is most likely lower.

3. Adjust the number again after considering how much your workload differs (in SDDS and SDIDS I/O content) from the measured workload.

4. Consider whether your workload contains relatively more or fewer trivial transactions than the measured workload. Lower the estimated cost a little if you use fewer trivial transactions per significant transaction, and increase it a little if you use more. About 25 percent of the measured workload are significant transactions.

After you estimate your processor cost per significant transaction, you can estimate the processor utilization for your workload by multiplying the cost per significant transaction by the projected throughput in significant transactions per minute and dividing by 60. If you have n processors, you have up to n x 100 percent of processor power available.
Table 3. Sample Measurements Data

| Hardware | Small processor (VM first-level machine)
| Two second-level MVS systems with one processor and one
| second-level MVS system with one processor, using shared DASD |
| Software | MVS |
| Primary Users | 20 - 30 TSO users |
| Transactions | 75% trivial (panel changes during data collection, construction of
| search transactions, other panel flow activities resulting from INIT
| or BACK commands or pressing Enter or PF3)
| 25% nontrivial (read/writes to the SDDS or SDIDS, such as filing
| new or updated problem records, searches, scrolling, displaying
| RNID, displaying from search results list) |
| Conditions | No sorting, notification/escalation used, no SDLDS, no nonstandard
| user exits, no TSPs or SRCs, no batch reports or utilities run, no
| multisystem data set sharing or DBCS |
| SDIDS contents | About 32 000 logical records |
| Remote client workloads | OS/2 workstations with simple C program transactions and a
| Remote Environment Server (RES) |

Memory

If you are migrating from Information/Management Version 4, bear in mind that additional storage is required to support the BLX-SP. Unless memory is your most precious resource, you can probably use that saved memory (and more) in a non-sysplex environment on relatively large LSR buffer pools.

When sysplex support is enabled, the storage required to support the BLX-SP will be less than in a non-sysplex environment. In a sysplex, there are no LSR buffers and less cross-memory storage is required for users.

Using the Tivoli Information Management for z/OS APIs from MVS requires a Tivoli Information Management for z/OS user address space. If the Multiclient Remote Environment Server (MRES) is used, you do not need to have a separate user address space for each client connection. A single address space can receive and process transactions from multiple Tivoli Information Management for z/OS clients concurrently.

If you are using RES instead of MRES, each RES is started by APPC in a separate address space. The Tivoli Information Management for z/OS APIs from each HLAPI client environment start at least one APPC subtask. The clients that support APPC are the OS/2, Windows NT, AIX, and CICS clients.

Some amount of paging and swapping is normal for systems that serve a large number of users. The impact on your system performance from this activity is usually not severe. The few more I/Os per transaction for paging and swapping are not usually a significant increase to the I/O that is required without paging and swapping. See [Performance Recommendations](#) on page 70 for advice on limiting storage use.

Other Performance Factors

The following section discusses other important performance factors you should consider.
Cognize Enqueue Prioritization (COGENQ) – Non-Sysplex

COGENQ is a parameter used in a non-sysplex environment that provides major performance benefits for file response times in busy situations. It is especially helpful in avoiding some of the performance delays related to global resource sharing with multiple-system data sets.

The COGENQ is not needed if you are running Tivoli Information Management for z/OS in a sysplex with sysplex mode enabled; it is ignored if specified in a sysplex environment. In a sysplex, individual records are serialized rather than the entire data set.

The COGENQ keyword parameter enables you to specify in the session-parameters member the number of fields to be cognized when filing a record while holding an enqueue. With the COGENQ parameter, you can prioritize your transactions by type and by user.

When a record is filed, the SDIDS is accessed many times: from 10 to 100 times for update transactions and 50 to 200 times for create, copy, and delete transactions. In an earlier version of Information/Management (Version 5.1), a file transaction held an exclusive enqueue on the SDIDS while each field was processed. This meant that a create transaction might require 50 to 200 SDIDS enqueue opportunities to complete processing.

With the COGENQ parameter, you can hold the enqueue while a file transaction cognizes multiple SDIDS fields. This is beneficial for users, such as help desk operators, who must process transactions quickly. For example, if a create transaction needs to cognize 100 fields in a record and COGENQ is set to 10, it would only require 10 enqueue opportunities instead of the 100 required without the COGENQ parameter. During busy periods, this enhancement gives this create transaction a powerful advantage over other transactions. Other users who occasionally file a record do not need this prioritization. For example, it may not matter that an API that is updating or deleting large blocks of records has a longer response time. The COGENQ parameter gives users the ability to control the SDIDS update speed on a session-parameters member basis.

With COGENQ set to 0, a file transaction holds the enqueue for the duration of all cognize and uncognize activity. Any file activity conducted had maximum priority, but at the expense of competing users. With COGENQ set to 1, a file transaction processes as it did with Information/Management Version 5.1, releasing the enqueue after one field is cognized. This provides maximum interleaving and is ideal for batch processing because of the low priority.

With COGENQ set to n, the priority of the file activity increases as the value of n increases. However, values greater than 50 are essentially equivalent to a setting of 0. With COGENQ set to the default value of 10, most of the interleaving benefits are preserved, even if all users stay at the default, and file transactions are prioritized without a serious delay to other transactions.

The net effect on response times varies with workload and volume. During light loads, increasing the value of COGENQ for some users does not make much difference in performance. It is only in situations where enqueue contention is an important part of the response time that COGENQ values other than 1 help. However, setting COGENQ to 0 or a number larger than 1 can dramatically shorten the response time for the file transactions in situations where the SDIDS enqueue is very busy and the workload includes a mixture of transaction types (some short and some long).
You must manage the priorities, using COGENQ (and SRCHLIMIT), to your organization’s best advantage. As a general rule, a SRCHLIMIT value of 100 and a COGENQ value of 10 (the default) work well. You can then modify values for specific users to change their relative priorities for file transactions. Special rules apply if you are sharing data sets (see "Performance Recommendations" on page 70).

Multiple-Cluster SDDS

Tivoli Information Management for z/OS enables the SDDS for a single Tivoli Information Management for z/OS format database to optionally consist of 1 to 100 VSAM clusters.

Another benefit to using a multiple-cluster SDDS is that, while the multiple clusters are treated as a single logical SDDS, they can cut I/O contention for access in either a sysplex or non-sysplex environment, especially if the multiple clusters reside on different DASD.

Usually, because the SDDS is not as busy as the SDIDS, this does not result in a large reduction in response times. In some workloads (for example, a very high percentage of searches, scrolls, or reports compared to creates and updates), the SDDS is the most active data set. In these cases, the reduction in response time can be significant, and maximum throughput can be improved. Whether it significantly improves your performance depends on your particular workload.

Multiple-Cluster SDIDS

Like the SDDS, the SDIDS, which contains an index to the records stored in the SDDS, can consist of 1 to 100 VSAM clusters. The primary benefit of using a multiple-cluster SDIDS is that you can divide your records based on index key contents (for instance, you can separate s-words from p-words). In a non-sysplex environment, you can reduce the amount of data that is locked when the SDIDS is accessed, since the clusters can be accessed in parallel. When sysplex mode is enabled, however, enqueue contention is not an issue because RLS gets a shared lock on an individual record (rather than an entire data set) when doing a read. A multiple-cluster SDIDS can be useful to help improve your overall database performance, especially if you store significant amounts of searchable data.

For information on setting up a multiple-cluster SDIDS, see “Working with SDIDSs” on page 176.

Multiple BLX-SP Support

You can have more than one BLX-SP on a single z/OS system. This can be convenient for organizational or migration reasons. Unless you are migrating from a previous release of the product, or you have very unusual needs, you should not need to have more than one BLX-SP on the same processor. A single BLX-SP can support over 1500 users and hundreds of databases. Therefore, it is generally better to have one BLX-SP with a large region size than several smaller (region size) BLX-SPs.

Performance should not be an issue if multiple BLX-SPs share access to the same Tivoli Information Management for z/OS data sets through sysplex data sharing. In previous releases of the product, the sharing of data sets through Multisystem Database Access could have had a significant negative impact to performance. With sysplex data sharing, there will most likely be no noticeable performance impact if BLX-SPs on the same or different systems share data sets. The need to share data sets between BLX-SPs on the same system is usually unnecessary, however, because a single BLX-SP can support many users and databases.
Sysplex Data Sharing

Before Tivoli Information Management for z/OS Version 7.1, users on different systems could share access to a Tivoli Information Management for z/OS database through a feature called Multisystem Database Access (MSDA). Currently, data sharing is supported only through use of a parallel sysplex. The MSDA feature is no longer supported.

Tivoli Information Management for z/OS not only provides the capability for multiple BLX-SPs, it also enables those BLX-SPs to share access to common Tivoli Information Management for z/OS data sets. Data sharing is supported as long as all sharing BLX-SPs are on z/OS systems running in the same parallel sysplex, and Tivoli Information Management for z/OS is running with sysplex support activated. If you decide to use sysplex data sharing, be sure to read “Setting Up for Sysplex Data Sharing” on page 151.

Factors that can influence the performance during sharing include:

- The number of changes that a transaction makes to VSAM data sets. Transactions that file new records, update records, copy records, or delete records are normal sources of high VSAM change rates. Transactions of these types may individually take a long time if they do an unusually large number of changes. In a non-sysplex environment, if a workload has an unusually high percentage of these transaction types (even if individually they are small changes), the net impact can overutilize the SDIDS enqueue, and thus affect performance of all users. Use the COGENQ parameter in this situation to help reduce the number of SDIDS enqueues. In a sysplex, the SDIDS enqueue contention problem does not exist, so there is no need to use the COGENQ parameter.

- The number of reads for some transactions. Large reports, some sorting of search results lists, and large API searches are all examples of things that can cause very large numbers of reads.

- The number of sharing systems (or LPARs) in the global network.

- In a GRS ring, the settings of global resource sharing parameters such as RESMIL and ACCELSYS. A GRS star can also provide better performance than a GRS ring.

- The number of RLS cache set and cache structures, and the size of those structures. Generally, performance is better if you have more cache structures and larger cache structures because more data can be cached.

SRCHLIMIT Function

The SRCHLIMIT parameter of the BLGCLUST macro enables you to define the enqueues (in a non-sysplex environment) and searching of the SDIDS. (This parameter, introduced in Information/Management Version 6.1, replaced the SRCHENQ parameter available in Information/Management Version 5.1.) This parameter enables users to specify how many SDIDS reads to do under each enqueue during range reads. Range reads of the SDIDS are necessary during search processing (including search portions of reports) when search arguments specify ranges of values either explicitly or with a period (.) or asterisk (*) character in the arguments. SRCHLIMIT prevents individual search transactions from dominating the SDIDS enqueue and locking out other users who needed the SDIDS for their transactions. It also releases the SDIDS enqueue during range reads of the SDIDS caused by sorts of search results lists that had more than SORTPFX N3 matches.

The following subparameters are available:
ENQUE specifies the number of records that a search or report can read from the SDIDS before the SDIDS is released to other users. This parameter replaces the SRCHENQ parameter and applies only to a non-sysplex environment. The enqueue parameter is ignored when sysplex mode is enabled because dataset enqueues are not needed.

SRCHWARN enables users to specify a number. If a search or sort requires range reads of the SDIDS and the number of reads required exceeds this number, then the user who submitted the search receives a warning that the search caused an excessive number of SDIDS range reads. The search or sort is not interrupted, but the user is informed at the completion of the transaction that the search or sort exceeded the warning limit for SDIDS reads. This can be an important new tool in helping to identify and avoid transactions that misuse search or sort arguments. The SRCHWARN parameter is used in either a sysplex or non-sysplex environment.

SRCHEND stops any search or sort that exceeds the specified number of SDIDS range reads. This provides an additional level of protection against misuse of search arguments or sort specifications that impair performance for everyone. The SRCHEND parameter is used in either a sysplex or non-sysplex environment.

Remote Client File Transactions
Remote client applications perform similar to host API transactions, but are associated with an increase in end user response time consistent with workstation communications and processing. The cost of the client platform and APPC or TCP/IP related portions of the transaction varies with the speed and availability of the machine running the client platform and with the host priorities and resources supporting APPC or TCP/IP.

However, based on measurements that were taken, it was found that these costs need not be great. On even a moderately powerful workstation processor, the increase may be very small for a workload that consists entirely of record creation transactions, even when the application is in the background rather than the foreground. Concurrent workloads in other tasks under client platforms may only moderately increase response time unless a completely processor-bound task is allowed in the foreground.

Search and retrieve transactions generally require additional processing time on the workstation because of their larger transmission and data handling requirements. Such transactions have longer response times with a remote client application than with a host API. Even though increases in response times occur from remote client applications, there may be no increase in resulting enqueue contention on the host.

Performance Enhancements
The following section briefly introduces recent changes and improvements that can influence performance in this version of Tivoli Information Management for z/OS. In most cases, the changes provide significant performance advantages, but some new features add additional workload or otherwise influence performance.

Support for Parallel Sysplex
If you run Tivoli Information Management for z/OS in a sysplex, you can take advantage of VSAM RLS. The use of RLS should significantly improve the performance of Tivoli Information Management for z/OS, especially if you are sharing databases (VSAM data sets). Because RLS enables a more precise lock on data in a data set (data is locked at the record level rather than as a data set enqueue), you can achieve a greater interleaving of user transactions with the
Performance Enhancements

database than if you used VSAM NSR/LSR. This locking granularity provides advantages in both shared and nonshared database environments. RLS also provides a common cache for the sysplex in the coupling facility, which provides a performance boost over the cross-system buffer invalidation used by Multisystem Database Access in previous releases of the product. For more information about planning for and installing Tivoli Information Management for z/OS in a sysplex, refer to "Setting Up for Sysplex Data Sharing" on page 151.

Performance Recommendations

The following items are provided as a quick check to help you verify that the most important performance factors are considered. Although individual situations may vary, the items that are usually the most important to performance are earlier in the list. These items are not fixed rules for all your Tivoli Information Management for z/OS implementations but are simply important things to consider when performance is important. A more detailed discussion of the performance aspects of many of these recommendations can be found earlier in this chapter.

General Recommendations

Regardless of how you run Tivoli Information Management for z/OS (sysplex or non-sysplex), note the following recommendations:

- **Use cache and DFW for the SDDS and the SDIDS if possible.** While these do not reduce the number of execute channel programs (EXCPs), they can sharply reduce the time it takes to complete them. Cache and DFW can be important ways to reduce enqueue contention.

- **Eliminate most of the physical I/O to your read panel data sets.** Tivoli Information Management for z/OS offers two ways to do this—user panel buffers and VSAM buffers.

 Note: The term VSAM buffers can mean either LSR buffers if you are running without sysplex support enabled, or RLS cache if you are running in a sysplex environment. The concepts related to caching of VSAM data are the same, however.

 The number of user panel buffers can now be specified in the session-parameters member. These buffers enable users to retain their most frequently accessed panels in compressed form in user storage. If the needed panel is in the buffer, then the user’s session does not have to request a panel from the VSAM buffer. If a user needs a panel that is not in the user panel buffers, then the user’s session must request a panel from VSAM. VSAM does not need to physically get the panel if it is already in the VSAM buffers. You can tune your panel buffers for the best balance for your situation. User buffers are faster and use less processor time but more storage. VSAM buffers use a little more processor time, but less storage, because all users can share them. The most important thing is to minimize the physical I/O for your panel data sets by one or both methods. The method you choose is mostly a function of whether storage or the processor is more important to your situation.

- **Eliminate any unnecessary cognizing.** You can use PMF to specify whether a field is cognized. Every actual content for every cognized field results in an SDIDS record which points to the related SDDS records. Whenever an SDDS record is created, updated, copied or deleted, all affected SDIDS records must be read in, changed, and rewritten.
You can eliminate much of this I/O by using PMF to tell Tivoli Information Management for z/OS not to cognize fields that you do not need to use as search criteria. This can greatly reduce the I/O and enqueue contention for the SDIDS.

You can eliminate cognizing s-words while continuing to cognize related p-words. This valuable method cuts I/O delays on file transactions.

- **Place your key Tivoli Information Management for z/OS data sets on volumes that minimize contention for the volumes and their controllers.**
 - This is very important for the SDIDS. Isolate the SDIDS on its own volume or place it on a volume that has very little other activity. Just like the SDDS, the SDIDS can be spread over multiple volumes. If possible, spread the SDIDS across several low contention volumes so that shared accesses from multiple users can proceed simultaneously. This becomes more valuable in workloads with a high percentage of read activity compared to write activity.
 - Usually, the SDDS is not as busy as the SDIDS, but it is still advisable to make sure that contention is minimized by isolating and spreading the SDDS over low contention volumes, if possible.
 - The panel data sets are usually not as critical here because most I/O to them is avoided by using user panel buffers or VSAM buffers.

- **Put Tivoli Information Management for z/OS into a link pack area if possible so that all users can share the common code.** This is especially important where memory is limited and where many Tivoli Information Management for z/OS users are active.

- **Avoid using STEPLIBs and JOBLIBs whenever possible.** These may be necessary for some users, but for users who want the best performance, avoiding these can improve performance.

- **Minimize the number of data sets concatenated in your STEPLIBs, JOBLIBs, and link lists.** Searching these directories can significantly delay some transactions. Keep the concatenations as short as possible and order them in such a way that frequently accessed items can be found early in the concatenation sequence. Keeping concatenations short is especially important when you use the link pack area for sharing common code. These directories must be searched before it is determined that the needed item is in the link pack area.

- **Consider giving your Tivoli Information Management for z/OS users and the BLX-SP a relatively high processor dispatching priority.** Because Tivoli Information Management for z/OS processor needs are interrupted by frequent I/O and enqueues, the impact on lower priority users should be modest, and it should help your Tivoli Information Management for z/OS users complete their I/O and release their enqueues.

- **Avoid transactions that must read hundreds or thousands of SDDS records.** Such transactions can include large API searches or large reports.

- **Avoid large range searches and large range sorts wherever possible.** Large range searches result when search arguments specify, either explicitly or with periods (.) or asterisks (*), ranges that require many thousands of SDIDS records to be read. Sorting of search results lists by any field containing thousands of different values can also cause large numbers of SDIDS records to be read in some cases. Avoiding such inappropriate searches or sorts can dramatically improve the performance of the search or report transactions, and it can also reduce the contention for the SDIDS, thus reducing response times for other transactions. See “SRCHLIMIT Function” on page 68 for more information.
Consider not reusing SDDS position numbers. By not reusing SDDS position numbers, you can avoid having to sort the search results list to display system-assigned RNIDs in order. Refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](#) for more information on storing records in system-assigned RNID order.

Use pre-started API sessions for faster API session initialization. If you are using client API applications with Tivoli Information Management for z/OS, you can take advantage of an MRES parameter to pre-start API sessions. Using pre-started API sessions, clients may achieve a much faster response time when initially connecting to Tivoli Information Management for z/OS through the MRES. If you have client applications that typically connect to the MRES using the same control parameter data block values for the HL01 initialization transaction, you should consider setting up the MRES with pre-started API sessions. For more information on pre-starting API sessions, refer to the [Tivoli Information Management for z/OS Client Installation and User's Guide](#).

Do not add Tivoli Information Management for z/OS resource names in the inclusion or exclusion lists in the GRSRN1nn member in SYS1.PARMLIB.

Whether or not you use Tivoli Information Management for z/OS in sysplex mode, or global resource serialization, there should be no Tivoli Information Management for z/OS resources in the resource name lists (RNLs) for global resource serialization. If you inadvertently specify resource names for inclusion or exclusion and use the same resource names as are currently used by Tivoli Information Management for z/OS, poor performance or data corruption can result. See "In a Sysplex with Sysplex Mode Enabled" on page 73 for other recommendations on what to do in a sysplex environment for global resource serialization.

Note: The details of INCLUDE and EXCLUDE can vary for alternative serialization products. Check the rules for your serialization tool to avoid unnecessary global enqueues.

For a list of resource names used by Tivoli Information Management for z/OS, see "Resource Names That Tivoli Information Management for z/OS Enqueues On" on page 351.

In a Non-Sysplex Environment

Make sure your VSAM buffer specifications are reasonable:

- **Specify sufficient LSR buffer pools to eliminate all physical reads of the index components for the SDIDS, SDDS, all read panel data sets.** You can determine how many CIs are required by looking at output from the IDCAMS LISTCAT command. Divide the high used relative byte address (RBA) of the whole index component (not one of the extents) by the CI size for the index to determine the total number of CIs. For the SDDS and SDIDS, add enough buffers to the total to accommodate reasonable growth. (Usually 10 percent provides plenty of growth without undue memory use.)

- **Specify as many SDIDS buffers for the SDIDS data component as you can afford.** The SDIDS consists of mostly very small records, with a relatively high read activity. Because the SDIDS usually has the highest activity of all the Tivoli Information Management for z/OS data sets, reducing the time it takes to complete the reads directly improves not only individual response times, but overall throughput.
Although the percentage of reads found in the buffers varies with the workload, you might find it possible to obtain, for example, a 60 percent hit ratio even with only 20 percent of your CIs in buffers. Because the total size of the SDIDS data component is relatively small, and it does not increase rapidly as the SDDS grows, you may find it to your advantage to buffer quite a lot of it.

- **Specify a relatively small number of buffers for the SDDS data component.** The records are usually large, and there are many of them, so buffering too many can be counterproductive. But, because the access is not totally random, having a few (1 percent or so) probably yields a match ratio that is well worth the memory. You may find that even 1 percent of the CIs is too much memory to allocate for very large databases. In this case, consider allocating at least 100 buffers for the SDDS data component of any performance critical databases.

Many transactions read several SDDS records. For example, a search or scroll usually reads a full screen of records (usually between 14 and 44). You might consider specifying enough SDDS buffers to enable several users to be searching or scrolling without causing other short term transactions to lose the benefits they enjoy from buffering. This suggestion could probably be satisfied by specifying at least enough SDDS buffers to equal five times your screen-size.

- **Make sure your enqueue interleaving is specified in the most efficient manner.**
 - Set the SRCHLIMIT parameter to release the SDIDS enqueue frequently during range reads. Usually, setting the *enqueue* subparameter to 100 provides the best performance. You must specifically set this parameter to obtain the enqueue interleaving you want because the default enables range reads to dominate the enqueue. Do not set the *enqueue* subparameter to less than 100 because very low values cause significant additional I/O.
 - Tune your file priorities with the COGENQ parameter. This parameter enables you to greatly improve file response times for selected users by enabling them to cognize more affected records under each SDIDS enqueue. COGENQ defaults to 10 for all users, but consider increasing it for users who need fast file response times and decreasing it for users whose file response times are less important.

- **Try setting up a multiple-cluster SDIDS to obtain more concurrent processing of enqueues.** For customers with large amounts of data, multiple-clusters can offer a real bonus in database performance. For a single system database, minimal CPU overhead should be expected with the additional enqueue/dequeue activity. Searchable words are cognized in sorted order, so no more than one enqueue is acquired and released for each SDIDS cluster when a record is filed. The same is true for sequential reads of the SDIDS when records are searched. (This only applies to a non-sysplex environment.) Multiple clusters can also reduce I/O delay for both sysplex and non-sysplex environments, if the data sets reside on different volumes.

In a Sysplex with Sysplex Mode Enabled

- **Use a GRS star rather than a GRS ring:** It is recommended that you use a GRS star for a parallel sysplex because a GRS star generally provides better performance than a GRS ring. If you must use a GRS ring, set the ACCELSYS and RESMIL parameters as follows. If you are using a GRS star, the recommendation for the RESMIL and ACCELSYS parameters do not apply.

 If you are using a GRS ring:
ACCELSYS Set the ACCELSYS under GRS (or equivalent) to an appropriate value that speeds up global enqueue processing.

RESMIL Set the RESMIL parameter in GRS (or similar parameter if you are using another global resource serialization tool) as low as you can afford. Tivoli Information Management for z/OS uses global enqueues and record-level locks to protect the integrity of its data sets while multiple systems access them. Low RESMIL values speed up the global enqueue process but cost extra processor power. You must tune this parameter to make this trade-off in your best interests.

- **RLS cache sets and sizes:** The VSAM recommendation is that the total size of the cache structures should be at least equal to the total size of all the LSR buffer pools that were in use for the same set of data sets. Greater performance can be achieved by increasing the size of the structures to allow more buffering to occur. Additionally, all cache structures should be defined with an initial size of no less than 2MB. For more information, refer to the *DFSMS/MVS DFSMSdfp Storage Administration Reference*.

- **BLX lock structure size:** The IXCMIAPU sample job provided with Tivoli Information Management for z/OS shows the size of the BLX lock structure you can use. A formula that will help determine the size of the BLX lock structure can be found in "Setting Up for Sysplex Data Sharing" on page 151.

- **IGWLOCK00 size:** To estimate its size requirements in megabytes, use the following formula (note that a megabyte is 1 048 576 bytes in this case). This formula is described in the *DFSMS/MVS DFSMSdfp Storage Administration Reference*. Refer to that manual for more details on calculating the IGWLOCK00 size.

\[
10\times \text{number_of_systems} \times \text{lock_entry_size}
\]

In this formula, `number_of_systems` is the number of systems in the parallel sysplex, and `lock_entry_size` is the size of each lock entry. This value depends on the MAXSYSTEM value that is specified to the IXCL1DSU Couple Data Set format utility.

To determine the actual lock entry size for the different MAXSYSTEM setting values, refer to the description on how to define the CF lock structure in the *DFSMS/MVS DFSMSdfp Storage Administration Reference*.

- **VSAM extended format data sets:** RLS and Tivoli Information Management for z/OS support extended format data sets, including compressed data sets.

- **XCF:** Tivoli Information Management for z/OS sends messages with a maximum length of 256 bytes and has very low message traffic. Choose an XCF transport class accordingly.

- **GRS:** Some Tivoli Information Management for z/OS resources are enqueued with a scope of SYSTEMS when operating in sysplex mode. (See "Resource Names That Tivoli Information Management for z/OS Enqueues On" on page 351 for a list of resources and their scopes.) If Tivoli Information Management for z/OS is running on one system only, consider adding these resource names to the SYSTEMS Exclusion RNL to reduce enqueue delay. You must remove these entries if you run Tivoli Information Management for z/OS on more than one system.
Important

The information in this chapter applies to you only if you are using or intend to use Tivoli Information Management for z/OS in a non-sysplex environment. When you install Tivoli Information Management for z/OS in a sysplex and enable sysplex support, VSAM resources are not defined in the BLX-SP VSAM resource definition member to support nonshared resources (NSR) or local shared resources (LSR) as described in this chapter. Instead, coupling facility structures are defined to support VSAM record-level sharing (RLS). Where possible, you should install Tivoli Information Management for z/OS in a sysplex to take advantage of the improved performance and simplified administration benefits that a sysplex offers. For information about how VSAM resources are used in a sysplex, see "Setting Up for Sysplex Data Sharing" on page 151.

This chapter discusses how Tivoli Information Management for z/OS uses VSAM resources. It provides:

- An introduction to VSAM resources in Tivoli Information Management for z/OS
- An explanation about how VSAM resources are defined in a BLX-SP environment
- Recommendations on when to use LSR and when to use NSR
- An example scenario for defining LSR buffer pools
- A VSAM buffer pool definition checklist

This chapter assumes that you have a working knowledge of the following:

- VSAM shared and nonshared resources. Refer to DFSMS/MVS Using Data Sets for details.
- The VSAM BLDVRP macro, which builds VSAM resource pools. Refer to DFSMS/MVS Macro Instructions for Data Sets for a description of this macro and its syntax.

This chapter is designed to help you:

- Understand how VSAM resources are used by Tivoli Information Management for z/OS in a non-sysplex environment
- Plan your Tivoli Information Management for z/OS environment
Using VSAM Resources for Tivoli Information Management for z/OS Data Sets

VSAM uses buffers and control blocks for its input/output (I/O) operations. You can use VSAM LSR and NSR for Tivoli Information Management for z/OS VSAM data sets. However, you cannot use VSAM global shared resources (GSR) because the BLX-SP environment does not support them.

You can share VSAM resources among data sets by building resource pools.

Defining VSAM Resources in the BLX-SP Environment

VSAM resources for Tivoli Information Management for z/OS are defined in the BLX-SP VSAM resource definition member and allocated in the BLX-SP. The shared resource pools that are allocated are exploitable for use by all users’ address spaces connected to the BLX-SP. You can also define multiple shared resource pools in the BLX-SP environment.

The VSAM resource information that you must define to the BLX-SP are:
- The number of VSAM placeholders required for NSR
- The VSAM data sets that use VSAM NSR
- The VSAM LSR pools
- The connection of the VSAM resources to the VSAM data sets
- The type of the VSAM data set (numbered or key sequenced)

You can use the Installation Tailoring Facility to create your VSAM resource definition members. See "Using the Installation Tailoring Facility" on page 185 for information on using the Installation Tailoring Facility.

Note: LSR keyword specifications (BLGPARMS and BLGCLDSN macros) and the shared resource pool definitions (BLDVRP macros) contained in a Tivoli Information Management for z/OS session-parameters member are ignored if specified.

Using Resource Pools

Define separate resource pools for the following Tivoli Information Management for z/OS VSAM data sets:
- RPANLDS
- SDDS
- SDIDS
- SDLDS (if used)

If your installation has heavy online report activity, a separate resource pool can be defined for the dictionary (DICTDS). If the majority of the report activity is performed off hours, the dictionary can share the SDDS resource pool. If you decide to use LSR buffering for one or more of your SDLDSs, define a separate resource pool for them. All of the SDLDSs can share the same resource pool.

If your installation plans to use multiple databases, define separate resource pools for each SDDS and each SDIDS used, unless activity in those databases is isolated by time or shift, or performance is not a concern for the databases sharing the pools.

Note: Only 31 key-sequenced data sets can share the same resource pool.
Using VSAM Placeholders

When LSR pools are used, the number of VSAM placeholders is specified as part of the shared resource pool definition. The number of placeholders is the value specified for the STRNO keyword of the BLDVRP macro, which defines the shared resource pool.

When VSAM data sets use NSR, it is necessary to provide the BLX-SP with the number of placeholders required for the data sets. When NSR is used, the number of placeholders required for all VSAM data sets that use NSR is defined by the value specified for the PLACES keyword in the BLXNSR macro.

VSAM limits the number of placeholders specified for a data set or shared resource pool to a value of 255. The number of placeholders required is not the number of active users’ address spaces that can access the data sets connected to the resource pool, but the number of positions in the resource pool that VSAM must maintain at any given time. Because only one user’s address space is allowed write access to a data set at a time, this number should reflect the number of concurrent read accesses that can occur at any given time. It is highly unlikely that all users’ address spaces would attempt to read from data sets connected to the same resource pool at the same time.

If you do not specify enough placeholders, the user must wait until a placeholder is freed for use. If you are competing with only yourself for placeholders, you can encounter a deadlock situation. Consider this: you have a resource pool with ninety placeholders and you have a multiple-cluster SDDS database sharing the same resource pool. If an attempt is made to use BLGUT7 to copy the multiple-cluster SDDS database, deadlock occurs when BLGUT7 attempts to open the ninety-first data set because all the placeholders are being used.

Notes:

1. For a data set that is write-only, such as the SDLDS, you can use fewer placeholders because only one user is allowed access at a time.

2. You should always allow at least one placeholder (at a minimum) per data set in an LSR buffer pool.

3. One additional placeholder is needed for VSAM use to process CI and CA splits.

 For example, assume a 5-cluster SDDS:

 5 (one for each SDDS cluster - #2 above)
 1 (reserved for VSAM - #3 above)

 6 (MINIMUM to avoid deadlocks)

 Twenty-four (four times this number) would be recommended to avoid the need for placeholder waits. Refer to the use of the QUERY command, described in Tivoli Information Management for z/OS Operation and Maintenance Reference for more information on displaying VSAM statistics such as placeholder users and the number of placeholder waits.

Recommendations

We recommend that you use LSR for most key-sequenced VSAM data sets being accessed because this results in better performance. To get the best performance improvements in Tivoli Information Management for z/OS, it is strongly recommended that you use LSR for at least the SDDS and the SDIDS. See “When You Can Use LSR” on page 73 for further details.
The use of NSR is more efficient for relative record data sets, such as the SDLDS, because of the way Tivoli Information Management for z/OS uses these data sets. LSR does not usually improve the performance of the SDLDS. See “When You Can Use NSR” on page 79 for further details.

When You Can Use LSR

Use the LSR keyword in the BLXDSN macro to specify LSR for a data set. The value you specify for the LSR keyword is the identifier (ID) of the shared resource pool to connect to the data set. LSR is especially attractive for key-sequenced VSAM data sets in the BLX-SP in that all connected users’ address spaces share in its benefits without the added address space storage requirement incurred with LSR pools.

The use of LSR in the BLX-SP can significantly improve the performance of users’ address spaces connected to the BLX-SP. Therefore, it is strongly recommended that you use LSR with Tivoli Information Management for z/OS in a non-sysplex environment. The LSR facility of VSAM permits data buffers and control blocks to be shared among open VSAM data sets to reduce the amount of storage required to access the data sets individually. The use of LSR also enables VSAM to maintain a part of a data set in storage, which can reduce physical I/O to the data set. In the BLX-SP, use LSR to reduce physical I/O, but not to reduce the storage requirements of the BLX-SP. Sharing buffer pools of the same size between VSAM data sets can adversely affect the benefit of using shared resources. Because the order of VSAM data set access can vary according to the function performed, use separate buffer pools within a shared resource pool for each VSAM data set. For data sets used primarily as read-only (such as a panel data set), the ideal situation is to have a buffer pool defined large enough so that only one physical read operation is necessary to access a record and to enable the record to remain in the buffer pool for subsequent accesses. You can exploit this reduction of I/O when buffer pools are large enough to satisfy a working set.

VSAM requires LSR use for cross-memory support. This enables access to a BLX-SP VSAM data set under control of the user’s address space task. When NSR is specified for data set access, VSAM requires that all requests be issued by a BLX-SP task. All requests for NSR data sets are serialized through one BLX-SP task. Consequently, LSR is required for multithread processing. The resources required for an LSR pool are called a working set.

Working Set

The working set for each VSAM LSR pool and each component within the pool must be determined to make efficient use of LSR. The primary factor that determines your working set for an LSR pool is the number of concurrent accesses of the data sets connected to the pool. This factor also determines the number of placeholders required for the LSR pool. The working set is also influenced by the number of CIs that are to be maintained in storage to make efficient use of LSR by the data sets connected to the LSR pool. These two factors determine the size of the buffer pool that must be allocated. Each key-sequenced VSAM data set consists of two components, the data component and the index component. Working sets need to be established for each component of the data set.

Index Component Working Set

The number of CIs in an index component is small relative to the data component. The working set for an index component is the number of CIs in the index component. You should define buffer pools in your LSR definition that are large enough to contain the index components for each key-sequenced VSAM data set assigned to this shared resource pool. A shared resource index pool should be defined for the shared resource pool to avoid buffers defined for index CIs being used by data component CIs of the same or smaller CI size. If
this is a read/write data set, you should make allowances in the buffer pool for additional
index CIs that are created as new records are added to the data component of the data set.

Data Component Working Set

Determining the buffer pool size required for the data component of a data set is not as
straightforward as that of an index component. The working set of a data component
depends upon the contents of the data set and the use of the data set. The minimum buffer
pool size that can be allocated for the data component of any VSAM data set is the number
of positions that are to be maintained in the shared resource pool plus one.

Read/write data sets that are randomly accessed, such as the SDDS and the dictionary, reap
small benefits, if any, when a buffer pool larger than the minimum size is allocated for their
data components. The primary advantage gained by the use of LSR for these data sets is
having the index components resident. Some benefit can be derived by buffering small
percentages of the data component because a few CIs exhibit high frequencies of use and
are likely to be found in even a small buffer pool.

A high-activity data set benefits when a buffer pool larger than the minimum size is
allocated for the data component. Because the SDIDS is the data set with the highest
activity, performance gains should be enhanced by having a buffer pool defined that enables
a large portion of the data component to remain resident.

Panel data sets can benefit when a buffer pool larger than the minimum size is allocated for
the data component. A complex analysis of panel flows and panel sizes is required to
determine the additional storage working set above that required for concurrent user access.
In most cases, it is beneficial to use panel buffering in the user’s address space rather than
attempt to use LSR in the BLX-SP to eliminate panel I/O. Still, with a reasonable number of
CIs buffered, LSR can be a good second tier defense against physical I/O. If you have
limited storage, you may find that decreasing the number of panel buffers and using LSR
buffers as backup buffers can save enough storage for some users to make it a good
trade-off with respect to I/O delays. You may need to experiment many times before making
this complex tuning decision.

When You Can Use NSR

The situations when you do not want to use LSR are due to performance considerations
only, and do not affect the normal operation of users’ address spaces or the BLX-SP. Using
NSR is more efficient for relative record data sets, due to the manner in which Tivoli
Information Management for z/OS uses these data sets.

In a non-sysplex environment, you can use NSR for any Tivoli Information Management for
z/OS VSAM data set. You can choose to use NSR when any of the following conditions
exists:

- Single task access serialization does not affect performance
- VSAM data set access is low
- Using LSR for a data set makes no measurable difference in the performance of the
 users’ address spaces
- A VSAM data set is part of a test or development database
- A VSAM data set is only used as a write panel data set
Recommendations

Notes:

1. We recommend that you use NSR only if one or more of these conditions exists. Otherwise, using NSR can severely degrade performance. To enhance performance, we recommend that you use LSR.

2. LSR cannot be used when a VSAM data set is accessed in load (create) mode. NSR is automatically used when Tivoli Information Management for z/OS utilities accessing data sets in load mode are running. If LSR was specified for the data set, the data set is reaccessed using LSR when the utility finishes.

The following special conditions that restricted using LSR for a VSAM data set prior to Information/Management Version 5.1 do not apply in the BLX-SP environment. This is because you now define the shared resource pools in the BLX-SP instead of the user’s address space.

- Logging on after address space abnormally ends
- Using the ISPF split-screen facility
- Coexisting with other programs using LSR
- Using the NetView Hardware Monitor Interface

Defining LSR Buffer Pools

This section gives you an example of how you can define your LSR buffer pools if you decide to use LSR for your Tivoli Information Management for z/OS applications.

When a VSAM data set is opened for which you requested LSR, VSAM connects the data set’s control blocks with a buffer pool of the appropriate size. Both the index and data components of each key-sequenced data set must be taken into account when defining buffer pools within a shared resource pool. If buffers of the proper size do not exist in the shared resource pool definition, VSAM uses the next larger buffer size defined in the shared resource pool. In addition, VSAM uses a larger buffer when all buffers of the proper size are in use.

The required sizes of the buffers are determined by the CI sizes of the data sets for which you want to use LSR. The number of buffers assigned to a buffer pool is determined by the working set required for the data set. The two factors of the working set size are the number of concurrent users and additional storage required to enhance performance. If you already defined your data sets, you can determine their CI sizes by using the Access Method Services (AMS) LISTCAT command for each data set.

If you did not define your data sets yet, or if you plan to redefine your data sets, you may want to specify certain CI sizes using the Installation Tailoring Facility. See "Using the Installation Tailoring Facility" on page 183 for information on using the Installation Tailoring Facility. If you change CI sizes, make sure you also change your LSR definition to reflect the changes of the CI sizes. Define CI sizes to match the requirements of the data set and not to eliminate CI size conflicts among key-sequenced data set components or their working sets. The analysis utilities—BLGUT20, BLGUT21, and BLGUT22—can assist you in determining the most efficient CI sizes for a VSAM data set.

Plan to define separate LSR pools for each SDDS and SDIDS. Read panel data sets can share a common LSR pool. Define both an index and data pool for the LSR pool for
key-sequenced data sets. The number of buffers of a particular size that you choose is
determined by the working set of each component for the data sets for which you want to
use LSR.

Figure 7 shows how you can use the AMS LISTCAT command to collect data on allocated
data set sizes.

In this example, two Tivoli Information Management for z/OS databases are defined, one for
production and the other for test and development. The production database includes a log,
while the other one does not. Two panel data sets are defined for both production and test
and development use, one containing Tivoli (IBM) panels and the second contains your
modified panels. In addition, another panel data set is defined solely for test and
development use. Two write panel data sets are defined for PMF-authorized users.

The data set information that the AMS LISTCAT commands generate is used to create the
LSR definition worksheet shown in Table 4.

From the LISTCAT output listing, extract the following information:

- The CI size for the data component
- The high used relative byte address (RBA) of the data component
- The CI size for the index component
- The number of records in the index component

The number of CIs in the index component is the number of records in the index
component. The number of CIs in the data component of a key-sequenced data set is not
equivalent to the number of records in the data component because a CI in the data
component can contain multiple records or only a piece of a record when it is longer than a
CI. The number of CIs in the data component of a key-sequenced data set can be computed
by dividing the high used RBA by the CI size. The number of CIs in a relative record data
set is equivalent to the number of records in the data set.

Assume the information extracted with the LISTCAT command (in Figure 7) provided the
values shown in Table 4.

Table 4. Example: LSR Definition Worksheet

<table>
<thead>
<tr>
<th>Data Set Name</th>
<th>Data CI Size</th>
<th>Data CIs</th>
<th>Index CI Size</th>
<th>Index CIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tivoli panels</td>
<td>4096</td>
<td>2660</td>
<td>1536</td>
<td>20</td>
</tr>
<tr>
<td>Read panel</td>
<td>4096</td>
<td>300</td>
<td>1536</td>
<td>3</td>
</tr>
<tr>
<td>Write panels</td>
<td>4096</td>
<td>10</td>
<td>1536</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4. Example: LSR Definition Worksheet (continued)

<table>
<thead>
<tr>
<th>Data Set Name</th>
<th>Data CI(^2) Size</th>
<th>Data CIs(^3)</th>
<th>Index CI Size</th>
<th>Index CIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dictionary</td>
<td>4096</td>
<td>546</td>
<td>1536</td>
<td>4</td>
</tr>
<tr>
<td>Production SDDS</td>
<td>4096</td>
<td>1638</td>
<td>2048</td>
<td>53</td>
</tr>
<tr>
<td>Production SDIDS</td>
<td>2048</td>
<td>868</td>
<td>3584</td>
<td>32</td>
</tr>
<tr>
<td>Production SDLDS</td>
<td>4096</td>
<td>6000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Test panels</td>
<td>4096</td>
<td>300</td>
<td>1536</td>
<td>3</td>
</tr>
<tr>
<td>Write panels</td>
<td>4096</td>
<td>10</td>
<td>1536</td>
<td>1</td>
</tr>
<tr>
<td>Test SDDS</td>
<td>4096</td>
<td>220</td>
<td>512</td>
<td>5</td>
</tr>
<tr>
<td>Test SDIDS</td>
<td>2048</td>
<td>160</td>
<td>512</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: \(^1\)The information given in this table is used to define the LSR buffer pools shown in Figure 26 on page 308 through Figure 30 on page 311. The resulting LSR buffer pool definitions are used to define the VSAM resource definition member to the BLX-SP. See Figure 31 on page 312. \(^2\)CI = control interval \(^3\)All data control intervals calculated with high used RBA and CI sizes.

The first step is to review the allocations of all VSAM data sets and ensure that the optimum CI size was chosen and used for each component of each VSAM data set. The data set analysis utilities, BLGUT20, BLGUT21, and BLGUT22, can aid you in this process. If you do not have an existing database, only BLGUT22 may be useful.

If you change the CI size, then after you make the change, check (using the AMS LISTCAT command) that VSAM used the value that you specified; in some cases, VSAM overrides the value that you specify. If VSAM has done this for you, you can coax VSAM into giving you what you want by changing either the data component’s average record size, or by changing the type of unit on which you allocated the data set.

Assume the CI sizes in Table 4 on page 81 match the requirements of your data sets. You can eliminate from consideration those data sets for which NSR is used. Little or no performance improvement is gained in using LSR for write panel data sets, and NSR is more efficient for relative record data sets, so you can eliminate defining an LSR pool for the two write panel data sets and the SDLDS. Because fewer users access the test and development database, fewer placeholders and fewer buffers are required to satisfy the LSR requirement. Examining the list of VSAM data sets that are defined, you must define five LSR pools:

- The production SDDS
- The production SDIDS
- The test and development database
- The production panel data sets
- The test and development panel data sets

In addition, you have three data sets that use NSR.

You need one more piece of information before you can define your LSR pools. The information required is the number of positions you require to be maintained in these resource pools by VSAM.

Initially, the number of positions required is somewhere within the range of 25 to 30 percent of the number of users for low-activity data-set-connected resource pools and somewhere within the range of 40 to 60 percent of the number of users for high-activity data-set-connected resource pools. You can monitor both the maximum number of positions...
used and the maximum number of waits required for shared resource placeholders with the BLX-SP QUERY operator command. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for a description of this command. Appropriate adjustments can be made to the number of placeholders assigned as your installation stabilizes.

Assume that 90 users’ address spaces can be connected to the BLX-SP for production activities. Again, you are not too concerned with the number of users, but with their activity. The initial value of positions that are maintained in the low-activity data sets connected to a shared resource pool in this example is 30. The initial value of positions that are maintained in the high-activity data sets connected to a shared resource pool in this example is 45. This gives you the numbers of placeholders required for the production shared resource pools.

Assume also that 20 users’ address spaces can be connected to the BLX-SP for test and development activities. The initial value of positions that are maintained in the low-activity data sets connected to a shared resource pool in this example is 5. The initial value of positions that are maintained in the high-activity data sets connected to a shared resource pool in this example is 10. This gives you the number of placeholders required for the test and development shared resource pool.

VSAM Buffer Pool Definition Checklist

The dependence of the BLX-SP upon VSAM resources and their effect upon the performance of the users’ address spaces require your continuing attention to the following points when using Tivoli Information Management for z/OS in a non-sysplex environment:

- Define separate index and data pool for key-sequenced data sets.
- Ensure that the optimum CI size is defined for each component of each VSAM data set using LSR. *Remember, if a buffer of the exact CI size is not available, VSAM uses the next larger buffer size available.*
- When you change CI sizes of a data set, ensure that your LSR definition reflects the changes.
- When you change the key length of a data set (SDDS or SDIDS), ensure that your LSR definition reflects the change.
- Make allowances in shared resource pool definitions for new records added to the data set.
- Set the CI size of the dictionary data component the same size as that selected for a panel data set data component so that they can share the same buffer pool.
- Allocate buffer pools for index components large enough to contain the entire index with allowances for growth.
- Monitor both the maximum number of positions used and the number of waits required for shared resource placeholders with the BLX-SP QUERY operator command and adjust the number of placeholders for the LSR buffer pools. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for a description of this command.
- Use NSR only where serial execution is appropriate.
- Check (using the AMS LISTCAT command) that VSAM has used the value that you specified for a CI size.
Investigate the use of Hiperspace™ buffers for shared resource pools.

If a Tivoli Information Management for z/OS database is used both as a read/write and read-only database, you must consider both read/write and read-only activity when allocating placeholders in the shared resource pool.

The minimum buffer pool size that can be allocated for the data component of any VSAM data set is the number of positions that are to be maintained in the shared resource pool plus one.
Determining Storage Requirements

This chapter provides information to help you determine storage requirements for Tivoli Information Management for z/OS. Formulas are provided to calculate storage requirements for:

- The user’s address space
- The BLX-SP

This chapter assumes that you have a working knowledge of:

- VSAM shared and nonshared resources as used in a non-sysplex environment. Refer to DFSMS/MVS Macro Instructions for Data Sets for details.
- It is assumed that you understand how Tivoli Information Management for z/OS uses VSAM resources in a non-sysplex environment. See “Using VSAM Resources in a Non-Sysplex Environment” on page 75.
- VSAM record-level sharing in a parallel sysplex. Refer to the description of administering VSAM record-level sharing in the DFSMS/MVS DFSMSdfp Storage Administration Reference.
- It is assumed that you understand how Tivoli Information Management for z/OS uses VSAM resources in a sysplex. See “Setting Up for Sysplex Data Sharing” on page 151.

Calculating the User’s Address Space Storage Requirements

Tivoli Information Management for z/OS does not change z/OS system storage requirements. For planning purposes, the virtual storage required for Tivoli Information Management for z/OS is approximately:

- The number of panel buffers specified in the PNLBCNT keyword of the BLGPARMS macro in the session-parameters member (for panel buffers), times
- 2 KB (KB equals 1024 bytes). This value must be higher if you use large control or help panels. Plus
- 1000 KB, plus
- Five times the maximum LRECL for the SDIDS (for database processing buffers), plus
- Two times the maximum LRECL for the SDDS, plus
- The virtual storage required by TSO and ISPF

In addition, Tivoli Information Management for z/OS requires approximately:

- 50 KB of virtual storage for problem, change, and configuration functions
- 500 KB of virtual storage for PMF functions
The Integration Facility requires no additional storage.

Calculating the BLX-SP Region Size

Materials required to calculate the variables comprising the BLX-SP region size will depend on the environment in which you install Tivoli Information Management for z/OS.

In a non-sysplex environment

The materials required are:

- LISTCAT output of data sets or a personal knowledge of the maximum record sizes of your VSAM data set as well as the CI sizes.
- BLDVRP macro definitions of the LSR pools defined for the BLX-SP. Refer to *DFSMS/MVS Using Data Sets* for a description of the BLDVRP macro.
- A knowledge of the data sets that the BLX-SP is required to support and their connection to specific LSR or NSR.

The BLX-SP region size can be calculated using the following formula.

\[
\text{Region Size} = 5\text{MB} + P + D + S + B + N
\]

(rounded up to next MB, where MB equals 1,048,576 bytes)

- **P**: Space required by the local shared resource (LSR) buffer pools defined for the BLX-SP
- **D**: Space required for data sets that the BLX-SP is required to support
- **S**: Space required for the number of strings (VSAM placeholders) that are defined for the BLX-SP
- **B**: Space required for input/output (I/O) buffers in the BLX-SP
- **N**: Space required for nonshared resource (NSR) buffers in the BLX-SP

In a sysplex (with sysplex mode enabled)

The material required is:

- A knowledge of the data sets that the BLX-SP is required to support and their connection to specific LSR or NSR.

The BLX-SP region size can be calculated using the following formula.

\[
\text{Region Size} = 5\text{MB} + D
\]

(rounded up to next MB, where MB equals 1,048,576 bytes)

- **D**: Space required for data sets that the BLX-SP is required to support

Sample BLX-SP Region Size Calculation – Non-Sysplex

The following sections explain how to calculate these variables using the example scenario that is described in "Defining LSR Buffer Pools" on page 80 and implemented in Figure 31 on page 312.

Calculating P

Obtain the value of **P** by calculating the space required to satisfy the values specified for the BUFFERS keywords in each of the BLDVRP macros and totaling these values for all the BLDVRP macros included in your LSR definition.

For example, using the example shown in Figure 31 on page 312, **P** has the value shown below:
Calculating the BLX-SP Region Size

Calculating D
Obtain the value of D by multiplying the number of data sets that the BLX-SP is required to support by 2000 and adding 5000 to the result.

For example, counting the data sets in the example shown in Table 4 on page 81, yields 11 data sets that are to be supported by the BLX-SP. D has the value shown below:

\[D \text{ value} = (11 \times 2000) + 5000 = 27000 \]

Calculating S
Obtain the value of S by calculating the space required to satisfy the values specified for the STRNO keywords in each of the BLDVRP macro and totaling these values for all BLDVRP macros included in your LSR definition. The resulting sum is added to the value specified for the PLACES keyword of the BLXNSR macro to determine the number of strings BLX-SP is required to support. The final number of strings is multiplied by 1000 to determine the value of S.

For example, using the example shown in Figure 31 on page 312, S has the value shown below:

\[S \text{ value} = 145 \times 1000 = 145000 \]

Calculating B
Obtain the value of B by calculating the space required to satisfy the I/O buffer requirements of the BLX-SP. You must first determine the largest maximum record length for each LSR pool in your LSR definition and for all data sets using NSR. The maximum record length and CI size of a data set are not equivalent values.

Multiply the largest maximum record length for each LSR pool by the value the STRNO keyword of the BLDVRP macro. Multiply the largest maximum record length for each LSR pool by the value of the PLACES keyword of the BLXNSR macro. Add the values for each calculation. The result of this addition is added to 4000 to determine the value of B.

For example, using the example shown in Figure 31 on page 312, B has the value shown below:

\[B \text{ value} = 122670 + 71435 + 20445 + 20410 = 235070 \]
Calculating the BLX-SP Region Size

<table>
<thead>
<tr>
<th>NSR</th>
<th>PLACES = 20</th>
<th>maxlrec1 = 4089</th>
<th>20 x 4089 = 81780</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td>408585</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B value</td>
<td>408585 + 4000 = 412585</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculating N
Obtain the value of \(N \) by multiplying the CI size of each data set using NSR by 3.

For example, the three data sets in the example shown in Figure 31 on page 312 use NSR and are supported by the BLX-SP. \(N \) has the value shown below:

\[
\begin{align*}
\text{BLM.SDLDS} & \quad \text{control_interval_size} = 4096 \times 3 = 12288 \\
\text{BLM.JILLS.PANELS} & \quad \text{control_interval_size} = 4096 \times 3 = 12288 \\
\text{BLM.JACKS.PANELS} & \quad \text{control_interval_size} = 4096 \times 3 = 12288 \\
\end{align*}
\]

\(N \) value 36864

Calculating Region Size for Non-Sysplex
Using the values obtained for the variables, calculate the BLX-SP region size required to support the sample configuration, as shown below:

Region Size = 5M + 1698816 + 27000 + 145000 + 408585 + 36864

Region Size = 5M + 2316265 or 8M

Calculating Region Size for Sysplex
The sysplex formula for the BLX-SP region size is

Region size = 5MB + D

where

\(D \) Space required for data sets that the BLX-SP is required to support.
7. Ordering the Necessary Hardware and Software

This chapter describes the hardware and software requirements for running Tivoli Information Management for z/OS Version 7.1. It is designed to help you plan your system environment for the installation of Tivoli Information Management for z/OS.

Note: Tivoli is in the process of changing product names. Products referenced in this manual may still be available under their old names, for example, TME 10 Enterprise Console instead of Tivoli Enterprise Console.

Hardware Requirements

Base Product

Tivoli Information Management for z/OS Version 7.1 requires a host processor that accommodates the software environment described in "Software Requirements" on page 93.

The display station must be supported by ISPF, and must have a minimum screen size of 24 lines by 80 characters.

Tivoli Information Management for z/OS has no dependencies on any new or changed hardware equipment.

The following hardware requirements are for optional functions, components, or features of Tivoli Information Management for z/OS.

Sysplex

To use Tivoli Information Management for z/OS in a sysplex environment, you need a parallel sysplex with at least one Coupling Facility running at control code level 2 at a minimum to make use of VSAM record level sharing and other enhancements. To share data sets across multiple OS/390 systems, you must have a parallel sysplex. The Multisystem Database Access (MSDA) feature provided in previous releases of the product is no longer supported.

Reports

If your installation requires DBCS support, the display station must support the entry and display of DBCS characters.

Printing Reports with DBCS Characters

For printing reports containing DBCS characters, you need a system printer that supports the printing of such data. These printers include Advanced Function Printing™ (AFP™) printers and standard line printers.
Hardware Requirements

Desktop

To use or customize the Tivoli Information Management for z/OS Desktop, the following hardware is recommended at a minimum:

- IBM Personal Computer or any compatible system unit that supports a 133 MHz CPU or higher
- 48 MB or more of memory
- 20 MB fixed disk space (for the Desktop and the Desktop Toolkit)

Note: 1 MB equals 1 048 576 bytes, 1 KB equals 1024 bytes.

HLAPI/2 Client

Each HLAPI/2 client workstation requires the following hardware:

- An IBM personal computer or compatible system unit capable of running OS/2 WARP®, 4, and either Communications Manager/2 Version 1.1 or IBM TCP/IP
- One or more fixed disk drives with sufficient capacity to contain your version of OS/2, Communications Manager/2 or TCP/IP, and the disk storage requirements as specified below
- A communication option capable of supporting APPC LU 6.2 or TCP/IP communication to one or more MVS systems running a Tivoli Information Management for z/OS server

The amount of fixed disk space needed by the HLAPI/2 depends on which parts of the product you install and how you install them. You can only install the HLAPI/2 on an HPFS drive. When you install the HLAPI/2, the disk space needed for each component is:

- Installation and Maintenance utility, 1.4 MB
- Run time parts, 610 KB
- Toolkit parts, 260 KB

When you install the HLAPI/2 from a local area network (LAN) server, the numbers are the same, but the Installation and Maintenance utility is only temporarily copied to your workstation, and then it is deleted.

HLAPI for Windows NT Client

The HLAPI/NT client consists of two parts:

- Requester
- Client interface

Both the Windows® NT requester and client interface must be run on the same machine. The following hardware is required:

- An IBM personal computer or compatible system unit capable of running Microsoft® Windows NT 4.0 or Windows 2000 Professional
- One or more fixed disk drives with sufficient capacity to contain your version of Windows, and the disk storage requirements as specified below
- Token-Ring Adapter Card and network or a communication option capable of supporting APPC LU 6.2 or TCP/IP communication to one or more OS/390 systems running a Tivoli Information Management for z/OS server

The amount of fixed disk space you need to install the HLAPI/NT is:

- Installation utility, 520 KB
- Requester, 1.5 MB
- Toolkit, 10.3 MB

Additional disk space requirements are as follows:
Hardware Requirements

- 6 MB if you are using the Open Database Connectivity (ODBC) driver for Tivoli Information Management for z/OS
- 8.5 MB if you are using the Tivoli Information Management for z/OS interface to Tivoli Inventory

HLAPI/AIX Client

The HLAPI/AIX client consists of two parts:
- Requester
- Client interface

Both the AIX requester and client interface can be run on the same machine or on different machines.

To use the HLAPI/AIX client, you need:
- An RS/6000® machine capable of running IBM AIX

Machines that run the requester require either APPC/APPN or TCP/IP connectivity to the OS/390 host and TCP/IP connectivity to the machines that run the client interface. Machines that run the client interface (this can be the same machine as the requester) require TCP/IP connectivity to the machine that runs the requester.

The amount of fixed disk space you need to install the HLAPI/AIX is:
- Requester, approximately 310 KB
- Client, approximately 2340 KB

HLAPI/HP Client

The HLAPI/HP client consists of two parts:
- Requester
- Client interface

Both the HP requester and client interface can be run on the same machine or on different machines.

To use the HLAPI/HP client, you need:
- An HP Series 700 or 800 workstation capable of running HP-UX Version 10 (up to and including Version 10.2). HP-UX includes TCP/IP.

The amount of fixed disk space you need to install the HLAPI/HP is:
- Requester, approximately 150 KB
- Client, approximately 2350 KB

To use the optional HLAPI for Java provided with the client, you need one of the following:
- HP 9000 Enterprise Business Server
- HP 9000 Workstation
- HP Visualize Workstation

HLAPI/Solaris Client

The HLAPI/Solaris client consists of two parts:
- Requester
- Client interface
Both the Solaris requester and client interface can be run on the same machine or on different machines.

To use the HLAPI/Solaris client, you need:
- A Sun SPARCstation workstation capable of running Solaris Version 2.5.1 (which includes TCP/IP)

The amount of fixed disk space you need to install the HLAPI/Solaris is:
- Requester, approximately 160 KB
- Client, approximately 375 KB

HLAPI/USS Client

The HLAPI for OS/390 UNIX System Services client (HLAPI/USS) must be installed on a host system that can run OS/390. A TCP/IP connection is required between the following:
- The MVS systems running the requester and the MRES with TCP/IP servers
- The MVS systems running the client interface and the requester

HLAPI/CICS Client

The HLAPI/CICS client must be installed on a host system that can run CICS/ESA. If Tivoli Information Management for z/OS and the HLAPI/CICS client do not reside on the same MVS system, you must have a communications link between the two systems.

Problem Service

Additional disk space requirements are:
- For AIX: 12 MB
- For Windows NT or Windows 2000: 7 MB

Software Requirements

Base Product

The minimum software requirements for using the base Tivoli Information Management for z/OS product are defined in this section. Specific functions of Tivoli Information Management for z/OS may require additional products or other levels of the products as noted below. Tivoli Information Management for z/OS is executed as an application in the MVS element of the OS/390 operating system.

- OS/390 Version 2 Release 8 (5647-A01)
- Data Facility Sort (DFSORT™) or a compatible sort and merge licensed program
- OS/390 Security Server (RACF) or equivalent
- TSO Extensions (TSO/E) for 3270 access

Note: The address spaces that APIs run in do not require Interactive System Productivity Facility (ISPF) and a sort program.

The following software requirements are for optional components or features of Tivoli Information Management for z/OS.

Note: Where a requirement for the Java Development Kit (JDK) is specified, the JDK can be obtained from Sun Microsystems, Inc.
DB2 Extract Facility
To use the DB2 Extract Facility you must have the following software:

- IBM Database 2 (DB2) Version 3 (5685-DB2) or a subsequent release

Electronic Mail Notification and Escalation
To use the Notification Management facility to send e-mail messages to an MVS TCP/IP SMTP server, you must configure the SMTP component of TCP/IP.

Graphical User Interface and 3270 User Interface
To use the ISPF graphical user interface (GUI) mode to display Tivoli Information Management for z/OS panels, you must have ISPF and TSO/E operational on the same OS/390 system as Tivoli Information Management for z/OS. In addition, you must have any software that is required by ISPF for running an application in ISPF’s GUI mode. Refer to the ISPF User’s Guide for more information.

To access Tivoli Information Management for z/OS using 3270 you must have ISPF and TSO/E.

Data Reporting
To use the Open Database Connectivity (ODBC) driver for Tivoli Information Management for z/OS, the following are required:

- HLAPI/NT
- Microsoft Windows NT 4.0 or Windows 2000 Professional
- An ODBC-enabled workstation application

Reports can also be produced from a workstation using Tivoli Decision Support for Information Management (5697-IMG).

Support for the host graphics function of the Report Format Facility, which uses the Graphical Data Display Manager (GDDM), is not included. Customers requiring graphics reports can use the ODBC driver or use Tivoli Decision Support for Information Management.

Desktop
To use or customize the Tivoli Information Management for z/OS Desktop, the following software is required:

- Microsoft Windows NT 4.0, Windows 95, Windows 98, or Windows 2000 Professional

The Java runtime environment needed to run the Desktop is provided with the Desktop: Java 2 Runtime Environment, Standard Edition, Version 1.3 (J2RE).

Integration Facility Interfaces
All Integration Facility interfaces are optional. However, to use an Integration Facility interface, the corresponding products are required:

- NetView Version 3 for OS/390 (5655-007) or a subsequent release
- Operations Planning and Control/ESA (OPC/ESA) Version 1 Release 3 (5695-007) or a subsequent release
- Service Level Reporter (SLR), Version 3 Release 3 (5665-397), or a subsequent release

NetView Bridge Adapter
To use the NetView Bridge Adapter function in Tivoli Information Management for z/OS, the following programs are required:
NetView AutoBridge
To use the Tivoli Information Management for z/OS-Netview AutoBridge, the following program is required:
- NetView Version 3 for MVS/ESA (5655-007) (or a subsequent release)

HLAPI/2 Client
Each HLAPI/2 client workstation requires OS/2 WARP Version 4.
To use the optional HLAPI for Java provided with the client, you must have JDK Version 1.1.8 or higher.

To use a RES or MRES with APPC, you must have the following software:
- Communications Manager/2 Version 1.1 or higher (required for the APPC protocol)

To use an MRES with TCP/IP, no additional software is required. TCP/IP is provided with OS/2 WARP.

HLAPI for Windows NT Client
Each Windows NT machine that runs any part of the HLAPI/NT requires the following software:
- Microsoft Windows NT 4.0 or Windows 2000 Professional
- If you install the version of HLAPI/NT that supports both TCP/IP and APPC, you must install and configure the APPC client software such as the client software provided with IBM Communications Server for Windows NT Version 5.0 or Microsoft SNA Server Version 2.11 or higher

Microsoft Windows NT 4.0 includes support for TCP/IP.
To use the optional HLAPI for Java provided with the client, you must have JDK Version 1.1.8 or higher.

HLAPI/AIX Client
Each RS/6000 machine that runs any part of the HLAPI/AIX requires the following software:
- IBM AIX Version 4.2 (5765-C34) or Version 4.3

To use SNA, each RS/6000 machine that runs the requester options of HLAPI/AIX to communicate with either a RES or an MRES with APPC requires IBM AIX SNA Server/6000 Version 2.1 (5765-247) or a subsequent release.

To use the REXX HLAPI/AIX, each RS/6000 machine that runs REXX HLAPI/AIX requires IBM AIX REXX/6000 (5764-057).

To use the optional HLAPI for Java provided with the client, you must have JDK Version 1.1.8 or higher.
HLAPI/HP Client

Each HP machine that runs any part of the HLAPI/HP requires the following software:
- HP-UX Version 10 (up to and including Version 10.2)

To use the optional HLAPI for Java provided with the client, you must have JDK Version 1.1.8 or higher, and HP-UX Version 10.2.

HLAPI/Solaris Client

Each Sun machine that runs any part of the HLAPI/Solaris requires the following software:
- Solaris Version 2.5.1

To use the optional HLAPI for Java provided with the client, you must have JDK Version 1.1.8 or higher, and Solaris Version 2.5.1.

HLAPI/USS Client

To use the HLAPI/USS client, OS/390 UNIX System Services must be configured to start up in “full function” mode. (Refer to OS/390 UNIX System Services Planning for more information.)

HLAPI/CICS Client

The HLAPI/CICS client requires the following software:
- CICS/ESA Version 4 Release 1 (5655-018)

Note: The sample CICS application that is shipped by Tivoli requires either Language Environment (available with OS/390) or VS COBOL II Version 1.4 to run. HLAPI/CICS itself does not require VS COBOL II.

Connectors to the World Wide Web

REXX Web connector for MVS

The software requirements for using the REXX web connector for MVS are:
- A Web browser
- IBM Library for SAA® REXX/370 Release 3 for MVS/ESA (5695-014)

REXX Web connector for OS/2

The software requirements for using the REXX web connector for OS/2 are:
- A Web browser
- OS/2 WARP Version 4
- Lotus Domino™ for OS/2
- HLAPI/2

REXX Web connector for OS/390

The software requirements for using the REXX web connector for OS/390 are:
- A Web browser

To use the Java applets for data field validation, you need:
- REXX Web connector for MVS or REXX Web connector for OS/390
- A client Web browser that supports both Java Version 1.1.8 or higher and JavaScript calling applets compiled with JDK Version 1.1.8 or higher
- A Web server that is capable of serving Java applets
- Supplied Java applets stored on a Web server
Software Requirements

TEC Event Adapter
The Tivoli Information Management for z/OS TEC Event Adapter requires the following software:

- Tivoli Event Integration Facility for z/OS (available with Tivoli Information Management for z/OS as FMID H256100)

Integration with Other Tivoli Products
If you are using Tivoli Information Management for z/OS in a Tivoli management software environment, you must have the following software installed as applicable. Refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications for more information.

- Tivoli Decision Support: To use Tivoli Decision Support for Information Management, the following software is required:
 - Microsoft Windows NT 4.0 or later
 - Tivoli Decision Support for Information Management (5697-IMG)
 - Tivoli Decision Support 2.1 (installation of Cognos PowerPlay and Crystal Reports may also be required)
 - HLAPI/NT
 - ODBC driver for Tivoli Information Management for z/OS

- Tivoli Enterprise Console integration facility: To send events to Tivoli Information Management for z/OS through the Tivoli Enterprise Console, you must have the following installed:
 - Problem Service
 - Tivoli Enterprise Console Version 3 Release 1 or higher

- Tivoli Inventory: To use an extract of Tivoli Inventory data in Tivoli Information Management for z/OS, you must have the following:
 - Tivoli Inventory Version 3.6.2
 - HLAPI/NT

- Tivoli Service Desk Bridge: To exchange records with the Tivoli Service Desk through Tivoli Service Desk Bridge, you need:
 - Tivoli Service Desk 6.0
 - HLAPI/NT

 Optionally, to handle Tivoli Service Desk Bridge errors, you need the Tivoli Information Management for z/OS TEC Event Adapter.

- Tivoli Software Distribution: Tivoli Information Management for z/OS HLAPI client features can be installed using Tivoli Software Distribution (HLAPI/2, HLAPI/NT, HLAPI/AIX, HLAPI/HP, and HLAPI/Solaris). The HLAPI/CICS and HLAPI/USS are installed using SMP/E.

 To distribute software upon approval of a Tivoli Information Management for z/OS change request, you need:
 - Tivoli Software Distribution Version 3.1
 - Tivoli Enterprise Console Version 3.1
 - Tivoli Information Management for z/OS TEC Event Adapter

Problem Service
To use Problem Service, you need:

- For AIX:
 - IBM AIX Version 4.2 (5765-C34) or Version 4.3
- HLAPI/AIX
- Tivoli Management Environment 3.1 or higher
- Tivoli Application Development Environment (if you are writing an application to use Problem Service)

For Windows NT:
- Microsoft Windows NT 4.0
- HLAPI/NT
- Tivoli Management Environment 3.1 or higher
- Tivoli Application Development Environment (if you are writing an application to use Problem Service)
Assigning and Scheduling Personnel and Systems

This chapter discusses:
- Assigning personnel to the various tasks involved in running Tivoli Information Management for z/OS
- Scheduling education and training for Tivoli Information Management for z/OS
- Implementing a test system for Tivoli Information Management for z/OS

This chapter assumes that you are familiar with the tasks that are involved in installing and running Tivoli Information Management for z/OS. This chapter is designed to help you plan your resources for Tivoli Information Management for z/OS.

Assigning Personnel

To plan for Tivoli Information Management for z/OS, it is important that you involve those who are responsible for the functional areas that use the product. These people must be available to represent their departments and make their concerns known during the planning. This helps to ensure that planning decisions, especially those that can affect existing procedures or policies, take place.

Choose a project administrator or planner to coordinate the installation planning activities. This person can continue to be responsible for the program after it is installed and in use. In addition, select a coordinator for each functional area that uses Tivoli Information Management for z/OS.

You can select one functional area to serve as a pilot project. By doing so, you can validate the initial system definitions, reports, data flow, and support procedures before you make Tivoli Information Management for z/OS generally available to your entire organization.

The project administrator can distribute the responsibilities for Tivoli Information Management for z/OS as follows:
- Assign a system analyst or programmer to maintain the operating system control program and to install Tivoli Information Management for z/OS. See “Overview for Planning and Installing” on page 1 for installation instructions.
- Assign a system analyst or programmer to set up and manage the following as applicable:
 - Set up any necessary coupling facility structures to run Tivoli Information Management for z/OS in a parallel sysplex or to share Tivoli Information Management for z/OS databases across multiple z/OS systems. For information on
setting up for data sharing or the GRS environment for sharing databases across multiple z/OS systems, see “Setting Up for Sysplex Data Sharing” on page 151.

- Assign a system analyst or programmer to set up and manage the APPC/MVS environment that is required for using the Remote Environment Server functions. Refer to the *Tivoli Information Management for z/OS Client Installation and User’s Guide* for information on setting up APPC/MVS for the Remote Environment client/server functions.

Assign a program administrator to do the following:
- Manage the dictionary data set, panels, and dialogs. See “Defining the DICTDS” on page 289 and refer to the *Tivoli Information Management for z/OS Operation and Maintenance Reference*.
- Set privilege classes for users. Refer to the *Tivoli Information Management for z/OS Program Administration Guide and Reference*.
- Manage notification and escalation. Refer to the *Tivoli Information Management for z/OS Program Administration Guide and Reference*.
- Control the use of PMF and terminal simulator panels (TSPs or TSXs). Refer to the *Tivoli Information Management for z/OS Panel Modification Facility Guide*.
- Create data model records as necessary. Refer to the *Tivoli Information Management for z/OS Panel Modification Facility Guide*.
- Customize use of the Tivoli Information Management for z/OS Desktop, if applicable, and help deploy the Desktop at user workstations. Refer to the *Tivoli Information Management for z/OS Desktop User’s Guide* for more information.
- Set up a knowledge base for improved problem resolution searching, if desired.
- Create a text search index to use with the IBM Intelligent Miner™ for Text.

Assign a database administrator to set up access to the data sets, maintain the databases, and run the utilities. See “Defining Tivoli Information Management for z/OS Data Sets” on page 277 and refer to the *Tivoli Information Management for z/OS Operation and Maintenance Reference* for further details.

Assign host and client application programmers to create and manage programs used as Tivoli Information Management for z/OS exit routines and to write applications for use with the application program interfaces. Refer to the *Tivoli Information Management for z/OS Application Program Interface Guide* for details about the APIs. Refer to the *Tivoli Information Management for z/OS Client Installation and User’s Guide* for details about the Tivoli Information Management for z/OS client APIs.

Assign a system administrator to integrate Tivoli Information Management for z/OS with other Tivoli applications if you are using Tivoli Information Management for z/OS in a Tivoli Management software environment. Refer to the *Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications* for more information.

Assign a programmer with REXX and HTML skills to design and create applications that use the Tivoli Information Management for z/OS Web connector. Java skills and a knowledge of Web browsers and Web servers are desirable. Also, consult with your company’s Information Technology security officer to review any Internet and intranet security concerns your company may have.

Assign a system programmer to create TSPs or TSXs to simulate Tivoli Information Management for z/OS sessions, customize panels, and create reports. Refer to the *Tivoli Information Management for z/OS Terminal Simulator Guide and Reference*, *Tivoli Information Management for z/OS Panel Modification Facility Guide*, and *Tivoli Information Management for z/OS Data Reporting User’s Guide* for details.
Assign a DB2 administrator to facilitate the use of the DB2 Extract Facility. Refer to the *Tivoli Information Management for z/OS Program Administration Guide and Reference* for details.

See Table 24 on page 401 for additional duties that you can assign.

Scheduling Education and Training

Establish an education plan early in the implementation process. All personnel should know how to use and maintain Tivoli Information Management for z/OS effectively so they understand the purpose of the product and how it affects their roles in the data processing environment.

After your system is ready, you should educate your users through on-the-job training or formal education. You should develop and maintain documentation and procedures based on how you tailor your system.

Implementing a Test System

After you install Tivoli Information Management for z/OS according to the instructions given in [*Overview for Planning and Installing* on page 1], and all modifications to your system are made and tested, you can make the system available to a small group of users. As the first users, they can help identify any problems with the system and procedures. They can also suggest additional modifications and educational requirements.

You can control access to the data in the test system through the use of privilege classes because each user must have display authority to view any records except SRC, ALIAS, and COMMAND records.
This chapter specifies the tasks and considerations for migrating from previous versions of Tivoli Information Management for z/OS, including Tivoli Service Desk for OS/390 Version 1.2 and Information/Management licensed programs.

Note: Organizations currently using older versions not listed here should contact Tivoli support personnel for migration information.

If you are a new user, go to "Overview for Planning and Installing" on page x.

Tivoli Information Management for z/OS Version 7.1 Changes

"What’s New in Tivoli Information Management for z/OS?" on page xii lists the key changes associated with this release. From an installation perspective, note the following actions you must perform with this release or that you should consider performing if you currently have earlier versions of Tivoli Information Management for z/OS or its predecessor products installed.

Spanned data sets no longer supported
Because it is unnecessary to use them, spanned VSAM data sets are not supported. If you try to open a spanned VSAM data set, an error message is displayed. Use IDCAMS to delete and redefine the data set without the SPANNED attribute. After the data set is created with IDCAMS, use the BLX-SP REALLOC command (described in Tivoli Information Management for z/OS Operation and Maintenance Reference) to reallocate the data set.

Migrate to sysplex if you are using Multisystem Database Access
If you are currently using Multisystem Database Access to share databases across multiple systems, you must now use sysplex data sharing or stop sharing databases. You must have a parallel sysplex with a coupling facility to continue sharing databases.

For all BLX-SPs, modify the BLX-SP parameters member in the data set specified on the BLXPRM DD statement in your BLX-SP procedure:

- Add the SYSPLEX=YES parameter. SYSPLEX=YES enables sysplex mode for the BLX-SP and its users.
- Remove the VSAMRESOURCES parameter. The VSAM resource definition member name (for example, BLXVDEF) is ignored when running Tivoli Information Management for z/OS in sysplex mode.
- Remove the DESTNAMES parameter. The DESTNAMES parameter is not supported.
For an example of the BLX-SP parameters member, see BLX1SH in the SBLMSAMP data set.

Because VSAM RLS requires use of a LOG parameter, you must migrate the VSAM data sets from your current version of Tivoli Information Management for z/OS to SMS-managed clusters with the LOG(NONE) parameter. You can use the IDCAMS ALTER or IDCAMS DEFINE CLUSTER command to define clusters with the LOG(NONE) parameter. As an alternative, you can run the BLGALTER job provided in the SBLMSAMP data set to migrate existing VSAM data sets to be RLS enabled.

Note: The following samples in the SBLMSAMP data set are also updated to illustrate use of the LOG(NONE) parameter.

- BLGDATAB – Define the Tivoli Information Management for z/OS database
- BLGDICT – Define the dictionary data set
- BLGRPNL – Define read panel data sets
- BLMWPNL – Define write panel data sets

Additionally, RLS does not support data sets defined with the IMBED option. If you have data sets defined with the IMBED option, you must create new ones with the NOIMBED option, and then run IDCAMS REPRO to copy the data from the old data sets to the new ones.

Refer to the DFSMS/MVS Access Method Services for the Integrated Catalog Facility for more information about using IDCAMS.

Perform the sysplex setup tasks as described in "Enabling Sysplex Mode" on page 156. These tasks may be performed by your z/OS systems programmer and include the following:

- Creating RLS share control data sets.
- Setting up a CFRM policy.
- Setting up the sysplex policy couple data sets.
- Updating the SYS1.PARMLIB data set with COUPLExx and IGDSMSxx members.

Load the base records provided with Tivoli Information Management for z/OS.

The base records that are shipped with Tivoli Information Management for z/OS must be loaded because certain base functions in this release are dependent on their existence. For example, to take advantage of the enhanced change approver processing, or to use the universal time processing feature, you must have the base data model records loaded. For instructions on loading the base records, see "Loading Records Provided with Tivoli Information Management for z/OS" on page 219.

Consider enabling data-entry panels for new user option

If you have created your own data-entry panels or have customized the panels provided with Tivoli Information Management for z/OS, you should consider enabling these panels to allow entry field numbers to be hidden. A new screen control option provided in the user profile (session control defaults) enables users to hide field numbers on data-entry panels. The base panels supplied with Tivoli Information Management for z/OS are already enabled, but you must migrate any
panels that have been built using previous releases of the product. You should do
this only if you want to enable the option to hide the entry field numbers. If users
do not mind seeing field numbers on panels, you can leave your panels alone. To
enable the data-entry panels, bring up each panel in the update function of the Panel
Modification Facility (PMF) and file the panel. No actual panel changes are
necessary. The PMF file process automatically enables the panel.

Note: If you use the ISPF GUI to interact with the database, you should not use the
option to hide entry field numbers because it is not compatible with the ISPF
GUI feature.

Date and time processing is changed
In this release, changes were made to how dates and times in records are processed.

- The way dates and times are stored in the SDDS is changed. Dates and times
 are now stored in internal format.
 The internal and external time-of-day format are still the same (HH:MM) (unless
 you have written your own time conversion routine, in which case your time
 format is different).
 Dates were previously stored in external date format in the SDDS. Now, all
dates are stored in the SDDS in internal format. Dates from records created in
prior versions (in external format) will be converted automatically to internal
format when the record is read for any reason (for example, when the record is
displayed, updated, or shown on a report). This change was made so that new
features, such as the user’s ability to select an external date format, will work
with records created in prior versions of the product. The first time the record is
filed in Tivoli Information Management for z/OS Version 7.1, all dates in the
record are stored in internal date format. The record can no longer be accessed
properly by prior versions of the product.

- The user profile now allows users to select their desired external date format
 from a list of 22 supported formats. This change enables users to alter the way
dates appear on the Tivoli Information Management for z/OS panels and reports
and other output. If no selection is made in the user profile, the default external
date format specified in the session parameters through the BLGPARMS
DATEFMT keyword is used.
 Users can specify a preferred external date format by selecting the User and
Database Defaults section of the user profile. The preferred date format selection
takes effect for all records created or updated under this release or under
previous releases.

BLGPARMS DATECNV keyword is changed; new keywords are available
Some changes were made to the keywords and parameters of the BLGPARMS
session parameters macro. The DATECNV keyword is changed, and the DATEFMT,
ODATEFMT, TIMEZONE, and OTIMEZONE keywords are new. Familiarize
yourself with the changes, make the necessary adjustments to your session
parameters, and then reassemble your session-parameters members.

- The DATECNV keyword specifies the date conversion routine name only. It no
 longer specifies the internal or external date format. A separate required
 keyword, DATEFMT, is provided to specify external date formats. Internal date
 format is now YYYY/MM/DD for all users; there is no option to change the
 internal date format. Details about the DATECNV keyword are available on
 page 322.
Also, the ASIS and PRIMARY parameters that were formerly entered in the fifth position of DATECNV are no longer supported. These parameters previously specified whether Tivoli Information Management for z/OS should convert dates entered by users into a primary external date format. Now that dates are stored in internal format and users can enter dates in 22 different formats, these parameters are no longer necessary. If you reassemble your session parameters and include either the ASIS or PRIMARY parameter, an assembly error occurs. Therefore, you should remove ASIS or PRIMARY from the DATECNV keyword before reassembling.

- The DATEFMT keyword is a required keyword that specifies the default external date format to be used by Tivoli Information Management for z/OS when processing dates. See page 320 for more details about DATEFMT.

- The ODATEFMT keyword is an optional keyword you can use to specify the external date format of dates in old records. "Old" records are existing records in your database that were created with versions of Tivoli Information Management for z/OS (or its predecessor products) before Version 7.1. The ODATEFMT parameter is only necessary if there are dates in your database with an external date format that is different from the default external date format specified on DATEFMT. See page 326 for more information about ODATEFMT.

- Optionally, to enable universal time processing, specify the TIMEZONE keyword and a time zone symbol. The TIMEZONE keyword is described on page 332.

 If you are not implementing universal time processing, it is recommended that your Tivoli Information Management for z/OS administrator use PMF to remove the User’s time zone field from panel BLG0P700, User and Database Defaults, so that users do not get frustrated by attempting to use a field that will not work in their environment.

 Note: If you use the Integration Facility you should not implement universal time processing. Unpredictable results could occur if you enable the TIMEZONE keyword and use the Integration Facility. If you use the Integration Facility, you should also consider using PMF to remove the User’s time zone field from panel BLG0P700.

- Additionally, the OTIMEZON keyword is available as an optional keyword that specifies the time zone associated with "older" records in your database. (In this case, "older" records are those records that do not have universal time data for a field that is a universal time field. This includes all records established before Tivoli Information Management for z/OS Version 7.1, and also those records that are filed before the field is defined as a universal time field.) The OTIMEZON keyword enables Tivoli Information Management for z/OS to migrate older records as they are being accessed to use the enhanced date processing functions. If you are enabling universal time processing and have older records in your database that you want users to be able to process, and the time zone for those records is different from that which you are specifying on the TIMEZONE keyword, specify the OTIMEZON keyword. Otherwise, the value specified for TIMEZONE will be used. For more information about the OTIMEZON keyword, see page 326.

- The following table provides some examples of how parameters are now specified:
If you had this previously:
Internal date format of YYYY/MM/DD, primary external date format of MM/DD/YYYY (second value) and no secondary date format:
\[\text{DATECNV} = \text{BLGCDATS}, (\text{YYYY/MM/DD,MM/DD/YYYY}) \]

Specify this now:
DATECNV = BLGCDATS, (or omit for default)
DATEFMT = MM/DD/YYYY

If you had this previously:
Internal date format of YYYY/MM/DD, primary external date format of MM/DD/YYYY (second value) and secondary date format of MM/DD/YY (third value) and conversion of dates entered to primary external date format:
\[\text{DATECNV} = \text{BLGCDATS}, (\text{YYYY/MM/DD,MM/DD/YYYY,MM/DD/YY,PRIMARY}) \]

Specify this now:
DATECNV = BLGCDATS, (or omit for default)
DATEFMT = MM/DD/YYYY, ODATEFMT = MM/DD/YY

Records for a company with two geographic locations in different time zones (Eastern and Mountain, U.S.) all reflected the Eastern time format.

If you want users in the Eastern time zone to work business as usual, but yet have users in the Mountain time zone see times that reflect their own time zone:
TIMEZONE = ET

Users in the Mountain time zone can specify MT as the time zone format preference in the user profile.

Records entered were all associated with Eastern time zone (ET) times for a U.S.-based company.

However, a company merger has since occurred with a company based in the U.K. Information processing headquarters is in the U.K. but older U.S. records must still be processed. All users are in the U.K.

TIMEZONE = WET, OTIMEZONE = ET

For more information about date-related migration tasks, see "Migration Considerations" on page 234.

Session members can use different time-of-day formats

Different session members can now use different time-of-day formats. The formats supported are the default HH:MM format, or a format you specify through your own conversion exit routine. Previously, you could have only one time-of-day format specified for all session members using a database.

Session members can now use different external date formats and time zones as well. With this feature, a session member for Boston and another for Frankfurt can be set up, even if the members are using a single database. Remember to use ODATEFMT and OTIMEZON to reflect the date format and time zone of records which were created previous to the installation of Tivoli Information Management for z/OS Version 7.1.

Modify change request panels to include revised control panel flow

The flow on some change request panels is changed in the Management application. Change approver and reviewer data is collected as list processor data for new records or for existing records that do not have approver or reviewer data specified. List processor panel BLGLAPVR is displayed for the entry of approver data and panel BLGLREVR is displayed for the entry of reviewer data during change record entry and update processing. If existing change records have approver or reviewer data already specified, the data-entry panel flow is unchanged and the list processor panels are not displayed.
Note: To use this enhancement, you must load the base data model records which are provided with Tivoli Information Management for z/OS. For more information about loading base data model records, see “Loading Records Provided with Tivoli Information Management for z/OS” on page 219.

If the :COPY command is used to create a new change request record and the copied data contains non-list approver and reviewer data, the approver and reviewer data for the new record is collected as non-list data.

The changes are summarized below:

- Panel BLG1A121, Change Record File Processing:
 Two FLOW lines are added for TSXs BLGTX121 and BLGTXCAP.

- Panel BLG0CU01, Change Request Summary (entry):
 When option 5 (Approver data) is selected, the panel flows to control panel BLG1AAPU instead of BLG0C500. When option 6 (Reviewer data) is selected, the panel flows to control panel BLG1AREU instead of BLG0C700.

- Panel BLG0CU00, Change Request Summary (update):
 When option 5 (Approver data) is selected, the panel flows to option panel BLG0C015 instead of BLG0C500. When option 6 (Reviewer data) is selected, the panel flows to control panel BLG1AREU instead of BLG0C700.

- Panel BLG0S020, Change Summary Display:
 When option 8 (Approver display) is selected, the panel flows to control panel BLG1AAPD. When option 9 (Reviewer display) is selected, the panel flows to control panel BLG1ARED. In addition, the selection s-word 0CFA XIMDIAAPR0 is added to option 8 (Approver display), which allows panel BLGLAPST to be re-displayed with the updated approval status when program exit BLG02041 completes.

When a change approver is added to the list of approvers on panel BLGLAPVR, a default status of PENDING is set for the approver. The change approver can accept or reject the request by selecting option 8 on BLG0S020 Change Summary Display panel and typing an ‘A’ or an ‘R’ as appropriate on list processor panel BLGLAPST.

Note: These changes do not apply to or affect the Integration Facility.

If you have modified any of these panels (BLG1A121, BLG0CU01, BLG0CU00, or BLG0S020), or if you have created your own customized copies of these panels, you must modify them to flow to the new control panels and add the new selection s-word (for ‘A’ or ‘R’) to panel BLG0S020. For each panel, you must add the new TSXs, update the selections, and test the modifications. The following steps describe this process:

1. Add the New TSXs
 a. Select PMF.
 b. Select Panel update on the PMF options panel.
 c. Enter the name of the panel to modify on BLM8CU00 (BLG1A121 or your panel name).
d. On BLM8CU60, select Abstract. The panel you requested is displayed for update.

e. Type control on the command line and press Enter.

f. On BLM1TSCU, insert a FLOW control line and the FLOW control line that has BLG1ACAN as the false target.

g. On BLM8CU63, select Control flow processing.

h. On BLG8CU6A, change the Function code to 002B, code-invoke TSP, clear the True target panel name, and enter BLGTX121 in the Program exit/TSP name field.

i. Type end,end and press Enter.

j. On BLM1TSCU, type R on the FLOW control line you just created.

k. On BLM8CU63, select Control flow processing.

l. On BLG8CU6A, change the Program exit/TSP name field to BLGTXCAP.

m. Type end,end,end,end and press Enter.

n. On BLM8CU60, select File.

2. Update the selections.

 a. Select PMF.

 b. Select Panel update on the PMF options panel.

 c. Enter the name of the panel to modify on panel BLM8CU00 (BLG0CU01, BLG0CU00, BLG0S020, or your panel name).

 d. On panel BLM8CU70, select Externals. The panel you requested is displayed for update.

 e. Type control on the command line, move the cursor to the number for the Approver selection, and press Enter.

 f. On panel BLM8CU73, select Panel flow processing.

 g. On panel BLM8CU7A, change the name of the target panel to the new control panel:

 - If the current target panel is BLG0C500 and you are updating BLG0CU01, change it to BLG1AAPU.

 - If the current target panel is BLG0C500 and you are updating BLG0CU00, change it to BLG0C015.

 - If the current target panel is BLG0M500, change it to BLG1AAPD.

 h. Type end and press Enter.

i. If the panel you are modifying is not BLG0S020 or a copy of this panel (Change Display Summary), go to step j.

 If the panel you are modifying is BLG0S020 or a copy of this panel (Change Display Summary), perform the following additional steps:

 1) On BLM8CU73, select Data collection processing.

 2) On BLM8CU7B, change the Structured word index field to 0CFA (Approver Entry).
3) Type end and press Enter.

4) Go to step j.

j. Type end and press Enter.

k. Type control on the command line, move the cursor to the number for the Reviewer selection, and press Enter.

l. On panel BLM8CU73, select Panel flow processing.

m. On panel BLM8CU7A, change the name of the target panel to the new control panel:
 - If the current target panel is BLG0C700, change it to BLG1AREU.
 - If the current target panel is BLG0M700, change it to BLG1ARED.

n. Type end,end,end and press Enter.

o. On panel BLM8CU70, select File.

3. Test the modifications.
 a. Copy the modified panels to your test read panels data set.
 b. Create, update, and display change request records to ensure the Approver and Reviewer selections display the desired panel.

The report format tables (RFTs) BLMPRRC, BLMZZ13, BLMZZ14, and BLMZZ34, provided with Tivoli Information Management for z/OS, are updated to include the change approver and reviewer list field data. If you have modified these RFTs or have created RFTs based on these formats, you may need to update them to display the list field data.

Note about Searching: Quick search panels BLG0F590 (Change Approver Data Inquiry) and BLG0F890 (Change Control Data Inquiry) do not need to be changed to support the list data. The s-words and p-words added for the new change approver and change reviewer fields associated with list processor panels are the same or similar to the values used for the structured fields when list data is not used. Your existing searches should find all occurrences of the approver and reviewer data, regardless of whether or not the approver or reviewer data was entered through a list processor panel. However, you can search specifically on the new change fields if desired. New change fields are listed in the following table:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>P-word</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approver</td>
<td>SPAR/</td>
</tr>
<tr>
<td>pending</td>
<td>SAAR/</td>
</tr>
<tr>
<td>approved</td>
<td>SRAR/</td>
</tr>
<tr>
<td>rejected</td>
<td></td>
</tr>
<tr>
<td>Approval status</td>
<td>APST/</td>
</tr>
<tr>
<td>Approver class</td>
<td>CLAP/</td>
</tr>
<tr>
<td>Reviewer</td>
<td>CLAX/</td>
</tr>
</tbody>
</table>

For example, the following searches return change records associated with approver or reviewer data entered as either list or non-list data:
;SEARCH SP**/HELPDESK finds all changes pending approval by the HELPDESK privilege class name.

;SEARCH SA**/HELPDESK finds all changes that have been approved by HELPDESK.

;SEARCH SR**/HELPDESK finds all changes that have been rejected by HELPDESK.

;SEARCH CLAX**/HELPDESK finds all changes assigned to HELPDESK for review.

If needed, you can retrieve only those change records that are associated with change approver or reviewer list data. For example:

;SEARCH APST/PENDING finds all changes pending approval for records entered through BLGLAPVR only.

;SEARCH SPAR/HELPDESK finds all changes pending approval by HELPDESK (BLGLAPVR only).

Migrate privilege class records to use new list processor panels

The panels used to collect and display the list of eligible users of a privilege class are changed in the System application. List processor panels are now used to collect and display the data for new privilege class records. List processor panel BLGLJ300 (General User Authorization Table) is displayed for the entry of user IDs associated with a privilege class. For existing privilege class records, the data-entry panel flow is unchanged and the BLGLJ300 list processor panel is not displayed.

If desired, you can run TSX BLGTPRIV to migrate all your existing privilege class records to use the new list processor panels. By running this TSX, you can ensure that the same set of panels is used to enter or display data related to users of a privilege class. This panel consistency can make it easier to work with the records. TSX BLGTPRIV can be run from the command line or in batch mode. It will update all the privilege class records in your database that contain eligible user data in the old format and convert the data to the new list processor format.

You can modify a copy of the sample JCL shipped for BLHRCDSL and use that copy to run TSX BLGTPRIV. BLGTPRIV has no parameters, so modify the copy to appear as follows:

```
IPSTART BLGINIT PARMS(SESS(00) CLASS(MASTER) TSP(BLGTPRIV) IRC(;/QUIT))
```

Before deciding whether to use BLGTPRIV, you should be aware of the following:

- The user running TSX BLGTPRIV (either interactively or in batch mode) must be in a privilege class that has, at minimum, DBADMIN and class authorities.

- BLGTPRIV will not update Integration Facility (IIF) privilege class records.

- It is not necessary to to run BLGTPRIV if you have already customized your privilege class panels to use list processor data for the eligible user list.

Desktop users – migrate to new version

If you are currently using the Java-based Desktop application, you should do the following:

- If not already loaded, load the base data model records provided in this version of Tivoli Information Management for z/OS. If you made any modifications to the records in the previous release and want to keep the changes, you must
update the Version 7.1 data model records with your changes. Although the data
model records provided previously will still work, it is recommended that you
use the new records. For instructions on how to load the base data model
records, see "Loading Records Provided with Tivoli Information Management
for z/OS" on page 219.

- Before installing Desktop Version 7.1, uninstall the previous version. Instructions
 are provided in the Tivoli Information Management for z/OS Desktop User’s
 Guide.

- Use the configuration editor to rebuild the jhd.properties file. The properties file
 constructed under Desktop Version 1.2 is not upwardly compatible.

- Hierarchy files constructed with the previous version of the Desktop are
 upwardly compatible. There is no need to rebuild them.
Migrating from Earlier Versions

This section summarizes functions and actions to consider if you are migrating from previous versions of the product to Tivoli Information Management for z/OS Version 7.1. You should review the information in “Tivoli Information Management for z/OS Version 7.1 Changes” on page 103 and the following table, and check off the items that apply to you, based on the release you are migrating from (as shown in the far right column). In Table 5, an X in the “New” column identifies items that are new with this Version 7.1, or that you must address if you are installing Version 7.1. If you have kept up with installing the latest releases of the product, you need only pay attention to the items with an X in the “New” column. Otherwise, if you are migrating from older releases, you should review all topics to understand what changes took place to determine what to do. Where necessary, the topics in Table 5 are discussed in further detail in the text that immediately follows the tables.

Table 5. Migrating from Previous Versions

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New</th>
<th>Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multisystem Database Access</td>
<td>MSDA not supported – use sysplex</td>
<td>If you used the MSDA facility to enable users on different BLX-SPs to share Tivoli Information Management for z/OS databases (VSAM data sets) concurrently, you must now run Tivoli Information Management for z/OS in a parallel sysplex environment with a coupling facility to continue sharing data sets. For more information, see “Setting Up for Sysplex Data Sharing” on page 151.</td>
<td>X</td>
<td>Information/Management 6.1, 6.2; TME 10 Information/Management 1.1; Tivoli Service Desk for OS/390 1.2</td>
</tr>
<tr>
<td>Shared databases</td>
<td>Resource name changes</td>
<td>Note the following resource name changes:</td>
<td>X</td>
<td>All previous releases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The BLXMSDA and BLXVRFY resource names are no longer used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A new BLGSDIDS resource name has been added for use in a sysplex environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The BLXDASDS resource name is not used in a sysplex environment.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These changes are incompatible with previous versions. If you share databases between systems running different levels of Tivoli Information Management for z/OS or its predecessor products, you will need to migrate all systems to this release. See “Resource Names That Tivoli Information Management for z/OS Enqueues On” on page 351 for details.
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New</th>
<th>Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic load library</td>
<td>Running Tivoli Information Management for z/OS from link pack area</td>
<td>If you run Tivoli Information Management for z/OS from the link pack area (LPA), you must modify the ISPF TSO command table ISPTCM. See Modifying the ISPTCM Table on page 21 for complete information on running from the LPA.</td>
<td></td>
<td>All previous releases</td>
</tr>
<tr>
<td>BLX-SP parameters member</td>
<td>Modified</td>
<td>If you intend to run Tivoli Information Management for z/OS in a parallel sysplex (to take advantage of VSAM RLS or to use shared Tivoli Information Management for z/OS databases), you must include the SYSPLEX=YES parameter in your BLX-SP parameters member to enable sysplex mode. (You can also use the Installation Tailoring Facility to enable sysplex mode.) The DESTNAMES parameter which was previously used with Multisystem Database Access is no longer supported. The VSAMRESOURCES parameter is ignored when sysplex mode is enabled.</td>
<td>X</td>
<td>All previous releases</td>
</tr>
<tr>
<td>BLX-SP parameters member</td>
<td>Modified</td>
<td>The APISECURITY parameter was added to activate security checking for APIs. You need to add this required parameter before use. Refer to the Application Programming Interface Guide for details. The MAILQ and MAILQWAITTM parameters (optional) were added to support queueing of e-mail notification messages. Refer to "Using Notification Management" in the Tivoli Information Management for z/OS Program Administration Guide and Reference for details. Note: The BLX-SP parameters member did not exist before Information/Management Version 5.1. If you are migrating from versions that predated Version 5.1, become familiar with parameters and create a BLX-SP parameters member. You can also use the Installation Tailoring Facility to create this.</td>
<td></td>
<td>Information/Management 5.1, 6.1, 6.2</td>
</tr>
</tbody>
</table>

You can perform the following action in Step 6 of the general installation checklist in Chapter 1.
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date format</td>
<td>Run BLGUT17</td>
<td>Tivoli Information Management for z/OS 7.1 has implemented a number of date and</td>
<td>X All previous releases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>time-of-day enhancements. If you are currently using two or more external date</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>formats, it is recommended that you run BLGUT17 before or during the installation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>process in order to standardize the date formats your organization uses.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information on running BLGUT17 can be found in the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
<td></td>
</tr>
<tr>
<td>Date format</td>
<td>DateFMT is used for default external date format specification; DATECNV is for date conversion routine name only; ODATEFMT is available to automatically convert old date records</td>
<td>Review changes made to the BLGPARMS macro keywords that support date processing (see BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics on page 318).</td>
<td>X Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1; Tivoli Service Desk for OS/390 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All panels and PIDTs shipped with Tivoli Information Management for z/OS support</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the entry of dates in any of the 22 external date formats. Users have the option</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to change date formats by making a selection in the User and database defaults option in the user profile.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Users can select different date formats through user profile</td>
<td>Because users can set different date formats through the user profile, any TSPs or TSXs that you have written that enter or process dates must support different external date formats for different users. All processing in the TSP or TSX should use internal format and should convert to and from the user’s external format when interacting with the database. The TSPs or TSXs should be written to use the 10-character internal date format (YYYY/MM/DD) for processing date data. Use the BLGIDATE and BLGEDATE user exits to convert the internal format date from or to the user’s local date format. The BLGIDATE user exit converts a date from the user’s local date format to internal format. The BLGEDATE user exit converts a date from internal format to the user’s local date format. For more information about these user exits, refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference.</td>
<td>X Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1; Tivoli Service Desk for OS/390 1.2</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New</th>
<th>Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date format</td>
<td>Internal date format must be set to YYYY/MM/DD</td>
<td>For a description of what you need to do to change an existing database to use this expanded format, see the explanatory note on date formats which follows this table. Note: You only need to change if this format if you are currently using internal date format YY/MM/DD.</td>
<td>X</td>
<td>All previous releases</td>
</tr>
<tr>
<td>Logical database partitions</td>
<td>The Tivoli Information Management for z/OS database can be divided into multiple logical partitions.</td>
<td>Determine if you want to use logical database partitions and reassess privilege classes as appropriate. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for more information. The BLGPARMS macro has a GBLPID parameter (optional) to enable you to specify the name of a global partition if desired.</td>
<td></td>
<td>All previous releases</td>
</tr>
<tr>
<td>SDIDS</td>
<td>Data structure changed</td>
<td>Because the data structure of the SDIDS changed, you must, as part of installing this release, rebuild or migrate your SDIDS using the BLGUT1 or BLGUT1M utility program respectively. (This does not apply to TME 10 Information/Management Version 1.1 or Tivoli Service Desk for OS/390 Version 1.2 users, who do not need to rebuild the SDIDS.) You must also specify either the 18-byte or 34-byte SDIDS key, since only those two keys are supported. See “SDIDS Keys” on page 43 for more information.</td>
<td></td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>SDIDS</td>
<td>Data structure changed</td>
<td>The JCL for the BLGUT1 utility has changed. The BLGSD and BLGSI DD statements are no longer supported. BLGUT1 requires a session to determine which SDDS and SDIDS to use. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for details. If you use these statements, delete them and specify a valid/appropriate session.</td>
<td></td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session parameters</td>
<td>BLGPARMS macro modified</td>
<td>A TIMEZONE keyword was added to enable you to implement universal time processing as an option. See "Implementing Universal Time Processing" on page 251 for more information. BLGPARMS macro keywords are also listed in "BLGPARMS Macro — Defining Tivoli Information Management for z/OS's Operating Characteristics" on page 318.</td>
<td>X All previous releases</td>
</tr>
<tr>
<td>Session parameters</td>
<td>BLGPARMS macro modified</td>
<td>A MODELDB keyword was added to enable you to specify a particular data model database and trigger character to identify data attribute records. If you elect to use data model records, specify this parameter. Refer to the "Tivoli Information Management for z/OS Panel Modification Facility Guide" for details.</td>
<td>All previous releases</td>
</tr>
<tr>
<td>Session parameters</td>
<td>Enhanced options. Some parameters removed.</td>
<td>Become familiar with the current parameters. Parameters that you may have used in the past may have changed or become unavailable in this release. You must reassemble your session-parameters members using the latest macros in this version. See "BLGPARMS Macro — Defining Tivoli Information Management for z/OS's Operating Characteristics" on page 318 for more information.</td>
<td>X All previous releases</td>
</tr>
</tbody>
</table>
| VSAM data set characteristics | VSAM spanned records are no longer supported. Support is provided for extended attribute data sets. | You must rebuild or migrate your SDIDS using the BLGUT1 or BLGUT1M utility program respectively, because the internal data structure of the SDIDS has changed. The SDIDS can consist of multiple clusters. The number of records in your database is not limited to the SDIDS maximum record size. Determine if you can take advantage of multiple clusters to improve overall performance.

There is no longer a need to make use of VSAM-spanned records, which are no longer supported. Only the 18- and 34-byte SDIDS key lengths are supported.

Also, starting with Version 7.1, VSAM extended attribute data sets are now supported. | X Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3 |
<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Determine what key length to use (18 or 34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allocate a new SDIDS with KEY(18 0) or KEY(34 0) and up to a RECORDSIZE(64 32752). Do not specify the SPANNED keyword. See sample member BLGDATAB in the SBLMSAMP sample library for an example.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change the VSAM resources shared pool for your SDIDS to have KEYLEN=18 or KEYLEN=34. If you are not sharing databases, see sample BLXVDEF in Figure 31 on page 312.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Build your new SDIDS from your SDDS by using the BLGUT1 utility or the BLGUT1M migration utility. Guidance on setting up multiple clusters is available in "Working with Multiple-Cluster SDIDSs" on page 177. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on using these utility programs.</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSAM data set characteristics</td>
<td>Modified</td>
<td>Before you use previous version data sets with this new release, use the IDCAMS LISTCAT command to display the data set’s attributes. If the data set’s attributes (KEY, LOG, NOIMBED, SPANNED, and SHAREOPTIONS) are not compatible with this new release, use the IDCAMS ALTER command to change the attributes so that they are compatible. In some cases you can use the IDCAMS ALTER command to migrate a data set. Other times you have to define a new data set with the correct attributes and then migrate the data using either IDCAMS REPRO or the appropriate Tivoli Information Management for z/OS utility. If you change the key length and are not sharing databases, you may need to update the BLXVDEF resource definition member also. Refer to the DFSMS/MVS Access Method Services for VSAM Catalogs for information on the AMS (IDCAMS) commands. See Defining Tivoli Information Management for z/OS Data Sets on page 277 for information on current VSAM data set attributes. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on maintaining the data sets using the Tivoli Information Management for z/OS utility programs.</td>
<td>X</td>
</tr>
<tr>
<td>VSAM resources</td>
<td>Each resource pool can be shared by 31 key-sequenced data sets.</td>
<td>Create VSAM resource definition members if you are not running Tivoli Information Management for z/OS in a sysplex. (That is, you are using NSR or LSR and not VSAM RLS.) RLS does not use VSAM resource definitions. If you are migrating from Information/Management Versions 6.1 through TME 10 Information/Management 1.1, or Tivoli Service Desk for OS/390 Version 1.2, be aware that SHARE=YES is no longer supported on the BLXDSN macro.</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSAM sequence numbers</td>
<td>Sequence numbers can be reused</td>
<td>If you want to continue reusing VSAM sequence numbers as records are deleted, you need to run the BLGUT9 utility to set the sequence number reuse option on for your database; otherwise, sequence numbers will not be reused and new records created in the database will be stored in record number ID (RNID) order. You should run the BLGUT9 utility after running the BLGUT1 utility only if you want to reuse sequence numbers. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for more details on the BLGUT9 utility. The Tivoli Information Management for z/OS Operation and Maintenance Reference describes a process you can follow to sort existing records in your database so that the entire database will remain in system-assigned RNID order. Having your database in RNID order can help to eliminate the need for users to sort search results lists.</td>
<td>All previous releases</td>
</tr>
</tbody>
</table>

You can perform the following actions in Step 10 of the general installation checklist in Chapter 1.

| Read panel data set | Data set supports 10-character external date format | The base product panels (in the SBLMPNLS data set) and PIDTs (SBLMFMT) are shipped to support any of the supplied external date formats. Decide if you want to use these panels with expanded (10 character) date fields as they exist. If you do, run the BLGUT6 utility to load the panels. If you need to convert the date fields to some other format, refer to "Enabling Alternative Date and Time-of-Day Formats" on page 227 for more information. | Customers using unmodified product panels (all previous releases) |

You can perform the following actions in Step 15 of the general installation checklist in Chapter 1.

<table>
<thead>
<tr>
<th>ISPF command table</th>
<th>BLG0CMDS changed</th>
<th>If you modified the BLG0CMDS command table, you need to carry your changes forward into this latest version. You can use ISPF Dialog Tag Language (DTL) to accomplish this. Definitions for the following command names were added: UP, DOWN, RIGHT, LEFT, END, and HELP.</th>
<th>X Information/Management 6.1, 6.2, 6.3; TME 10 Information/Management 1.1; Tivoli Service Desk for OS/390 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPF command table</td>
<td>New ISPF command table member BLG0CMDS for the enhanced panel style</td>
<td>Add BLG0CMDS to the ISPTLIB concatenation if you select the enhanced panel style. See "Selecting the Tivoli Information Management for z/OS Panel Style" on page 199 for more information.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPF keylists</td>
<td>BLG0KEYS unchanged</td>
<td>If you modified the BLG0KEYS keylist member, you need to carry your changes forward into this new release. You can use ISPF Dialog Tag Language (DTL) to accomplish this.</td>
<td>X Information/Management 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>ISPF keylists</td>
<td>New ISPF keylist member BLG0KEYS for the enhanced panel style</td>
<td>Add BLG0KEYS to the ISPTLIB concatenation if you select the enhanced panel style. See “Selecting the Tivoli Information Management for z/OS Panel Style” on page 199 for more information.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1</td>
</tr>
<tr>
<td>ISPF panels</td>
<td>BLGISPFx panels unchanged</td>
<td>If you modified ISPF panels, you need to carry your changes forward into this new release. You can use ISPF Dialog Tag Language (DTL) to accomplish this. You must use the Tivoli Information Management for z/OS Version 7.1 level of these panels. Check for old copies of panels, especially BLGISPF in ISPLLIB and ensure only the Version 7.1 panels are available. To be sure you’ve used the correct version of these panels, issue the HELP STATUS command. The WINDOW LEVEL should be JOYB103. Information/Management Version 6.1 introduced the enhanced panel style. The BLGISPF, BLGISPF, and BLGISPF panels were added for the enhanced style.</td>
<td>X Information/Management 6.1, 6.2, 6.3; TME 10 Information/Management 1.1; Tivoli Service Desk for OS/390 1.2</td>
</tr>
<tr>
<td>ISPF panel style</td>
<td>Choose either the standard or enhanced panel style</td>
<td>Copy the panel style you choose into BLGISPFM. See “Selecting the Tivoli Information Management for z/OS Panel Style” on page 199 for more information.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1</td>
</tr>
</tbody>
</table>

You can perform the following action in Step 20 of the general installation checklist in Chapter 1.

User-defined profile variables

Profile variables

BLGPVARS goes into ISPLLIB concatenation.

Information/Management 4.1, 4.2, 4.2.2

You can perform the following actions in Step 21 of the general installation checklist in Chapter 1.

Macros

ISPF/PDF editor

If you are using the ISPF/PDF editor, you must include the ISPF BLGISMAC edit macro in a data set in each Tivoli Information Management for z/OS user’s SYSPROC concatenation.

You must also copy ISPF panel BLM@EDIT to the ISPF panel data set. This panel enables you to change the fields that are displayed on a freeform text panel when a user chooses the PDF editor.

Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF editor</td>
<td>BLM@EDIT panel</td>
<td>You must copy ISPF panel BLM@EDIT to the ISPF panel data set. This panel enables you to change the fields that are displayed on a freeform text panel when a user chooses the PDF editor.</td>
<td>Information/Management 5.1, 6.1</td>
</tr>
<tr>
<td>Invocation</td>
<td>TSXs are available for use</td>
<td>Update the invocation CLIST to allocate the BLGTSX data set (required). Refer to “Sample CLISTS to Start Tivoli Information Management for z/OS” on page 207, and the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference for more information on TSXs.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.2</td>
</tr>
<tr>
<td>USERS record</td>
<td>Required for notification</td>
<td>Tivoli Information Management for z/OS uses a USERS record to assist in the notification function. The USERS record was changed in Information/Management Version 6.3. If one does not currently exist, you must create a USERS record to make full use of notification. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for information on creating this record. Note: Your existing USERS record can be used with this new release.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2</td>
</tr>
<tr>
<td>API security</td>
<td>Enhancement</td>
<td>Determine if there are any existing API applications that can benefit from a security enhancement which allows the application ID to be changed on each transaction. If so, make the appropriate changes. Details are provided in the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>Topic</td>
<td>New / Modified Function</td>
<td>Migration Action</td>
<td>New Applies to those Migrating From</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Command record</td>
<td></td>
<td>If you are using Information/Management Version 6.3 and have created COMMAND record(s), update the COMMAND record(s), run TSP BLGTCMIG, and file the record(s). BLGTCMIG contains a WORDFIX control line necessary to correct COMMAND records before they are used in Tivoli Information Management for z/OS Version 7.1. For more information on running TSPs, refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference.</td>
<td>Information/Management 6.3</td>
</tr>
<tr>
<td>Commands</td>
<td>TABLE</td>
<td>The minimum truncation for the TABLE command is now TA. Modify any TSPs and SRCs that use the old minimum truncation value of T.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1</td>
</tr>
<tr>
<td>Database</td>
<td>SDDS Key Format</td>
<td>If you are using a key 8 format SDDS, now is the time to consider switching to a key 7 format to take advantage of new functions. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for a discussion of the advantages. Use the BLGUT7 utility to convert the SDDS to a key 7 format. The key 8 format may not be supported in future releases.</td>
<td>All previous releases</td>
</tr>
<tr>
<td>HLAIP</td>
<td>Conversation sharing disabled</td>
<td>Conversation sharing is automatically disabled when you start the requester program for the HLAIP/2, HLAIP/NT, HLAIP/UNIX (AIX, HP, or Solaris), or HLAIP/USS clients. To enable conversation sharing, specify the IDBSHARECMS keyword in the client API system profile. Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for more information about using this keyword.</td>
<td>Information/Management 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>HLAIP</td>
<td>HL01 initialization</td>
<td>For maximum performance of API applications using the HLAIP, consider increasing the TABLE_COUNT value to include inquiry PIDTs, which can now be cached. Refer to the description of the HL01 transaction in the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New</th>
<th>Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLAPI</td>
<td>HL11 record inquiry</td>
<td>An API error is no longer returned by the HLAPI when an application attempts to perform an HL11 record inquiry transaction without supplying a search selection criteria on the input PDB. If no search selection is supplied, all records in the database are returned that match the record type defined by the PIDT or data view record specified on the inquiry.</td>
<td>-</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>HLAPI</td>
<td>Changed linkage requirements</td>
<td>Review description of HLAPI which follows this table to see if your applications need to be link-edited differently or to see if your applications require modification.</td>
<td>-</td>
<td>Information/Management 4.2.2</td>
</tr>
<tr>
<td>HLAPI</td>
<td>New return and reason codes for existing condition</td>
<td>A return code of 4 and a reason code of 14 now appear when a request for record retrieval (HL06) specifies TEXT_OPTION=YES, TEXT_MEDIUM=D, and an input PDB chain that lists one or more freeform text items.</td>
<td>-</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
<tr>
<td>HLAPI</td>
<td>PIDTs were modified to support DBCS data</td>
<td>Use BLGUT8 to migrate your PIDTs. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for more information on using BLGUT8.</td>
<td>-</td>
<td>Information/Management 4.2, 4.2.2, 5.1</td>
</tr>
<tr>
<td>HLAPI</td>
<td>PIDTs were renamed</td>
<td>All PIDT sample names starting with TSO were renamed. See Table 23 on page 360 for the changed names.</td>
<td>-</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
<tr>
<td>HLAPI</td>
<td>High memory support</td>
<td>Decide whether your company will benefit from the HLAPI returning data above the 16 MB line. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for complete information about using this enhancement.</td>
<td>-</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
<tr>
<td>List processor</td>
<td>Line commands changed</td>
<td>The line commands for list processor panels are changed for Information/Management Version 6.2 and subsequent releases. For a complete description of the changes, refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide. You should inform your users of these changes. You might also need to update any TSPs that use line commands on list processor panels.</td>
<td>-</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLAPI</td>
<td>Suppression of audit data</td>
<td>If you use LLAPI transaction T100 (Retrieve Record) and wish to continue receiving audit data associated with freeform text, you may need to modify your application. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for more information about T100.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>LLAPI</td>
<td>Changed linkage requirements</td>
<td>Review the LLAPI description which follows this table to see whether your applications require modification or need to be link-edited differently.</td>
<td>Information/Management 4.2, 4.2.2</td>
</tr>
<tr>
<td>LLAPI</td>
<td>Expanded freeform searches</td>
<td>If you have applications that use the LLAPI and want to perform freeform searches using individual freeform arguments, modify your declaration of the program interface argument table (PIAT) in your application and recompile your application to include the modified PIAT.</td>
<td>Information/Management 4.2, 4.2.2, 5.1</td>
</tr>
<tr>
<td>LLAPI</td>
<td>High memory</td>
<td>Decide whether your company will benefit from the LLAPI returning data about the 16 MB line. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for complete information about using this enhancement.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
<tr>
<td>LLAPI</td>
<td>PICA</td>
<td>If you have applications that use the LLAPI, review the new fields in the PICA and ensure that your application initializes them appropriately. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for the structure of the PICA.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
<tr>
<td>LLAPI</td>
<td>PIDTs were renamed</td>
<td>All PIDT sample names starting with TSO were renamed. See Table 23 on page 360 for the changed names.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1</td>
</tr>
<tr>
<td>LLAPI</td>
<td>Value change for command processing detection entry</td>
<td>The value for command processing detection in the user profile determines how an assisted-entry command reply is handled. The default value of this entry is changed from PROMPT to DATA during initialization of the LLAPI.</td>
<td>Information/Management 4.2, 4.2.2, 5.1</td>
</tr>
<tr>
<td>Topic</td>
<td>New / Modified Function</td>
<td>Migration Action</td>
<td>New</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Mixed case field data</td>
<td>New support for field-level data</td>
<td>By default, field data is stored and recognized in uppercase. Now, using PMF, you can collect, store, recognize and display data in mixed case. See the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on how to specify how data should be collected and stored.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>MRES</td>
<td>Easier startup</td>
<td>If you use Multiclient Remote Environment Servers, specify your MRES startup parameters in a data set rather than inline in your cataloged procedure. Many of the startup parameters have been renamed. Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for more information about specifying parameters in the new format.</td>
<td>Information/Management 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>MRES</td>
<td>TCP/IP address space name</td>
<td>If you are using the MRES with TCP/IP, you no longer need to specify the TCP/IP address space name parameter in your startup parameters. Your RACF systems programmer must add the MRES started procedure name to the RACF STARTED class, specifying a user ID that has an OMVS segment. (Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for more information about using an MRES with TCP/IP.)</td>
<td>Information/Management 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>MRES</td>
<td>Pre-started sessions for faster startup</td>
<td>For faster initialization, consider pre-starting the API sessions by specifying the appropriate parameters in the MRES startup parameters data set. Refer to the Tivoli Information Management for z/OS Client Installation and User’s Guide for more details on configuring and running the MRES.</td>
<td>Information/Management 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New</th>
<th>Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRES</td>
<td>API Security</td>
<td>If you are using a pre-started MRES session and APISECURITY=ON is specified in the BLX-SP parameters member, your RACF system programmer must add the user ID associated with the MRES to the access list of the general resource used as the application ID. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for more information about API security.</td>
<td></td>
<td>Information/Management 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>NetView Hardware Monitor Interface</td>
<td>BLMVATSR and BTNCNMBD modified</td>
<td>Carry forward any customizing you did in previous versions. See the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications for more customization information.</td>
<td></td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1</td>
</tr>
<tr>
<td>Panels</td>
<td>Updated compression algorithm</td>
<td>If you have modified file-time processing, review your panels. The last dialog end collected for each record type must also have an s-word index of 0CF1.</td>
<td></td>
<td>Information/Management 4.1</td>
</tr>
<tr>
<td>Panels</td>
<td>Updated panels</td>
<td>Review changes you made to Tivoli-supplied panels and use PMF to carry them forward. See “New, Changed, and Removed Panels” on page 369 for a list of panels that are new, changed, or removed. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details about panels and PMF. The product panels are shipped with dates in 10-character external date format. If you need to apply your changes to panels with 8-character date formats instead, you must use the BLGUT6M migration utility, or PMF, to change the panels to support 8-character date fields.</td>
<td>X</td>
<td>All previous releases</td>
</tr>
<tr>
<td>Privilege Class Authorities</td>
<td>Additional authorities</td>
<td>Add new authorities to existing privilege class records. You do not need to delete and recreate these records. Privilege class records for Information/Management Versions 4.1 through 4.2.2 work with this new version, but users do not have authority for new functions until the privilege class records are updated.</td>
<td></td>
<td>Information/Management 4.1, 4.2, 4.2.2</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program exit BLG01385</td>
<td>Authorization code 0001</td>
<td>Two program exits now govern how list processor rows are sorted: BLG01385 (ascending sort order) and BLG01386 (descending sort order). Formerly, the BLG01385 program exit was used to specify a descending sort order. If you used the BLG01385 program exit in the past, your panels will automatically be migrated to use BLG01386 instead. If you are accustomed to using the BLG01385 program exit with authorization code 0001 in the control flow processing of your panels, you should now use BLG01386 to achieve a descending sort order. More information about these program exits is available in the Tivoli Information Management for z/OS Panel Modification Facility Guide.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>Program exit BLG01439</td>
<td>Authorization code</td>
<td>Do not specify an authorization code value of 0004 on your control panel. This value is now reserved.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>Report Format Facility PUT</td>
<td>statements changed</td>
<td>The PUT statements in the supplied RFTs were changed to accommodate a LENGTH(10) instead of a LENGTH(8) for date fields. The column placement of output generated by the reports may shift to accommodate this change. Review your programs and modify as necessary.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3</td>
</tr>
<tr>
<td>Report Format Facility</td>
<td></td>
<td>Use exits called by the Report Format Facility CALL command must now be link-edited as reusable (REUS).</td>
<td>Information/Management 4.1, 4.2, 4.2.2</td>
</tr>
<tr>
<td>Stored response chains SRCs</td>
<td>Search argument changes for different SDIDS key lengths</td>
<td>SRCs containing fully qualified search arguments written for an SDIDS with a 16- or 18-byte key may produce different search results if the key length of the SDIDS is changed to 34 bytes. If you want to use the 34-byte key, revise your SRCs to do searching. Refer to the Tivoli Information Management for z/OS User’s Guide for a discussion of how the SDIDS key affects searching.</td>
<td>All previous releases</td>
</tr>
<tr>
<td>Topic</td>
<td>New / Modified Function</td>
<td>Migration Action</td>
<td>New Applies to those Migrating From</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Terminal Simulator Panels (TSPs)</td>
<td>AutoBridge users</td>
<td>If you use the AutoBridge PostProcessor feature, you must, if you haven’t already done so, modify the BLGAPI00 TSP to delete the branch control line just before the EYMSP010 USEREXIT. Removing the branch line will enable the PostProcessor to detect and process AutoBridge-created records. Details are provided in the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>Terminal Simulator Panels (TSPs)</td>
<td>TSPs BLGAPI00, BLGAPIDI, BLGAPI05 modified</td>
<td>TSPs BLGAPI00 (LLAPI router TSP for panel processing) and BLGAPIDI (LLAPI router for bypassing panel processing) are modified to invoke user exit BLGYITSP. If you are using and have customized these TSPs, you should review them and make changes if necessary. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for details on these TSPs. Also, if you have an API application that updates records and does not use bypass panel processing, or if you use the Archiver function, review changes to API TSP BLGAPI05 and make any necessary changes to your user-modified copy of TSP BLGAPI05.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>Topic</td>
<td>New / Modified Function</td>
<td>Migration Action</td>
<td>New Applies to those Migrating From</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Terminal Simulator Panels (TSPs)</td>
<td>Support for multiple external date formats</td>
<td>Because users can set different date formats through the user profile, any TSPs or TSXs that you have written that enter or process dates must support different external date formats for different users. All processing in the TSP or TSX should use internal format and should convert to and from the user’s external format when interacting with the database. The TSPs or TSXs should be written to use the 10-character internal date format (YYYY/MM/DD) for processing date data. (Alternately, the option to use multiple formats should be taken away from the user by removing the field from BLG0P700). Use the BLGIDATE and BLGEDATE user exits to convert the internal format date from or to the user’s local date format. The BLGIDATE user exit converts a date from the user’s local date format to internal format. The BLGEDATE user exit converts a date from internal format to the user’s local date format. For more information about these user exits, refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference.</td>
<td>X Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1; Tivoli Service Desk for OS/390 1.2</td>
</tr>
<tr>
<td>Topic</td>
<td>New / Modified Function</td>
<td>Migration Action</td>
<td>New Applies to those Migrating From</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Terminal Simulator Panels (TSPs)</td>
<td>Notification</td>
<td>If you use Notification Management and have customized any of the following TSPs/TSXs, review your TSPs/TSXs and update them as necessary for modifications related to the Assignee Name field: TSPs – for problem records – BLGTSPPE, BLGTSPPU; for change records – BLGTSPCE, BLGTSPCU; for activity records – BLGTSPAE, BLGTSPAU; for Integration Facility – BLGTCN06, BLGTPN02; TSX – for e-mail notification –BLGTXNOT. The Assignee Name field in problem, change, and activity records is now a string field that accepts blanks. The length of the Assignee Name field was also changed to hold up to 40 characters (including blanks). However, the base product panels were not changed to show a longer field length. The notification TSPs/TSXs were modified to search for the Assignee Name as string data (up to 40 characters including blanks) first. If no string data is found, a search is performed for non-string field data. For example, in BLGTSSPE, review the following: lines 28, 29 (added), line 32 (changed), lines 41, 42, and 45 (added). Similar changes were made to the other TSPs listed to search for the Assignee Name as string data first before searching for it as non-string data. In BLGTXNOT, review the additions made (lines 175 and 176). For more information about using Notification Management, refer to Appendix D of the Tivoli Information Management for z/OS Program Administration Guide and Reference.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
<tr>
<td>Escalation TSPs modified</td>
<td></td>
<td>If you use Escalation Management and have customized TSPs BLGES04 and BLGES06, then review these TSPs and update them as necessary. For more information about using Escalation Management, refer to Appendix D of the Tivoli Information Management for z/OS Program Administration Guide and Reference.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New</th>
<th>Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Simulator Panels (TSPs)</td>
<td>TSP user exits can now use 31-bit addressing (AMODE=31)</td>
<td>Review your TSP user exits and make changes if necessary. Enhanced TSP control lines became available with Information/Management Version 5.1. Refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference for details on these changes.</td>
<td>Information/Management 4.1, 4.2, 4.2.2</td>
<td></td>
</tr>
<tr>
<td>Terminal Simulator Panels (TSPs)</td>
<td>TSPs using ISPEXEC</td>
<td>You may need to use a TSP LINK control line instead of the TSP ISPEXEC control line to run a REXX program in most cases. Review any TSPs that use an ISPEXEC control line with the syntax SELECT CMD(rexxpgm), where rexxpgm is a REXX program. Change the ISPEXEC control line to a TSP LINK control line and use the rexxpgm name in the 'Terminal simulator name' field of the TSP LINK control line.</td>
<td>Information/Management 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3; TME 10 Information/Management 1.1</td>
<td></td>
</tr>
<tr>
<td>User profiles</td>
<td>Enhanced profile options</td>
<td>Become familiar with the options and modify if necessary. Values from your Information/Management Version 4 or later profile are carried forward into your new profile the first time you access the new release. Refer to the Tivoli Information Management for z/OS User's Guide for more information.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1</td>
<td></td>
</tr>
<tr>
<td>User profiles</td>
<td>Fields on panel BLG0P100 are rearranged and renumbered</td>
<td>Two versions of panel BLG0P100 are available. The default is shown in Figure 8 on page 138. You can use PMF to replace the default with an optional panel that is not renumbered (member BLG0P101 in SBLMPNLS—see Figure 9 on page 139). Be sure to update any TSPs or final responses of SRCs that specify profile option numbers. It is recommended that you use s-words instead of field numbers when you create TSPs.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1</td>
<td></td>
</tr>
<tr>
<td>Utility BLGUT1</td>
<td>DD statements deleted</td>
<td>The BLGSD and BLGSI DD statements were deleted in TME 10 Information/Management Version 1.1. The SDIDS and SDDS are determined from the session-parameters member. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference and the description of the BLGCLUST macro in this manual for more details.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2, 6.3</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Migrating from Previous Versions (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>New / Modified Function</th>
<th>Migration Action</th>
<th>New Applies to those Migrating From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility BLGUT4</td>
<td>DD statements changed</td>
<td>The BLGBKTM and BLGBKIN DD statements were added in Information/Management Version 6.3. Review your JCL and make any necessary corrections. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for details.</td>
<td>Information/Management 4.1, 4.2, 4.2.2, 5.1, 6.1, 6.2</td>
</tr>
<tr>
<td>Web applications</td>
<td>SBLMHTML changed</td>
<td>The data set SBLMHTML has been renamed SBLMHTMV, and the data set’s attributes have been changed for greater flexibility. SBLMHTMV is now variable-blocked with an LRECL of 512. If you have been using Web applications with Tivoli Information Management for z/OS prior to installing Version 7.1, you may need to change references in the directory you created for IBM-supplied HTML. For more information, see Chapter 12 of the Tivoli Information Management for z/OS World Wide Web Interface Guide.</td>
<td>x All previous releases</td>
</tr>
</tbody>
</table>

The following section provides additional information or notes on the migration topics listed in the table.

BLX-SP parameters member

Information/Management Version 5.1 introduced the BLX-SP parameters member. When new parameters for the BLX-SP parameters member are provided, you do not have to assemble the BLX-SP parameters members because they are read by BLX-SP during its initialization phase. Refer to the online introduction of the Installation Tailoring Facility or see “Defining BLX-SP Parameters Members” on page 343 for a description of these parameters.

Note: Although it is not necessary to assemble the BLX-SP parameters members, you must, if you are using VSAM NSR or LSR, create a VSAM resource definition member, assemble and link-edit it. VSAM resource definition members are not used if you are installing Tivoli Information Management for z/OS in a sysplex environment and using VSAM RLS.

Date formats

The DATEFMT keyword on the BLGPARMS macro is required if DATECNV=BLGCDATS or is omitted. Before you can reassemble the session-parameters members, you must explicitly specify a default external date format on the DATEFMT keyword if you use the BLGCDATS date conversion routine (or take it as a default). For instructions on specifying date formats for your session-parameters members, see “BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics” on page 318 for details.
The only available internal date format is YYYY/MM/DD. To change an existing database that is currently using the YY/MM/DD internal date format to use the expanded internal date format (YYYY/MM/DD), you must:

- Reassemble all session members.
- Delete and redefine the SDIDS. (The SDIDS must be empty in order to run BLGUT1.)
- Run BLGUT1 with one of the reassembled session members.
- Modify any TSPs, invocation IRCs, and SRC final responses that specify freeform search arguments to use the expanded date format.
- Inform your users that freeform search arguments including dates must use the expanded format. For example,

 \[\text{SE DATD/1995/01/01 -2001/12/31} \]

HLAPI and LLAPI

If your HLAPI application or low-level API uses a load and call macro, it must be link-edited AMODE (31) RMODE (ANY). If it uses the MVS LINK macro instead, these addressing and residency mode requirements do not apply.

AMODE

Addressing mode

RMODE

Residency mode

Mixed case field data

You can collect, store, and display field information in mixed case. You can store field data in these formats:

- Uppercase
- Lowercase
- First character uppercase, rest lowercase
- By a pattern
- Exactly as entered by the user

These choices apply to field data and string data (e.g., a Description field), but not to freeform text data.

By default, the panels shipped with Tivoli Information Management for z/OS collect data in uppercase. If you want to take advantage of mixed case support, you should:

- Identify the fields for which you want to store data in mixed case in the SDDS. Be careful not to change any fields that collect data such as record IDs (RNIDs), z/OS data set names, or partitioned data set member names, which must be in uppercase. (Unpredictable results could occur if these particular fields are in mixed case.)
- Modify the assisted-entry panels associated with the chosen fields. In some cases, there are several assisted-entry panels associated with a field (for example, one for data collection, one for search argument collection, and so on). PMF reports such as the P-Word List, P-Word Cross Reference, and S-Word Cross Reference may help you to determine what panels need to be changed.
Ensure that any programs which process data retrieved from Tivoli Information Management for z/OS are updated, if necessary, to properly handle mixed case data for the selected fields. For example, if your organization makes use of API programs to extract host data to produce reports, you need to ensure those programs are also compatible.

If you choose to cognize data in mixed case, ensure that all RFTs, TSPs/TSXs, control panels, and API programs that perform searches or tests on the data are updated to do mixed case searches or tests.

If necessary, use WORDFIX control lines in a TSP to change the case of data which is already in the database in uppercase.

Also, if you cognize data in mixed case, ensure that users who may use freeform or combined searches to retrieve the data are informed of the changes so that they can alter their search arguments if necessary. The Tivoli Information Management for z/OS User’s Guide provides more details on entering such search arguments.

For instructions on how to validate the case at data entry, store data, and cognize data in mixed case, refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide.

Panels

If you used PMF to modify a panel that is changed by Tivoli Information Management for z/OS Version 7.1 you must review your changes and carry them forward into the current panel set. See “New, Changed, and Removed Panels” on page 369 for a list of panels that have recently been added, changed, or removed. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details about panels and PMF.

Read panel data sets

The base product panels are shipped in a single read panel data set (SBLMPNLS) and support all external date formats listed in “External Date Format” on page 231. The steps you need to take to install the panels will depend on the date formats you need in your environment (the steps are summarized below). Enabling Alternative Date and Time-of-Day Formats” on page 227 contains more detailed instructions.

Guidelines on date processing for new customers are available in “Four-Digit Year Considerations” on page 237.

To use the panels as shipped (uncustomized):

Run the BLGUT6 utility to load the read panel data set (assuming you want to use the NN/NN/NNNN validation pattern).

The normal SMP/E installation you perform as described in the Program Directory handles installation of the PIDTs.

To convert from 10- to 8-character date formats:

1. Run the BLGUT6M migration utility to load the read panel data set and convert the date fields to 8 characters. Use the BLGDATE8 sample JCL with the BLGUT6M utility.

2. Update the example text shown on assisted-entry panels.
3. If you use APIs, run the BLGUT6F utility to offload the modified panels, and then run the BLGUT8 utility to rebuild the PIDTs to use 8-character dates. (If you create PIDTs using data model records, you do not have to rebuild them.)

As an alternative, you can change the API applications to specify a particular date format. For information on setting the API option to have all dates converted to or from a particular format, regardless of the date format used by the Tivoli Information Management for z/OS host database, refer to the Tivoli Information Management for z/OS Application Program Interface Guide.

4. Disable any date formats that your panels do not support. Modify the data attribute record for the date format profile field (BLG&DFMT) to remove the unsupported formats.

Note: If you convert from 10– to 8-character date formats, you will limit the ability of your users to choose some date formats.

To convert to some other date format:

1. Copy the BLGDATE8 sample JCL and update the LENGTH and VALIDATION input statements to reflect your format.

2. Run the BLGUT6M migration utility to load the read panel data set and change the date field lengths on data entry and table panels, and validation patterns in assisted-entry panels.

3. If you use APIs, run the BLGUT6F utility to offload the modified panels, and then run the BLGUT8 utility to rebuild the PIDTs to use the correct character length for dates. (If you create PIDTs using data model records, you do not have to rebuild them.)

As an alternative, you can change the API applications to specify a particular date format. For information on setting the API option to have all dates converted to or from a particular format, regardless of the date format used by the Tivoli Information Management for z/OS host database, refer to the Tivoli Information Management for z/OS Application Program Interface Guide.

4. Update the example text shown on assisted-entry panels.

5. Migrate your offloaded panel data set using the BLGUT6M utility.

Note: If you convert to some other date format, you will limit the ability of your users to choose some date formats.

To modify your customized panels to support all date formats:

1. Identify what you need to change on your panels.

2. Offload your customized panel data set by using the BLGUT6F utility.

3. Load the base product panels using the BLGUT6 utility.

4. Migrate your offloaded panel data set using the BLGUT6M utility.

See “Modifying Customized Panels to Use 10-Character Date Fields” on page 237 for more detailed instructions.
Update any report format tables that you have created, APIs, TSPs, etc. that use dates to handle dates in the new format. The base product RFTs are already updated to reflect 10-character dates.

Inform your users in advance of the change so they know what to expect.

If you have existing records in your database that use an external date format that is different from the default external date format specified on the BLGPARMS DATEFMT keyword, you can specify the BLGPARMS ODATEFMT keyword to have Tivoli Information Management for z/OS automatically recognize the dates in those records so that they can be processed with the latest date processing enhancements.

In summary, if you are using modified panels, you need to perform one of the following sets of operations:

- Modify your panels to accept all of the product-supported date formats by doing all of the following:
 - Change all date fields on data entry panels, table panels, RFTs, and so on, to 10 characters (if they are not already).
 - Change validation patterns on all date assisted-entry panels so that any valid date format can be entered. It is suggested that you use IIV63 to allow for possible new formats in the future, but IIV9 would work for all current formats.
 - Change the text and help information for all date assisted-entry panels so as to make them independent of any one date format. See the following panel BLG60CCD for an example.

 + BLG60CCD ------------ PROBLEM OCCURANCE DATE ------------ DATO/+-
 USE....Enter the date that the problem occurred or was detected.
 FORM...Date in your external format (e.g. MM/DD/YYYY) -or-
 = for today's date or an offset from today's date.
 NOTE...Enter ;HELP STATUS to find your external date format.
 EXAMPLES: May 27, 2001..Reply...05/27/2001, etc.
 Today........Reply...= 1 month ago...Reply...=-1M
 Yesterday....Reply...=-1 2 years ago...Reply...=-2Y
 2 weeks ago...Reply...=-2W

 ------------------------- REPLY AS ILLUSTRATED-----------------------+

- Limit the user’s options for changing the date format by doing one of the following:
 - Remove option 5. User date format from profile panel BLG0P700.
Modify the list of valid formats in attribute record BLG&DFMT to only include those supported by your panels. For example, if you have 8-character date fields on your data entry panels, you would remove all formats that are longer than 8 characters.

Ensure the DATEFMT keyword is specified with the correct external date format.

User-defined profile variables

Before you can create user-defined profile variables, the ISPF BLGPVARS panel must have already been created by the Tivoli Information Management for z/OS system administrator. The ISPF BLGPVARS panel must be included in a data set in the ISPPLIB concatenation. For further details about this panel, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference.

User profiles

Note: This applies to Information/Management Versions 4.1 through 6.1 only. Refer to the Tivoli Information Management for z/OS User's Guide for more information on the latest user profile options.

The new BLG0P100 panel is as follows. Be sure to update any TSPs or final responses of SRCs that specify profile option numbers. It is recommended that you use s-words instead of field numbers when you create TSPs.

<table>
<thead>
<tr>
<th>BLG0P100 SESSION DEFAULTS USER ID: HELENA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter session default data; cursor placement or input line entry allowed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INVOCATION</th>
<th>OUTPUT DESTINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Application.......<R> MANAGEMENT</td>
<td>31. Print.................</td>
</tr>
<tr>
<td>2. Class.................. ________</td>
<td>32. Standard report.......</td>
</tr>
<tr>
<td>3. SRC.................... ________</td>
<td>33. Draw..................</td>
</tr>
<tr>
<td>4. Bypass copyright?...<R> NO_</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMAND PROCESSING</th>
<th>SEARCH OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Detection.........<R> PROMPT_</td>
<td>41. Default panel........</td>
</tr>
<tr>
<td>12. BACK operation......<R> PROCESSED</td>
<td>42. Quick search?......<R> NO_</td>
</tr>
<tr>
<td>13. RECALL operation....<R> CMDLINE</td>
<td>43. User line commands.<R> RUN_</td>
</tr>
<tr>
<td>14. RECALL stack depth..<R> 10</td>
<td></td>
</tr>
<tr>
<td>15. PRINT operation.....<R> KEEP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>EDITOR OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. PF key data.........<R> SUFFIX_</td>
<td>51. Editor selection...<R> INFO</td>
</tr>
<tr>
<td>52. INFO for SRCs/TSPs?<R> YES</td>
<td></td>
</tr>
</tbody>
</table>

When you finish, type END to save or CANCEL to discard any changes.

Figure 8. BLG0P100 Panel

The following panel contains the old numbering scheme for the profile option fields. If you want to use this panel, use PMF to copy panel BLG0P101 into your modified panel data set as panel BLG0P100.
Additional Considerations for Migrating to This New Release

Compatibility with Information/Management and Information/System Version 4.2 and 4.2.2

Please also consider the following information pertaining to your specific release.

- Information/MVS databases and the Information/Access product database (previously known in an earlier release of Information/Management as database 6) are not supported. User-defined format databases (previously known as the Information/MVS format - databases 1, 2, and 3) are still supported. In Tivoli Information Management for z/OS Version 7.1, database 0 is also available as a user-defined format database. Database 6 is now used as a Tivoli Information Management for z/OS read-only database and is reserved for Tivoli Inventory use only.

- A report that is running cannot lock the SDDS for longer than the time it takes to process a single record.

- To ensure compatibility between Information/System Version 4.2.2 and this new release, you must do the following:
 - If you are not installing Tivoli Information Management for z/OS in a sysplex, you should define, assemble, and link-edit a VSAM resource definition member to specify VSAM options for Tivoli Information Management for z/OS, including LSR pool definitions and lists of data sets for which LSR is used. This information was in the user’s session-parameters members (BLGSESaa) in Information/System Version 4.2.2. Refer to the online introduction of the Installation Tailoring Facility or see "Defining VSAM Resources to the BLX-SP in a Non-Sysplex Environment" on page 301 for more information about VSAM resource definition members.
 - Assemble and link-edit all user session-parameters members again.

Figure 9. BLG0P101 Panel

Additional Considerations for Migrating to This New Release
• Define a started task procedure. See "Starting Tivoli Information Management for z/OS" on page 203 for instructions.

• Modify z/OS system parameters, where required. Do a system IPL before accessing databases with Tivoli Information Management for z/OS Version 7.1 for the first time. This step is required to start BLX-SP.

If your SDDS consists of one VSAM cluster and you want to turn it into a multiple-cluster SDDS (either during initial installation of the product or at a later date), you must run the database migration utility (BLGUT7) against your current SDDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for instructions on using BLGUT7. A key length of 7 is recommended for the SDDS so that the BLGUT23 utilities can be used. If your SDDS is currently key length 8, you should consider changing to key length 7 when you have a need to run the BLGUT7 utility (such as when moving from one to multiple clusters).

You must modify, reassemble, and relink-edit user session-parameters members and the VSAM resource definition member at the time of this migration.

Note: The modification, reassembly, and relink-edit of the VSAM resource definition member does not apply if you are installing Tivoli Information Management for z/OS in a sysplex and using sysplex support.

At least one of the Tivoli Information Management for z/OS panel style members must be placed in the ISPPLIB concatenation. See "Selecting the Tivoli Information Management for z/OS Panel Style" on page 199.

Panels you created that have DBCS data must be loaded using BLGUT6 with the DBCS keyword specified.

Panels you created that do not have DBCS data can be processed in the old format by Tivoli Information Management for z/OS. If you want to convert them to the new format, load them using BLGUT6 with the NODBCS keyword specified (or accept it as the default).

Note: You can also use BLGUT6F to download panels, and then use BLGUT6 with the NODBCS (DBCS, if there is DBCS data) keyword specified to replace the panels.

If you decide to use graphic character substitution, you must review and modify existing reports or API programs so that they reflect the substitutions. You must also make sure that characters in the reports that come with Tivoli Information Management for z/OS are changed to reflect the substitutions. See "Graphic Character Substitutions" on page 46 for more information about character substitution.

Review how time is validated with program exit BLG01052 and ensure the validation patterns are correct in assisted-entry panels associated with time fields. Time fields with p-word TIM/ are validated as HH:MM. Time fields with any other p-word are validated as DD:HH:MM. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on this program exit.

Compatibility with Information/Management Version 5.1

• At least one of the panel style members must be placed in the ISPPLIB concatenation. See "Selecting the Tivoli Information Management for z/OS Panel Style" on page 199.

• Panels you created that have DBCS data must be loaded using BLGUT6 with the DBCS keyword specified.
Panels you created that do not have DBCS data can be processed in the old format by Tivoli Information Management for z/OS. If you want to convert them to the new format, load them using BLGUT6 with the NODBCS keyword specified (or accept it as the default).

Note: You can also use BLGUT6F to download panels, and then use BLGUT6 with the NODBCS (DBCS, if there is DBCS data) keyword specified to replace the panels.

- Review your VSAM data set share options and make the appropriate changes. Tivoli Information Management for z/OS enforces a SHAREOPTIONS value of 1 for nonshared data sets. If you are sharing data sets in a sysplex, be aware that Tivoli Information Management for z/OS and VSAM RLS ignore the SHAREOPTIONS value.

- Verify the CI size on your VSAM data sets using IDCAMS LISTCAT (or another equivalent tool). Ensure the CI sizes shown by IDCAMS LISTCAT are used in your VSAM resource definition file.

- Review how time is validated with program exit BLG01052 and ensure the validation patterns are correct in assisted-entry panels associated with time fields. Time fields with p-word TIM/ are validated as HH:MM. Time fields with any other p-word are validated as DD:HH:MM. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on this program exit.

Compatibility with Information/Management Version 6.1

- Review how time is validated with program exit BLG01052 and ensure the validation patterns are correct in assisted-entry panels associated with time fields. Time fields with p-word TIM/ are validated as HH:MM. Time fields with any other p-word are validated as DD:HH:MM. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on this program exit.
Additional Considerations for Migrating to This New Release
This chapter provides information for setting up your BLX-SP. The following tasks are described:

- Modifying the Program Properties Table
- Adding a Tivoli Information Management for z/OS load library to the APF list
- Defining subsystems for BLX-SPs
- Defining a BLX-SP procedure
- Defining a BLX-SP parameters member
- Defining a VSAM resource definition member

Note: You do not have to define a VSAM resource definition member if you are installing Tivoli Information Management for z/OS in a sysplex and using sysplex support.

- Defining multiple BLX-SPs
- Starting and stopping a BLX-SP

This chapter assumes that you have a working knowledge of your z/OS system environment. Refer to the *OS/390 MVS Initialization and Tuning Reference* and *OS/390 MVS: System Commands* for more information.

This chapter is designed to help you enable your z/OS system for Tivoli Information Management for z/OS.

Programming Interface information

Modifying the Program Properties Table

You must add an entry to the Program Properties Table to make the BLX-SP program entry nonswappable. To do this, add the following to the appropriate SCHEDaa members of SYS1.PARMLIB:

```
PPT PGMNAME(BLXSSP00) /* BLX SERVICE PROVIDER */
  NOSWAP /* PROGRAM IS NOT SWAPPABLE */
  KEY(8) /* PROGRAM IS A KEY(8) TASK */
```

If you do not make the BLX-SP program entry nonswappable, users who attempt to access the BLX-SP may hang or receive an ABEND or experience unpredictable results.
To implement the changes to the Program Properties Table, you must either IPL the system or change the SYS1.PARMLIB SCHEDaa member dynamically using the SET command. Check with your system programmer to identify other members you can modify dynamically.

Adding a Tivoli Information Management for z/OS Load Library to the APF List

To define a Tivoli Information Management for z/OS load library to the MVS element of z/OS, specify it as an authorized program facility (APF) library in the appropriate IEAAPFaa or PROGaa member of SYS1.PARMLIB. Each entry in an IEAAPFaa or PROGaa member includes the data set name (*dsn*) and the volume serial number (*volser*) of the library.

You may have one or more libraries that contain Tivoli Information Management for z/OS load modules. The data set name of your main Tivoli Information Management for z/OS load library can be found by checking DDDEF SBLMMOD1 using SMP/E. If you have multiple BLX-SPs, then the name of each data set that contains a BLXSSINM module (see [Defining a Subsystem to MVS](#)) for information about this module) must also be added to your APF list.

Note: Changes to the PROGAA member can be implemented with the SET command. Changes to the IEAAPFAA member require an IPL of the system. Refer to the OS/390 MVS Initialization and Tuning Reference for more information about the SYS1.PARMLIB data set and its members and parameters.

Defining Subsystems for BLX-SPs

During Tivoli Information Management for z/OS installation, you must identify each of your BLX-SPs as an MVS subsystem. You must give each of your BLX-SPs a subsystem name, define each subsystem to MVS, and define each subsystem to its respective BLX-SP.

Naming a Subsystem

The subsystem names you use must follow these naming rules:

- The name must have 4 characters.
- The first character of each name must be an alphabetic or national (#, $, @) character.
- The remaining characters can be alphabetic, numeric, or national characters.

Notes:

1. Use the BLX-SP subsystem name as the first 4 characters in the names of each BLX-SP parameters member that you use with the subsystem.
2. If you want to use the same name for the BLX-SP procedure and the BLX-SP subsystem, specify the SUB=JESx parameter on the START command for the procedure (where JESx is the name of your JES subsystem). See [Starting and Stopping the BLX-SP](#) for the syntax of the START command.

Defining a Subsystem to MVS

The following example defines a subsystem, named BLX1, to the MVS system. The statement contains only the subsystem name and must be added to the appropriate IEFSSNaa members of SYS1.PARMLIB. Do this step for each subsystem using the following syntax depending on your level of z/OS.
Defining Subsystems for BLX-SPs

- or -

SUBSYS SUBNAME(BLX1)

Do not specify an initialization routine in the IEFSSNaa member for the subsystems. Subsystem initialization is deferred until the BLX-SP starts.

Note: To implement most changes to the SYS1.PARMLIB, you will have to IPL the system. You can modify some SYS1.PARMLIB members dynamically; those do not require you to IPL the system. Check with your system programmer to identify those members.

Defining a Subsystem to the BLX-SP

All Tivoli Information Management for z/OS initialization code uses a load module named BLXSSINM that defines the subsystem to be used by the BLX-SP and all user Tivoli Information Management for z/OS sessions. A sample of this module is provided in the SBLMMOD1 library.

The sample uses the subsystem name BLX1. If you have just one BLX-SP, you can use this sample module. The sample is already assembled and link-edited for you. If you have multiple BLX-SPs, you must define, for each BLX-SP, a unique load library containing, at a minimum, a copy of the BLXSSINM module. Make sure that the load libraries are specified in the STEPLIB DD statements of the respective BLX-SP procedures. See “Defining a BLX-SP Procedure” on page 146 for more information about the STEPLIB DD statement. See “Performance Recommendations” on page 70 for performance considerations for the STEPLIB DD statement.

You can also specify the load libraries in the link list. However, if you have multiple BLX-SPs on your system, you must also specify STEPLIB DD statements in your BLX-SP procedures. Otherwise, the system uses the first BLXSSINM module that the link list points to.

Note: You can put a BLXSSINM module in the link pack area, but, because the load modules for the BLX-SPs all have the same name, only one module can reside in the link pack area.

BLXSSINM is an assembler language module that contains only the subsystem name of your BLX-SP. The source code (shown below) for this module is in the SBLMSRC1 library.

```
BLXSSINM CSECT
DC CL4'BLX1' Define the BLX subsystem name.
END
```

Make sure that each copy of BLXSSINM contains a different 4-character subsystem name. To change the subsystem name that is in the BLXSSINM file, do the following:

- Modify the BLXSSINM source code.
- Reassemble the source (no macros required).
- Relink-edit the text into BLXSSINM and place the module in the appropriate load library. Use the following parameters:

```
PARM=(XREF,LIST,MAP,RENT,REUS,NCAL,'SIZE=(512K,128K)', 'AMODE=31', 'RMODE=ANY')
```
Specifying a Subsystem

To specify a subsystem for Tivoli Information Management for z/OS, specify the subsystem name in either the **Target server subsystem name** field of the Installation Tailoring Facility or the CAS keyword of the BLGPARMS macro when you define your session-parameters members. If you do not specify a value, the default value, **BLX1**, is used. For more information about defining a session-parameters member, see **Working with Session-Parameters Members** on page 164. For more information on the BLGPARMS macro, see **BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics** on page 318.

Each user (interactive users, APIs, batch jobs, and so on) of a subsystem must also be sure that when its Tivoli Information Management for z/OS session is started, the BLXSSINM load module for that subsystem is in one of the following:

- A load library that is allocated to the ISPLLIB ddname
- A load library that is defined in a STEPLIB DD statement
- A load library that is in the system link list
- The link pack area

If you are using a Tivoli Information Management for z/OS utility, then one of the following must be true:

- The JCL that you use to run the utility must reference the load library that contains the BLXSSINM load module for the desired subsystem.
- The load library that contains the BLXSSINM load module for the desired subsystem must be specified in the link list.
- The BLXSSINM load module for the desired subsystem must be in the link pack area.

Defining a BLX-SP Procedure

You must define a procedure for each BLX-SP in SYS1.PROCLIB. If your BLX-SP subsystem is named BLX1, you can use the following sample procedure, BLX1PROC (provided in the SBLMSAMP library). If your BLX-SP subsystem is named something else, use the Installation Tailoring Facility to create a procedure.

```cl
//BLX1PROC PROC PRM=00
//BLXSPCAS EXEC PGM=BLXSSP00,REGION=6M,TIME=1440,PARM=&PRM
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 APF AUTHORIZED
//BLXPRM DD DISP=SHR,DSN=BLM.SBLMSAMP BLX-SP PARMS
```

A description of the JCL statements in the sample follows:

BLX1PROC

The **PRM=00** parameter specifies the suffix of the name of the BLX-SP parameters member that is used. For example, if your BLX-SP parameters member name is BLX100, then your suffix name is 00. If you specify this parameter in the START command for the BLX-SP procedure, the value specified in the command overrides the value specified here.

Note: Your BLX-SP parameters member must be in the data set specified by the BLXPRM DD statement.

The default value for PRM is 00.
BLXSPCAS
The PGM=BLXSSP00 parameter specifies the BLX-SP program. You must use BLXSSP00 as the parameter value. The TIME=1440 parameter tells the operating system not to time out the BLX-SP. If this parameter is not specified, the BLX-SP will receive an out-of-time ABEND.

STEPLIB
This DD statement specifies the data sets that contain the load modules used by the BLX-SP. You must specify the data sets in a STEPLIB DD statement if you do not specify them in the link list or if you do not have the load modules in the link pack area. The data sets must be APF libraries.

If you have multiple BLX-SPs, ensure that the load library containing the BLXSSINM module you want to use is concatenated to the STEPLIB DD statement before the main Tivoli Information Management for z/OS load library (SBLMMOD1). Otherwise, the system reads in the sample copy of BLXSSINM that is in the main load library. The following is an example of what the STEPLIB DD can contain:

//STEPLIB DD DISP=SHR,DSN=BLM.BLXLIB2
// DD DISP=SHR,DSN=BLM.SBLMMOD1

BLXPRM
This DD statement specifies the data set that contains the BLX-SP parameters member for this BLX-SP. You must use BLXPRM as the ddname. The data set that you specify must be a PDS.

Defining a BLX-SP Parameters Member
The BLX-SP parameters member is a standard text file that contains the operating parameters you want your BLX-SP to run with. You can use the Installation Tailoring Facility to create a BLX-SP parameters member, or see "Defining BLX-SP Parameters Members" on page 343 for information on defining a BLX-SP. See "Using the Installation Tailoring Facility" on page 185 for information on using the Installation Tailoring Facility.

The BLX-SP parameters member must be created before you start your BLX-SP.

Note: The BLX-SP parameters member naming rules changed for Version 6.1. Instead of BLXPRMaa, the names are now ssssa, where sss is the name of the BLX-SP subsystem, and aa is any 1 or 2 alphabetic, numeric, or national (#, $, @) characters. However, the aa value must match the PRM designation in the BLX-SP procedure.

Defining a VSAM Resource Definition Member

Non-Sysplex Environment
The task of defining a VSAM resource definition member applies only if you are installing Tivoli Information Management for z/OS in a non-sysplex environment. If you are installing Tivoli Information Management for z/OS in a sysplex and using sysplex support, there is no need to define a VSAM resource definition member because VSAM resources are managed directly through DFSMS/MVS.
VSAM resources for a BLX-SP are defined in the VSAM resource definition member (see "The VSAM Resource Definition Member – Non-Sysplex" on page 25 for more information). Multiple BLX-SPs can share a VSAM resource definition member.

You can use the Installation Tailoring Facility to create a VSAM resource definition member, or see "Defining VSAM Resources to the BLX-SP in a Non-Sysplex Environment" on page 301 for information on defining a VSAM resource definition member. See "Using the Installation Tailoring Facility" on page 185 for information on using the Installation Tailoring Facility.

The VSAM resource definition member load module must be created before you start a BLX-SP.

Defining Multiple BLX-SPs

You must have a separate BLX-SP parameters member, a BLX-SP subsystem (with a unique 4-character subsystem name), and a BLX-SP procedure for each of your BLX-SPs. You must have one program properties table entry on each z/OS system that uses Tivoli Information Management for z/OS. Use the Installation Tailoring Facility to define a separate BLX-SP parameters member and BLX-SP procedure for each of your BLX-SPs (see "Using the Installation Tailoring Facility" on page 185). It is strongly recommended that you not use BLXn for any extra subsystems you define because Tivoli could use them in a possible future release.

Starting and Stopping the BLX-SP

The following example of the MVS system operator START command starts a BLX-SP. An explanation of the example follows the example text:

```
S  BLX1PROC, SUB=JES2, PRM=01
```

S The MVS system operator START command.

BLX1PROC The BLX-SP procedure for this BLX-SP.

SUB=JES2 A parameter that specifies the JES subsystem.

Note: This parameter is necessary in the START command only when you specify a procedure name that is the same as a subsystem name on your system.

PRM=01 An optional parameter that specifies the suffix of the name of the BLX-SP parameters member that is used. Use this parameter to override the PRM parameter value that is specified in the BLX-SP procedure. In this example, 01 overrides the value in the BLX-SP procedure.

An example of the MVS system operator STOP command follows. An explanation of the example follows the example text:

```
P  BLX1PROC
```

P The MVS system operator STOP command.

BLX1PROC The BLX-SP procedure for the BLX-SP.
When the BLX-SP stops, all Tivoli Information Management for z/OS sessions end. You can set a delay time to let your users get to a stopping point so they do not lose any data (see “Defining BLX-SP Parameters Members” on page 343).

For more information about the MVS system operator commands, refer to *OS/390 MVS: System Commands*.
This chapter describes how to set up Tivoli Information Management for z/OS for sysplex data sharing. You must set up for sysplex data sharing if:

- You intend to use Tivoli Information Management for z/OS in a parallel sysplex and take advantage of sysplex functions.
- You want to share Tivoli Information Management for z/OS databases. That is, users on different BLX-SPs need to concurrently share Tivoli Information Management for z/OS VSAM data sets.

What is a Sysplex?

A *sysplex* is a set of MVS systems that communicate and cooperate with each other through certain hardware and software components and software services to process workloads. The products that make up a sysplex work together to provide higher availability, easier systems management, and improved growth potential over a conventional computer system of comparable processing power. You can run Tivoli Information Management for z/OS in a non-sysplex or z/OS Parallel Sysplex environment.

A sysplex can be a base sysplex or a *parallel sysplex*. A parallel sysplex has one or more coupling facilities that enable multiple central processor complexes to simultaneously process a workload. By allowing two or more processors to share the same data you can maximize performance while minimizing cost, improve system availability and concurrency, expand system capacity, and configure your system environment more flexibly.

Note: Throughout this document, when you see the term sysplex, understand it to mean a parallel sysplex (a sysplex with a coupling facility). Tivoli Information Management for z/OS provides support for parallel sysplex only.

Tivoli Information Management for z/OS exploits the benefits of a parallel sysplex environment in the following ways:

- It takes advantage of an improved VSAM processing design. In a sysplex, the VSAM access mode used is record-level sharing (RLS). In a non-sysplex environment, the access mode is nonshared resources (NSR) or local shared resources (LSR).
- A sysplex offers performance benefits, especially if you are sharing Tivoli Information Management for z/OS databases. VSAM data sets are opened directly by the Tivoli Information Management for z/OS user rather than by the BLX-SP. Because RLS locks data at a more granular level, the performance of the Tivoli Information Management for z/OS database is improved overall, regardless of whether or not you share databases.
When users issue a VSAM request, a single internal code path is used to access both shared and nonshared data sets. RLS handles all cross-memory requirements more reliably and efficiently than the BLX-SP does in a non-sysplex environment.

The need for setup of APPC when using shared databases is eliminated. With RLS, applications running on more than one Tivoli Information Management for z/OS system can read from and write to the same set of data concurrently. VSAM handles all cross-system buffer invalidation.

Operator commands can be entered on just one system in a shared database complex and take effect across the sysplex. For example, you can enter the BRDCST operator command to send a message to all Tivoli Information Management for z/OS users across the entire sysplex. The FREE and REALLOC commands can be used to free and reallocate a VSAM data set throughout the sysplex. You can also use the QUERY command to query the status of one or all VSAM data sets in the sysplex. (For more information about these commands, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.)

This chapter describes what you need to know about setting up Tivoli Information Management for z/OS to run in a sysplex whether or not you will be sharing Tivoli Information Management for z/OS databases. Use of a sysplex is optional; however, if you intend to share databases, you must install Tivoli Information Management for z/OS in a sysplex because VSAM RLS is required to share VSAM data sets.

Note: If you are not installing Tivoli Information Management for z/OS in a sysplex and exploiting sysplex services, you must use VSAM NSR or LSR instead of RLS, and you must define a VSAM resource definition member as described in "Defining VSAM Resources to the BLX-SP in a Non-Sysplex Environment" on page 301.

This chapter does not explain everything a systems programmer should know about installing or operating a z/OS system in a sysplex. Many publications are available in the z/OS library that address those topics, including the following publications which may be useful if you are not already familiar with z/OS data sharing and parallel processing or VSAM data sets:

- OS/390 Parallel Sysplex Overview – For a discussion of sysplex concepts.
- OS/390 MVS Setting up a Sysplex – For information about installing and operating a z/OS system in a sysplex.
- OS/390 MVS Planning: Global Resource Serialization – For information about serializing access to resources
- OS/390 MVS Initialization and Tuning Reference – For information about starting MVS and coding system parameters.
- DFSMS/MVS DFSMSdfp Storage Administration Reference – For information about the DFSMVS/MVS Storage Management Subsystem (SMS) and setting up RLS.
- DFSMS/MVS® Using Data Sets – For information about defining and working with VSAM data sets.

Understanding Sysplex Components

In a multiple system environment, systems are managed through the cross-coupling facility (XCF) services. XCF is a software component of z/OS. The XCF provides the services that allow authorized programs on z/OS images in a multisystem environment to communicate...
(send and receive data) with programs on the same z/OS image or other z/OS images in the sysplex. The services provided by XCF are the cornerstone of the sysplex; without it, there would be no sysplex at all. Tivoli Information Management for z/OS uses XCF to enable one BLX-SP to communicate with another BLX-SP on the same or another z/OS system in a sysplex.

However, the heart of parallel sysplex is the data-sharing technology based on the coupling facility. Unlike the XCF, which is software, a coupling facility consists of both hardware and software in your sysplex. The coupling facility is a special logical partition that provides high-speed caching, list processing, and locking functions in a sysplex. It enables high-performance data sharing and rapid recovery from failures. A parallel sysplex uses one or more coupling facilities to simultaneously process a particular workload. Tivoli Information Management for z/OS provides parallel sysplex data sharing by exploiting the coupling facility.

Storage in a coupling facility is divided into objects called structures, which are used to implement data sharing and high-speed serialization. Structure types are cache, list, and lock, each providing a specific function to Tivoli Information Management for z/OS. The coupling facility is managed through a policy called the coupling facility resource management (CFRM) policy. CFRM allows you to specify how a coupling facility and its resources are to be used at your installation. In a CFRM policy, you supply information about each coupling facility and each coupling facility structure that you plan to use. As part of setting up Tivoli Information Management for z/OS to run in a parallel sysplex, your z/OS systems programmer must define the coupling facility structures and sysplex policy couple data sets to be used at your installation. In addition, if you are migrating from previous releases of Tivoli Information Management for z/OS, there are some other tasks to perform, such as migrating your exiting BLX-SP to use new parameters for sysplex support and migrating your existing VSAM data sets to be enabled for record level sharing.

Figure 10 shows an example of Tivoli Information Management for z/OS in a non-sysplex environment.

Figure 10. Example of Tivoli Information Management for z/OS in a Non-Sysplex Environment

In a non-sysplex environment:
- There is no coupling facility.
- VSAM I/O processing is performed through the BLX-SP using VSAM buffers.
- VSAM processing is done through nonshared resources (NSR) or local shared resources (LSR).
- Multiple BLX-SPs or systems cannot share a common database.
- Data locking mechanism locks the entire VSAM data set.

Figure 11 on page 155 shows an example of a sysplex setup. In contrast, in a sysplex:
- A coupling facility is required.
VSAM I/O processing is handled more reliably by VSAM, not the BLX-SP. Information on VSAM data sets is kept in the SMSVSAM data space and in lock and cache structures in the coupling facility rather than in BLX-SP VSAM buffers.

VSAM processing is done through RLS. The RLS caches control intervals, and the cache is in the SMSVSAM data space and in coupling facility cache structures. VSAM uses RLS serialization to lock individual records within VSAM data sets and to achieve buffer coherency. RLS locks take the place of enqueues at the data set level most of the time when sysplex mode is enabled. Because RLS gets a shared lock on a record when doing a read, fewer Tivoli Information Management for z/OS enqueues are required in a sysplex. The greater degree of locking granularity provided enables you to have better performance because more user transactions can take place simultaneously with the database.

The BLX-SP requires less storage because there are no LSR buffers and users require less cross-memory storage.

The cross-system extended services (XES) component of z/OS enables Tivoli Information Management for z/OS to take advantage of data sharing services (data locking) through the coupling facility. VSAM RLS uses a lock structure (IGWLOCK00) to do record locking, and cache structures to cache records in the coupling facility. In addition, the BLX-SP has its own lock structure to facilitate use of the FREE, REALLOC, and QUERY operator commands. Both lock structures are necessary for Tivoli Information Management for z/OS data sharing.

The XCF component of z/OS allows Tivoli Information Management for z/OS on one system to communicate with Tivoli Information Management for z/OS on another system. For example, the BRDCST command can be used to send messages to users on one BLX-SP or all BLX-SP in a sysplex.

You can share Tivoli Information Management for z/OS databases. Databases can be shared only if sysplex mode is enabled.

It is easier to administer the Tivoli Information Management for z/OS database and expand for growth. For example, if you want to expand your system, you can add a BLX-SP without having to define VSAM resource definitions. The coupling facility structures are used instead. You can also add the BLX-SP without having to stop and restart Tivoli Information Management for z/OS. Also, if you are sharing databases, you do not have to set up APPC/MVS.

If you are already using Tivoli Information Management for z/OS, you must initially migrate existing VSAM data sets and BLX-SPs to exploit sysplex. You must also set up coupling facility structures to support data sharing and communication if you do not already have them.

An example of a Tivoli Information Management for z/OS shared database environment is shown in Figure 12 on page 155.
What is a Sysplex?

Figure 11. Example of Tivoli Information Management for z/OS in a Parallel Sysplex

Figure 12. Example of Tivoli Information Management for z/OS with Shared Databases in a Parallel Sysplex
Enabling Sysplex Mode

The information in this section describes the tasks involved to enable Tivoli Information Management for z/OS to exploit z/OS sysplex services. If you are migrating from a previous release of Tivoli Information Management for z/OS, you should note the additional migration tasks that are required; these additional tasks are discussed below under the If migrating notes.

If you have not already set up your BLX-SPs, you must define and set up BLX-SPs on each system in your sysplex. (See “Setting Up Your BLX-SP” on page 143.) For all BLX-SPs, ensure that the SYSPLEX=YES parameter is included in the BLX-SP parameters member in the data set specified on the BLXPRM DD statement in your BLX-SP procedure. SYSPLEX=YES enables sysplex mode for the BLX-SP and its users. For an example of the BLX-SP parameters member, see BLX1SH in the SBLMSAMP data set.

If migrating: When sysplex mode is enabled, any existing BLX-SP VSAMRESOURCES parameters are ignored. The DESTNAMES parameter is not supported. If you have a DESTNAMES parameter, you must remove it to avoid an error.

Define the session-parameters members on each system in your sysplex. There is no difference in the session parameters for shared databases and nonshared databases. See “Defining Tivoli Information Management for z/OS Session-Parameters Members” on page 317 for information about this task. When using the BLGCLUST macro to define the database, note that the COGENQ keyword is not used in a sysplex and is ignored if specified.

If migrating: VSAM data sets must be managed by SMS to use VSAM RLS. Because RLS requires use of a LOG parameter, you must migrate the existing VSAM data sets from your current version of Tivoli Information Management for z/OS to SMS-managed clusters with the LOG(NONE) parameter. You can use the IDCAMS ALTER or IDCAMS DEFINE CLUSTER command to define clusters with the LOG(NONE) parameter. As an alternative, you can run the BLGALTER job provided in the SBLMSAMP library to migrate existing VSAM data sets to be RLS enabled. BLGALTER is a sample IDCAMS ALTER job.

Also, data sets must be defined with the NOIMBED parameter. RLS does not support use of the IMBED parameter. If current data sets are defined with IMBED, migrate them by defining new data sets with the NOIMBED parameter, and then copy the data set (for example, with IDCAMS REPRO).

The following samples in SBLMSAMP are also updated to illustrate use of the LOG(NONE) parameter.

BLGDATAB – Define the Tivoli Information Management for z/OS database
BLGDICT – Define the dictionary data set
BLGRPNL – Define read panel data sets
BLMWPNL – Define write panel data set

Refer to the DFSMS/MVS Access Method Services for the Integrated Catalog Facility for more information about using IDCAMS.

Set up RLS as described in the DFSMS/MVS DFSMSdfp Storage Administration Reference, in the section that describes “Administering VSAM Record-Level Sharing.”
As part of this setup, have your storage administrator or systems programmer set up storage management definitions for RLS. You can use the ISMF panel interface of DFSMS/MVS to do this. Refer to the DFSMS/MVS DFSMSdfp Storage Administration Reference for more information about this.

All systems sharing data sets must be part of the same SMS complex.

Additionally, create RLS share control data sets. This process is also described in the "Administering VSAM Record-Level Sharing" section of the DFSMS/MVS DFSMSdfp Storage Administration Reference. A sample job, BLXRLSCD, is provided in the Tivoli Information Management for z/OS SBLMSAMP sample library to define RLS share control data sets.

- Have your z/OS systems programmer set up the CFRM policy to be used. The CFRM policy defines how the coupling facility and its resources should be used. You can update an existing policy with the IXCMIAPU administrative data utility provided with z/OS. A sample IXCMIAPU job is provided with Tivoli Information Management for z/OS in the SBLMSAMP sample library to help you define coupling facility structures (see member BLXCFSTR). In addition to providing sample JCL to define the structures necessary for RLS, BLXCFSTR defines a lock structure exclusively for Tivoli Information Management for z/OS which must have these attributes:
 - Name – The Tivoli Information Management for z/OS lock structure must be named BLXLOCK00.
 - Size – The size of BLXLOCK00 is calculated using this formula:
 \[\text{INITSIZE} = D \times E \]
 where
 - \(D \) the total number of VSAM data sets that will be accessed by all Tivoli Information Management for z/OS users throughout the sysplex, rounded up to the next power of 2.
 - \(E \) the size (in bytes) of a single lock table entry, determined by calculating \(1 + \frac{\text{(number of BLX-SPs in the sysplex + 1)}}{8} \) and then rounding this up to the next power of 2.
 - Exclusion list – There are no exclusions; that is, there are no structure names that cannot be shared with the same coupling facility.
 - Persistence – The lock structure does not remain allocated in the coupling facility if there are no active connectors to it.
 - Rebuild– The lock structure cannot be rebuilt by an operator.
 - Connectivity – Ensure that IGWLOCK00 and BLXLOCK00 have universal connectivity so they can be accessed from all systems in the sysplex.

Note: You must define IGWLOCK00 if you are setting up RLS for the first time.

- Coupling facility requirement – The coupling facility must have a coupling facility control code of 2 at a minimum.

- Have your z/OS systems programmer include the appropriate COUPLExx and IGDMSxx members in the z/OS SYSLPARMLIB data set. SYSLPARMLIB members contain values that MVS uses as input during system initialization to define the...
characteristics of the system. Tivoli Information Management for z/OS has no specific recommendations for required parameters for COUPLExx; however, it is recommended that you specify RLSINIT(YES).

What are Shared Databases?

A shared Tivoli Information Management for z/OS database is a database that can be accessed by users on different BLX-SPs at the same time. The VSAM data sets that make up the database can reside in the same z/OS system or on multiple z/OS systems. The following VSAM data sets are eligible for sharing when a Tivoli Information Management for z/OS database is shared:

- **SDDS data sets** – the data records
- **SDIDS data sets** – the index for searching
- **SDLDS data set** – the optional log for storing backup copies of the SDDS
- **DICT data set** – the definition for p-words, s-words, and validation patterns associated with the data
- **RPANLDS data sets** – the panels used in production
- **WPANLDS data set** – the data set containing Tivoli Information Management for z/OS panels that you create or modify using PMF.

Note: In previous releases of Tivoli Information Management for z/OS, the facility that enabled data sharing to take place in Tivoli Information Management for z/OS was called *Multisystem Database Access* (MSDA). MSDA no longer exists in Tivoli Information Management for z/OS, but the concept of sharing data or sharing databases still exists. To share databases, a parallel sysplex is required and sysplex mode must be enabled for Tivoli Information Management for z/OS. By exploiting a sysplex environment, Tivoli Information Management for z/OS no longer requires APPC for data sharing. The data and index buffers are maintained in the SMSVSAM data space and in the coupling facility. SMSVSAM handles any necessary communication with the coupling facility to maintain integrity of the VSAM buffers.

No other programs or non-Tivoli Information Management for z/OS utilities can share the data sets with Tivoli Information Management for z/OS unless they access the data sets through the Tivoli Information Management for z/OS APIs. As an exception, under RLS, if read integrity is not required, a SHAREOPTIONS(2) data set can be opened in read-only mode by a nonshared resource application (such as IDCAMS REPRO).

Enabling Shared Databases

The information in this section describes the tasks involved to enable Tivoli Information Management for z/OS to share databases in a sysplex. To share VSAM data sets in a Tivoli Information Management for z/OS database, you must perform the following tasks:

- Set up for sysplex mode as described in "Enabling Sysplex Mode" on page 156.
- If you are using a product other than the GRS component of z/OS to manage enqueues, note the resource names listed in "Resource Names That Tivoli Information Management for z/OS Enqueues On" on page 351 for Tivoli Information Management for z/OS.

After you have defined a shared database on all the systems that share it, you can use it. z/OS Security Server (RACF) (or a similar security program), and DFSMS/MVS, and at
least one of the shared BLX-SPs must be running on the systems sharing the database for
users to access the database. If you have multiple BLX-SPs sharing a database and one of
them goes down, the others can still access the database.

Defining the BLX-SP Procedure

To illustrate how to define the BLX-SP procedure, suppose that you are setting up shared
databases on three z/OS systems (SYSTEM1, SYSTEM2, and SYSTEM 3). SYSTEM1
contains a BLX-SP cataloged procedure named BLXSHR. This BLX-SP procedure defines a
database of VSAM data sets that you plan to share with two other systems, SYSTEM2 and
SYSTEM3. Figure 13 illustrates the BLX-SP procedure for BLXSHR. This procedure is
provided in the SBLMSAMP library in member BLXSHR.

```
//BLXSHR PROC PRM=SH
//BLXSPCAS EXEC PGM=BLXSSP00,REGION=6M,TIME=1440,PARM=&PRM
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 APF AUTHORIZED
//BLXPRM DD DISP=SHR,DSN=BLM.SBLMSAMP BLX-SP PARMS
```

Figure 13. Sample BLX-SP Procedure

This BLX-SP uses the BLX-SP parameters member (BLX1SH) illustrated in Figure 14 on
page 160. Use this same procedure and BLX–SP parameters member on SYSTEM2 and
SYSTEM3.

Global Resource Serialization Considerations

A GRS complex, which consists of one or more systems connected by communications
links, is required for a sysplex. It enables you to serialize data across multiple systems while
maintaining data integrity. It is assumed that a GRS complex has already been established
during z/OS installation. If a GRS complex has not been set up, refer to OS/390 MVS
Planning: Global Resource Serialization for more information. This section describes some
setup details that are specific to the use of Tivoli Information Management for z/OS in a
GRS complex, but it does not describe how to set up a GRS complex.

Modifying the GRSRNLaa Member of SYS1.PARMLIB

Before you modify the GRSRNLaa member of the SYS1.PARMLIB, review the VSAM
recommendations for RNL in OS/390 MVS Planning: Global Resource Serialization.

Also, check the GRSRNLaa member for any of the resource names listed in “Resource
Names That Tivoli Information Management for z/OS Enqueues On” on page 351. Normally,
none of these names should be present in GRSRNLaa. The only exception would be if
Tivoli Information Management for z/OS is running in sysplex mode and not sharing data
sets across systems. In that case, performance may be improved by adding the following
resource names to the SYSTEMS Exclusion RNL: BLGAPI, BLGDICTN, BLGPMFPU,
BLGRNID, BLGSEQN, BLGUT4, BLGVCZR, and BLGSDIDS.

Important!

You must remember to remove these names if you decide to share data sets across
systems. If you do not remove them, serialization errors can occur and the integrity of
your Tivoli Information Management for z/OS database may be compromised.
Modifying the BLX-SP Parameters Member

Figure 14 is a sample BLX-SP parameters member for a BLX-SP running in sysplex mode.

```plaintext
BLXPRM /* SPECIFY BLX-SP PARAMETERS */

SYSPLEX=YES, /* Enable sysplex data sharing */

TRACE=OFF, /* DON'T PRODUCE TRACE OUTPUT */

LOG=ON, /* PRODUCE LOG INFORMATION */
LOGSYSOUT=A, /* JES SYSOUT CLASS FOR LOG DS */
LOGLINES=0, /* MAX # OF LINES IN A LOG DS */
```

Figure 14. Sample BLX-SP Parameters Member (BLX1SH) for Sharing Data Sets (Part 1 of 2)
Modifying the BLX-SP Parameters Member

```c
/*********************/
/*
/* BLX-SP SHUT DOWN OPTIONS */
/*
/*********************/
SHUTDOWNWT=00050000, /* SHUTDOWN WAIT TIME HHMMSSTH */
SHUTDOWNTFY=00000000, /* SHUTDOWN NOTIFY WT HHMMSSTH */
/*********************/
/*
/* BLX-SP MESSAGE ROUTING OPTIONS */
/*
/*********************/
WRITEOPER=1, /* DEFAULT WTO ROUTING CODE */
/*********************/
/*
/* BLX-SP API OPTIONS */
/*
/*********************/
APISECURITY=XXX, /* Replace XXX with ON or OFF */
APICHKOUTLIM=00000000; /* HHMMSSTH - NO LIMIT SET */
/*********************/
```

Figure 14. Sample BLX-SP Parameters Member (BLX1SH) for Sharing Data Sets (Part 2 of 2)
Evaluating Base Product Tailoring Considerations

This chapter discusses factors concerning the Tivoli Information Management for z/OS base product you should consider before you install Tivoli Information Management for z/OS.

This chapter is designed to help you tailor Tivoli Information Management for z/OS.

Working with Translate Tables

If you want to use non-Latin alphabetic characters to enter data into the database for other than freeform text, you must install the non-Latin translate table. You must choose the tables to use when you install Tivoli Information Management for z/OS; you cannot change the translate table at a later time.

To collect, store, or display data in mixed case, Tivoli Information Management for z/OS requires use of the Latin translate tables.

When you install the Latin translate tables:

- All lowercase ward 42 DBCS and SBCS alphabet characters entered at the workstation automatically translate to uppercase for all commands, but not for freeform text and panel externals. Data is not automatically translated. The translation of data is controlled by the setting of the Collected Data Case field on the assisted-entry panel for the field. You can use the Installation Tailoring Facility to tailor the uppercase translate table that Tivoli Information Management for z/OS uses for translating your Latin characters to uppercase. See "Using the Installation Tailoring Facility" on page 183 for information on using the Installation Tailoring Facility. Do not change the uppercase translate table unless you have special national language requirements.

- You can use the Latin translate tables with non-Latin alphabet workstations if you translate all panels to uppercase when you load the VSAM panel data set and if you enter all data (except freeform text and external panel changes) in uppercase Latin.

When you install the non-Latin translate tables:

- All characters translate to themselves. Thus, the Display uppercase and Output in uppercase fields in the Tivoli Information Management for z/OS profiles for your users are not used.

- Ward 42 DBCS alphabet characters are translated to uppercase alphabet characters.

- All commands must be entered as uppercase Latin alphabet characters to ensure that Tivoli Information Management for z/OS recognizes them.
You cannot use the mixed case data collection and processing features provided in Tivoli Information Management for z/OS.

You must use uppercase Latin alphabetic characters for the alphabetic characters entered on those panels whose validation pattern did not change to an I pattern. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on validation pattern characters and how to change the validation patterns on panels.

You must use uppercase Latin alphabetic characters for all p-words and s-words entered into the dictionary. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on validation pattern characters and how to change the validation patterns on panels.

To use the non-Latin translate tables, you must ensure that:

- All workstations on which Tivoli Information Management for z/OS runs use the same character set. If only some of the workstations have non-Latin alphabetic character sets, Latin alphabet workstations cannot read data entered on the non-Latin alphabet workstations.

- You do not plan to convert to Latin alphabet workstations in the future, or to display data from the database on Latin alphabet workstations or printers. If you enter non-Latin characters into your database, Latin alphabet workstations or printers cannot read them.

- You translate all of the Tivoli-supplied panels to uppercase when loading them into VSAM panel data sets. To do this, use BLGUT6 and specify the UPPERCASE keyword.

- You change the panel validation patterns to I patterns for all fields that are to accept non-Latin alphabet characters and non-Latin DBCS characters. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on validation pattern characters and how to change the validation patterns on panels.

When you enter special characters for nonprefixed string data fields, such as the Description abstract field, the special characters are translated to blanks before the data is cognized. Thus, if 123-4567 were entered in the Description abstract field, the dash would be translated to a blank and both 123 and 4567 would be cognized (written to the SDIDS data set) and would be searchable, but 123-4567 would not be searchable. This process is called blank substitution.

To look at the Latin and non-Latin translate tables used for display and the Latin and non-Latin blank substitution translate tables, see “Translate Tables” on page 353.

Note: If you require special national language support, you can also define, at installation, additional uppercase or lowercase characters that should be treated as valid characters by Tivoli Information Management for z/OS. You can define these characters at installation through use of the optional features option of the Installation Tailoring Facility.

Working with Session-Parameters Members

The session parameters define certain processing options and all the data sets that Tivoli Information Management for z/OS requires for a Tivoli Information Management for z/OS session. Most of the data sets used by the Tivoli Information Management for z/OS program are VSAM data sets. The report format table data sets (RFTDS) and output listings created by the report or print functions are examples of exceptions. By using the session parameters
provided by Tivoli Information Management for z/OS, you can tailor Tivoli Information Management for z/OS sessions for individual users. By defining more than one set of session-parameters members, you enable Tivoli Information Management for z/OS to start with different operating characteristics for different users or with different characteristics for different sessions for the same user. Each session-parameters member can define only those databases needed by a certain set of users. Thus, you can have several session-parameters members, each one identifying the databases and panel data sets needed by different groups of users.

A session-parameters member identifies the following:

- One dictionary data set
- One report format table data set
- One write panel data set (for use with PMF)
- One or more read panel data sets
- The databases you want to use
- The data sets associated with each database
- The BLX-SP you want to use
- Other processing characteristics, such as a control panel to use upon entry to the system, default date format, or whether universal time processing should be enabled.

For a list of the available session parameters that you can define, see the "Defining Tivoli Information Management for z/OS Session-Parameters Members" on page 317.

Consider defining a separate session-parameters member to use when running the Tivoli Information Management for z/OS utilities. If you attempt to recover a database from the SDLDS while using a session-parameters member that has an SDLDS, BLGUT3 attempts to log the recovery transactions. This is not something that you want to do because it conflicts with the intended purpose of BLGUT3 (for an explanation, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference). Therefore, define a separate session-parameters member without an SDLDS. You can also use a separate session-parameters member for the BLGUT1 utility, although this is not required. The advantage is that you can use a session-parameters member that has a different sort routine specified. To take advantage of this option on BLGUT1, you must overwrite the SDDS and SDIDS cluster names with DD statements. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for details.

The following considerations apply to parameters that are specified in the session-parameters member.

Working with Panel Buffers

You can define how many panels are kept in the individual user’s address space. You specify this value either in the *Number of panel buffers* field when you define a session-parameters member using Installation Tailoring Facility or in the PNLBCNT keyword of the BLGPARMS macro (see page 327). If this value is kept at a sufficiently high number, the number of read panel data sets and their placement is not very significant.

SORTIN, SORTOUT, and SORTWK01 Data Sets

Three data sets are used in conjunction with:

- The SORTIN primary and secondary allocation percentage fields
- The number of matches in the search results list
The size and number of the sort fields for the report (as defined in the Report Format Table (RFT)).

The values specified for SORTIN, SORTOUT, and SORTWK01 determine both the data set block size and the space allocation information for the SORTIN, SORTOUT, and SORTWK01 data sets. The formula for this computation follows. All division is integer division; that is, any remainder from the division is truncated. Determine the SORTIN LRECL (logical record length) from the number and size of the sort fields specified by the RFT. Divide the \textit{trksize} value by the SORTIN LRECL to determine the number of logical records that fits in a physical record. This number of logical records multiplied by the SORTIN LRECL becomes the data control block’s (DCB) block size (BLKSIZE) used during dynamic allocation of the SORTIN data set.

\textbf{Step 1.} \# logical records = \textit{trksize} / \textit{SORTIN LRECL}

\textbf{Step 2.} DCB BLKSIZE = \# logical records \times \textit{SORTIN LRECL}

You must request space allocation in blocks rather than in tracks or cylinders. Your requested block size is the value computed for the DCB BLKSIZE.

To determine the requested number of primary blocks, multiply the number of search results list matches by the \textit{SORTIN LRECL} size. This gives the approximate number of bytes needed if each search results list entry produces exactly one \textit{SORTIN} logical record. (However, this is not always true, as discussed in the paragraph following Step 4.) To determine the number of blocks that are necessary to contain all the data in the primary extent of the data set, divide this total number of bytes in the \textit{SORTIN} data set by the DCB BLKSIZE value and add one to the result.

\textbf{Step 3.} Approximate \# bytes = \# of search matches \times \textit{SORTIN LRECL}

\textbf{Step 4.} \# of blocks = (approximate \# bytes / DCB BLKSIZE) + 1

As previously mentioned, one search results list match can produce multiple \textit{SORTIN} logical records. The number produced is a function of the number of times a particular RFT sort field appears in the Tivoli Information Management for z/OS SDDS data record, and whether there are multiple RFT sort fields for which this occurs. The total number of logical records written to \textit{SORTIN} is a function of how many times this condition occurs for each record reported.

Therefore, multiply the number of primary blocks (as calculated in Step 4) by the value you specify in the user’s profile field, primary \textit{SORTIN} allocation percentage (shown as PSIAP in Step 5, below), divided by 100, and increased by one. The resulting value becomes the primary space allocation request number.

\textbf{Step 5.} \# of blocks allocated = (\# of blocks \times \text{PSIAP}) / 100 + 1

The following example contains sample values for the variables used in steps 1 through 5:

\begin{itemize}
\item trksize = 55996
\item \textit{SORTIN LRECL} = 80
\item number of search results matches = 50
\item PSIAP = 123
\item 1. \# logical records = 55996 / 80 \quad \text{equals 700}
\item 2. DCB BLKSIZE = 700 \times 80 \quad \text{equals 56000}
\item 3. Approximate \# bytes = 50 \times 80 \quad \text{equals 4000}
\item 4. \# of blocks = (4000 / 56000) + 1 \quad \text{equals roughly 1.07, truncated to 1}
\item 5. \# of blocks allocated = ((1 \times 123) / 100) + 1 \quad \text{equals 1.23 + 1, which equals 2}
\end{itemize}

In this case, the primary space allocation is for two blocks.
Calculate the secondary space allocation request number in a similar manner, using the user's profile value for the secondary SORTIN allocation percentage.

Calculate the DCB parameters for the SORTOUT data set in a manner similar to that of the SORTIN data set. The SORTOUT LRECL is the same as the SORTIN LRECL. However, you can compute the space allocation information exactly, because the actual number of SORTIN logical records is available by the time the SORTOUT data set is dynamically allocated. Therefore, the space allocation request for SORTOUT data set requires only a primary space allocation.

Allocate the SORTWK01 data set using the same space allocation block size as that used for the SORTIN data set. However, use only one-third the amount of space needed for the primary and secondary quantities for the SORTIN data set.

For all three data sets, use the space allocation keyword CONTIG to ensure that you allocate contiguous sections of external storage for the data sets. For the SORTWK01 data set, use the space allocation keyword, ROUND, to ensure that you allocate the data set on a cylinder boundary. These keywords enhance the performance of the Tivoli Information Management for z/OS report generator. Do not use the ROUND keyword for the SORTIN and SORTOUT data sets because, in most cases, you allocate these data sets to a VIO device. Even if you do not use VIO, you allocate excess direct access space, which is unusable by other functions in your installation while a Tivoli Information Management for z/OS report is running. This outweighs the performance improvement obtained for most reports.

SORT Routine

Figure 15 contains the parameter lists that Tivoli Information Management for z/OS passes to the SORT routine that you indicate in your session-parameters member. Tivoli Information Management for z/OS calls the SORT routine twice; therefore, Figure 15 shows both parameter lists. Refer to the *DFSORT Application Programming Guide* for the standard interface to the IBM DFSORT program (5740-SM1).

INTERFACE FOR FIRST CALL TO SORT

<table>
<thead>
<tr>
<th>LOADST</th>
<th>DC AL2(LISTEND-LISTBEGIN)</th>
<th>Param list length</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTBEGIN</td>
<td>DC A(SORTA1)</td>
<td>beginning address of sort stmt</td>
</tr>
<tr>
<td></td>
<td>DC A(SORTA1E)</td>
<td>end address of sort stmt</td>
</tr>
<tr>
<td></td>
<td>DC A(RECA1)</td>
<td>beginning addr of record stmt</td>
</tr>
<tr>
<td></td>
<td>DC A(RECA1E)</td>
<td>end addr of record stmt</td>
</tr>
<tr>
<td></td>
<td>DC V(BLG0Z3X1)</td>
<td>addr of E15 routine</td>
</tr>
<tr>
<td></td>
<td>DC C'SRT1'</td>
<td>ddname for SORT1</td>
</tr>
</tbody>
</table>

**LISTEND EQU * **

SORTA1 DC

C'SORT FIELDS=(1,8,BI,A),'	sort control stmt
C'FILSZ=E3800000,SKIPREC=','	(continued)
C'DYNALLOC=SYSDA'	(continued)
C'LI149'	(continued)

SORTA1E DC

| C' | end of control stmt |

| RECA1 DC | C'RECORD TYPE=F,LENGTH=8' | record control stmt |
| RECA1E DC | C' | end of record control stmt |

Figure 15. Parameter Lists for SORT Routine (Part 1 of 2)
You can allocate a data set with the ddname of BLGSMSG in your TSO logon procedure to receive any SORT/MERGE program product messages generated during your use of Tivoli Information Management for z/OS. This data set is optional.

Working with Databases

Tivoli Information Management for z/OS works with two types of databases, whose contents vary as follows:

- A Tivoli Information Management for z/OS-format database consists of an SDDS, SDIDS, and optionally, an SDLDS. Tivoli Information Management for z/OS identifies these databases as database 4, 5, 6, 7, 8, or 9. Database 5 is the only database that you can write to; the remainder are read-only databases. Database 6 is reserved for Tivoli Inventory and must be defined with an SDIDS key of 34.

- A user-defined format database consists of only an SDDS and an SDIDS. User-defined format databases are read-only databases. Tivoli Information Management for z/OS identifies user-defined format databases as database 0, 1, 2, or 3.

To create user-defined format databases, do the following:

1. Allocate the VSAM data sets for the SDDS and SDIDS for your user-defined format database.

2. Create or update a session-parameters member to contain the name of the SDDS and SDIDS for your user-defined format database. See the Installation Tailoring Facility or "Defining Tivoli Information Management for z/OS Data Sets” on page 277 for details on setting up the SDDS and SDIDS.

3. Create a sequential data set containing the entries for your user-defined format database.

4. Run the BLGOZUD utility to load your user entries from the sequential data set into your SDDS and SDIDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for details about BLGOZUD.
Working with VSAM Data Sets

When working with VSAM data sets, remember that:

- RLS requires SMS-managed data sets.
- Extended attribute data sets are supported when running Tivoli Information Management for z/OS in either sysplex or non-sysplex mode.
- Spanned data sets are not supported.

Review the following considerations before defining your Tivoli Information Management for z/OS VSAM data sets.

Using Imbed or Noimbed

Starting with DFSMS/MVS Version 1.5, the `Imbed` option is no longer supported when defining VSAM data set indexes. If `Imbed` is specified, it is ignored. Therefore, you should use `Noimbed` when defining VSAM data set indexes. `Noimbed` is also required for VSAM RLS.

When you define your VSAM clusters using the Installation Tailoring Facility, a value of `Noimbed` indicates the lowest level index records (sequence set) of the data set are written once and reside with the rest of the index levels.

Using Replicate or Noreplicate

When you define your VSAM clusters using Installation Tailoring Facility, a value of `Replicate` specified in the `Index track records` field indicates that each index (for all levels, not just the sequence set) record is written on a track as many times as it fits. When VSAM reads the DASD to retrieve this lowest level of the index to locate a record, `Replicate` can reduce the rotational delay of the disk.

However, `Noreplicate` may be the better choice for Tivoli Information Management for z/OS VSAM data set indexes:

- If you are using LSR and have allotted enough buffers to contain all of the data set index CIs then, after the first access, no physical reads of the index from the DASD take place. `Replicate` has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).
- If you are using a controller cache function, `Replicate` can be counterproductive. Because entire tracks are buffered into the controller cache, `Replicate` can cause cache memory in the controller to unnecessarily store the replicated index records.

For these reasons, `Noreplicate` is preferred for Tivoli Information Management for z/OS data set indexes. Consider using `Replicate` for the index only if you are not buffering most of the index through LSR and if you are not using a controller cache function for the data set.

Specifying VSAM Data Set Space

You can specify space in terms of records, tracks, or cylinders. By specifying the allocation in terms of numbers of records, the characteristics for the device on which the data set is allocated are not important. However, disk fragmentation and other space problems can occur when space is allocated by records or tracks. If you know the characteristics of the device on which the data set is allocated, you may want to convert the number of records or tracks to cylinders.
Your organization may require the allocation to be in certain units of allocation. To arrive at the number of tracks or cylinders required, use the number of records calculated for the data set. When you allocate specific data sets, use the example provided in *DFSMS/MVS Using Data Sets*.

Working with SDDSs

The SDDS is a VSAM key-sequenced data set. You define this data set by using the Installation Tailoring Facility or the Access Method Services (AMS) DEFINE command. In the AMS DEFINE command, you must specify the maximum and average record sizes and the amount of disk storage to allocate.

When you allocate the SDDS, you must also choose which format of the SDDS you are allocating. Use the KEYS keyword to specify the format of the SDDS. Specifying a key length of 8 (8 bytes) allocates the SDDS for use as key 8 format. You can select a key length of 7 (7 bytes) for allocating the SDDS format. This is known as key 7 format. Key 7 format generally provides better performance, and is the recommended format for Tivoli Information Management for z/OS. Key 7 format is required for some new functions such as the BLGUT23 series of utilities that provide a backup mechanism that can be used without requiring users to be off the system.

Note: SDDSs for databases 0, 1, 2, and 3 must have a key length of 8.

For more information about the key 7 and key 8 formats, see the following discussions on maximum record size and DASD space for the SDDS.

The following list is a set of recommended values to use to calculate the size of the data component for your SDDS. Use these values in the formula provided in *DFSMS/MVS Using Data Sets* in the section that shows a sample calculation of space allocation for a VSAM key-sequenced data set. After you create a representative number of records for all record types, run BLGUT20 to get statistical data to help you determine whether the values you originally chose for the SDDS are accurate or need redefining.

Control interval size

For optimal performance and space utilization, the CI size should be large enough to result in a single Tivoli Information Management for z/OS logical record being read or written in one I/O operation, yet allow efficient utilization of the device. The BLGUT20 utility indicates what the average SDDS record size is. This average record size value should be rounded up to the next multiple of 2048. Since the SDDS can be very large, it is desirable to further adjust the CI size to a higher value that is also a multiple of 2048 to achieve efficient track utilization for the device type used for the SDDS. The CI size (and the maximum record size) can be increased at any time simply by using AMS REPRO. Refer to the description of the BLGUT7 utility in the *Tivoli Information Management for z/OS Operation and Maintenance Reference* if you want to decrease the CI size or record size.

See "Calculating the Size of Your SDDS Records" on page 171 if you cannot use the BLGUT20 utility to determine the average SDDS record size.

Maximum record size

When you use a key 8 format or key 7 format, the maximum record size should be 7 bytes less than the CI size so that Tivoli Information Management for z/OS can use the maximum available space to block logical records. For example, for the CI size of 2048, use a maximum record size of 2041. If you increase the CI size,
always increase the record size at the same time. This is true even when you increase the CI size to achieve a more effective CI size for the device. Any maximum record size (CI size minus 7) greater than the average will provide optimal performance. SDDS records are variable length up to the maximum record size. Any record written that is larger than the maximum record size is segmented into multiple physical records before it is written. The maximum record size (along with the CI size) can be increased at any time simply by using AMS REPRO. Refer to the description of the BLGUT7 utility in the Tivoli Information Management for z/OS Operation and Maintenance Reference if you want to decrease the record size or the CI size.

The Installation Tailoring Facility automatically sets your maximum record size equal to the CI size minus 7 (for both key formats).

Average record size

Run the BLGUT20 utility to determine the average record size. If this utility cannot be run, see “Calculating the Size of Your SDDS Records”.

DASD space for the SDDS

Next, consider the amount of space required for the SDDS. If you know the average record size and the desired number of records you would like to have the SDDS contain (being sure to consider your anticipated growth), you can calculate the amount of space needed by multiplying those two values. Then, convert that number to tracks or cylinders based on your device type. Be sure to select a CI size that allows an efficient use of the device. Quarter and half track allocations are typically optimum for both device utilization and performance.

Calculating the Size of Your SDDS Records

If you have a previous version of Tivoli Information Management for z/OS installed and have records established, you can run BLGUT20 to determine your average record size and record size distribution. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information about BLGUT20.

If you used PMF to modify the Tivoli Information Management for z/OS panels or to create your own panels, the amount of data collected by the prompting sequence can be considerably different from the amount of data collected by the unmodified Tivoli Information Management for z/OS prompting sequence panels. For example, if you modified the panels to reduce problem entry to a single data-entry panel containing only a few fields, you reduced the amount of data written to the database.

If you think the amount of data your panels collect is considerably different, use the following formula to calculate the average size of your Tivoli Information Management for z/OS logical records:

\[
\text{avgsize} = (\text{rspcnt} + \text{auto}) \times 35 + (\text{txtcnt} \times \text{avgline}) + (\text{jrnlcnt} \times 44)
\]

avgsize

Average size of your Tivoli Information Management for z/OS logical records at your organization.

rspcnt

Average number of panel responses contained in your logical record. Each field on a data-entry panel counts as two panel responses. Consider also the data collected automatically by TSPs.
auto
All entries added at file time or by TSPs.

txtcnt
Average number of text lines entered on the freeform text entry panels for a Tivoli Information Management for z/OS logical record.

avgline
Average length of a text line. Tivoli Information Management for z/OS provides a 60-character input line on which you can enter text. You also have the option of using the ISPF/PDF editor, which accepts up to 80 characters of text per line.

jrnlnct
Average number of journalized entries for a logical record. A journal entry is made only for selected fields, but one is made every time you modify those fields. If you decide to journalize many fields or if you modify your journalized fields many times, you must increase this number. A typical value for the number of times a logical record’s fields are journalized ranges from 5 to 50 or more.

Working with Multiple-Cluster SDDSs

To use multiple VSAM clusters, follow the naming conventions pertaining to multiple SDDS clusters (see the online help information for the Installation Tailoring Facility or “Defining the SDDS” on page 278) and specify the TRIGGER character when you define your session-parameters member (see the Installation Tailoring Facility or “BLGCLUST Macro — Defining a Database” on page 333).

If you plan to use multiple clusters, define them using the instructions given in the Installation Tailoring Facility or under “Defining the SDDS” on page 278, because all of the SDDS clusters are closely related and you specify only the first cluster name to Tivoli Information Management for z/OS. If you want to convert your one SDDS cluster database to a multiple SDDS cluster database, you must run the BLGUT7 utility. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for details about running BLGUT7.

The following section describes some factors you should consider when deciding whether to use multiple SDDS clusters.

Factors to Consider

- How large (cylinders/total bytes) is your current SDDS and is it expected to grow significantly?
- Are the advantages of using multiple clusters important?

The advantages are:

- Some performance improvement. In a non-sysplex environment with only one cluster, if a user updates the SDDS, all other users wait until that user completes. Waiting becomes more important when you have many active users (interactive, batch, or API). With multiple clusters, users can access other SDDS clusters while updates are occurring on another cluster.
- More capacity. One SDDS cluster is limited to 4 gigabytes. Each additional cluster used adds another 4 gigabytes.
- Reduced time needed for backups. Assuming you have a sufficient number of devices (normally tape drives), you can submit multiple jobs and have each job back up one of the clusters. Since the jobs can run simultaneously, you can reduce the overall time it takes to do a backup.
The disadvantage is:

- More clusters to manage.

- How often would you want to repeat this process?

- The database is unavailable while BLGUT7 runs.

- If you have 5 clusters and decide to convert to 6, you will have to perform all the conversion steps necessary, just as if you went from 5 to 10 clusters, but with only 20% more added capacity. However, if you convert from 5 to 10 clusters, database capacity increases by 100%.

- Will you have enough DASD to do the conversion? You will need to have twice the amount of DASD tied up while you are converting—all the DASD for the current SDDS cluster(s), plus roughly the same amount for the new SDDS clusters. For example:

 Assume: Currently a single cluster that uses 1000 cylinders

 Converting to: 4 clusters

 Then: Define 4 new 250-cylinder clusters.

 Result: 1000 + 250 + 250 + 250 + 250 = 2000 cylinders needed until BLGUT7 completes (the original 1000 cylinders can be deleted after converting).

 Note: The BLGUT23 series of utilities can be used instead of the BLGUT7 utility if DASD space is a concern. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on using these utilities.

Determining Number of Clusters

To help determine how many clusters to use, do an IDCAMS LISTCAT on your current SDDS cluster(s).

- Look at the HI-USED-RBA value. How close to 4 gigabytes (4 294 967 295) is the HI-USED-RBA?

- How many new records do you expect? Remember that you can search using prefix DATE/ (date entered) to determine how many records per month or year you have created. Also, the BLGUT20 utility provides information on the size of your records.

If your HI-USED-RBA is less than 536 870 912 (half a gigabyte) you will most likely not want to do anything.

If your HI-USED-RBA is less than 2 147 483 648 (2 gigabytes) per SDDS cluster, depending on how the database is expected to grow, you might benefit from multiple clusters.

If your HI-USED-RBA is greater than 2 147 483 648 (2 gigabytes) per SDDS cluster, you should benefit from multiple clusters in performance and receive 4 gigabytes relief.

If you decide to increase the number of clusters, choose a number that would result in the new clusters being in the range of 536 870 912 (half a gigabyte) to 1 073 741 824 (1 gigabyte):

Assume: Currently a single cluster with HI-USED-RBA of 3221225472
You should define at least 3 clusters at a minimum. Define 4 or 5 clusters if you do not expect much growth in the database. Define 6 or more if you expect the database to grow over the next several years. Keep in mind that you will have to manage (back up) these data sets.

Assume: Currently a 5-cluster SDDS

SDDS$01 HI-USED-RBA of 2051235489
SDDS$02 HI-USED-RBA of 2200929432
SDDS$03 HI-USED-RBA of 1981778632
SDDS$04 HI-USED-RBA of 2221225472
SDDS$05 HI-USED-RBA of 1887331010

Total number of bytes 10342500035
(10.3 gigabytes)

SDDS$04 is the largest value, so using it for our calculations:

2221225472 divided by 1073741824 = 2.06
2221225472 divided by 536870912 = 4.12

Doubling the number of clusters to 10 would result in each of the 10 SDDS clusters having approximately 1 gigabyte of data. Converting to 20 clusters (4 x 5) would mean each cluster would have approximately half a gigabyte. You would need to manage 20 clusters, which might not be worth the effort unless the database is expected to grow beyond 40 gigabytes (4 gigabytes x 10 clusters).

Ten to 12 clusters would be a good choice, unless over the long term, the size was expected to grow well beyond 40 gigabytes.

Converting from Single to Multiple Clusters

If you are converting to multiple clusters, follow this procedure:

1. Define the new clusters.

 Reduce the CYLINDERS of the new SDDS using the same factor you chose for the number of SDDS. If you are doubling (converting from 5 to 10), use half the number of cylinders for each new SDDS. If you are converting from 1 to 4 clusters, each new SDDS will have only one-fourth of the data of the current SDDS, so each new SDDS will need only 25% of the cylinders used by the old cluster.

 Note: Use the same CISIZE, RECORDSIZE, and KEY values as your existing SDDS. This will help improve the performance of BLGUT7. You could use the BLGUT20 utility to analyze the SDDS and choose to use a new record size, but BLGUT7 will take approximately twice as long to process.

 If you are not already using an SDDS key format of 7, it is now recommended that you do so. Key format 7 is needed to support the database backup solution provided with the BLGUT23 utilities. If you are running BLGUT7 to change the number of clusters, use the opportunity to change the SDDS to a key format of 7.
2. Update the VSAM resource definition (BLXVDEF) if you have a non-sysplex environment. If you are using sysplex support, skip this step and the next and proceed to step 4.
 - Add a new BLXDSN macro for each of the new clusters.

 Note: All the SDDS clusters can share the same LSR buffer pool. Since you would normally want to have the new clusters use the same LSR pool as the existing SDDS cluster(s), use the existing BLXDSN macro as a model for the new data sets, and change only the data set name.
 - Reassemble/re-link the VSAM resource definition.

3. Stop and restart the BLX-SP to pick up changes to the VSAM resource definition.

 Note: You can use the ADDVDEF command to temporarily add the SDDS clusters. You will not have to stop and restart the BLX-SP; however, you will still need to update the VSAM resource definition so that the next time the BLX-SP is stopped and restarted, the correct VSAM resource definition would be used.

4. Add TRIGGER to the BLGCLUST macro in your session members BLGSESXX.

5. Update BLGUT1.
 - Add OTRG to BLGUT1.
 - Verify that SESS=XX is now the session member you updated or created in the previous step.

 Note: You do not have to run BLGUT1 after running BLGUT7; however, this is the ideal time to make this change so that BLGUT1 is ready when needed.

6. Using the BLX-SP FREE command:
 - Free the SDIDS.
 - Free the old SDDS.

7. Using the BLX-SP REALLOC command:
 - REALLOC the old SDDS.

 Note: Use the UTIL parameter of the REALLOC command.

8. Run BLGUT7. Be sure to use the NEWTRIG parameter and verify that NEWSDDS and OLDSDDS are correct.

9. After BLGUT7 completes:
 - Use the BLX-SP FREE command to free the old single-cluster SDDS.
 - Use the BLX-SP REALLOC command to reallocate the SDIDS.
 - Use the new session member to access the new multiple-cluster SDDS. Do several searches and display several records to verify the database is behaving normally.

10. Create or update your backup jobs and procedures.

11. After you complete your tests:
 - (Non-sysplex only) Remove the BLXDSN macro for the old cluster in the VSAM resource definition.
 - (Non-sysplex only) Assemble/link-edit the VSAM resource definition.
 - Delete the old SDDS.
Note: The change to the VSAM resource definition will not be used until the BLX-SP is stopped and restarted. Leaving the BLXDSN macro in the VSAM resource definition will not affect anything.

Working with SDIDSs

With Information/Management Version 1.1, changes were made to the internal data structure of the SDIDS to support the use of multiple clusters. Multiple SDIDS clusters are optional, but they can help to reduce the contention for data stored in the SDIDS. Because the clusters are logically independent and can be accessed in parallel, they allow concurrent activity and can help to improve your overall database performance. In addition, other changes affecting the SDIDS include:

- The maximum amount of data you can store in the SDIDS is increased from 4 to 400 gigabytes. This change has no effect on the number of records you can store in your SDDS.
- The only SDIDS key lengths supported are 18 and 34. The 16- and 32-byte keys are no longer available.

Note: Database 6 is reserved for Tivoli Inventory and must be defined with an SDIDS key of 34.

- Only advanced compression is used.

This section provides guidelines you can follow to determine the maximum record length of the SDIDS. It also contains examples of how to set up a multiple-cluster SDIDS if you choose to use multiple clusters.

Maximum SDDS Records Formula (18-, 34-byte keys)

With the 18- or 34-byte key lengths, the maximum record size of the SDIDS does not limit the number of records that an SDDS may have from a practical point of view. The minimum number of SDDS records supported is over 119 million when using a SDIDS maximum record size of 505 bytes. The maximum is over 8 billion SDDS records when using a SDIDS maximum record size of 32,752. You will likely run out of physical space to store the SDDS records before you reach any limit imposed by the maximum record size of the SDIDS using the 18- or 34-byte SDIDS key length. Also, the 18- and 34-byte SDIDS key lengths completely eliminate the need for using spanned records.

In general, the sole consideration for determining the SDIDS record size is the CI size. Therefore, it is highly recommended that you use a half-track CI size, since this is the largest possible CI size that provides efficient track utilization for a storage device. This varies depending on DASD manufacturer, so check the documentation provided with your device for more details. Tests have shown that anything other than half-track blocking can seriously impact performance and DASD utilization.

To get a general idea of how many records your SDDS can contain, use the following formula:

\[
\text{sddsrecords} = \left(\frac{\text{sdidsmaxrecsize} - \text{SDIDS key length} - 16}{8} \right) \times 32767
\]

\text{sddsrecords}

Maximum number of records the SDDS can hold.

\text{sdidsmaxrecsize}

Specified in the Maximum record size field when you use the Installation Tailoring
Facility to define an SDIDS or in the RECORDSIZE keyword when you use the AMS DEFINE command. The value must be from 505 to CI size minus 7, up to a maximum of 32 752. The CI size can be 512 to 16 384 in multiples of 512, or it can be 2048 to 32 768 in multiples of 2048.

Effects of SDIDS Key Length Settings on Searches

The SDIDS key length can be set to 18 or 34 bytes. With a key length of 18, your search argument can be up to 16 characters long. With a key length of 34, your search argument can be up to 32 characters long. The extra two bytes are used by Tivoli Information Management for z/OS internally to prevent spanning and are not included as part of the searchable argument. The 34 key length enables you to do more exact searches, because you are able to search on more characters in the argument.

For instance, suppose you have many people in your company with long names and similar names (for example, Maryann Hoffman and Marylou Hoffman) and the practice at your company is to enter names without spaces. With a 18-byte SDIDS key, you get up to 16 characters of comparison on a search argument including the prefix:

```
search pers/hoffmanmaryann
search pers/hoffmanmarylou
```

In this example, the 16 characters are:

```
pers/hoffmanmary
```

With an 18-byte SDIDS key, if you enter more than 16 characters Tivoli Information Management for z/OS truncates the characters after the 16th character, and returns only those records that match up to 16 characters. Because Tivoli Information Management for z/OS is not able to distinguish between the two names, you will not get just the particular record you were looking for.

You could, through use of the 34-byte key, enter PERS/HOFFMANMARYANN and get a more exact match. A 34-byte key enables you to search more explicitly on the longer names. Tivoli Information Management for z/OS uses the additional characters beyond the 16th character to do searching, and does not truncate the search argument starting with the 17th character. Therefore, the search PERS/HOFFMANMARYANN would yield just Maryann’s data records.

Report format tables, stored response chains, and terminal simulator panels or EXECs that do searches can also be affected by the key length defined for the SDIDS. If you decide to change the SDIDS key length, remember that you must also run the BLGUT1 or BLGUT1M utility.

Backup Recommendation

When the database grows so large that it requires the largest possible CI size, it is time to consider backup and recovery.

- An SDIDS MAXLRECL of 32 752 enables appropriate blocking on tape
- An SDIDS MAXLRECL of 32 752 is the largest record possible for the REORG utilities

Both of these values require a CI size of 16(2048)=32 768.

Working with Multiple-Cluster SDIDSs

Tivoli Information Management for z/OS allows you to set up multiple-cluster SDIDSs in addition to multiple-cluster SDDSs. If you store significant amounts of searchable data and
are looking for ways to improve your overall database performance, you should consider setting up a multiple-cluster SDIDS. Multiple clusters allow enqueues for data to be obtained and released independently, thereby reducing contention for the SDIDS for more efficient throughput. With multiple clusters, you can store up to 400 gigabytes of SDIDS data.

If you plan to use multiple clusters, we recommend that you start with 10 (or more) SDIDS clusters, and then over a period of weeks add or consolidate SDIDS clusters.

The output from the BLGUT21 analyze utility can be used to select the starting key for each BLGCLKEY macro. Simply browse the output and issue a DOWN nnnnn command where nnnnn is one-tenth of the number of records in the current single cluster SDIDS. Depending on the key located through this simple technique, you may want to select a key in that general area that is more meaningful (such as a new prefix or s-word grouping). The key located will be used on the BLGCLKEY macro. After you use the new SDIDS configuration for a period of time, you can run the BLGUT21 utility again with the output from the BLX-SP operator command QUERY,TYPE=IO to adjust the number of SDIDS clusters. You should also plan on repeating this process over several weeks to tune the values used on the BLGCLKEY macro. If you prefer to start with fewer or more than 10 SDIDS clusters, modify this simple technique or select starting keys using any method you desire.

Note: The TYPE=IO parameter of the QUERY command is supported in a non-sysplex environment only.

If you are converting to multiple clusters, follow this procedure:

1. Define the new SDIDS clusters.

 Reduce the number of CYLINDERS for the new SDIDS using the same factor you chose for the number of SDIDS clusters. If you are doubling (converting from 1 to 2), use half the number of cylinders for each new SDIDS. If you are converting from 1 to 10 clusters, each new SDIDS should start with only one-tenth of the data of the current SDIDS, so each new SDIDS will need only 10 percent of the cylinders used by the old cluster.

 Note: After the new SDIDS clusters have been loaded with data, you can use the IDCAMS LISTCAT command to determine the actual amount of space each SDIDS used. Then, adjust the number of CYLINDERS using the DEFINE CLUSTER command to accurately match the actual space needed.

2. Update the VSAM resource definition. (This step applies only in a non-sysplex environment. If you are using sysplex support, skip to step 4.)

 Add a new BLXDSN macro for each new cluster. You may want to actually define more BLXDSN macros than you actually have clusters for, since it is likely that you may want to add more clusters to your SDIDS during the SDIDS tuning process. These additional BLXDSN macros will have no effect until the actual clusters they represent are used. However, having the extra BLXDSN macros will prevent you from having to stop and restart the BLX-SP. If you prefer, you can use the ADDVDEF command to add additional data sets.

 Note: All the SDIDS clusters can share the same LSR buffer pool. Since you would normally want to have the new clusters use the same LSR pool for the existing SDIDS cluster, use the existing BLXDSN macro as a model for the new data sets, and change only the data set name.
Reassemble and re-link the VSAM resource definition.

3. Stop and restart the BLX-SP to pick up changes to the VSAM resource definition. (This step applies only in a non-sysplex environment. If you are using sysplex support, skip this step.)

Note: You could use the ADDVDEF command to temporarily add the SDIDS clusters. You would not have to stop and restart the BLX-SP; however, you would still need to update the VSAM resource definition so that the next time the BLX-SP is stopped and restarted, the correct VSAM resource definition is used.

4. Update your session-parameters members (BLGSESaa):
 - Add or update the BLGCLUST macro TRIGGER keyword to use multiple clusters.
 - Add the IDSKEYP keyword to the BLGCLUST macro in your session-parameters members.
 - Add BLGCLKEY macros to define the starting key ranges for each of the SDIDS clusters.
 - Assemble your updated session-parameters member(s) and link-edit them again.

5. Verify that your JCL for the BLGUT1 utility is correct so that BLGUT1 will be ready when needed. Verify that SESS=aa is now the session-parameters member you updated or created in the previous step.
 Consider setting up multiple BLGUT1 jobs. (For details, refer to the description of the CLUSTER parameter of the BLGUT1 utility in the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#).) Multiple BLGUT1 jobs can help to reduce the amount of time needed to rebuild multiple SDIDS clusters if a rebuild is necessary.

Note: You do not have to run the BLGUT1 utility to create a multiple-cluster SDIDS. The BLGUT1M migration utility can be used to create the multiple-cluster SDIDS.

6. Using the BLX-SP FREE command:
 - Free the old SDIDS.
 - Free the SDDS(s).

7. Using the BLX-SP REALLOC command:
 - Reallocate the old SDIDS with the UTIL parameter.
 - Reallocate the new SDIDSs with the UTIL parameter.

8. Run the BLGUT1M migration utility to create the new multiple-cluster SDIDS.
 On future runs of BLGUT1M, you will need to use the OTRG= parameter to specify that the input SDIDS is composed of multiple clusters.

9. After the BLGUT1M migration utility completes:
 - Use the BLX-SP FREE command to free the old single-cluster SDIDS.
 - Use the BLX-SP REALLOC command to reallocate the SDDS(s).
 - Use the BLX-SP REALLOC command to reallocate the new SDIDSs.
Use the new session-parameters member to access the new multiple-cluster SDIDS. Do several searches and display several records to verify that the database is behaving normally.

10. Create or update your backup jobs and procedures.

11. After you complete your tests, delete the old SDIDS.

12. Use the BLX-SP command QUERY,TYPE=IO to monitor the activity over several days or a week. This step applies only in a non-sysplex environment.

Note: Do not use the RESET option on the QUERY,TYPE=IO command unless you are recording the values to acquire a large enough sample on which to base your adjustments. It is best to allow the values to accumulate over several days without resetting.

Tuning Your Multiple-Cluster SDIDS

After you have collected your sample of database activity, the primary goal is to balance the SDIDS clusters so that the PUT activity is consistent as possible across the SDIDS clusters. The GET activity can also be considered; however, GET activity is performed under a share enqueue which allows multiple users to access the cluster simultaneously.

Consolidate clusters with low write activity with adjacent clusters. For cluster with high PUT activity, add additional clusters to divide the key ranges. This is especially important for clusters with both high PUT and high GET activity. The size (cylinders or total number of records) of a cluster is not important. It is quite possible that, after this process is repeated several times, you will find that some clusters have relatively few records with high activity, and other clusters have large numbers of records with low activity. An exact balance may not be possible. An effective balance should be achieved by tuning your clusters three times over a period of time after initially creating the multiple-cluster SDIDS. The BLGUT21 analyze utility can be used to generate output that can identify records that are updated frequently. The UPDTE COUNT column indicates the number of times an SDIDS record has been updated. It is reset to zero each time the BLGUT1 or BLGUT1M utility is run. For details on running these utilities, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.

If you are not using sysplex support, after you have achieved the desired balance, remove the BLXDSN macro for any unnecessary SDIDS cluster in the VSAM resource definition, and then assemble/link-edit the VSAM resource definition. Adjust the number of cylinders allocated by the AMS DEFINE CLUSTER command to match each SDIDS cluster’s actual needs.

Note: The change to the VSAM resource definition is not used until the BLX-SP is stopped and restarted. Leaving the BLXDSN macro in the VSAM resource definition will not affect anything, and could be useful if adjustments are needed later.

If you are using sysplex support, there is no need to redefine and assemble the VSAM resource definition.

Over time, or if the number of records in your database changes significantly, you may want to review the activity and make additional adjustments as necessary.
Example of a Multiple-Cluster SDIDS

As mentioned previously, you can use the BLGUT21 utility as a tool to help collect statistics on SDIDS activity. You should monitor the performance results of your clusters over a period, and adjust the structure as needed until you find the most ideal arrangement for your environment.

To illustrate one possible arrangement of a multiple-cluster SDIDS, suppose you wanted to separate s-words from cognized words starting with lowercase letters, and split the cognized word alphabet in half. You could set up the clusters as described in the following table. As an arbitrary arrangement, this division is not recommended specifically. It is simply an illustration of how you can set up multiple clusters.

Table 6. Sample Arrangement for Multiple-Cluster SDIDS

<table>
<thead>
<tr>
<th>Cluster #</th>
<th>VSAM Data Set</th>
<th>Contents</th>
<th>Key Specified with BLGCLKEY macro</th>
<th>Internal Key Range Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLM.PROD#01.SDIDS</td>
<td>Cognized words starting with national characters or lowercase EBCDIC characters</td>
<td>Do not code BLGCLKEY for cluster 1.</td>
<td>'0000'x to 'B9FF'x</td>
</tr>
<tr>
<td>2</td>
<td>BLM.PROD#02.SDIDS</td>
<td>S-words in the range starting with BA or BB, including MASTER_BIT_LIST and LASTENTRYNUMBER</td>
<td>KEY=BA,TYPE=HEX</td>
<td>'BA00'x to 'BBFF'x</td>
</tr>
<tr>
<td>3</td>
<td>BLM.PROD#03.SDIDS</td>
<td>All remaining s-words</td>
<td>KEY=BC,TYPE=HEX</td>
<td>'BC00'x to 'C0FF'x</td>
</tr>
<tr>
<td>4</td>
<td>BLM.PROD#04.SDIDS</td>
<td>Cognized words starting with character ‘A’ through ‘RM’</td>
<td>KEY=A</td>
<td>'C10000'x to 'D9D4FF'x</td>
</tr>
<tr>
<td>5</td>
<td>BLM.PROD#05.SDIDS</td>
<td>All cognized words starting with character ‘RN’</td>
<td>KEY=RN</td>
<td>'D9D500'x to 'D9D5FF'x</td>
</tr>
<tr>
<td>6</td>
<td>BLM.PROD#06.SDIDS</td>
<td>All remaining cognized words</td>
<td>KEY=RO</td>
<td>'D9D600'x to 'FFFFFF'x</td>
</tr>
</tbody>
</table>

The table shows that six clusters will be set up, with five of those clusters containing key value definitions.

Note: Each SDIDS cluster, except the first SDIDS cluster, must have a starting key value defined for it. Do not define a starting key value for the first SDIDS cluster; X'00' is predefined as the starting key value for this cluster.

The remaining key values determine which index information is contained in each cluster. Key values can be entered using the BLGCLKEY macro. The control record in each cluster contains the key range information for that cluster.
Using this example, you would specify the following input on your session-parameters member macros and keywords:

```
BLGSES00 CSECT
    BLGPARMS ...

DBS5  BLGCLUST NAME=5,TRIGGER=(#,1,6)
    SDDS=DBS5DDS,
    SDIDS=DBSIDS5,IDSSKEYP=KEY,
    ...

DBS5DDS BLGCLDSN DSN=BLM.PROD.SDDS

DBS5IDS BLGCLDSN DSN=BLM.PROD#01.SDIDS
    ...

KEY1 BLGCLKEY KEY=BA,TYPE=HEX
KEY2 BLGCLKEY KEY=BC,TYPE=HEX
KEY3 BLGCLKEY KEY=A
KEY4 BLGCLKEY KEY=RN
KEY5 BLGCLKEY KEY=RO
    ...
END
```

Note that the name of the first SDIDS cluster only is specified in the session-parameters member. Initialization takes care of connecting all remaining clusters. The name of the multiple-cluster SDIDS must conform to the rules currently used to name a multiple-cluster SDDS (that is, it should contain a trigger character followed by two numeric characters). Also, in the TRIGGER keyword, you should always specify one more than the number of BLGCLKEY macros you have for the count of SDIDS clusters.

Working with SDLDSs

The SDLDS is a preformatted relative record data set. Each record is fixed in length. This eliminates the need for VSAM to update certain information in the catalog. Thus, in the event of a system failure, the data in the SDLDS remains usable for reconstructing the SDDS if the SDDS becomes unusable.

You must offload the SDLDS to a backup sequential data at regular intervals. You can use the BLGUT4 utility, the Automatic Log Save Facility, or the DB2 Extract Facility to offload the SDLDS.

The Automatic Log Save Facility and the DB2 Extract Facility automatically offload the SDLDS for you at the interval you specify. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for more information about using the Automatic Log Save Facility and the DB2 Extract Facility.

In addition to offloading the SDLDS, the BLGUT4 utility also resets the SDLDS so you can reuse it. If the SDLDS fills up before it is normally offloaded, you cannot write to the SDDS. You must run the BLGUT4 utility at that time to reset the SDLDS. This unscheduled use of BLGUT4 can be a severe interruption to the Tivoli Information Management for z/OS users.

The BLGUT4 utility uses MVS data spaces to offload the SDLDS. Before running BLGUT4, you may need to update the MVS installation exit IEFUSI to increase the limit on the size and number of data spaces allowed. See OS/390 MVS Installation Exits for more information about IEFUSI.

You should allocate enough space to the SDLDS to prevent it from becoming full before it is normally offloaded. The amount of space required depends on the number of SDDS...
records that are written or deleted between offload operations. For example, if you offload the SDLDS every 24 hours (probably on third shift), you must allocate enough space to allow for 24 hours of activity.

The size of the SDLDS does not affect performance, so having an SDLDS that is larger than necessary will not decrease throughput.

You can use the same calculations that you used for computing the SDDS record size in “Working with SDDSs” on page 170 in the SDLDS calculation. The difference is that the SDDS space has to account for all of your records, while the SDLDS only has to account for the records between offloads. However, a new record is written to the SDLDS every time an SDDS record is updated. Therefore, you can have multiple instances of the same record in the SDLDS. For example, if you create a Tivoli Information Management for z/OS logical record and then update it several times, the record appears in the SDLDS as many times as it was updated. You can run DBCLEANUP periodically throughout the day to see the number of SDLDS positions used and available. For instructions on using DBCLEANUP, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference.
Using the Installation Tailoring Facility

This chapter discusses how to tailor Tivoli Information Management for z/OS using the Installation Tailoring Facility. This chapter assumes that you have planned:

- How your base Tivoli Information Management for z/OS system is to be configured
- The options and features that you want to install with Tivoli Information Management for z/OS

This chapter is designed to help you use the Installation Tailoring Facility.

Note: For a description of the tasks available through the Installation Tailoring Facility, see “The Installation Tailoring Facility” on page 28.

Allocating the Installation Tailoring Facility Data Sets

You must prepare your z/OS environment for running the Installation Tailoring Facility before you use it. You must allocate the SBLMEXEC data set to one of the following ddnames:

- SYSPROC
- SYSEXEC

If you use SYSEXEC, you must also issue the following command:

EXECUTIL SEARCHDD(YES)

Note: When you allocate the SBLMEXEC data set to either SYSPROC or SYSEXEC, be sure that SBLMEXEC is compatible with the other data sets in the SYSPROC or SYSEXEC concatenations. Check for the following possible incompatibilities:

- Whether the data sets are sequential data sets or partitioned data sets
- Whether the record formats of the data sets are variable or fixed. SBLMEXEC is preallocated as fixed block (FB) 80 (refer to the Program Directory for information on Tivoli Information Management for z/OS data set allocations). If the other data sets in your concatenation have different record formats, either change the allocation of SBLMEXEC or copy the members of SBLMEXEC into a data set that has a compatible record format.

Tivoli Information Management for z/OS runs as an application under the Interactive System Productivity Facility (ISPF) Licensed Program. The Installation Tailoring Facility automatically allocates SBLMINST to the following ddnames for you:

- ISPMLIB
- ISPPLIB
- ISPSLIB
- ISPTLIB
- ISPTABL
The Installation Tailoring Facility creates and uses two data sets to save information and members that are generated during an Installation Tailoring Facility session. The SBLMTABL contains tailoring specifications that you provide during an Installation Tailoring Facility session. The SBLMJCL1 data set contains the JCL and text members that are generated during the Installation Tailoring Facility session.

The Installation Tailoring Facility creates these data sets the first time you use the Installation Tailoring Facility. The Installation Tailoring Facility automatically accesses the data sets during subsequent uses of the facility.

Starting the Installation Tailoring Facility

You can start the Installation Tailoring Facility by issuing the BLGISTRT command from your ISPF menu or from the TSO READY prompt. The BLGISTRT REXX EXEC uses the ISPF LIBDEF service to define the Installation Tailoring Facility application data sets and to display the Installation Tailoring Facility main menu.

During initialization, the Installation Tailoring Facility identifies itself to ISPF as a new dialog application with the application name of BLGI. ISPF creates a profile called BLGIPROF. When the PDF editor is used to display JCL and text members, a BLGIEDIT member is created. Installation Tailoring Facility uses the BLGIPROF member to save values, such as the user’s JOB statement and customization data set names.

Starting the Installation Tailoring Facility from an ISPF Menu

To enable your ISPF menu panel to start the Installation Tailoring Facility, specify the following command as a selection in the ISPF menu panel definition:

```
'CMD(BLGISTRT hlqualif)'
```

hlqualif

The high-level qualifier that the SBLMINST data set was given during SMP/E installation. This parameter is optional. If you omit this parameter, then the default value, **BLM.V2R1M0**, is used.

Note: The Installation Tailoring Facility uses the value that you specify for **hlqualif** as the high-level qualifier for all Tivoli Information Management for z/OS data sets that it references when it generates JCL statements such as SYSLIB and SYSLMOD. If your Tivoli Information Management for z/OS data sets are split among multiple high-level qualifiers, you must review the JCL that the Installation Tailoring Facility generates, check the high-level qualifiers of the Tivoli Information Management for z/OS data sets, and manually replace all incorrect high-level qualifiers in the JCL.

If you start the Installation Tailoring Facility from the ISPF menu panel, you can take advantage of ISPF functions by using the ISPF split screen facility; however, you cannot use the ISPF functions if you start from the TSO command line. Refer to the *ISPF Dialog Developer’s Guide and Reference* for information on modifying ISPF menu panel definitions.

Starting the Installation Tailoring Facility from the Command Line

To start the Installation Tailoring Facility using the BLGISTRT command, issue the following command from your MVS command line (be sure you allocated data set SBLMEXEC to either SYSPROC or SYSEXEC).

```
BLGISTRT hlqualif
```
The high-level qualifier that the SBLMINST data set was given during SMP/E installation. This parameter is optional. If you omit this parameter, then the default value, BLM.V2R1M0, is used.

Note: The Installation Tailoring Facility uses the value that you specify for hlqualif as the high-level qualifier for all Tivoli Information Management for z/OS data sets that it references when it generates JCL statements, such as SYSLIB and SYSLMOD. If your Tivoli Information Management for z/OS data sets are split among multiple high-level qualifiers, you must review the JCL that the Installation Tailoring Facility generates, check the high-level qualifiers of the Tivoli Information Management for z/OS data sets, and manually replace all incorrect high-level qualifiers in the JCL.

Error Recovery

The Installation Tailoring Facility modifies some of your ISPF profile values and the TSP profile prefix value. If you encounter a problem while using the Installation Tailoring Facility and it does not end correctly, you must reset the TSO profile value as follows:

```plaintext
TSO PROFILE PREFIX(sysuid)
```

You may also need to reset some of your ISPF profile values (for example, the command line placement).

Using Online Help Information

The Installation Tailoring Facility provides the following types of online help information:

Online introduction

Provides a detailed explanation of the Installation Tailoring Facility. The online introduction can be accessed by selecting option 1, Getting Started, from the Installation Tailoring Facility main menu (see Figure 16).
Extended help
Provides information about the purpose and content of an Installation Tailoring Facility panel. To obtain extended help:
- Press the Help function key (F1 or F13) when the cursor is not on an entry field.
- Press the Ex Help function key (F2 or F14) while field help is being displayed.
- Press the Ex Help function key (F2 or F14) while message help is being displayed.

Field help
Provides an explanation and syntax information for each field. Required fields and default values are specified. Field help is obtained by pressing the Help function key (F1 or F13) when the cursor is on an entry field.

Message help
Provides explanations for Installation Tailoring Facility messages. Message help is obtained by pressing the Help function key (F1 or F13) when a message is displayed.

Help for Keys
Provides a listing of the function keys available to the user and an explanation of the function. Help for Keys is obtained by pressing the Keyshelp function key (F9 or F21) from any help panel.

Entering Values on Installation Tailoring Facility Panels
The Installation Tailoring Facility panels contain display-only fields, entry fields, and single-and multiple-selection fields:
- Display-only fields cannot be changed; they provide additional information about the panel’s content.
- Entry fields may or may not be prefilled with values. You can change the value in the field if the field is prefilled. See “Default Values”.

Use field help to help you determine the valid values for a particular field. If you see a plus sign (+) displayed next to an entry field, you can place your cursor on the field and press the Prompt function key (F4 or F16). A list of possible values are displayed for you to choose from.
- With a single-selection fields, type the number of the item that you want. A number may already be prefilled for you. See Default Values.
- Use a slash (/) to select one or more items in multiple-selection fields.

Default Values
Some of the entry fields and single-selection fields are prefilled with default values. These default values are either Tivoli Information Management for z/OS or Installation Tailoring Facility default values.
- A Tivoli Information Management for z/OS default value is a value that Tivoli Information Management for z/OS uses if you do not specify your own value. You can change these values to ones that are more suitable for your installation. However, if a field does not require a value, and you delete the prefilled default value, the default value is still used.
- An Installation Tailoring Facility default value is a value that the Installation Tailoring Facility uses if you do not specify your own values. You can change these values to
ones that are more suitable for your installation. However, if a field does not require a value and you delete the prefilled default value, the default value is still used.

Note: The field names of the fields that require values are highlighted on the Installation Tailoring Facility panels.

Using the Installation Tailoring Facility Program Function Keys

The Installation Tailoring Facility defines keys that perform certain functions. The Exit and Cancel functions take you through multiple panels, and the Bkwd and Fwd functions take you through multiple pages of a single panel.

The following program function keys are available from most panels:

F1 or F13 (Help)
- Displays a field help panel when the cursor is on a specific field
- Displays an extended help panel when the cursor is not on a specific field
- Displays a help panel when a message is displayed on the panel.

F2 or F14 (Split or Ex help)
- Splits the screen when the Split function is available
- Displays an extended help panel when the Ex help function is available.

F3 or F15 (Exit)
- Returns to the Installation Tailoring Facility main menu when the cursor is on a menu selection panel
- Returns to a menu selection panel when the cursor is on an entry panel

Note: Any information that you entered is not saved.

- Returns to the entry or menu selection panel when the cursor is on a help panel.

F4 or F16 (Prompt or Window)
- Makes the list of prompt choices appear when the Prompt function is available
- Enables you to move a pop-up panel to a different position on the screen when the Window function is available.

F7 or F19 (Bkwd)
- Scrolls backward through the panel one page at a time.

F8 or F20 (Fwd)
- Scrolls forward through the panel one page at a time.

F9 or F21 (Swap or Keyhelp)
- Toggles between the two parts of a split screen when the Swap function is available
- Displays the Help for Keys panel when the Keyhelp function is available.

F11 or F23 (Retrieve)
- Recalls the last command you entered on the ISPF command line and places it on the command line for you when the Retrieve function is available.

F12 or F24 (Cancel)
Returns to the previous panel. If the current panel is an entry panel, then any information that you entered is not saved.
This chapter describes how to use the z/OS Security Server (which includes Resource Access Control Facility (RACF) to secure your Tivoli Information Management for z/OS information.

This chapter assumes that you have a working knowledge of RACF. For more information about RACF, refer to the RACF documentation (see the Bibliography).

This chapter is designed to help you protect your Tivoli Information Management for z/OS information.

Using RACF to Protect Tivoli Information Management for z/OS VSAM Data Sets

RACF provides three types of access: READ, UPDATE, and NONE. Two RACF Class Descriptor Table entries (INFOMAN and GINFOMAN) are supplied by Tivoli Information Management for z/OS for defining access to Tivoli Information Management for z/OS VSAM data sets. These table entries can be used only in a non-sysplex environment. When sysplex mode is enabled, user access to data sets is controlled solely through the use of data set profiles.

INFOMAN
A RACF resource class. Use this resource class to define profiles for specific VSAM data sets in a non-sysplex environment.

GINFOMAN
A RACF resource class group representing a set of INFOMAN profiles. Use this resource class group to define access to multiple VSAM data sets in a non-sysplex environment. When an Tivoli Information Management for z/OS user is authorized to access a GINFOMAN group, RACF permits the user to access all of the INFOMAN profiles defined in that GINFOMAN group.

The GINFOMAN resource class group can be used by a system administrator to simplify access to Tivoli Information Management for z/OS databases. Instead of having to authorize users to access each individual INFOMAN profile, you can use GINFOMAN to group INFOMAN profiles together. Then you only need to give your users authorization to access the GINFOMAN group name instead of all the individual INFOMAN profiles.
The INFOMAN and GINFOMAN entries specify a maximum length of 39 characters for a data set name. Use these two names when defining access for Tivoli Information Management for z/OS VSAM data sets. The system administrator is responsible for defining and controlling access to all VSAM data sets.

For Tivoli Information Management for z/OS, the following requirements must be met when using RACF to protect Tivoli Information Management for z/OS VSAM data sets:

- System administrators must permit their user IDs UPDATE access to all the resources and data sets that they need to perform their tasks, and READ access to all the resources and data sets that are used by other users.
- Protect all Tivoli Information Management for z/OS VSAM data sets with a universal access of NONE. However, system administrators must have READ or UPDATE access to the data sets.
- For each started task (BLX-SP) and Multiclient Remote Environment Server (MRES), you must create a RACF started task table entry and a RACF user ID to associate with it.

Note: See "Defining a BLX-SP Procedure" on page 146 for an example of the started task.

- The BLX-SP must be permitted CONTROL authority to all of the Tivoli Information Management for z/OS VSAM data sets that users of that BLX-SP require access to.
- A profile for each Tivoli Information Management for z/OS VSAM data set must also be defined to RACF in the INFOMAN resource class.
- Permit each Tivoli Information Management for z/OS user either READ or UPDATE access to the profiles defined in the INFOMAN resource class for the data sets they are authorized to use.
- The BLX-SP determines the level of access defined for a specific user to a specific Tivoli Information Management for z/OS VSAM data set by querying entries in the INFOMAN RACF resource class.
- The GINFOMAN class enables an organization to define multiple profiles in the INFOMAN resource class with a single command. If this is used, it is also possible to permit a single user to have access to all of the profiles in that group with a single command.

If your organization has a large number of Tivoli Information Management for z/OS users, the suggested method is to create a group for each set of users with similar access requirements. The group is put in the access lists instead of a large number of users. This method makes profile maintenance simpler.

Example Scenario

The following scenario takes you through the commands for creating a RACF group, for creating RACF profiles, and for giving RACF access for a database.

Creating a Group

Your system administrator, Pat, wants to create a group named PROBLEM with an owner of USERPAT (Pat’s user ID) and a superior group of SYS1, a predefined RACF group. To do this, Pat uses the following command:

```
ADDGROU PROBLEM OWNER(USERPAT) SUPGROUP(SYS1)
```
To connect users USER1, USER2, and USER3 to the PROBLEM group, Pat uses the following command:

```
CONNECT (USER1 USER2 USER3) GROUP(PROBLEM) OWNER(USERPAT)
```

Creating a Generic Profile

Pat wants to protect a database that consists of the following data sets:

- BLM.DATABASE.SDDS
- BLM.DATABASE.SDIDS
- BLM.DATABASE.SDLDS

To create a generic profile to protect this database, Pat uses the following command:

```
RDEF INFOMAN BLM.DATABASE.* NOTIFY OWNER(USERPAT) UACC(NONE)
```

In the following command, Pat gives the PROBLEM group UPDATE access to the database by giving the group UPDATE access to the generic profile:

```
PERMIT BLM.DATABASE.* CLASS(INFOMAN) ACCESS(UPDATE) ID(PROBLEM)
```

Creating a Resource Group Profile

To create a resource group profile named DATAB1 to protect the database, Pat uses the following command:

```
RDEF GINFOMAN DATAB1 ADDMEM(BLM.DATABASE.SDDS BLM.DATABASE.SDIDS BLM.DATABASE.SDLDS) NOTIFY OWNER(USERPAT) UACC(NONE)
```

In the following command, Pat gives the PROBLEM group UPDATE access to the database by giving the group UPDATE access to DATAB1:

```
PERMIT DATAB1 CLASS(GINFOMAN) ACCESS(UPDATE) ID(PROBLEM)
```

Note: You must activate the INFOMAN class when using resource group profiles (that is, GINFOMAN). Otherwise, GINFOMAN profiles are not used. Use the following command to activate INFOMAN:

```
SETROPTS RACLIST(INFOMAN)
```

Profiles are loaded into storage when they are first accessed. If profiles are updated in the INFOMAN or GINFOMAN classes, they are not effective until they are reloaded into storage. Use the following command to tell RACF to reload the profiles when they are next accessed:

```
SETROPTS RACLIST(INFOMAN) REFRESH
```

End of Programming Interface information

Defining a Profile in the RACF Started Class

If you want to provide security for your shared database systems and MRES, you must define a profile in the RACF started class for each BLX-SP and MRES on that system that shares data sets.

Granting Read Access to Tivoli Information Management for z/OS Data

If users are to be given READ access for any Tivoli Information Management for z/OS data, the session-parameters member they use must specify RDONLY=NO for that data. Otherwise, UPDATE authority is requested.
Ensuring the Proper Usage of TSP and TSX Control Lines

After installing Tivoli Information Management for z/OS, you should take appropriate action to ensure data integrity and security. This section describes security measures you can use to protect against the misuse of certain sensitive functions of the Tivoli Information Management for z/OS program.

There are certain control lines you can use in a TSP or TSX that require precautions against their unauthorized use. The following is a discussion of these control lines and some suggestions on how to prevent their unauthorized use. Refer to the *Tivoli Information Management for z/OS Terminal Simulator Guide and Reference* for details on TSPs and TSXs.

ADDSDATA

The ADDSDATA control line enables you to add data to records in the Tivoli Information Management for z/OS database. It is the TSX equivalent of the add function of the TSP WORDFIX control line. You cannot be protected from damaging your database if you make a mistake when using this control line.

You must limit the use of this function to someone with extensive knowledge of Tivoli Information Management for z/OS. Because this control line uses the same load module (BLGMWDFX) as WORDFIX, you can restrict the use of ADDSDATA by moving the BLGMWDFX load module to a RACF-protected data set.

This control line can be used with TSXs only.

DELSDATA

The DELSDATA control line enables you to delete data from records in the Tivoli Information Management for z/OS database. It is the TSX equivalent of the delete function of the TSP WORDFIX control line, but it also provides the ability to delete an entire structured description entry (SDE) with a single control line call. You cannot be protected from damaging your database if you make a mistake when using this control line.

You must limit the use of this function to someone with extensive knowledge of Tivoli Information Management for z/OS. Because this control line uses the same load module (BLGMWDFX) as WORDFIX, you can restrict the use of DELSDATA by moving the BLGMWDFX load module to a RACF-protected data set.

This control line can be used with TSXs only.

FLATTEN

The FLATTEN control line enables you to take a Tivoli Information Management for z/OS record and reformat it into a form that you can transport outside the database.

FLATTEN does not check your authority to access a record. After a record is flattened, you have access to information in the record that you might not be able to examine online. Therefore, if you had no access authority to display a record, you could flatten it and, with some difficulty, look at the information in the record.

In addition, you could also manipulate information in the flattened record via a user exit from a USEREXIT control line or a separate program.

This control line can be used with both TSPs and TSXs.
Note: Modifications made to flattened or unflattened records are done at your own risk and are not supported by Tivoli. To manipulate records outside of Tivoli Information Management for z/OS, refer to the use of:

- The Archiver function (Tivoli Information Management for z/OS Program Administration Guide and Reference)
- Terminal simulator EXEs (Tivoli Information Management for z/OS Terminal Simulator Guide and Reference)
- APIs (Tivoli Information Management for z/OS Application Program Interface Guide)

UNFLATTEN

The UNFLATTEN control line enables you to take a flattened Tivoli Information Management for z/OS record and restore it to a database.

UNFLATTEN does not check your authority to create a record. It is possible for you to update information in the flattened record prior to unflattening it, either with a user exit specified in a USEREXIT control line or by a separate program.

This control line can be used with both TSPs and TSXs.

In addition, if you have not set up your databases and procedures correctly, it is possible to contaminate your database. The unflattened record is restored to an equivalent database (the database in the current session that has the same database identifier—specified on the NAME parameter in the BLGCLUST macro—as the original database from which the record was flattened). If you process the TSP and specify the wrong session-parameters member, you can unflatten the record into the wrong database.

Note: See “BLGCLUST Macro — Defining a Database” on page 333 for a description of the BLGCLUST macro.

If the database into which records are unflattened is logically partitioned, the primary partition name (primary partition ID) from the privilege class of the user performing the UNFLATTEN becomes the owning partition name of the unflattened records. If the user’s privilege class does not contain a primary partition name, the unflattened records will not be assigned an owning partition name. The Tivoli Information Management for z/OS Program Administration Guide and Reference contains additional information about logically partitioned databases.

Note: You should exercise extreme caution when unflattening records with system-assigned (numeric) record number IDs. When unflattened records are to retain their original record number IDs, the last entry number for each database partition is not affected by the UNFLATTEN process. It is possible to unflatten a record with a system-assigned record number ID that is higher than the last entry number value. If new records are created, they may have the same record number ID (obtained from the last entry number value) as an unflattened record.

WORDFIX

The WORDFIX control line enables you to change records in a Tivoli Information Management for z/OS database. This function circumvents normal panel flow processing and validation. Because there is no validation done at processing time, you cannot be protected from damaging your database if you make a mistake. You must limit the use of this function to someone with extensive knowledge of Tivoli Information Management for z/OS.
This control line can be used with TSPs only.

Preventing the Unauthorized Use of Control Lines

To prevent the unauthorized use of these control lines, you must do the following:

- Place the load modules (listed in Table 7) in RACF protected data sets. This enables anyone with PMF authority to create a TSP with the TSP control lines in it. However, only users with RACF authority to access the data set containing the load modules can process the TSP. Any attempt to access the load modules without proper RACF access authority results in a RACF authorization error.

- Place the panels used to create the control lines in RACF protected data sets. This limits the usage of these control lines to those who have RACF access authority to the data sets containing those panels. Any attempt to access the panels without proper RACF access authority results in a RACF authorization error.

You can combine both the above options to achieve greater security.

- In addition to using the previously described options for data security, you can use PMF to remove these control lines from the TSP create dialogs, so that no one can use them.

Table 7 shows the control lines, their load modules, and associated panels where applicable.

<table>
<thead>
<tr>
<th>Line</th>
<th>Load Module</th>
<th>Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLATTEN</td>
<td>BLGMFLA</td>
<td>BLM8CU9Z</td>
</tr>
<tr>
<td>UNFLATTEN</td>
<td>BLGMUFL</td>
<td>BLM8CU9X</td>
</tr>
<tr>
<td>WORDFIX</td>
<td>BLGMWDFX</td>
<td>BLM8CU9M</td>
</tr>
<tr>
<td>ADDSDATA</td>
<td>BLGMWDFX</td>
<td>–</td>
</tr>
<tr>
<td>DELSDATA</td>
<td>BLGMWDFX</td>
<td>–</td>
</tr>
</tbody>
</table>

Using Command Aliases/Authorization to Restrict Commands

If you have a need to restrict the usage of certain standard Tivoli Information Management for z/OS commands, such as the VIEW command to view the internals of a record, you can define a command alias identical to the command name and set an authorization code for it.

Refer to the [Tivoli Information Management for z/OS Program Administration Guide and Reference](#) for more information on defining command aliases and authorization.
Preparing to Start Tivoli Information Management for z/OS

This chapter describes tasks for you to perform before users can start Tivoli Information Management for z/OS. The following tasks are described:

- Loading the read panel data set
- Using multiple read panel data sets
- Loading the dictionary data set
- Formatting the SDLDS
- Selecting the Tivoli Information Management for z/OS panel style
- Installing the graphical user interface
- Defining report format table data sets
- Setting up a remote printer

Loading the Read Panel Data Set

Before any users can use Tivoli Information Management for z/OS, you must first load the read panel data set. To load the read panel data set (RPANLDS), use the BLGUT6 or BLGUT6M utility program. The procedures for using these utility programs are described in the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#).

BLGUT6 Enables you to load the read panel data set and use the panels as they are shipped (uncustomized). The panels support the entry of date fields in any of the 22 supported external date formats. Users can enter dates in the external date format specified by their session parameters (BLGPARMS DATEFMT keyword), or they can select their own date format preference through the user profile. (For a description of date processing, see "Enabling Alternative Date and Time-of-Day Formats" on page 227.)

BLGUT6M Enables you to load the read panel data set but also change the field lengths and validation patterns used by the shipped panels. For example, you can use BLGUT6M to convert the date fields on the shipped panels from 10 to 8 characters or to some other date format.

If you are migrating from a previous release and have not already reviewed the migration information about selecting date formats, see "Migrating from Previous Versions" on page 103 and page 135 for more information. If Tivoli Information Management for z/OS is being installed for the first time and you would like to review information about selecting and specifying date formats, see "Enabling Alternative Date and Time-of-Day Formats" on page 227.
If you use a non-Latin translate table, be sure to translate all of the Tivoli-supplied panels to uppercase when loading them into the data set: specify the UPPERCASE keyword when using BLGUT6.

Note: You must start the BLX-SP before you can use the Tivoli Information Management for z/OS utilities.

Using One or More Read Panel Data Sets

For maintenance reasons, it is best to have two read panel data sets: one for Tivoli-supplied panels and one for user-modified panels. You get better performance, but you use more DASD space when you use only one read panel data set for production. If this is what you want, do the following:

1. Create at least three read panel data sets:
 - One (for example, RPANEL0) to contain the Tivoli base panels
 - A second (for example, RPANEL1) to contain the Tivoli panels and your modified panels
 - A third (for example, RPANEL2) or multiple panel data sets to test your modified panels
2. Load the Tivoli base panels into RPANEL0 (keep this data set as a backup).
3. Copy the Tivoli base panels from RPANEL0 into RPANEL1 (copy only once).
4. Test your new and modified panels in RPANEL2.
5. Copy your tested panels from RPANEL2 into RPANEL1.
6. Use RPANEL1 as your production read panel data set.

You use less DASD space, but you do not get better performance when you use two read panel data sets for production. If this is what you want, do the following:

1. Create at least three read panel data sets:
 - One (for example, RPANEL0) to contain the Tivoli base panels
 - A second (for example, RPANEL1) to contain your new and modified panels
 - A third (for example, RPANEL2) or multiple panel data sets to test your modified panels.
2. Load the Tivoli base panels into RPANEL0.
3. Test your new and modified panels in RPANEL2.
4. Copy your tested panels from RPANEL2 into RPANEL1.
5. Use RPANEL1 and RPANEL0 as your production read panel data sets. Concatenate RPANEL1 before RPANEL0 in the session-parameters member that you use in production.

Note: Do not use IDCAMS REPRO to copy panels from one VSAM panel data set to another. Using REPRO to copy panels can damage the panel data set that the panels are being copied into. If message BLM04098W is issued for a panel, that panel is permanently damaged. Instead, use the panel copy function in PMF, or use BLGUT6F to copy the panels to a partitioned data set (PDS), and then use BLGUT6 to copy the panels from the PDS to the target VSAM panel data set.
For details about using PMF, refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide. For information about using BLGUT6 and BLGUT6F, refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.

Whether you decide to use one or two read panel data sets for production, you can use the RACF program or its equivalent, to protect RPANEL0 and RPANEL1. Give your users read access only, and give your system administrator update access to those panel data sets. Or, you can specify the RDONLY keyword in the session parameters on the BLGCLLDSN macro for these panel data sets.

For more information about read panel data sets, see "Multiple Read Panel Data Sets" on page 43.

Loading the Dictionary Data Set

If you use a DICTDS, you must load it before you use it. Use the BLGUT5 utility program to load the DICTDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on using BLGUT5.

Note: You must start the BLX-SP before you can use the Tivoli Information Management for z/OS utilities.

Formatting the SDLDS

If you use an SDLDS with your database, you must format it before you use it. Use the BLGUTR utility program to format it. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on using BLGUTR.

Note: You must start the BLX-SP before you can use the Tivoli Information Management for z/OS utilities.

Selecting the Tivoli Information Management for z/OS Panel Style

You must decide which Tivoli Information Management for z/OS panel style your users see. You can choose either the standard panel style that previous versions of Tivoli Information Management for z/OS used or the enhanced panel style. For more information on the enhanced panel style, refer to the Tivoli Information Management for z/OS User’s Guide and the Tivoli Information Management for z/OS Program Administration Guide and Reference.

To select the panel style for your Tivoli Information Management for z/OS installation, do the following:

1. Copy one or more of the following members of the SBLMSAMP library to a data set that is concatenated to the user’s ISPPLIB ddname:
 - BLGISPFD—the standard panel style
 - BLGISPFE—the primary window for the enhanced panel style
 - BLGISPFI—the inquiry window for the enhanced panel style
 - BLGISPFA—the administration window for the enhanced panel style

2. Create the default panel style member by copying either BLGISPFD or BLGISPFE to a new member named BLGISPFM. Copy BLGISPFM to a data set that is concatenated to the user’s ISPPLIB ddname.
3. If you want to use one of the enhanced panel styles, you must also copy the following members of the SBLMSAMP library to a data set that is concatenated to the user’s ISPTLIB ddname:
 - BLG0CMDS
 - BLG0KEYS

 Tivoli Information Management for z/OS defaults to the panel style that BLGISPFM contains when it starts a Tivoli Information Management for z/OS session. If you select the enhanced panel style, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for information on switching between the various styles of enhanced panels.

Installing the Graphical User Interface

You can display the Tivoli Information Management for z/OS panels in workstation windows by:

- Installing the ISPF Client/Server (ISPF C/S) component on each workstation. Refer to the ISPF User’s Guide for information on installing the ISPF C/S component.
- Installing any software required by ISPF for running an application in ISPF’s GUI mode. Refer to the ISPF User’s Guide for more information on software requirements.

Note: To use GUI mode for AIX or HP clients, you must have ISPF installed and running.

The ISPF GUI mode should not be confused with the with Java-based Tivoli Information Management for z/OS Desktop or any Desktop applications provided with Tivoli Information Management for z/OS. The Tivoli Information Management for z/OS Desktop uses a different graphical user interface and is an alternative way to access the Tivoli Information Management for z/OS database. For more information about the Desktop GUI, refer to the Tivoli Information Management for z/OS Desktop User’s Guide.

Defining Report Format Table Data Sets

You must allocate a report format table data set (RFTDS), when you start a Tivoli Information Management for z/OS session, if you want to print Tivoli Information Management for z/OS records or reports or use API tables or RDMTs. (See “The Report Format Table Data Set” on page 24 for more information about RFTDSs.) The RFTDS is a PDS with a logical record length of 80 and a fixed blocked record format. Tivoli Information Management for z/OS supplies predefined report format tables (RFTs), API tables, and RDMTs in the SBLMFMT data set. You can use this data set as your RFTDS.

Note: If you create or modify the members of the SBLMFMT data set, give the new or altered members new names. This ensures that you do not write over Tivoli-supplied members that you may want to keep.

You may want to create additional RFTDSs if you define your own RFTs, modify copies of the Tivoli-supplied RFTs, or create your own API tables or RDMTs. The first RFTDS you use in a Tivoli Information Management for z/OS session must be allocated in the session-parameters member. In the session-parameters member, you specify the RFTDS name and the ddname to allocate the data set to. If you allocate additional RFTDSs, you must allocate them in some other way, for instance, in a CLIST (see Figure 17 on page 208). Create them with the same logical record length (LRECL) and record format (RECFM).
attributes. If you do concatenate the RFTDSs, the block sizes of all the concatenated data sets do not have to be the same. The data sets must be concatenated to the ddname specified in the session-parameters member.

Setting Up a Remote Printer

The output destination for print output and report output can be defined in a user’s profile. If it is not defined, a user can select the destination when issuing the PRINT or REPORT command.

Sending Output to a Remote Printer

You can set up an 8-character nickname that JES recognizes as a remote printer. You must set up some parameters in HASPPARM that match this nickname. Set up the destination as remote so that you can use the nickname in Tivoli Information Management for z/OS. This nickname can also represent a parameter, such as a room number, bin information, or accounting information, that you want to pass to JES for printing on a report.

If you use a TSP print on a remote printer, you must preallocate the SYSOUT with JCL and set the PROFILE print destination to go to that ddname. The TSP sends the job to the remote printer after the Tivoli Information Management for z/OS session ends and the ddname is freed.

When SYSOUT is selected as the print output destination, Tivoli Information Management for z/OS uses DYNAMIC ALLOCATION to get a SYSOUT data set allocated. SYSOUT must be set to class.

Printing on a VTAM-attached Printer

To print on a VTAM®-attached printer, define that printer to JES as a node (you do this with JES328X). Then in Tivoli Information Management for z/OS, identify the node as a remote device. You can also send output to a user ID on a remote system by updating your user profile or by using the fields on the SYSOUT panel.
This chapter describes alternate ways to start Tivoli Information Management for z/OS:

- From ISPF
- In batch mode
- In batch mode with GUI communications for a workstation client
- From NetView

Refer to the [Tivoli Information Management for z/OS Application Program Interface Guide](#) and the [Tivoli Information Management for z/OS Client Installation and User’s Guide](#) for information on starting the APIs.

This chapter assumes that you:

- Have a working knowledge of at least one of the following:
 - ISPF and TSO CLISTs. Refer to the *ISPF Dialog Developer’s Guide and Reference* and *TSO/E CLISTs* for more information.
 - MVS Job Control Language (JCL). Refer to the *OS/390 MVS JCL User’s Guide*.
 - NetView. Refer to *NetView Operation*.
- Finished tailoring your installation of Tivoli Information Management for z/OS (see “Overview for Planning and Installing” on page 1).

Note: Before you start Tivoli Information Management for z/OS, you must start the BLX-SP (see “Starting and Stopping the BLX-SP” on page 148).

Starting Tivoli Information Management for z/OS from ISPF

Tivoli Information Management for z/OS runs as an application under the Interactive System Productivity Facility (ISPF) Licensed Program.

Under ISPF, you can start Tivoli Information Management for z/OS in one of two ways:

- By issuing the ISPSTART command
- By selecting Tivoli Information Management for z/OS from your ISPF menu

Issuing the ISPSTART Command

You can start Tivoli Information Management for z/OS by issuing the ISPSTART command with the PGM(BLGINIT) operand. Refer to *ISPF Dialog Developer’s Guide and Reference* for complete information on the ISPSTART command. See “ISPSTART Syntax” on page 204 for an example of the ISPSTART command.
Note: Even though Tivoli Information Management for z/OS runs as a separate application under ISPF, it is not necessary to specify NEWAPPL(BLG0) on the ISPSTART command; Tivoli Information Management for z/OS automatically supplies this information for you.

Allocating Data Sets
When you start Tivoli Information Management for z/OS with the ISPSTART command, you must:

- Preallocate all of the data sets that ISPF uses for its processing (that is, ddnames ISPPLIB, ISPMLIB, ISPSLIB, ISPTLIB, and ISPPROF).
- Do one of the following with the Tivoli Information Management for z/OS load modules; be sure you include the BLXSSINM module for the target BLX-SP subsystem:
 - Place them in an ISPF link library and preallocate the library to ddname ISPLLIB.
 - Define them in a STEPLIB DD statement.
 - Place them in a system link list.
 - Place them in the link pack area.

You do not need to preallocate any of the Tivoli Information Management for z/OS VSAM data sets because Tivoli Information Management for z/OS performs this dynamically during initialization.

Note: If you are using non-VSAM data sets, such as output file BLGFLOW, you must allocate them. RFT data sets can be preallocated or not (see "Defining Report Format Table Data Sets" on page 200).

You can perform these allocations automatically by placing them in the user’s TSO logon procedure using DD statements or in a TSO CLIST using TSO ALLOCATE commands. Both methods handle all the allocations, so you do not have to manually allocate each data set.

If you provide a CLIST, consider having the CLIST let the user specify the needed parameters for the PARM keyword of the ISPSTART command. See "Sample CLISTS to Start Tivoli Information Management for z/OS" on page 207 for a sample CLIST for processing Tivoli Information Management for z/OS.

You can allocate an optional data set with the ddname of BLGMSGS in your TSO logon procedure to receive any Sort/Merge licensed program messages generated during your use of Tivoli Information Management for z/OS.

ISPSTART Syntax
The syntax of the ISPSTART command follows:

ISPSTART PGM(BLGINIT) [PARM([CLASS(name)]) [SRC [[(name)] | NOSRC] [IRC(Immediate response chain)] [TSP(name)] [SESS(suffix)]]] [GUI(LU:display|IP:display|,NOGUIDSP)] [TITLE(title)] [GUISCWR(screen-width)] [GUISCRD(screen-depth)]]
Optionally, you can specify PARM and one or more of the following keywords. If you specify any of these keywords incorrectly, Tivoli Information Management for z/OS ignores the error. Your session continues as though you did not specify the keyword or data. You can enclose the keywords in single quotation marks so that the ISPSTART command ignores any special characters that are used as keyword values. See the ISPSTART command in Figure 19 on page 212. If you enter a keyword more than once, or specify mutually exclusive keywords, the last keyword remains in effect. Keywords must be SBCS strings:

CLASS(name)

Specifies the privilege class name that you want to operate under. The name is a mixed string of 1 to 8 bytes, the first of which must be an SBCS alphabetic or shift-out (SO) character. SBCS characters in the rest of the string must be alphanumeric or /, $, #, or @. If you use a code page different from the default, use the X'5B' code point instead of the $. Tivoli Information Management for z/OS verifies that the class exists and that you are eligible to use the class.

If you omit the CLASS keyword, the default privilege class defined by your profile is used. If you do not define a class in your profile, if your user ID is not in any privilege class, or if it is in more than one class, you receive a message. If only one such privilege class is located, it becomes the current class that you run under. Alternatively, you can choose the CLASS option on the Primary Options Menu to select a class to run under.

If you do not run under a privilege class, you cannot create, update, or delete any Tivoli Information Management for z/OS records, nor can you display them (with the exception of SRC records).

If the class name you specify (or the invocation class in your user profile) is not valid, you can continue your session without having any authorities.

SRC(name)

Specifies the name of the stored response chain (SRC) to process. The name is a mixed string of 1 to 8 bytes, the first of which must be an SBCS alphabetic or shift-out (SO) character. SBCS characters in the rest of the string must be alphanumeric or /, $, #, or @. If you use a code page different from the default, use the X'5B' code point instead of the $. Tivoli Information Management for z/OS verifies that the SRC is valid for processing from the Primary Options Menu and for the default application setting. If the SRC is valid, the chain processes immediately. If not, the Primary Options Menu appears and you receive a message.

If you specify SRC without a name, a list of all valid SRCs appears on the screen. You can select one of these SRCs by number and immediately start the SRC. If you decide not to start an SRC, enter the END command to display the Primary Options Menu.

If you omit both the SRC and NOSRC keywords, the default invocation SRC (if one exists) in your profile is processed. This SRC must be valid from the primary options menu and for the default application setting. Otherwise, the Primary Options Menu appears and you receive a message.

This keyword and the NOSRC keyword are mutually exclusive.

NOSRC

Specifies to ignore the invocation SRC defined by your profile. This keyword and the SRC keyword are mutually exclusive.
IRC (Immediate response chain)

Specifies the immediate response chain (IRC) to process from the Primary Options Menu. The responses can include mixed strings.

If you also specify the SRC keyword, or if your profile defines an invocation SRC and you do not specify the NOSRC keyword, the data in the IRC is treated as responses to diverted panels in the SRC. Any responses remaining in the chain after the SRC completes are processed as a normal IRC. The maximum allowable length of the IRC that follows an SRC is 512 characters.

TSP (name)

Specifies the name of the TSP panel, TSX EXEC, or alias to process after initializing Tivoli Information Management for z/OS. TSP names must be 8 SBCS alphanumeric characters, the first of which must be alphabetic. TSX or alias names can be 1 to 8 SBCS alphanumeric characters and must also start with an alphabetic character.

The specified TSP, TSX, or alias is processed before any IRCs or SRCs.

SESS (suffix)

Specifies the suffix for the session-parameters member that your user uses for Tivoli Information Management for z/OS. Specify the suffix as 1 or 2 SBCS alphanumeric characters. If you specify a single digit, it is right justified with a leading zero. If you specify a single alphabetic or national character, it is left justified with a trailing blank.

The suffix appends to BLGSES to form the member name.

If you omit the SESS keyword, the default suffix is 00.

To display Tivoli Information Management for z/OS panels in a graphical workstation window, use the GUI parameter to start Tivoli Information Management for z/OS in the ISPF GUI mode. For more information on using ISPF’s GUI mode, refer to the ISPF User’s Guide and the ISPF Dialog Developer’s Guide and Reference.

GUI (LU:display, IP:display, NOGUIDSP)

Identifies the workstation that the Tivoli Information Management for z/OS panels are to appear on.

LU:display

Specifies the workstation’s APPC network name.

IP:display

Specifies the workstation’s Internet Protocol (IP) address.

NOGUIDSP

Specifies that you want to make a connection to the workstation, but do not want ISPF to display in GUI mode.

Note: This parameter is only valid if you have specified an LU or IP parameter. In other words, you can have any one of the following situations:

- You specify **LU:display** or **IP:display** without the NOGUIDSP parameter
- You specify **LU:display, NOGUIDSP**
- You specify **IP:display, NOGUIDSP**

TITLE (title)

Specifies the text that appears on the title bar of the workstation window. The title can have a maximum length of 255 characters, and it is truncated at display time without notice to the user.
GUICRW(screen-width)
Specifies a screen width different from that of the emulator or real device from which
you enter the ISPSTART command. If you specify GUICRW but do not specify
GUICRD, the depth of the screen is that of the emulator or real device.

Note: If GUICRW is different from the emulator or real device and GUI initialization
fails, ISPF does not initialize.

GUICRD(screen-depth)
Specifies a screen depth different from that of the emulator or real device from which
you enter the ISPSTART command. If you specify GUICRD but do not specify
GUICRW, the width of the screen is that of the emulator or real device.

Note: If GUICRD is different from the emulator or real device and GUI initialization
fails, ISPF does not initialize.

When the ISPSTART command finishes processing, the first Tivoli Information Management
for z/OS panel displayed is the product proprietary statement panel, BLG00002, unless the
user profile is modified to bypass it (refer to the Tivoli Information Management for z/OS
User’s Guide for information on modifying a user profile).

Note: Initialization IRCs, SRCs, and TSPs are processed after the product proprietary panel
appears and the user returns from it.

Sample CLISTs to Start Tivoli Information Management for z/OS
Figure 17 on page 208 is a CLIST that passes the SESS, CLASS, SRC, NOSRC, IRC, and
TSP parameters to the ISPSTART command. Data set names are for illustration only; replace
them with the names appropriate to your organization. When you run Tivoli Information
Management for z/OS, concatenate the SBLMSAMP data set name to the ISPPLIB DD
statement in your ISPF procedures and CLISTs, or copy the appropriate panel style and
related members from SBLMSAMP to a data set that is already concatenated to the ISPPLIB
ddbname. See “Selecting the Tivoli Information Management for z/OS Panel Style” on
page 199.
You can change the load library you are using for Tivoli Information Management for z/OS without exiting ISPF. One reason you might want to do this is to enable users to switch between multiple BLX-SPs. You might have a production BLX-SP (BLX1) and a test BLX-SP (BLXT). For users to access the production system, you allocate the SBLMMOD1 product library. To enable users to also access the test system, you allocate a library containing a BLXSSIMN module with the BLXT subsystem before the SBLMMOD1 product library. (See "Defining a Subsystem to the BLX-SP" on page 145 for more information.)
You must also define a session member that specifies the CAS=BLXT keyword. (See “BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics” on page 318 for more information.)

Figure 18 is a sample CLIST that demonstrates starting Tivoli Information Management for z/OS from within ISPF.

```clist
PROC 0 SESS() CLASS() SRC() IRC() TSP() NOSRC
/*****************************************************************************/
/* */
/* CLIST TO START INFORMATION MANAGEMENT for z/OS VERSION 7.1 */
/* */
/*****************************/
IF &SYSISPF=ACTIVE THEN +
  DO
    /* ALLOCATE DATA SET FOR TSP PRINT */
    ALLOC DA(*) FI(SYSPRINT) SHR REUSE

    /* ALLOCATE MULTIPLE RFTDSS (OVERRIDES RFTDS IN SESSION-PARAMETERS MEMBER)*/
    ALLOC FI(RFTDD) DA('blm.report.dataset1' 'BLM.SBLMFMT') SHR REUSE
    /* ALLOCATE DATA SET WHERE YOUR TSX REXX EXECs RESIDE */
    ALLOC FI(BLGTSX) DA('blm.rexx.execs' + 'BLM.SBLMTSX') SHR REUSE

    /* ALLOCATE THE LOADLIB THAT CONTAINS THE BLXSSINM MEMBER AND */
    /* THEN SBLMMOD1 FOR THE PRODUCT CODE */
    ALLOC FI(BLGLLIB) DA('blm.loadlib' 'BLM.SBLMMOD1') SHR REUSE
    ALLOC FI(BLGPLIB) DA('BLM.SBLMSAMP') SHR REUSE
    ALLOC FI(BLGTLIB) DA('BLM.SBLMSAMP') SHR REUSE
    ISPEXEC LIBDEF ISPLLIB
    ISPEXEC LIBDEF ISPPLIB LIBRARY ID(BLGPLIB)
    ISPEXEC LIBDEF ISPPLIB LIBRARY ID(BLGLLIB)
    ISPEXEC LIBDEF ISPPLIB LIBRARY ID(BLGTLIB)
    IF &MAXCC<=4 THEN +
      DO
        /* INVOKE INFORMATION MANAGEMENT for z/OS VERSION 7.1 */
        ISPEXEC SELECT PGM(BLGINIT) PARM(SESS(&SESS) CLASS(&CLASS) +
          SRC(&SRC) IRC(&IRC) TSP(&TSP) &NOSRC)
      END
    ELSE +
      DO
        WRITE 'YOU MUST ALREADY BE IN ISPF TO USE THIS CLIST BECAUSE'
        WRITE 'IT USES ISPF DIALOG SERVICES.'
      END
  END
EXIT
```

Figure 18. Sample CLIST to Start Tivoli Information Management for z/OS From Within ISPF. Lowercase entries in this example indicate that you can substitute variable data. For example, you can include user data sets in the allocation for report data sets or TSXs, and allocate additional load libraries.

Note: The following notes pertain to both Figure 17 on page 208 and Figure 18.

- You do not have to use an SRC, IRC, TSP, or NOSRC to start Tivoli Information Management for z/OS. The sample given in Figure 17 includes these to show all of the possible options you can use to start Tivoli Information Management for z/OS.
A session-parameters member limits you to one RFTDS. If you require additional
RFTDSs, you must allocate them in some other way, for instance, in a CLIST. Figure 17
on page 208 shows how to concatenate two RFTDSs. For more information on
concatenating multiple RFTDSs, see \textit{Defining Report Format Table Data Sets} on
page 200.

To access an RFTDS that is allocated in a CLIST (such as the one in Figure 17
on page 208) in a batch job, you must include a statement similar to the
following in your batch job JCL:

\[
//RFTDD DD DSN='rftds.name',DISP=SHR
\]

\textit{rftds.name} is the data set name of the RFTDS you want to access.

\section*{Making an ISPF Selection}

Instead of starting Tivoli Information Management for z/OS with the ISPSTART command,
you can create a selection on an ISPF menu panel to start Tivoli Information
Management for z/OS. To do this, add a line to the body of the menu panel indicating
the selection number to use for Tivoli Information Management for z/OS, and add the following
to the)PROC section of the panel:

\[
n,'PGM(BLGINIT) PARM(parameters)'
\]

\begin{itemize}
 \item \textit{n} is the selection number chosen for Tivoli Information Management for z/OS
 \item \textit{parameters} defines whatever Tivoli Information Management for z/OS parameters you
 want to use as defaults, as specified under \textit{ISPSTART Syntax} on page 204
\end{itemize}

\section*{Notes:}

1. Consider making additional panel changes to enable the user to specify Tivoli
 Information Management for z/OS parameters when making the Tivoli Information
 Management for z/OS selection.

2. You must ensure that the ISPF load module, ISPLINK, is available to Tivoli Information
 Management for z/OS in a program library accessible through the MVS LOAD macro
 instruction. ISPF’s sample Primary Options Menu, ISR@PRIM, must be available in
 ISPF’s panel data set.

 You can do this in one of two ways:

 \begin{itemize}
 \item Preallocate the libraries before you start ISPF in a logon procedure or CLIST.
 \item Use ISPF LIBDEF service for ISPLLIB.
 \end{itemize}

\section*{Setting up a Default Profile}

During initialization, Tivoli Information Management for z/OS identifies itself to ISPF as a
new dialog application with the application name of BLG0. ISPF then tries to make
available the application profile pool, table BLG0PROF, from the user’s profile library or, if
necessary, from the table input library. Because Tivoli Information Management for z/OS
does not provide a default BLG0PROF member for installation, the first time a user starts
Tivoli Information Management for z/OS, ISPF does not find BLG0PROF. So, ISPF
provides the default application profile pool, ISPPROF, which contains a set of default PF
key values, and Tivoli Information Management for z/OS provides default values for the
Tivoli Information Management for z/OS user profile. Refer to the Tivoli Information
Management for z/OS User’s Guide for a discussion of the Tivoli Information Management
for z/OS profile and its default values.
You can provide a different set of defaults for first-time Tivoli Information Management for z/OS users by completing the following steps:

1. Following installation, start Tivoli Information Management for z/OS.

2. If you use the standard panel style, follow these steps to change the default PF key values:
 a. Issue the ISPF KEYS command from the Tivoli Information Management for z/OS primary options menu. Refer to the Tivoli Information Management for z/OS User’s Guide for a description of how to use ISPF commands from Tivoli Information Management for z/OS.
 b. Set the PF key values to those default values you want to be available to first-time Tivoli Information Management for z/OS users.
 c. Issue the END command.

 Note: If you use the enhanced panel style, you can change the PF key values by changing the enhanced panel style keylists. Refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference for information on the enhanced panel style keylists.

3. Select PROFILE from the Tivoli Information Management for z/OS primary options menu, or issue the PROFILE command.

4. Set the default values you want to be active for first-time Tivoli Information Management for z/OS users.

5. Select Permanent profile end from the PROFILE SUMMARY panel.

6. Issue the QUIT command to leave Tivoli Information Management for z/OS.

7. Copy the member BLG0PROF from your user’s profile library, ddname ISPPROF, to the table input library, ddname ISPTLIB.

With member BLG0PROF in the table input library, the defaults you established become available to subsequent first-time Tivoli Information Management for z/OS users. For a discussion of some of the fields you can set in this manner, and for techniques for making some of these default values unchangeable by other Tivoli Information Management for z/OS users, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference.

The BLG0CMDS member contains command table information for the enhanced panel style. If you use the enhanced panel style, you must copy this member (as well as the BLG0KEYS keylist member of SBLMSAMP) into a data set that is allocated to ddname ISPTLIB. This member is provided in the SBLMSAMP library for Tivoli Information Management for z/OS.

Starting Tivoli Information Management for z/OS in Batch Mode

You can use the JCL shown in Figure 19 on page 212 to start Tivoli Information Management for z/OS in batch mode. The ISPSTART command is used in the JCL to start Tivoli Information Management for z/OS. See ISPSTART Syntax on page 204 for ISPSTART command syntax and keywords.
Lowercase entries in the previous example indicate that you must substitute variable data. Most of the entries follow z/OS MVS or TSO conventions; however, the following entries have special meaning:

userid The TSO logon ID. The user ID specified with the PREFIX keyword must be identified in a Tivoli Information Management for z/OS privilege class. The user must specify this item.

BLGTSX Identifies the data sets containing TSXs.

RFTDD The ddname of the data sets containing your report format tables. You may need to modify RFTDD to use the ddname of the report data set specified in your user’s session-parameters member. In this example, because no session-parameters member is JCL, the default session-parameters member, BLGSES00, is used.

rsp The prompting sequence responses.
The JOB statement must match the standards defined for your organization. A JOBCAT DD statement may be required if the data sets are not in the master catalog. In addition, you may need to define the Tivoli Information Management for z/OS load modules on a STEPLIB DD statement if they are not in the system link pack area.

Error Processing

If an error occurs during batch processing, Tivoli Information Management for z/OS writes the message panel image and any existing message chain (displayed, in an interactive session) to the data set allocated to the SYSPRINT DD statement. If there is no SYSPRINT DD statement, Tivoli Information Management for z/OS writes the messages to a dynamically allocated SYSOUT class A data set. In either case, after closing and freeing the print data set, batch processing ends.

Note: Refer to the *Tivoli Information Management for z/OS Data Reporting User’s Guide* for additional information on batch processing.

Writing to SYSPRINT

When Tivoli Information Management for z/OS writes to SYSPRINT, it formats the data using DCB information specified by the user on either a SYSPRINT DD statement (that is, LRECL or BLKSIZE) or a TSO ALLOCATE command. If the user specifies an LRECL without a BLKSIZE, Tivoli Information Management for z/OS sets the BLKSIZE to:

\[(14 \times \text{LRECL}) + 4\]

If the user does not specify a BLKSIZE or an LRECL, the LRECL is set to:

\[(\text{length of output message}) + 4\]

and the BLKSIZE is set to:

\[(14 \times \text{LRECL}) + 4\]

If the user specifies a BLKSIZE without an LRECL, the LRECL is set to whichever of the following statements is smaller:

\[(\text{length of output message}) + 4\]

or

\[\text{BLKSIZE} - 4\]

In any case, the LRECL must be less than or equal to (BLKSIZE - 4). If not, an ABEND will occur when the data set is opened because the data attributes are inconsistent.

The RECFM of the SYSPRINT data set must be VBA, and the DSORG must be PS.
Starting Tivoli Information Management for z/OS in Batch Mode with the GUI Parameter

ISPF allows you to enable a workstation user to communicate in GUI mode directly with an application running in batch mode. You can take advantage of this function with Tivoli Information Management for z/OS by setting the ISPF GUI parameter on the ISPSTART command, so that jobs running in the background can communicate with a GUI workstation. Some of the advantages of starting Tivoli Information Management for z/OS this way include:

- You can run Tivoli Information Management for z/OS without requiring an MVS emulator session.
- You can use an interactive TSO session independent of the batch Tivoli Information Management for z/OS session.
- A single interactive TSO session can be used to submit the batch JCL to start multiple Tivoli Information Management for z/OS background jobs. Each job can connect to the same workstation or to a different workstation. Additionally, each Tivoli Information Management for z/OS session can be associated with the same userid that submitted the job, or a different userid.

You can use the sample JCL shown in Figure 20 on page 215 to start Tivoli Information Management for z/OS in batch mode with the GUI parameter. The ISPSTART command is used in the JCL to start Tivoli Information Management for z/OS.
Starting Tivoli Information Management for z/OS in Batch Mode with the GUI Parameter

//jobname JOB your-job-card,
// USER=userid,PASSWORD=password

>---*
//* THIS IS A SAMPLE JOBSTREAM FOR RUNNING THE PRODUCT UNDER ISPF IN
//* A BACKGROUND JOB.
//* THE GUI PARAMETER IS SPECIFIED FOR CONNECTION TO A WORKSTATION.
//* UPDATE THE FOLLOWING WITH UPPERCASE TEXT:
//*
//* FROM TO
//* ===
//* your-job-card - YOUR JOB CARD PARAMETERS. USE THE
//* USERID= AND PASSWORD= PARAMETERS IF THE
//* USERID OF THE SESSION IS DIFFERENT FROM
//* THE USERID SUBMITTING THE JOB.
//* isp.sispxxxxx - THE ACTUAL NAMES OF THE ISPF DATA SETS
//* USED AT YOUR INSTALLATION.
//* blm.sblmxxx - THE ACTUAL NAMES OF THE INFORMATION MANAGEMENT for z/OS
//* DATA SETS USED AT YOUR INSTALLATION.
//* blgesxx.load - THE ACTUAL NAME OF THE DATA SET THAT CON- TAINS THE SESSION-PARAMETERS MEMBERS.
//* rftdd - THE DDNAME OF THE REPORT DATA SET SPECIFIED
//* IN THE SESSION PARAMETERS MEMBER.
//* userid.ispf.ispprof - THE NAME OF THE USER'S ISPF TABLE DATA SET. NO OTHER BATCH OR INTERACTIVE SESSION MAY USE THE DATA SET WHILE THIS JOB IS ACTIVE.
//* SESS(xx) - THE SUFFIX FOR THE SESSION-PARAMETERS MEMBER USED BY INFORMATION MANAGEMENT for z/OS.
//* batch-screen-depth - THE MAXIMUM NUMBER OF LINES TO BE DISPLAYED ON THE WORKSTATION SCREEN.
//* workstation-address - THE TCP/IP IP ADDRESS (PREFIXED WITH IP:) OR THE APPC NETWORK NAME (PREFIXED WITH LU:) OF THE WORKSTATION.
//* title-bar-text - THE TEXT TO BE DISPLAYED IN THE TITLE BAR ON THE WORKSTATION.

Figure 20. Sample JCL to Start Tivoli Information Management for z/OS in Batch Mode with the GUI Parameter (BLGISGUI) (Part 1 of 2)
Lowercase entries in the previous example indicate that you must substitute variable data. The following entries have special meaning:

your-job-card

The job card parameters associated with your Tivoli Information Management for z/OS batch job. Use the **USER=** and **PASSWORD=** parameters if the userid of the session is different from the userid submitting the job.

isp.sispxxxx

The actual names of the ISPF data sets used at your installation. All of the data sets needed by ISPF must be specified on the appropriate DD statements.

blm.sblmxxxx

The actual names of the Tivoli Information Management for z/OS data sets used at your installation.

blgsesxx.load

The actual name of the data set that contains the session-parameters member.

rfdd

The DD name of the report data set specified in the session-parameters member.

userid.ispf.ispprof

The name of the user’s ISPF table data set. The user’s table data set should be
unique; that is, each user should have a separate tables data set for batch which includes his or her ISPF profile information. It cannot be referenced by another ISPF or Tivoli Information Management for z/OS session while the background job is active.

SESS(xx)
The suffix for the session-parameters member used by Tivoli Information Management for z/OS.

batch-screen-depth
The maximum number of lines to be displayed on the workstation screen.

workstation-address
The TCP/IP address or APPC network name of the workstation. For example GUI(IP:2.33.44.5) represents a TCP/IP address. GUI(LU:NETWRKID.PARTNELU) represents an APPC network name.

title-bar-text
The text to be displayed on the title bar of the workstation window. The title can have a maximum length of 255 characters, and it is truncated at display time without notice to the user.

To establish a GUI connection with a background job:
1. Start the ISPF workstation agent.
2. Submit the batch JCL to start ISPF and Tivoli Information Management for z/OS.

To end the session, enter the Tivoli Information Management for z/OS QUIT command on the workstation. The background job will complete and end normally.

Starting Tivoli Information Management for z/OS from NetView
If you use NetView and Information/Management Version 5 or later or Tivoli Service Desk for OS/390 1.2, you can access Tivoli Information Management for z/OS from NetView by using NetView’s Terminal Access Facility (TAF). Using TAF in a NetView address space, you can log on to Tivoli Information Management for z/OS running in a TSO address space. Figure 21 on page 218 shows an example of using TAF to link to Tivoli Information Management for z/OS.
Starting from NetView

Initial Usage - 8:30 A.M. - Begin a NetView Hardware Monitor Interface session.
 ====> LOGON 'NetView userid'
 ====> 'NetView password'
 NetView Activities...
 ...
 ====> CLISTNAME1 (for: BGNSESS,FLSCN,APPLID=TSO,SRCLU=xxxxx,...)
 ====> LOGON 'TSO userid'
 ====> 'TSO password'
 ====> start Tivoli Information Management for z/OS
 ...
 ...Tivoli Information Management for z/OS Activities
 ...
 ====>"Disconnect" key, then see:
 TAF Disconnect Options Panel
 1. ...
 2. Return to NetView control mode
 3. ...
 4. ...
 ====> 2
 ...
 ...NetView Activities..., then proceed to Subsequent Usage

Subsequent Usage - 10:30 A.M. - following coffee break
 ...
 ...NetView Hardware Monitor Interface Activities...
 ...
 ====> CLISTNAME2 (for: RTRNSESS APPLIED=TSO,...)
 ...
 ...Tivoli Information Management for z/OS activities continued from initial session, beginning with the panel on which "disconnect" key was pressed.
 ...
 ====> "Disconnect" key, then see:
 TAF Disconnect Options Panel
 1. ...
 2. Return to NetView control mode
 3. ...
 4. ...
 ====> 2
 ...
 ...NetView Hardware Monitor Interface Activities...
 ...

Final Usage - 3:30 P.M. - Final session before end of day.
 ...
 ...NetView Activities...
 ...
 ====> CLISTNAME2 (for: RTRNSESS APPLID=TSO,...)
 ====> QUIT from Tivoli Information Management for z/OS
 ====> LOGOFF TSO
 ...
 ...NetView Activities...
 ...
 ====> LOGOFF NetView

Figure 21. Example: TAF Link to Tivoli Information Management for z/OS

Tivoli Information Management for z/OS data can also be accessed through the NetView Bridge Adapter. Refer to the [Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications](#) for details.
This chapter provides information about loading data model records and other types of records provided in the SBLMRCDS data set in the Tivoli Information Management for z/OS database.

Loading Data Model and Other Records

Records that support certain base functions and optional features are provided with Tivoli Information Management for z/OS. These records include data model records (data attribute, data view, or validation records) and other types of records such as reference records.

Records are provided to support the following:

- Base functions such as change approval processing
- Universal time processing (described in Implementing Universal Time Processing” on page 251)
- E-mail message notification (described in the Tivoli Information Management for z/OS Program Administration Guide and Reference)
- People record panels (described in the Tivoli Information Management for z/OS Program Administration Guide and Reference)
- The Tivoli Information Management for z/OS Desktop (described in the Tivoli Information Management for z/OS Desktop User’s Guide)
- The use of Tivoli Decision Support with Tivoli Information Management for z/OS data (described in Tivoli Decision Support: Using the Information Management Guide)
- The interface to Tivoli Inventory (described in the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications)
- The Tivoli Service Desk Bridge (interface to Tivoli Problem Management, described in the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications)

Records are loaded by running a batch job which calls the BLHRCDSL TSX, or by running the BLHRCDSL TSX interactively from the Tivoli Information Management for z/OS command line. For convenience, it is recommended that you submit a batch job to avoid having to scroll through the messages displayed on your screen if you run the TSX interactively.

All records are unflattened and loaded into Tivoli Information Management for z/OS database 5. If desired, you can set up a separate database to hold data model records only, so
that the records in your normal read/write database are not mixed up with the data model
records that are provided with Tivoli Information Management for z/OS. Instructions on how
to do this are provided in “Loading Data Model Records into a Separate Database” on
page 221.

Records are categorized into lists based on their content and function. When loading the
records, you can specify the name of a list of records you want to load. The record lists and
the records themselves are provided in the SBLMRCDS program data set. The SBLMRCDS
program data set is created when you install Tivoli Information Management for z/OS
through SMP/E as described in the Program Directory. (For more information about the
program data sets created during installation, see “Tivoli Information Management for z/OS
Program Data Sets and Sample Members” on page 359.)

Note: Although you are not required to load all the records, you must load a base set of
records that consists of data model records and other types of records. In addition, if
you intend to use some of the optional features that require some of these shipped
records, you must load the appropriate records for those features.

The records provided in the SBLMRCDS data set include the following types of records:

- Data model records (data view records, data attribute records, or validation records)
 These records can be loaded so that they are available to users in a read/write database
 (database 5) or read/only database (database 4, for example). At a minimum you must
 load the required base data model records (listed in the BLHL4BAS member) provided
 with Tivoli Information Management for z/OS, or certain functions in Tivoli Information
 Management for z/OS will not work properly. If these records are not loaded, users will
 receive error messages if they try to use the panels that depend on the existence of data
 model records for processing.
 For a summary of the lists provided for data model records, see Table 8 on page 221. If
 you want to learn more about data model records in general (such as how to create your
 own), refer to the Tivoli Information Management for z/OS Panel Modification Facility
 Guide.

- Other types of records, such as reference records
 These other types of records must be present in the user read/write database (database
 5). At a minimum, you must load the base records listed the BLHL5BAS member.

To load both the minimum set of data model records and other types of records, you can
specify the BLHLRBAS list when submitting the batch job or running the TSX to load the
records. The BLHLRBAS list includes both the BLHL4BAS and BLHL5BAS lists.

Note: The user running the BLHRCDSL TSX or the BLHRCDSJ batch job must be in a
privilege class that has, at a minimum, DBADMIN and class authorities.
Table 8. Lists of Records Provided with Tivoli Information Management for z/OS. At a minimum, the BLHLRBAS list should be specified. To load all records, use BLHLRALL.

<table>
<thead>
<tr>
<th>List</th>
<th>Contents</th>
<th>Description</th>
<th>Lists included by this list</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLHLRALL</td>
<td>All DMR and non-DMR</td>
<td>Master list. Use to load all records – those required for base functions and optional features</td>
<td>BLHLRBAS BLGLRTDS BLHLRBRG BLHLRINV BMLRDSK</td>
</tr>
<tr>
<td>BLHL4ALL</td>
<td>All DMR</td>
<td>Use to load only DMR required for base functions and optional features</td>
<td>BLHL4BAS BLGLRTDS BLHLRBRG BLHLRINV BMLRDSK</td>
</tr>
<tr>
<td>BLHL5ALL</td>
<td>All non-DMR</td>
<td>Use to load only non-DMR required for base functions and optional features</td>
<td>BLHL5BAS</td>
</tr>
<tr>
<td>BLHLRBAS</td>
<td>Base DMR and base non-DMR (required)</td>
<td>Use to load the minimum set of records for the base product</td>
<td>BLHL4BAS BLHL5BAS</td>
</tr>
<tr>
<td>BLHL4BAS</td>
<td>Base DMR (required)</td>
<td>Use to load the minimum set of data model records for the base product</td>
<td>None</td>
</tr>
<tr>
<td>BLHL5BAS</td>
<td>Base non-DMR (required)</td>
<td>Use to load the minimum set of non-DMR records for the base product. Contents include TIMEZONE record for universal time processing and e-mail message models.</td>
<td>None</td>
</tr>
<tr>
<td>BLGLRTDS</td>
<td>DMR</td>
<td>Required only if using Tivoli Decision Support or the ODBC driver.</td>
<td>None</td>
</tr>
<tr>
<td>BLHLRBRG</td>
<td>DMR</td>
<td>Required only if using Tivoli Service Desk Bridge</td>
<td>None</td>
</tr>
<tr>
<td>BLHLRINV</td>
<td>DMR</td>
<td>Required only if using Tivoli Inventory</td>
<td>None</td>
</tr>
<tr>
<td>BMLRDSK</td>
<td>DMR</td>
<td>Required only if using Desktop</td>
<td>None</td>
</tr>
</tbody>
</table>

Loading Data Model Records into a Separate Database

Lists that contain only data model records can be loaded into a database that users can access in read/write or read/only mode. If you do not want the shipped data model records to reside in the read/write database (database 5) by default, you can make them read/only for users by setting up a separate database for data model records. To do this, follow these procedures:

1. Create the database for the data model records. Create the SDDS and SDIDS at a minimum, and also the SDLDS (recommended). Define the VSAM data sets. If necessary (that is, if you are not using sysplex support), update the VSAM resource definition member.
2. Create the session-parameters member that will be used to load the database with the
data model records. At a minimum, use the BLGPARMS macro to define the session
parameters, and the BLGCLUST macro to define the database.
Use the BLGCLUST macro to add the data model record database. You must specify
NAME=5 as the external name of the read/write database to be able to load the data
model records.

3. Update your users’ session-parameters members so they can access the database you just
created.
a. Use the BLGPARMS macro and specify, in the MODELDB keyword, the name of
the database containing the data model records.
When supplying parameter values for the MODELDB keyword, also specify the
trigger character that your administrators will use when creating their own data
attribute records; for example: MODELDB=(4,#). Do not specify the ampersand
character (&). The ampersand character is reserved for use by the data attribute
records provided with Tivoli Information Management for z/OS.
b. Use the BLGCLUST macro to add the data model record database. You must specify
a NAME of 4, 7, 8, or 9 as the external name of the read-only database. Use the
same name that you specified on the MODELDB keyword in Step 3a on page 222.

4. Proceed with submitting a batch job or running the BLHRCDSL TSX to load the data
model records. Be sure to use the session-parameters member that you specified in Step
2 on page 222.

If you choose to separate data model records into their own databases, you must ensure that
the base non-data model records are loaded into your read/write database so that they are
accessible to users in read/write mode. You must submit a batch job or run the BLHRCDSL
TSX again with the BLHL5BAS list specified at a minimum. Use the session-parameters
member that you modified in Step 3 on page 222.

Loading Records into Database Partitions
If your database is partitioned and you want to load the records into a specific logical
database partition, you must run load the data model records using a privilege class that has
that partition specified as the primary partition ID. The primary partition becomes the
owning partition of the unflattened records. If your privilege class does not contain a
primary partition name (primary partition ID), the unflattened records will not be assigned
an owning partition name. The Tivoli Information Management for z/OS Program
Administration Guide and Reference contains additional information about logically
partitioned databases.

Submitting a Batch Job
You can unflatten and load the records into your database by running a batch job which calls
the BLHRCDSL TSX. You can use the BLHRCDSJ sample JCL in the SBLMSAMP library
to load the records into Tivoli Information Management for z/OS database 5. The
BLHRCDSL TSX is described in more detail in “Running the BLHRCDSL TSX” on
page 223. An extract of the sample JCL follows:
//BLGRCSJ EXEC PROC=BLGRCDSJ, TABLE='userid.ispf.ispprof'
//SYSIN DD *
ISPSTART PGM(BLGINIT) PARM(SESS(xx) CLASS(MASTER) +
IRC(RUN BLHRCDSL blm.sblmrcds list,;QUIT))
/*
//
Copy the sample JCL and follow the instructions in the sample to include the necessary parameters. For instance, specify the appropriate session-parameters member, SESS(xx), to use to load the records. By specifying the correct session, you can separate the data model records that get loaded onto database 5 into a read/only database for users.

The parameters you can include in the RUN BLHRCDSL statement are defined in "Running the BLHRCDSL TSX".

If you need to reload records, you can replace the existing records by adding the REPLACE parameter to the RUN statement in the JCL.

Running the BLHRCDSL TSX

You can unflatten and load the records into a Tivoli Information Management for z/OS database by running the BLHRCDSL TSX. From the Tivoli Information Management for z/OS command line enter the following:

```
RUN BLHRCDSL dsname list [REPLACE]
```

dsname

dsname is the fully qualified name of the SBLMRCDS program data set (entered without single quotation marks) at your location.

list

list is the name of the member in that data set that contains the list of records you want to load. Specify one of the following 8-character values for list:

- **BLHLRALL**

 List of all the record lists. Specify BLHLRALL to load all of the records into your database. If BLHLRALL is specified, the BLHLRBAS, BLGLRTDS, BLHLRBRG, BLHLRINV, and BLMLRDSK lists are included. The records loaded include all data model records provided with Tivoli Information Management for z/OS.

 If you need to specify more than one list yet exclude other lists, you can run the BLHRCDSL TSX for every list you want to include, or create your own list to use with the BLHRCDSL TSX. Refer to the format of BLHLRALL for the expected format of the list of lists member. Your list and the actual records should be in the same partitioned data set.

- **BLHL4ALL**

 List of all the data model records needed to support base functions and other optional features. If this list is specified, the following lists are included: BLHL4BAS, BLGLRTDS, BLHLRBRG, BLHLRINV, and BLMLRDSK.

- **BLHL5ALL**

 List of all the non-data model records needed to support base functions and other optional features. If this list is specified, this list is included: BLHL5BAS.

- **BLHLRBAS**

 List of the data model and other types of records needed to support base functions. If this list is specified, the BLHL4BAS and BLHL5BAS lists are included. At a minimum, BLHLRBAS should be specified if you are not loading all records. This functions supported through this list include: people...
Loading Data Model and Other Records

record panels in Tivoli Information Management for z/OS, universal time processing (the TIMEZONE reference record), and e-mail message notification (generic message text records). If you are integrating with Tivoli Problem Management, or if you will use the Tivoli Information Management for z/OS Desktop, BLHLRBAS is required.

BLHL4BAS
List of the base data model records required at a minimum.

BLHL5BAS
List of the base non-data model records required at a minimum.

BLGLRTDS
List of the data model records for integration with Tivoli Decision Support or for use with the Tivoli Information Management for z/OS ODBC driver.

BLHLRBRG
List of the data model records for use with the Tivoli Service Desk Bridge (integration with the Tivoli Problem Management application of Tivoli Service Desk).

BLHLRINV
List of the data model records for integration with Tivoli Inventory.

BLMLRDSS
List of the data model records for the Tivoli Information Management for z/OS Desktop application.

REPLACE
Specify REPLACE to replace existing records if you already loaded them. REPLACE overwrites duplicate records (records with the same RNIDs). This parameter is optional.

As the TSX runs, a message is displayed for each record stored successfully in the Tivoli Information Management for z/OS database.

Moving Data Model Records

If, for some reason, you need to uninstall the data model records you loaded into a database, you can use the BLHRCSU TSX to flatten and place the records into a partitioned data set. To run the BLHRCSU TSX through a batch job, you can copy the BLHRCSJ JCL, change the TSX name on the RUN statement from BLHRCSL to BLHRCSU, and submit the job. Alternatively, you can simply run the BLHRCSU TSX interactively.

If desired, you can use the BLHRCSU TSX to move your own data model records from one database to another (such as from a test database to a production database). Use the partitioned data set used by this TSX to received flattened records as the input to the BLHRCSL TSX (the *dsname*) to load the records to another database.

The syntax of the TSX is:

RUN BLHRCSU dsname list [NOHISTORY] [NOTEXT] [DELETE]

Run BLHRCSU dsname list {NOHISTORY} {NOTEXT} {DELETE}
dsname

dsname is the fully qualified name of the partitioned data set (entered without single
quotation marks) where flattened records will be written.

dsname and list are required parameters and must be specified in that order.

list

list is the name of the member containing the list of records to flatten. This
parameter is required. If you are unloading the records provided by Tivoli
Information Management for z/OS, you should use the appropriate list names (see
Table 8 on page 221). If you are unloading records created by administrators or users
at your location, you should specify your own list names.

NOHISTORY

This parameter specifies that the history data for the records should not be copied
when the flattened records are written to the partitioned data set. The default is to
copy the history data with the records. This parameter is optional.

NOTEXT

This parameter specifies that freeform text data should not be copied when the
flattened records are written to the partitioned data set. The default is to copy the
freeform text data with the records. This parameter is optional.

DELETE

Indicates that the original records should be deleted from the database when the
flattened records are written to the partitioned data set (PDS). By default (the
DELETE parameter is omitted), original records are not deleted. This parameter is
optional.

If you are using this TSX to flatten your own records into a list name of your choice, you
can use one of the lists provided as an example of how to construct your own list.

This is an extract from a list provided by Tivoli Information Management for z/OS:

```
/*********************************************************************/
BLG$APST BLG&APST Approval Status
BLG$APVR BLG&APVR Approver
BLG$DFMT BLG&DFMT Profile External Date Format
`/**/*****/
```

The records are originally provided with a dollar sign trigger character ($) in the
SBLMRCDS data set, but are actually loaded into your database with the ampersand trigger
character, which is reserved.

This is an example of a list you can construct for your own records:

```
/*********************************************************************/
ABC#APST ABC#APST Approval Status
ABC#APVR ABC#APVR Approver
ABC#DFMT ABC#DFMT Profile External Date Format
`/**/*****/
```

The first column represents the current name of the record. The second column represents
the desired name of the record when it is copied into the target partitioned data set. (Your
records will most likely have the same label in both columns.) You can also provide
comments (optional) to describe the contents of the records.
Enabling Alternative Date and Time-of-Day Formats

This appendix describes the date and time-of-day formats available for use in Tivoli Information Management for z/OS, and explains how to enable Tivoli Information Management for z/OS to use alternative date and time-of-day formats. It also describes how to implement the optional universal time support in Tivoli Information Management for z/OS.

Date formats, time-of-day formats, and time zone are specified at the installation level through the use of BLGPARMS macro keywords:

- The DATECNV keyword of the BLGPARMS macro enables you to specify the name of the date conversion routine to be used by Tivoli Information Management for z/OS. This keyword is optional, and the default value for DATECNV is BLGCDATS, which is the name of the date conversion routine provided with Tivoli Information Management for z/OS. You can specify the name of a user-written date conversion routine if necessary. Typically, BLGCDATS should meet your date processing needs.

- The DATEFMT keyword of the BLGPARMS macro enables you to specify the external date format to be used at your installation by default for a session member. Tivoli Information Management for z/OS supports 22 external date formats. You can specify any of these formats as defaults for the session (although certain formats are recommended as described later in this appendix). Users can override the external date format specified on the DATEFMT keyword by selecting a different external date format in the user profile. They can also override the time zone for the session by selecting another time zone in the profile. An illustration of this option in the user profile is shown in “Specifying Preferences in the User Profile” on page 23. API applications can also override the external date format through the DATE_FORMAT parameter data block (PDB), and the time zone through the TIME_ZONE PDB.

Additionally, if none of the 22 external date formats provided by Tivoli Information Management for z/OS is suitable for your needs, you can, as an alternative, specify your own date conversion routine for use by the session member. If you specify your own date conversion routine, all users must use the same external date format. This appendix describes the supported date formats and explains how to implement your own date conversion routine if a user exit is necessary.

- The TIMEZONE keyword of the BLGPARMS macro enables you to implement the optional universal time support feature of Tivoli Information Management for z/OS. If TIMEZONE is not specified, dates and times will be collected and displayed in the local time of the user who entered them and no universal time processing will be done.
Additionally, you have the option to define relationships between date fields and time fields. Only date and time fields that have been "related" can use universal time processing. Even if TIMEZONE is specified, unrelated date and time fields won’t use universal time processing.

For more information about the BLGPARMS macro keywords, see “BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics” on page 318.

This appendix describes how to relate date and time fields and describes how searches performed by users are affected if universal time processing is enabled. Universal time processing is supported in the Management application of Tivoli Information Management for z/OS. It is not supported in the Integration Facility.

As a preview, it is important to be aware of the following:

- If you are not enabling universal time processing, then you should remove field 4. **User’s time zone** from profile panel BLG0P700. This field is intended to be used only if universal time processing is implemented at your installation. If this field is left on the panel with universal time disabled, then a user trying to set this field will encounter one of the following:
 - An error message because there is no TIMEZONE record, which is used as a validation record.
 - Confusion because entering a different time zone in this field has no effect (because the value is ignored except for universal time processing).

- If you are enabling universal time processing, you must do all of the following:
 - Add the TIMEZONE (and possibly OTIMEZON) keyword to the session member to enable universal time processing and to define the default time zone.
 - Load the TIMEZONE record provided with the product into database 5 and customize the record if desired. (For example, you may want to rename time zone symbols.)
 - Create a DATETIME record to define which of your date fields are paired with certain time fields. Converting a date or time to universal time requires both the date and time, because the code must know which fields are related.
 - Understand how universal time processing works and educate users about its use.

A detailed discussion of the above actions is found in “Implementing Universal Time Processing” on page 251.

Note: As this appendix explains, Tivoli Information Management for z/OS 7.1 has implemented a number of date and time-of-day enhancements. If you are currently using two or more external date formats, it is recommended that you run BLGUT17 before or during the installation process in order to standardize the date formats your organization uses. Information on running BLGUT17 can be found in the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#).

Enabling Date Formats

Tivoli Information Management for z/OS users work with dates in two formats:
- **External format** — The format that users type and see when working with records on data entry or display panels, or in structured searches. The Tivoli Information Management for z/OS panels, as provided, display dates in a 10-character date format (for example, MM/DD/YYYY). An external date format is specified at installation through the BLGPARMS DATEFMT keyword. Users can override this format by selecting another supported format in the user profile.

 When a date is entered by a user, it is automatically converted from external date format to internal date format. The external date format is not stored as part of the record in the SDDS. It is collected while the record is in use, but removed when the record is filed.

- **Internal format** — The format used to perform freeform searches. The internal format is YYYY/MM/DD.

 The internal date format is stored in the SDIDS. It is also stored in the record in the SDDS. If universal time support is used, the internal date format is also stored in universal time in the SDDS.

How Data is Converted and Stored

Data values are entered by users and displayed in external format. When the data is entered by a user, it is automatically converted from that user’s external format (for example, 05/27/2001) to internal format (2001/05/27). The dates and times are stored in the SDDS in internal format, regardless of any user preference. When records are read from the database, the date and time fields are automatically converted from internal format to the external format of the user reading the records (for example, to 27-05-2001) for presentation to the user. (Prior to Tivoli Information Management for z/OS Version 7.1, dates and times were stored in the SDDS in a single external format and all users saw the data in that format.)

Note: The change in how data is stored in the SDDS should not be important to you if you are currently using a previous version of Tivoli Information Management for z/OS and continue to use the same external date and time formats.

Whether or not you choose to use universal time processing (described in [Implementing Universal Time Processing](/page/251), dates and times are stored in the SDDS in internal format, and users can select the external date formats of their choice by updating their user profile. For a discussion of migration considerations, see [Tivoli Information Management for z/OS Version 7.1 Changes](/page/103) and [Migration Considerations](/page/234).

History data for dates and times is stored in internal format and converted to the user’s external format upon display.

Selecting Date Formats for a New Installation

If you are a new customer to Tivoli Information Management for z/OS and are performing installation for the first time, you will most likely want to specify the following:

- **DATECNV=BLGCDATS**
- **DATEFMT=extfmt**

where *extfmt* is an external date format from the list of formats supported automatically by Tivoli Information Management for z/OS (see [External Date Format](/page/231) for a list). A format with a 4-digit year (such as MM/DD/YYYY) is recommended but not required.

Note: If any value other than BLGCDATS is specified for DATECNV, then users (interactive and API) cannot choose their own date format.
Specifying Preferences in the User Profile

Users can override the default external date format specified in the BLGPARMS DATEFMT keyword by selecting the User and database defaults option on BLG0PU00, the Profile Summary panel. On the resulting panel that displays (BLG0P700), users can specify an external date format. Additionally, they can optionally specify a time zone. For time zone processing to take place correctly, however, universal time processing must be enabled through the TIMEZONE keyword as described in Implementing Universal Time Processing on page 251. An example of the BLG0P700 panel follows:

BLG0P700 USER AND DATABASE DEFAULTS USER ID: SMITH

Enter user and database data; cursor placement or input line entry allowed.

1. User's name............ SMITHSON
2. User's department..... BBC
3. User's telephone....... 555-7878
4. User's time zone....... ET
5. User's date format..... MM/DD/YYYY
8. Database............<5>
9. Logical files.......... __________________________

When you finish, type END to save or CANCEL to discard any changes.

To restrict the list of acceptable external date formats in the user profile, the Tivoli Information Management for z/OS administrator can update data attribute record BLG&DFMT to remove any of the external date formats the users should not select. The BLG&DFMT data attribute record contains a list of the 22 external date formats supported by Tivoli Information Management for z/OS. It must exist in your database for users to set their own date format.

Using HELP STATUS to Show Date Formats

Users can enter the HELP STATUS command to see what specific external date formats and time zone are in use in their interactive session. For example, the output of HELP STATUS may show the following:
As shown in the example, the external date formats are displayed in "default" and "old" date format. Prior to Tivoli Information Management for z/OS Version 7.1, you could specify up to two external date formats. If you needed users to enter new records using a particular format, that would be the default format. However, if you needed to retain support for older records that used some other date format, you would also specify an old format for those records. Starting with Tivoli Information Management for z/OS Version 7.1, the meanings of the default and old formats are changed somewhat because users can now enter whatever supported format they choose. Currently, the default external date format refers to the installation default external date format, or the date selection made in the user profile, which overrides the default external date format. The old format shows the value of ODATEFMT.

External Date Format

The Tivoli Information Management for z/OS panels as provided can accept and show dates in 10-character fields. You can, of course, change the panels to change the length of the fields if necessary. However, the 10-character date field enables all of the 22 supported external date formats to be entered by users. The external date formats (both default and old) supported by Tivoli Information Management for z/OS are:

- MM/DD/YY
- DD/MM/YY
- YY/MM/DD
- DMMMYY
- MM/DD/YYYY
- DD/MM/YYYY
- YYYY/MM/DD
- DDMYYY
- MM-DD-YY
- DD-MM-YY
- YY-MM-DD
- YYDDD
- MM.DD.YY
- DD.MM.YY
- YY.MM.DD
- MM.YY
- DD.MM.YY
- YYYY.MM.DD

A description of these formats follows:

- **MM**: The number of the month
- **MMM**: The abbreviation of the month (for example, JAN, FEB)
- **DD**: The number of the day in the month
- **DDD**: The Julian date
- **YY**: The last two digits of the year
Enabling Date Formats

YYYY All four digits of the year

Default Date Format
 The external default date format:
 ■ Cannot include commas because commas separate responses in response chains.
 ■ Can include special characters (or blanks) if you modify the panels to accept them.

 Note: You may not want to use blanks because blanks act as word delimiters.
 ■ Can be up to 64 characters long, including the length of the prefix.
 ■ Must be specified on the DATEFMT keyword of the BLGPARMS macro (if you use the
 BLGCDATS date conversion routine) before you can reassemble session parameters
 members. If DATECNV is specified as any other value than BLGCDATS, then
 DATEFMT must be omitted.

 When a date is entered by a user, it is automatically converted from external date format to
 internal date format by Tivoli Information Management for z/OS through a conversion
 program. The dates are stored in the SDDS in internal format, regardless of any user
 preference. When records are read from the database, the date fields are automatically
 converted from internal to external date format for presentation to the user.

 All date processing is available for the supported external date formats, including range
 searching and date/time math.

Understanding Preferences
 When deciding on an external date format for your installation, keep in mind that:
 ■ MM/DD/YY or MM/DD/YYYY is the preferred format for the United States.
 ■ DD/MM/YY or DD/MM/YYYY is the preferred format for Canada (English), Europe,
 and Latin America.
 ■ YYYY-MM-DD is the preferred format for Canada (French).
 ■ YYDDD and YYYYDDD are Julian date formats.

 The external format you select and specify in the BLGPARMS macro is used by all users;
 however, users can override the format specified by selecting another external date format in
 their user profile. Validation of the data entered by users is performed using the user profile
 selection. If the user has not selected a preferred external date format in the user profile,
 validation of the data is done using the external date format specified at installation through
 the BLGPARMS macro.

 Note: The assisted-entry panels provided with Tivoli Information Management for z/OS use
 the validation pattern IIV63 (effectively, no validation) to validate the data. This
 validation pattern enables users to enter a variety of supported external date formats.
 Validation of the data is performed by the date conversion routine.

Old Date Format
 The old date format specifies the external date format used for records that were created
 with versions of the product prior to Version 7.1. It is specified on the ODATEFMT
 keyword of the BLGPARMS macro.
Processing Date Data with TSPs or TSXs
If you write TSPs or TSXs that process date data, you should write them so that they use the 10-character internal date format (YYYY/MM/DD) for processing date data. Use the BLGIDATE and BLGEDATE user exits to convert the internal format date from or to the user’s local date format. The BLGIDATE user exit converts a date from the user’s local date format to internal format. The BLGEDATE user exit converts a date from internal format to the user’s local date format. For more information about these user exits, refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference.

Specifying an External Date Format through the API
The Tivoli Information Management for z/OS program interface data tables that are provided to support API transactions with the Tivoli Information Management for z/OS database accept any of the external date formats supported by Tivoli Information Management for z/OS.

You can set an option (DATE_FORMAT) in your API to send or receive data in a particular format that may be needed by your API application. For example, if you want to ensure that your API programs will be unaffected by date changes in the Tivoli Information Management for z/OS database, you can specify that dates be received in a particular format by defining an application-specified format. For information on setting the API DATE_FORMAT option to have all dates converted to or from a particular format for the API application, regardless of the date format used by the Tivoli Information Management for z/OS host database, refer to the Tivoli Information Management for z/OS Application Program Interface Guide.

If the API application does not use the DATE_FORMAT option, Tivoli Information Management for z/OS uses the external date format specified in the BLGPARMS DATEDFMT keyword.

Field Length on Panels
The length of date fields in the Tivoli Information Management for z/OS panel data set (SBLMPNLS) is 10 characters. The length supports the entry of 10-character external date formats (for example, MM/DD/YYYY) or the shorter external date formats (for example, YY-MM-DD or YYDDD). Program interface data tables (PIDTs) shipped with Tivoli Information Management for z/OS also support dates in a 10-character date format by default. If you want to use the base product panels with 8-character date fields instead, you can, at installation, convert the date fields on panels from 10- to 8-character format by running a special job provided for this purpose (see member BLGDATE8 in the SBLMSAMP sample library).

Note: If you change the fields to a shorter length, be aware that you will limit the flexibility users have when typing dates directly into fields.

The BLGUT6M migration utility can help you to change the field lengths and validation patterns on your panels if you need to change them. See “Modifying Date Formats on Panels” on page 236 for more information.

Selecting a Tivoli Information Management for z/OS External Date Format
To select one of the external date formats provided by Tivoli Information Management for z/OS:

1. Specify the appropriate format as the second parameter on the DATEDFMT keyword of the BLGPARMS macro in the session-parameters member. For example:
Enabling Date Formats

DATEFMT=DD/MM/YYYY

indicates that the default external date format is DD/MM/YYYY.

2. Reassemble and relink the session parameters after the DATEFMT keyword is changed.
 To avoid assembly failures, be sure to do the following:
 - Type a supported date format on the DATEFMT keyword.
 - Include an external date format if you specify the BLGCDATS routine, or accept the
default external date format.
 - Do not type a routine name other than BLGCDATS on DATECNV and specify an
optional Tivoli Information Management for z/OS external date format on
DATEFMT. You cannot mix a user-defined routine with a Tivoli Information
Management for z/OS external date format.

 Note: If any value other than BLGCDATS is specified for DATECNV, then users
 (interactive and API) cannot choose their own date format.

Migrating Existing Panels

The date fields on product panels are 10 characters long. The recommended external date
format length is 10 characters. If your existing panels are not currently using a 10-character
external date format, you should do the following:
 - If you are currently using 8-character date fields on data entry or table panels and wish
to continue using 8-character date fields, ensure that the longer external date formats are
not available to your users through a user profile selection. To restrict the list of
acceptable external date formats in the user profile, update data attribute record
BLG&D$DFMT to remove any of the external date formats the users should not select.
It is not recommended that you delete the data attribute record from your database.
Doing so will prevent users from being able to select a preferred date format.
 - Consider migrating your panels to use 10-character date fields. To migrate panels, use
the BLGUT6M migration utility.

Refer to the "Tivoli Information Management for z/OS Operation and Maintenance
Reference" for information on using the BLGUT6M utility.

Specifying a Unique Date Format

If you do not plan to use any of the external date formats provided by Tivoli Information
Management for z/OS, and yet need to have your own variation, you can supply a user exit
routine as described in “Implementing an External Date Format through User Exits” on
page 242 and specify your own date conversion routine during the installation process.

Migration Considerations

The following activities may need to be performed by the PMF administrator or Tivoli
Information Management for z/OS programmer:
 - ODATEFMT keyword – Dates and times in existing records are automatically converted
from the external format in which they were collected into the internal format when the
record is read from the database. If you need to process records that were created or
updated with a version prior to Tivoli Information Management for z/OS Version 7.1,
you may need to specify the BLGPARMS macro ODATEFMT keyword if either of
these two conditions is true:
The length (in characters) of the external date format you previously used is different from the length of the value you will specify as the default external date format on the DATEFMT keyword. For example, if you previously used a 2-digit year external date format (DD/MM/YY) and had the following session parameters specified in a previous version:

```
DATECNV=(BLGCDATS,YYYY/MM/DD,DD/MM/YY)
```

And you intend to now use a 4-digit year external date format (MM/DD/YYYY), code the following:

```
DATECNV=BLGCDATS,
DATEFMT=DD/MM/YYYY,
ODATEFMT=DD/MM/YY,
```

The external date format length of DD/MM/YY is shorter than the new length of DD/MM/YYYY. You must include the ODATEFMT keyword parameter in your session parameters.

You previously specified both a "primary" and a "secondary" external date format so that users could enter dates on panels in two different date formats. If your database contains records that were created this way, you should include the ODATEFMT keyword and specify the "secondary" external date format as the value for ODATEFMT. For example, if you had this previously:

```
DATECNV=(BLGCDATS,YYYY/MM/DD,MM/DD/YYYY,MM/DD/YY)
```

You should now code this:

```
DATECNV=BLGCDATS,
DATEFMT=MM/DD/YYYY,
ODATEFMT=MM/DD/YY,
```

In this case, the dates associated with some of your older records do not match the default external date format on the DATEFMT keyword. Because they are different, you must specify the ODATEFMT keyword and supply the external date format used by the older records.

When processing dates in records that were produced prior to Version 7.1, Tivoli Information Management for z/OS checks the length of the date value in the record. If the length of the date value matches the length of the external date value specified for DATEFMT, the date is assumed to be in the format specified by DATEFMT. If the length is the same as that specified for the ODATEFMT value, the date is assumed to be in the format specified by ODATEFMT. Otherwise, the date is not converted and an error message is displayed.

When Tivoli Information Management for z/OS converts the dates in existing older records, it uses the date formats specified as BLGPARMS keyword parameters. It does not use the date format selection in the user profile to perform this internal conversion. However, when displaying the converted fields in older records to users, Tivoli Information Management for z/OS uses the user profile date format selection to display the record.

- **TSXs or TSPs** – If you have TSXs or TSPs that enter dates, you should ensure that they can support the potentially many external date formats various users may use. Write or
modify the TSX or TSP so that it uses 10-character internal date format (YYYY/MM/DD) for doing any processing or date calculations. Use the BLGIDATE and BLGEDATE user exits to convert the date in internal format from or to the current user’s external date format when necessary. For a description of these user exits, refer to the [Tivoli Information Management for z/OS Terminal Simulator Guide and Reference](#).

API applications – Prior to Tivoli Information Management for z/OS Version 7.1, API applications may have passed dates in a "secondary" external date format. Because any supported external date format can be used, the concept of "secondary" external date format no longer exists. API applications that pass dates in what had been "secondary" external date format must be changed to use the DATE_FORMAT PDB to specify the format being used.

Modifying Date Formats on Panels

If necessary, you can shorten the date field on your data entry and table panels, although this is not recommended. Shorter fields will limit the date format options users can select through the user profile. If you decide to shorten the date fields regardless, you should remove the date formats that your fields will not support due to the shorter length. To do this, modify data attribute record BLG&DFMT and remove the unsupported formats.

If you decide to switch from 10 characters to a shorter length, run the BLGUT6M utility to load the panels in the SBLMPNLS data set and convert the date fields to the shorter length. You can use the JCL provided in member BLGDATE8 in the SBLMSAMP sample library to do the conversion. Refer to the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#) for instructions on using the utility. Also, after installation, if you need to reassemble session-parameters members, be sure to specify the correct default external date format on the DATESFMT keyword of the BLGPARMS macro. You should also change both the visible and control information for the panels.

To identify panels containing dates, you can run a panel cross-reference report. Refer to the [Tivoli Information Management for z/OS Panel Modification Facility Guide](#) for instructions on running PMF reports.

Alternate Date Format for the Integration Facility

For the Integration Facility, the assisted-entry panels used in the problem create and problem inquiry dialogs are duplicated. Panels use a 10-character date field. Use BLGCDATS, the default date conversion user exit routine. You must also specify the external date format on the DATESFMT keyword of the BLGPARMS macro. Users can override the default external date format by making some other date selection in the user profile.

Note: If you use the Integration Facility, you should not implement universal time processing. Date processing results could be unpredictable if universal time processing is implemented. You (or your Tivoli Information Management for z/OS program administrator) should also consider using PMF to remove the **User’s time zone** field on BLG0P700, the User and database defaults panel. This field is intended to be used only if universal time processing is implemented at your installation. To avoid frustrating users by displaying a field that will not work in the Integration Facility environment, you can update the panel to remove the field so that users cannot use it. For instructions on updating panels, refer to the [Tivoli Information Management for z/OS Panel Modification Facility Guide](#).
Four-Digit Year Considerations

When selecting date formats for your installation, consider whether users want to see dates expressed with 4-digit years. The date fields on the panels shipped with Tivoli Information Management for z/OS are 10 characters long to accommodate entry of an external date format that uses a 4-digit year. If you have customized panels that do not use 10-character date fields, you can use the BLGUT6M migration utility to migrate your panels to use a new field length.

It is not necessary to change the external format to use a 4-digit year unless you want to work with dates before 1950 or after 2049. Tivoli Information Management for z/OS adds '19' to the front of years 50 through 99, and adds '20' to the front of years 00 through 49.

Although Tivoli Information Management for z/OS will work with a 2-digit year, there may be reasons you will still want to convert to a 4-digit year, such as organizational standards or interfaces with other products.

Changing to an Internal Format with a 4-Digit Year

If your database currently uses the YY/MM/DD internal date format, you must migrate it to the YYYY/MM/DD internal date format.

Follow these procedures to change your internal date format to YYYY/MM/DD:

- Modify and reassemble session members using Tivoli Information Management for z/OS Version 7.1.
- Modify any TSPs, RFTs, SRCs, API programs, or user exits that do freeform searches with dates to use a 4-digit year rather than a 2-digit year.
- Inform any users who do freeform searches with dates, or users who look at the glossary, that 4-digit years will be used.
- Delete and redefine the SDIDS. Run the BLGUT1 utility, pointing to one of the reassembled session-parameters members to reload the SDIDS with the new date format.

Modifying Customized Panels to Use 10-Character Date Fields

If you are like most users, you have already customized the product panels for your own use. If you want to expand the date fields on those panels and change the associated validation patterns, you can use PMF and/or the BLGUT6M migration utility to make the changes. Because you can make many changes efficiently and save some work in PMF, you should consider using the BLGUT6M utility to make these changes. You will need to update the date fields on each data entry panel, assisted-entry panel, or table panel. Details on how to use the utility are provided in the Tivoli Information Management for z/OS Operation and Maintenance Reference, but before you run the utility, you should first gather the information you will need to be able to run the utility.

There are various ways you can extract the information you need to run the BLGUT6M migration utility. This section, intended for the Tivoli Information Management for z/OS program administrator, describes one way you can extract this information. Be aware that other methods exist, and use the approach that works best for you.

The following procedure involves identifying data needed to change panels, offloading your customized panel data set, loading the base product panels, and migrating your offloaded panel data set to the new date length. Follow this procedure to perform these tasks:
1. Identify the data entry panels, assisted-entry panels, s-word index and p-word index values associated with the date fields. To do this, you can create test records. In the test records, supply data for all date fields and required fields. File the records, display them, and issue the VIEW INTERNALS command to obtain the data entry and assisted-entry panel names and s-word index values associated with dates. (You can issue a PRINT ALL command from the View Internals Data panel to put this information in a data set, if desired.) The internal data shows the panel name and s-word value, as shown in the following sample extract:

```
Panel PANEL REL COG- FLAGS SWORD STRUCTURED PREFIX WORD OR
NAME TYP/RSP LEV NIZE F M D INDEX WORD VISIBLE PHRASE
TME6RELF A/ 2 00 B/U 00/00/00 S0000 BC RELIEF RELEF/N
TME0B100 D/ 3 00 N/ 41/00/00 S8002 BC APARDATE DATR/02/07/97
*TME6DABG A/ 2 00 B/U 00/04/00 S0000 BC DSGNBEG DATDB/02/07/97
TME0B100 D/ 4 00 N/ 41/00/00 S803E
*TME0B200 D/ 2 00 N/ 41/00/08 S8008
*BLGCDTAD C/ 2 00 B/U 00/02/00 S802A BC DSGNDEAD DATE/02/17/97
TME0B200 D/ E 00 N/ 01/00/04 S000A
*TME1A111 C/ 2 00 B/U 00/00/00 S0C35 BC IM00SDM00 DATM/05/09/97
TME1A111 C/ 2 00 B/U 00/00/00 S0C62 BC IM00STM00 TIMM/09:59
```

In this example, asterisks were added to show the panels associated with date fields. Panel type 'A' refers to an assisted-entry panel; panel type 'D' is a data entry panel, and panel type 'C' is a control panel. If you are unfamiliar with how to read or interpret internal data, refer to the “Interpreting Internal Data” section in the Tivoli Information Management for z/OS Panel Modification Facility Guide for instructions.

2. Use PMF to obtain the prefix index (p-word index) values (perform a Panel Update for each assisted-entry panel, select Externals, type CONTROL and then enter 4 to view the Prefix and Content Validation dialog panel).

When identifying the prefix index, ensure that you select the one associated with an actual validation pattern (for example, NN</>NN</>NN) and not the one associated with a predefined validation pattern, like =DATE.

You should now have the following elements identified and recorded: panel name, s-word index, and current prefix index. For example:

```
Data Entry S-word Assisted-Entry Current Prefix New Prefix
Panel Index Panel Index Index Index
--------- -------- ----------- ------- -------
TME0B100 S8002 TME6DABG P000EB
```

3. Make a list of the prefix index values that begin with 0 to 7. Identify the new p-word index values supplied by Tivoli that correspond to the p-words used by your panels. To do this, you can use the list provided in the description of the BLGUT6M JCL sample in the Tivoli Information Management for z/OS Operation and Maintenance Reference.

For example:
<table>
<thead>
<tr>
<th>Data Entry Panel</th>
<th>S-word Index</th>
<th>Assisted-Entry Panel</th>
<th>Current Prefix Index</th>
<th>New Prefix Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>TME0B100</td>
<td>S8002</td>
<td>TME6DABG</td>
<td>P00E8</td>
<td>P0852</td>
</tr>
</tbody>
</table>

In addition, if you have any prefix index values that begin with 8 or a higher number that represent p-words you may have created (other than DATA/ through DATX/ which are reserved and shipped with the product), you can create a new p-word in the dictionary to obtain a new prefix index value.

4. Offload your modified VSAM panel data set to a partitioned data set (one at a time into separate partitioned data sets, if you have multiple panel data sets) by using the BLGUT6F offload utility.

5. Install the Tivoli Information Management for z/OS base product panels by running the BLGUT6 utility (not the BLGUT6M utility). The input to BLGUT6 is the BLM.SBLMPNLS data set.

6. Using the information you collected, run the BLGUT6M migration utility to replace the panels in the VSAM panel data set that you offloaded. Repeat this step for each customized panel data set you have. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for utility instructions.

You can also refer to the SBLMSAMP library for sample JCL (member BLGUT6MJ). You must change the data set names for DD names STEPLIB, BLGPDS, BLGPNLS, and BLGDICT to correspond to data set names at your location. Include the LENGTH keyword and specify the new field length (for example, 10 characters) and VALIDATION keywords as necessary to change the validation patterns.

Using the previous example, your JCL would include the following:

```
MODIFY
LENGTH S8002,10
VALIDATION P00E8,P0852
```

The keyword value of P0852 represents the p-word index value of the validation pattern which should replace the old validation pattern in all assisted-entry panels. In this case, the new validation pattern (IIV63 for P0852) accepts any of the 22 external date formats supported by Tivoli Information Management for z/OS or any valid user-defined format.

Note: If you created any additional date fields (other than those provided with the product), you must also add lines in your JCL to include the field lengths and validation patterns for the fields you created.

7. When the BLGUT6M migration utility runs, warning messages are generated if a field cannot be expanded due to insufficient space. This may occur with date fields appearing in the right-hand column of your panels, where expansion would cause the last date field position to be against the edge of your panel. If this occurs, use PMF to correct any panels that could not be expanded by BLGUT6M. You can use the AT and MOVEA commands to shift the date fields on the panels to provide room for expansion.

8. Use BLGUT6F to offload any corrected panels to a read panel data set.

9. Run BLGUT6M to migrate any corrected panels.
10. Visually inspect the data entry and table panels. Use the HELP VALIDATE command to inspect the validation patterns associated with the changed fields on your panels.

In addition to performing these tasks, you should ensure that:

- If you change the internal date format, be sure to run the BLGUT1 utility to update the SDIDS.
- Any report format tables that you have created, APIs, TSPs, etc. that use dates are updated to handle dates in the new format. The base product RFTs and PIDTs are already updated to handle 10-character date fields.

If your API application must receive and process dates in a particular external date format, ensure that the DATE_FORMAT option is specified in your API transactions with the database. The value specified for the DATE_FORMAT option should match one of the supported external date formats. If it does not matter what external date format is used by your API application, and no DATE_FORMAT option is specified, the external date format specified at installation on the BLGPARMS DATEFMT keyword is used by the API application. By setting the DATE_FORMAT option, you can also set up your API programs to be unaffected by date changes in the Tivoli Information Management for z/OS database. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for more information on defining date formats for use with the Tivoli Information Management for z/OS APIs.

As for TSPs or TSXs, if you use them to enter, retrieve, change or manipulate dates, be aware that the external date format can vary depending on who is running the TSP or TSX (the format selected in the user profile is in use if specified). If your TSPs or TSXs process date fields, you should modify them to perform all processing in internal format and to call the BLGIDATE user exit for data retrieval and BLGEDATE user exit for data entry. The BLGEDATE user exit converts a date from internal format to the current user’s external format. BLGIDATE converts a date from the current user’s external format to internal format (specifically, YYYY/MM/DD). If no date preference is specified in the user profile, the external date format specified on the DATEFMT keyword is used. Refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference for a description of these user exits.

Converting Existing Records in Your Database

If you are changing the external format for an existing database, you will still have records in the database with dates in the original format. As described previously in “Migration Considerations” on page 234, dates in existing records are automatically converted from the external format in which they were collected to internal format when the record is read from the database (for example, when the record is displayed, updated, or printed on a report). As a result, there is no need to perform specific migration tasks.

If you are uncertain as to whether date records are being converted properly for your database, consider running the following test:

- Create a few test records with a date occurred (DATO/) of:
 - = (the current date)
 - Your birth date in 1997
 - Your birth date in 2023
 - Your birth date in 1923 (even if you were not born then)
• Your birth date in 2098

■ Use the VIEW INTERNALS command to ensure the external date for the date occurred is stored in the correct 4-digit year format.

■ Use the GLOSSARY command to view the SDIDS index to confirm that a corresponding date occurred entry exists for each of the dates you entered in the test records. The entries should be in the format YYYY/MM/DD. Ensure no glossary entries exist for dates in the format YY/MM/DD.

■ Enter a search argument to ensure the records show up in the search results list. For instance, you should see a result for the 1997 record, the 2023 record, etc.
Implementing an External Date Format through User Exits

If you do not use a Tivoli Information Management for z/OS external date format and instead prefer to use your own date conversion routine, you can supply a user exit. Your user exit must convert the date entered by a user to Tivoli Information Management for z/OS’s internal format and must convert a date in Tivoli Information Management for z/OS’s internal format to the organization’s external format of the date before display.

If you supply your own date conversion routine to use an alternate date format, be aware of the following:

- You must specify the same format when you run the Tivoli Information Management for z/OS utilities. Failure to do this can produce unpredictable results.
- All users of the session must use the same external date format. The user profile option to change external date formats is not supported if you supply your own date conversion routine. To avoid confusion, remove the date format entry field from panel BLG0P700.
- You cannot use the BLGPARMS macro ODATEFMT keyword to specify an external date format of old records for conversion purposes.

During its initialization processing, Tivoli Information Management for z/OS attempts to load your user exit routine. If it can be loaded, it is used for all date conversions performed by Tivoli Information Management for z/OS.

| Programming Interface information |

Tivoli Information Management for z/OS enters your program as a user exit from normal Tivoli Information Management for z/OS processing, so it must follow standard linkage conventions.

The contents of the general purpose registers, upon entry to your user exit, are shown in Table 9.

Table 9. Date Conversion General Purpose Register Contents

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register 0</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Register 1</td>
<td>Address of a 4-word input parameter list</td>
</tr>
<tr>
<td>Registers 2–12</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Register 13</td>
<td>Address of a 72-byte register save area</td>
</tr>
<tr>
<td>Register 14</td>
<td>Return address</td>
</tr>
<tr>
<td>Register 15</td>
<td>Module entry point address (module return code on exit)</td>
</tr>
</tbody>
</table>

The following procedure outlines the steps you follow to implement a different external date format.

1. Write a user exit routine in the language of your choice. You must make this program reentrant. A sample program is in member BTNUDATE in the SBLMSAMP library.

Requirements for the program you write depend on whether you use an existing database with records containing the old date format and on whether you plan to use multiple date formats within your databases.
If you are establishing a new database, the program you write must convert your organization’s user-entered date to the Tivoli Information Management for z/OS internal format and convert the Tivoli Information Management for z/OS internal format back to your organization’s external format. A switch setting determines which function is required.

Updating records in an existing database containing dates in the old format damages the data in your SDIDS unless your date conversion user exit routine can convert both the old and new formats to the Tivoli Information Management for z/OS internal format, and convert the Tivoli Information Management for z/OS internal format back to your organization’s external format. Refer to the sample date conversion user exit routine prolog in member BTNUDATE in the SBLMSAMP library.

Note: If you included SAM or Network Problem Determination Application (NPDA) problem reporting in the database, the dates contained in the records created by SAM or NPDA are in the format MM/DD/YY. Therefore, your date conversion user exit routine must convert this format as well as your external date format if you intend to update these records.

Your program must do the following:

a. Get the input parameters that the address in Register 1 points to. The four parameters have slightly different descriptions, depending on the direction of the conversion. Table 10 describes the parameters. Those that apply to the external-to-internal format are in parentheses.

Table 10. Date Conversion Input Parameter Descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@SWITCH</td>
<td>Fullword</td>
<td>Address of a fullword, fixed, and signed, binary field. The switch indicates the direction of the conversion: 0 requests an internal-to-external format. 4 requests an external-to-internal format.</td>
</tr>
<tr>
<td>@EXTERNAL</td>
<td>Fullword</td>
<td>Address of 66 bytes consisting of: ■ A halfword signed binary number for the length of the date in the external format ■ A 64-byte character field for the date in external format.</td>
</tr>
<tr>
<td>@INTERNAL</td>
<td>Fullword</td>
<td>Address of an 8-byte character field that contains the internal date in YY/MM/DD format.</td>
</tr>
<tr>
<td>@INTERNAL2</td>
<td>Fullword</td>
<td>Address of 12 bytes consisting of: ■ A halfword signed binary number for the length in the date in the internal format. Only three values are accepted: • X'0' - ignore any date at the address in the @INTERNAL2 parameter • X'A' - @INTERNAL2 parameter contains a date in YYYY/MM/DD format ■ A 10-byte character field for the date in the internal format.</td>
</tr>
</tbody>
</table>

b. Perform date modification based on the switch setting (the @SWITCH parameter):
1) If the switch is 0, get the internal date (from either the @INTERNAL or @INTERNAL2 parameters), change it to the external format you want to use, and place the date’s length and the date itself at the address in the @EXTERNAL parameter.

2) If the switch is 4, get the external date (the @EXTERNAL parameter), change it to internal format, and place the date’s length (10) and the date in the YYYY/MM/DD format at the address in the @INTERNAL2 parameter. Any date at the address of the @INTERNAL parameter is ignored.

Figure 22 illustrates the parameter list (PLIST) structure for the user exit as it appears to an assembler-language routine. The address of the PLIST is found in general purpose register 1 (GPR1).

An external date format that is fewer than 64 characters long (including the prefix and a slash, if present) is left-justified with the remainder of the field padded with blanks. You cannot use an organization-defined external date format of more than 64 characters. The panels shipped with Tivoli Information Management for z/OS do not permit an organization-defined external date format of more than 10 characters (or 8 characters if you are using shorter date fields); you must change some panels using PMF if you want to use an external date format of more than 10 (or 8) characters.

c. Set the return code in register 15, and return to the calling program. Follow standard linkage conventions on exit from the program. For internal-to-external conversion, the only valid return code is:

0 Conversion successfully performed.

For external-to-internal conversion, the only valid return codes are:

0 Conversion successfully performed. The specified external date passed all organization-required validation checks.

16 Conversion failed. The user’s date input is incorrect. Tivoli Information Management for z/OS notifies the user of the error and reprompts.
Any other return code causes an ABEND.

2. Use the Installation Tailoring Facility to specify the load module name of your user exit routine in your session-parameters member. Or use the DATECNV keyword in the BLGPARMS macro instruction. See page 322 for additional information.

3. Make the program module available at installation time. The AMODE of your date conversion user exit routine must be 31.

4. Use PMF to modify the data-entry or table panels to adjust the length of the fields as necessary. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for details on modifying panels.

Example of a Date-Conversion Routine — BTNUDATE

The BTNUDATE sample program (in the SBLMSAMP library) is an example of a date conversion user exit routine that is coded in assembler language. This program converts dates to and from the external format of DDMMMYY (MMM represents the first 3 characters in the month). It also supports a second external format for records that originate from an interface that contains a different external format to convert dates to the internal format. However, a display of an old record shows any dates in the old format. You can use the BTNUDATE example as a model for writing your user conversion routine.

You must link-edit this user exit routine with an addressing mode (AMODE) of 31.

Note: You must allocate storage to make the program reentrant.

Date Validations

Using your own date conversion user exit routine does not affect Tivoli Information Management for z/OS’s validation of users’ date entries. After a date is converted to the internal format you chose, Tivoli Information Management for z/OS validates it according to the date ranges specified in Table 11:

<table>
<thead>
<tr>
<th>Date Field</th>
<th>Valid Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY</td>
<td>00–99</td>
</tr>
<tr>
<td>YYYY</td>
<td>0000–9999</td>
</tr>
<tr>
<td>MM</td>
<td>01–12</td>
</tr>
<tr>
<td>DD</td>
<td>01–31, according to each month and year. For non-leap years, the DD value used with February cannot be greater than 28.</td>
</tr>
</tbody>
</table>

If the program exit or the Tivoli Information Management for z/OS validation check detects an error, the user receives an error message.

End of Programming Interface information

Enabling an Alternate Time-of-Day Format

You can use your own external time-of-day format by specifying an installation-supplied user exit routine during the Tivoli Information Management for z/OS installation process.

Note: All time-of-day entries created previously with Information/System Versions 1 through 4.2, Information/Management Version 5.1, and records created through the
Enabling an Alternate Time-of-Day Format

NetView Hardware Monitor Interface, are displayed in the old HH:MM format. (The term old format refers to the format that was used when the records were created.) There is no utility program to convert the old time of day entries to the new format you choose. If NetView Hardware Monitor Interface records are updated, the time last altered appears in the current time-of-day format.

The Tivoli Information Management for z/OS internal time-of-day format is the same as the default external format:

\[
HH:MM
\]

| HH | The hour of the day |
| MM | The minute of the hour |

A colon (:) separates the hour from the minutes. The time-of-day format:

- Uses a 24-hour, 60-minute clock format
- Can be up to 30 characters, including the length of the prefix
- Can include special characters if you modify the panels to accept them

Note: You may not want to use blanks because blanks act as word delimiters.

- Cannot include commas because commas separate responses in response chains.

Time-of-day data must be prefixed and the prefix must begin with the characters TIM. If you use your own user-written time-of-day conversion routine, the TIM prefix must not be used for any data other than time-of-day data.

Notes:

1. This enhancement only applies to time-of-day format. Durations and extended durations continue to be in the DD:HH:MM and DDDD:HH:MM formats.

2. If you plan to use the SETD Report Format Facility statement, your external time format must not be similar to the duration format, the extended duration formats, or your external date formats, so that the Tivoli Information Management for z/OS Report Format Facility can reliably detect that it is processing a time as opposed to a duration, extended duration, or date.

If you plan to use the default time-of-day format, you need not write a user exit routine. However, if you do not want to use the Tivoli Information Management for z/OS default time-of-day format, you must supply a user exit routine. Your user exit must convert the time-of-day entered by a user to Tivoli Information Management for z/OS’s internal format and must convert a time-of-day in Tivoli Information Management for z/OS’s internal format to the organization’s external time-of-day format before display.

During its initialization processing, Tivoli Information Management for z/OS attempts to load your user exit routine. If it can be loaded, it is used for all time-of-day conversions performed by Tivoli Information Management for z/OS.

| Programming Interface information |

Tivoli Information Management for z/OS enters your program as a user exit from normal Tivoli Information Management for z/OS processing, so it must follow standard linkage conventions.
The contents of the general purpose registers, upon entry to your time-of-day user exit, are shown in Table 12.

Table 12. Time-of-Day Conversion General Purpose Register Contents

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register 0</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Register 1</td>
<td>Address of a 3-word input parameter list</td>
</tr>
<tr>
<td>Register 2-12</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Register 13</td>
<td>Address of a 72-byte register save area</td>
</tr>
<tr>
<td>Register 14</td>
<td>Return address</td>
</tr>
<tr>
<td>Register 15</td>
<td>Module entry point address (module return code on exit)</td>
</tr>
</tbody>
</table>

Implementing a New External Time-of-Day Format

The following procedure outlines the steps to follow to implement a different external time-of-day format:

1. Write a user exit routine in the language of your choice. You must make this program reentrant. A sample program is in member BLGUTIMC in the SBLMSAMP library.

Requirements for the program you write depend on whether you use an existing database with records containing the old time-of-day format and on whether you plan to use multiple time-of-day formats within your databases.

If you are establishing a new database, the program you write must convert your organization’s user-entered time-of-day to the Tivoli Information Management for z/OS internal format and convert the Tivoli Information Management for z/OS internal format back to your organization’s external format. A switch setting determines which function is required.

Updating records in an existing database containing times-of-day in the old format damages the data in your SDIDS unless your time-of-day conversion user exit routine can convert the new format to the Tivoli Information Management for z/OS internal format and can also recognize and support the old format. The old format does not need conversion but still must be returned to Tivoli Information Management for z/OS as the internal time. For your time-of-day conversion user exit routine to reliably detect whether it is processing a time in the old format or a time in the new format, your new format cannot be similar to an nn:nn format (where \(nn \) is a 2-digit numeric value).

Note: If you included SAM or NPDA problem reporting in the database, the times-of-day contained in the records created by SAM or NPDA are in the format HH:MM. Therefore, your time-of-day conversion user exit routine must support this format as well as your external time-of-day format if you intend to update these records.

Your program must do the following:

a. Get the input parameters that the address in Register 1 points to. The three parameters have slightly different descriptions, depending on the direction of the conversion. Table 13 gives the parameter descriptions. Those that apply to the external-to-internal format are in parentheses.
Table 13. Time-of-Day Conversion Input Parameter Descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@SWITCH</td>
<td>Fullword</td>
<td>Address of a fullword fixed signed binary field. The switch indicates the direction of the conversion:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 requests an internal-to-external format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 requests an external-to-internal format</td>
</tr>
<tr>
<td>@EXTERNAL</td>
<td>Fullword</td>
<td>Address of 32 bytes consisting of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) A halfword signed binary number for the length of the time-of-day in the external format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) A 30-byte character field for the time-of-day in your organization’s external format.</td>
</tr>
<tr>
<td>@INTERNAL</td>
<td>Fullword</td>
<td>Address of a 5-byte character field for the time-of-day in the HH:MM internal format.</td>
</tr>
</tbody>
</table>

b. Perform time-of-day modification based on the switch setting (the @SWITCH parameter):

1) If the switch is 0, get the internal time (the @INTERNAL parameter), change it to the external format you want to use, and place the time’s length and the time itself at the address in the @EXTERNAL parameter.

2) If the switch is 4, get the external time (the @EXTERNAL parameter), change it to internal format HH:MM, and place the internal format at the address in the @INTERNAL parameter.

Figure 23 illustrates the parameter list (PLIST) structure for the user exit as it appears to an assembler-language routine. The address of the PLIST is found in general purpose register 1 GPR1.

Figure 23. Input Parameter List for Alternate Time-of-Day Format User Exit

An external time format that is fewer than 30 characters long including the prefix data is left-justified with the remainder of the field padded with blanks. You cannot use an organization-defined external time-of-day format of more than 30 characters. The panels shipped with Tivoli Information Management for z/OS do not permit an
organization-defined external time format of more than 5 characters; you must change
some panels using PMF if you want to use an external time-of-day format of more
then 5 characters.

c. Set the return code in register 15 and return to the calling program. Follow standard
linkage conventions on exit from the program. For internal-to-external conversion, the
only valid return code is:

0 Conversion successfully performed.

Any other return code causes an ABEND.

For external-to-internal conversion, the only valid return codes are:

0 Conversion successfully performed. The specified external time passed all
organization-required validation checks.

16 Conversion failed. User’s time input is incorrect. Tivoli Information
Management for z/OS notifies the user of the error and reprompts.

Any other return codes cause an ABEND.

2. Use the Installation Tailoring Facility to specify the load module name of your user exit
routine in your session-parameters member. Or use the TIMECNV keyword in the
BLGPARMS macro instruction. See page 331 for additional information.

3. Make the program module available at installation time. The AMODE of your
time-of-day conversion user exit routine must be 31.

4. Modify the time panels using PMF. Refer to the Tivoli Information Management for z/OS
Panel Modification Facility Guide for details on modifying panels. A list of the panels
appears in Table 14 on page 250.

Example of a Time-of-Day Conversion Routine

The BLGUTIMC sample program (in the SBLMSAMP library) is an example of a
time-of-day conversion user exit routine that is coded in assembler language. The program
converts times-of-day to and from a 12-hour time-of-day external format. It also supports a
second external format of HH:MM for records that originate from an interface that contains
the Tivoli Information Management for z/OS default HH:MM format to return as the internal
format (no conversion is necessary). However, a display of an old record continues to show
any times-of-day in the format in which they were entered. You can use the BLGUTIMC
example as a model for writing your own time conversion program.

You must link-edit this conversion user exit routine with an AMODE of 31.

Note: You must allocate storage to make the program reentrant.

Modifying Time-of-Day Formats on Panels

In addition to writing the exit routine, you must modify the appropriate assisted-entry panels
so your users can enter time correctly. Use PMF to change the visible portion and control
portion of the Tivoli-supplied assisted-entry panels. If your new external format is nn:nn,
you only need to change the visible portion.

Panels

If your organization adopts a new time-of-day format, you must modify the assisted-entry
panels listed in Table 14.
Table 14. Panels Requiring Modification For Time-of-Day Format Changes

<table>
<thead>
<tr>
<th>Panel Name</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG6ALTt</td>
<td>Time Altered</td>
</tr>
<tr>
<td>BLG6ASST</td>
<td>Time Assigned</td>
</tr>
<tr>
<td>BLG6CMPT</td>
<td>Time Finished</td>
</tr>
<tr>
<td>BLG6CRTM</td>
<td>Time Entered</td>
</tr>
<tr>
<td>BLG6OCCT</td>
<td>Problem Occurrence Time</td>
</tr>
<tr>
<td>BLG6REQT</td>
<td>Time Required</td>
</tr>
<tr>
<td>BLG6SCHT</td>
<td>Planned Start Time</td>
</tr>
<tr>
<td>BLG6TART</td>
<td>Planned End Time</td>
</tr>
<tr>
<td>BLG6TIMX</td>
<td>General Time</td>
</tr>
<tr>
<td>BLG6TSTA</td>
<td>Actual Start Time</td>
</tr>
<tr>
<td>BLG600CT</td>
<td>Time Closed</td>
</tr>
<tr>
<td>BLG7ALTt</td>
<td>Time Altered</td>
</tr>
</tbody>
</table>

Alternate Time-of-Day Format for the Integration Facility

If your organization also uses the Integration Facility, then in addition to the panels listed in Table 14, you must also modify the following Integration Facility assisted-entry panels for your new time-of-day format:

Table 15. Integration Facility Panels Requiring Modification For Time-of-Day Format Changes

<table>
<thead>
<tr>
<th>Panel Name</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTN6CMPT</td>
<td>Time Finished</td>
</tr>
<tr>
<td>BTN6OCCT</td>
<td>Problem Occurrence Time</td>
</tr>
<tr>
<td>BTN6SCHT</td>
<td>Planned Start Time</td>
</tr>
<tr>
<td>BTN6TART</td>
<td>Planned End Time</td>
</tr>
<tr>
<td>BTN6TIMX</td>
<td>General Time</td>
</tr>
<tr>
<td>BTN6TSTA</td>
<td>Actual Start Time</td>
</tr>
<tr>
<td>BTN600CT</td>
<td>Time Closed</td>
</tr>
</tbody>
</table>

Additionally, if you plan to use the Panel Set Create function of PMF, you must modify panels BLM6Y009 (Occurrence Time) and BLM6Y00G (Time Required).

Additional Panel Considerations

All of the assisted-entry panels listed in Table 14 and Table 15 are started through certain data-entry or selection panels. If your new external time-of-day format is greater than or fewer than 5 characters, be sure to modify the related data-entry panels. To identify all related panels, run a panel cross-reference report. Refer to the Tivoli Information Management for z/OS Panel Modification Facility Guide for instructions.

Time-of-Day Validations

Using your own conversion user exit routine does not affect Tivoli Information Management for z/OS’s validation of users’ time-of-day entries. After a time is converted to the internal format, Tivoli Information Management for z/OS validates it according to the ranges specified in Table 16 on page 251.
Table 16. Valid Time-of-Day Ranges

<table>
<thead>
<tr>
<th>Date Field</th>
<th>Valid Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>00–24</td>
</tr>
<tr>
<td>MM</td>
<td>00–59</td>
</tr>
<tr>
<td></td>
<td>Note: If HH is 24, then MM is 00.</td>
</tr>
</tbody>
</table>

If the program exit or the Tivoli Information Management for z/OS validation check detects an error, the user receives an error message.

Implementing Universal Time Processing

If your company or customer locations are spread geographically, you may want to consider implementing the universal time feature of Tivoli Information Management for z/OS. You can specify universal time processing by including the TIMEZONE keyword and time zone symbol on the BLGPARMS macro and by defining a relationship between date and time fields. The advantages of implementing universal time processing include the following:

- Users in different geographic areas who share a database can enter and view dates and times in their own time zones, regardless of how or where the records were entered. For example, if a user in Boston enters a problem record at the following date and time:

 Date: 04/30/2001 Time: 10:45

 a user in Italy can see the record as:

 Date: 30/04/2001 Time: 16:45

 The Boston time value of 10:45 is expressed as 16:45 for the user in Italy, reflecting the data in a time zone the user can readily understand.

 If the universal time feature is not used, the users in both countries would see the same value (10:45), which could make it more difficult for users in one geographic area to work with the records in the database if the format chosen is not native to their area.

- With universal time processing, you can find problems that occurred within a period of time easily, even if they were entered in different time zones. This is especially useful if you need to track service level agreements.

- For companies that use Tivoli Information Management for z/OS and undergo mergers, it is easier to handle differences in external date and time formats because large migration efforts are not required.

This section explains some of the concepts behind universal time processing and describes how to implement it in your Tivoli Information Management for z/OS environment.

Note: If you use the Integration Facility, you should not implement universal time processing. Date processing results could be unpredictable if universal time processing is implemented. You (or your Tivoli Information Management for z/OS program administrator) should also consider using PMF to remove the User’s time zone field on BLG0P700, the User and database defaults panel. This field is intended to be used only if universal time processing is implemented at your installation.
Universal Time Concepts

Universal time processing in Tivoli Information Management for z/OS is based on Coordinated Universal Time. Coordinated Universal Time (UTC, or UT as it may be called in this manual) is a time base that is coordinated on a longitude, which is an imaginary line running from the North Pole to the South Pole. The universal time feature provided with Tivoli Information Management for z/OS is based on Gregorian time (hours and minutes). Universal time is coordinated on the Prime Meridian (Greenwich, UK). The Prime Meridian is at 0 degrees, and there are longitudinal lines every 15 degrees for a total of 24 (360 degrees). Because it is universal, universal time can be referred to by anyone on the globe.

By implementing universal time processing in Tivoli Information Management for z/OS, you can have users anywhere in the world work with records in the database in their own local time. This feature can help make it easier for users to work with the data, because they can understand date and time values from their own perspective. For example, suppose a system crash occurred at noon. Where is that "noon"? Was it in the UK? In the US? In Australia? Noon can represent different times depending on the time zone. Knowing the time zone is essential to understanding what a particular time value means. It is also necessary to determine the sequence of events and to calculate the time difference between two events.

To illustrate this concept, suppose a system crash occurred at 8:00 a.m. in California. The problem is resolved 5 minutes later by someone in Boston. The Boston time is really 11:05 a.m. The duration of the outage is merely 5 minutes; but if you simply calculated the difference between the 8:00 a.m. and 11:05 a.m., you would think the outage was 3 hours and 5 minutes. If you did not have a universal way to calculate time, you could get a distorted picture of how long a problem is actually open.

Of course, you could require everyone to enter times using a single time zone, but that imposes a burden on all users not in that particular time zone. It may also lead to errors, especially if you have users in different countries which have different rules for Daylight Saving Time. The time difference between one country and another can change as often as four times a year if the two countries start and end Daylight Saving Time on different days. Therefore, it is important to know what Daylight Saving Times rules are in effect for your various geographies. With Tivoli Information Management for z/OS, you can use the Daylight Saving Time rules provided, or you can define your own rules as necessary.

How Data is Converted and Stored

Date values are entered by users and displayed in the user’s local time. When universal time processing is enabled, the data entered by a user is automatically converted from that user’s local time to universal time. The dates and times are stored in the SDDS in universal time, regardless of any user preference. When records are read from the database, the date and time fields are automatically converted from universal time to the local time of the user reading the records.

Whether or not you decide to implement universal time processing, users can select the external date format of their choice by updating their user profile. For a discussion of migration considerations, see "Tivoli Information Management for z/OS Version 7.1 Changes” on page 103 and "Migration Considerations” on page 234.
History data for dates and times is stored in universal time and converted to the user’s local time upon display.

Date and time math program exits (including the calculation of duration, such as how long a problem was open) use universal time values, when available, in all calculations if universal time processing is specified. In addition, date and time calculations are adjusted for Daylight Saving Time if the duration is less than one day. For example, if Daylight Saving Time begins at 02:00 on April 3, then the duration from 04/02 20:00 to 04/03 08:00 is calculated as 11 hours (adjusted). Likewise, the duration from 04/02 20:00 to 04/03 19:59 is calculated as 22 hours, 59 minutes (adjusted). But the duration from 04/02 20:00 to 04/03 20:00 is calculated as 1 day (24 hours); this calculation is unadjusted because the parameters span a full day, even though the actual time elapsed is 23 hours. (If TIMEZONE is not specified, universal time values are unavailable. For non-universal time date and time fields, the values cannot be converted to the current user’s time zone. The original local date and time stored in the record are used instead.)

Although users can select the external date format they want to see on panels, in reports, and in other output, they cannot control which form of the value is shown. That is, their user profile does not let them switch back and forth between seeing universal time, original local time, or user’s local time for any given date or time field. (These terms are defined in "Terminology" on page 255.) The content of the field data is determined by the PMF administrator through panel definition, the author of an RFT, or the author of a TSX which uses the FINDSDATA control line.

Date Processing by PMF, RFTs, TSXs or TSPs, and FINDSDATA

When a record is processed, each date or time value exists in the record in the following forms:

- **User’s local** – The value in the user’s *external* format and, for universal time fields, the user’s local time
- **Original local** – The value in *internal* format as it was entered (that is, with no time zone adjustment)

For fields defined as universal time fields, a third form is also present:

- **Universal time** – The value in *internal* format and universal time

If you use PMF, write RFTs to produce reports, or write or use TSXs or TSPs using the FINDSDATA control line, be aware that these functions by default use the user’s local date and time forms only—not universal time or original local form. (Before Tivoli Information Management for z/OS Version 7.1, the original local form was used by default because it was the only form available.) Currently, all output (for example, screen display, RFT output, data retrieved through the API) for all date and time fields collected are in the external format of the user accessing the data. If the field is defined as a universal time field, these values will represent the user’s local time; otherwise they will represent the data as it was entered into the record.

For example, suppose you are using FINDSDATA with the default search type (DATA) to find a date value. By default, FINDSDATA only looks at the user’s local forms of dates and times (not the universal time and original local forms), so you must specify the user’s local form of the date or time. In other words, if the user’s date format is DD-MM-YYYY and you want to use the FINDSDATA control line to find a "date occurred" of any day in May
2001, you must use an argument containing DATO/**-05-2001. A FINDSDATA control line with an argument will not find any universal time or original local date values, even if the argument matches the data.

However, PMF administrators, RFT writers, and TSX writers can force a particular form of date and time field data on panels, RFTs, or in TSXs, regardless of what users set up as a preference in their user profiles. A particular format can be forced by doing the following:

- **TSXs**: To use the FINDSDATA control line to find data in a form other than user’s local, you must specify a "searchtype" of UT to find the universal time form or OLOCAL to find the original local form. In these cases, FINDSDATA only checks the specified form of date and times for a match.

- **Panels**: A data-entry or table panel can be defined to display the original local or universal time forms of a date or time value. Use PMF to specify OLOCAL or UT, respectively, for "Date/time display form" in the field’s control information. It is possible to show all three forms on a single panel. To do so, simply define three separate fields for the same piece of data, each with a different setting for the "Date/time display form" option.

 CAUTION! All values entered must be in user’s local form (external format), regardless of the setting of "Date/time display form." To avoid confusion, it is strongly recommended that you specify OLOCAL or UT only on display fields and not on entry fields. Specifying OLOCAL or UT on an entry field means the data will be displayed in a different form than it must be entered, which is confusing to users.

- **RFTs**: On a PUT statement, you can use the optional DTFORM keyword (date/time form) with a value of UT to display the universal time date or time on a report. You can also specify the OLOCAL value on this keyword to display the original local date or time. If you omit the DTFORM keyword, the user’s local date or time will be displayed.

How Time Zones are Specified

As described in "Specifying Preferences in the User Profile" on page 230, users have the ability to override the external date format and time zone specified at installation for use by their session. The user profile option enables users to specify a preference of how dates should be displayed, and what user time zone should be used, so that it is easier to work with the data. In many cases, users will prefer to see the data in their own local external date format and time zone. This eliminates the need for users to remember, for example, that a particular company location is 4 hours ahead of their own local time. It also helps to eliminate the annoyance of having to interpret panel data in a foreign format.

You can specify the time zone Tivoli Information Management for z/OS should use in the following ways:

- You can code a particular time zone symbol for the BLGPARMS TIMEZONE keyword for a given session member. If you previously had the TIMEDEL parameter specified, you can remove it. The TIMEZONE keyword is required for universal time processing to occur. The time zone value you specify must match one of the time zone symbols in the time zone record. Only one time zone symbol should be coded in the TIMEZONE keyword.

- A user can select a time zone symbol in the user profile. Selection of a time zone through the user profile overrides the setting in BLGPARMS for the user.
If you are interacting with the database through an API application, you can specify the time zone selection through the high-level API parameter data block (TIME_ZONE PDB) or PICATZON field in the PICA for the low-level API.

If you have records in your database that meet any of the following conditions, you should include an additional keyword in your session parameters, OTIMEZON. Include the OTIMEZON keyword to represent the time zone of the older records in your database. Tivoli Information Management for z/OS uses the value specified for OTIMEZON to convert dates and times in the older records to universal time. If OTIMEZON is not specified, the time zone specified on the TIMEZONE keyword is used for migrating old records.

- Records were created with versions of Tivoli Information Management for z/OS or its predecessor products before Version 7.1, and the dates and times in those records are for a time zone which is different from the default time zone coded in the TIMEZONE keyword.
- You have date or time fields in any records that were created before the dates and times were defined as a universal time (related) pairs. This includes:
 - Records created before Tivoli Information Management for z/OS Version 7.1
 - Records created with Version 7.1 before universal time processing was enabled
 - Records created with Version 7.1 after universal time processing was enabled, but before the fields were defined in the DATETIME record

Establishing a Relationship Between Date and Time

If you enable universal time processing by specifying the TIMEZONE keyword, you must also define a relationship between date fields and time fields in your records. Only the date and time fields that are related in related pairs (and therefore listed in a DATETIME record) are processed in universal time. The relationship also enables users across various geographic regions to see field data on a panel and know exactly what is represented by the field.

A related pair is a link between the date and time fields. This link is established primarily to identify the exact moment in time at which an event occurred (for example, Date occurred and Time occurred). This relationship is also necessary for any automated calculation of time differences to take place, such as for service level agreements. Without knowing that a particular date is associated with a particular time, it would be difficult to calculate, for example, open problem durations. The date and time data for related pairs is stored in the database in universal time but is displayed back to the user in the current user’s time zone.

Terminology

At this point, you may be getting a bit confused about date and time processing. The following terms used in this appendix are defined here to help you understand how universal date and time processing works in Tivoli Information Management for z/OS. Reviewing these definitions before proceeding will make it easier for you to understand how to plan for and implement the following optional universal time functions in Tivoli Information Management for z/OS:

- Daylight savings time definition
- Time zone definition
- Related date and time fields
Related field

A date or time field that has a defined relationship to another time or date; for example, Date occurred and Time occurred. A date field is related to a time field only by the Tivoli Information Management for z/OS administrator, who must define the relationship by updating a special DATETIME record in the database. To convert universal time to a user’s local time, date and time fields must be related.

Tivoli Information Management for z/OS provides a DATETIME record including most of the related fields that the base product uses. If you want fields related on your customized panels, you need to create a DATETIME record for those panels. Instructions are provided in “Relating Date and Time Fields” on page 262.

Independent field

A date or time field that has no defined relationship. No universal time processing is done for independent fields. Users viewing the data in an independent field will see the date and time in their external format, but the value will be the value that was entered, which may not be their local time.

Universal time (UT)

A worldwide common standard time, also sometimes called Greenwich mean time (GMT) or Zulu.

Original local date, original local time

The local date or time value that was entered into a field by a user. For example, if a user in Chicago types 05/15/2001 as the Date occurred and 11:30 as the Time occurred, that date and time is the original local date and original local time.

User’s local date, user’s local time

The date or time value in the local time of the user currently viewing the data. For example, if a user in Frankfurt is viewing the problem record opened by the user in Chicago on 05/15/2001 at 17:30 Chicago time, the Frankfurt user’s local date and time is 05/16/2001 at 00:30.

Understanding Independent Fields

To get an understanding of how related fields are used, you should first understand how independent fields are processed. If date and time fields are independent (that is, they are not related because there is no DATETIME record entry defining them as part of a related pair, or the TIMEZONE keyword is not specified in the session parameters), then the processing of the data is as follows:

- When a user enters a value in a date field or time field, the data is collected two ways:
 - In internal format (original local)
 - In the external format as it was entered by the user

Data is processed this way if it is entered by an interactive user, a control panel ADD line, an API create or update transaction, a WORDFIX replace function using validation, a WORDFIX add function, or a TSX ADDSDATA control line.

- When the record containing the date or time data is filed, the external format is removed so that only the internal format remains in the SDDS.

- When the record is read back in by a user (that is, when it is displayed, updated, or presented on a report), the internal format is converted to that user’s external format. Both the external and internal formats are kept in the record while the record is in storage. The external format is removed when the record is filed.
The external format is displayed on panels and reports. The way a user performs a search is unaffected. If users are already familiar with Tivoli Information Management for z/OS, they are not required to do anything special to perform a search.

Searching Independent Field Data

Searching for independent field data is no different than searching for date or time fields in releases prior to Tivoli Information Management for z/OS Version 7.1. To search on date or time data, a user can enter a structured search or a freeform search. For example, in this illustration, a search is done for records containing both the date and time values shown, although the fields are not related:

```
se dato/2001/05/15 timo/12:30
```

Only the original local date and original local time are cognized (stored in the database for searching). Only those records having the specific date and time entries in this example are returned in the search results list.

Understanding Related Fields

Date and time fields are related if the TIMEZONE keyword is specified in the session parameters and there is an entry in the DATETIME record defining the date and time as a pair.

The determination of whether a field is independent or related is determined on a field-by-field basis. It is possible to have some dates and times defined as related pairs and others not defined (and therefore treated as independent fields).

If date and time fields are related, the processing of the data is as follows:

- When a user enters a value in a date field or time field, the data is collected three ways:
 - In internal format (universal time)
 - In internal format in the local time originally entered into the record (original local time)
 - In external format in the local time of the current user (user’s local time)

Data is processed this way if it is entered by an interactive user, a control panel ADD line, an API create or update transaction, a WORDFIX replace function using validation, a WORDFIX add function, or a TSX ADDSDATA control line.

The universal date and time are determined by combining the entered value with the value of its related date or time field. The data is then adjusted by the universal time offset of the user’s local time zone.

- When the record containing the date and time data is filed, the external format (the user’s local external format) is removed so that only the two internal formats remain in the SDDS.

- When the record is read back in by a user (that is, when it is displayed, updated, or presented on a report), the internal format stored in universal time is converted to external format of the user viewing the data, in that user’s time zone. All three formats are kept in the record while the record is in storage. If you were to issue a VIEW INTERNALS command, you would see all three formats. The user’s local external format is removed from the record when the record is filed.
Implementing Universal Time Processing

By default, the user’s local date and time external formats are displayed on panels and reports. This can be changed by explicitly coding an option to show universal date/time or original local date/time values. Because both the original local values and universal time values are cognized, the way a user performs a search can vary depending on whether the user wants to search original local values or universal time values. Searching of related field data is described [“Searching Related Field Data” on page 259](#).

Processing When Only One Field is Entered

If the user enters data in only one field of a related pair, there is not enough information for Tivoli Information Management for z/OS to calculate the universal time value. When this happens, the following assumptions are made:

- If only a date is entered, the universal time date is assumed to be the same as the user’s local date.
- If only a time is entered, the time is converted to universal time assuming that Daylight Saving Time is not in effect. For example, a time of 11:00 entered in the ET time zone (US eastern, UT –5:00) when no related date exists will be converted to 16:00 universal time. If a date of 07/01/2001 is later added in the paired field, the time will be converted to 15:00 universal time to reflect the fact that Daylight Saving Time is in effect on 07/01/2001.

Scenario Showing Use of Related Fields

To understand how related date and time fields are collected and processed, consider this scenario:

- A user in Atlanta creates a new problem record at 9 p.m. that evening. She prefers to view the data in the traditional US format. She enters a date in format MM/DD/YYYY and time in HH:MM format. She is on the eastern coast of the US and therefore in US Eastern Time (UT –5:00), on Daylight Saving Time. In the record, she specifies that the problem was opened at 04/27/2001 21:00.

The date and time are collected as follows:

- **Universal time**: 2001/04/28 01:00
- **Original local**: 2001/04/27 21:00
- **Current user's local**: 04/27/2001 21:00 (external format seen by the user in Atlanta)

The user files the record and the external format is removed, leaving only the following:

- **Universal time**: 2001/04/28 01:00
- **Original local**: 2001/04/27 21:00

- A user in Frankfurt displays that record just after it was entered. From the US perspective, Germany is 6 hours ahead of US Eastern time. The user is on Central European Time (UT +1:00), Daylight Saving Time, and has selected the DD-MM-YYYY external format.

Values in the user’s local time are automatically added to the record, yielding the following:
He sees that the problem record was opened on 28-04-2001 03:00. In effect, the system translated the date and time from universal time into a format instantly recognizable by the user in Frankfurt.

Searching Related Field Data

Related field data can be searched using freeform or structured search methods. A description of how to perform freeform searches and structured searches in general is provided in the [Tivoli Information Management for z/OS User’s Guide](planning_and_installation_guide_and_reference).

Freeform Searches

Users can perform freeform searches two ways:

- Search original local values.

 To search original local values, enter normal search arguments that specify date or time data in internal format. This type of search will cause the values as they are originally entered by a user to be searched. For example, to search on problem records opened on April 27, 2001 at 3:30 p.m.:

 se dato/2001/04/27 timo/15:30

- Search universal time values.

 Note: Because of the complexity of freeform search arguments for universal time values, it is suggested (but not required) that you use structured searches instead of freeform searches when searching for universal time values. If you choose to use a freeform search for universal time values, you should be aware of the following.

 To search universal time values, enter the search argument with a special ending character for the p-word of the related field:

 se dato&2001/04/27 timo&15:30

 In this example, the same p-words (dato and timo) are entered but an ampersand character is used instead of a slash. (If your p-words use the underscore character instead of the slash, substitute the percent sign % for the underscore character to search universal time values.) The ampersand tells Tivoli Information Management for z/OS to search the universal time values (not the original local values) stored in the database.

 If you are performing a freeform search on universal time fields, be aware that records are only cognized in universal time and the local time of the person who entered the data. This has the following implications:

 - A search for DATE/2001/02/20 TIME/12:00 will find all records entered on 02/20/2001 at noon in the local time of the person entering the data. This means you might find a record from noon Sydney time and another record from noon Paris time, even though these records were entered many hours apart.
• Time ranges that cross the universal time date boundary (such as 16:00 to 22:00 Eastern Time) require a complex universal time search argument. For this reason, it is suggested that you use structured searches when searching universal time values, because the structured search performs the universal time conversions automatically.

Structured Searches

Users can enter values in the user’s local date format or user’s local time format. Internally, the search is performed using the equivalent universal time values. For example, if you enter a structured search containing a date value of 03/18/2001 and time value of 11:15 for the related fields, Tivoli Information Management for z/OS uses the universal time equivalent values to find any matching records.

By default, a structured search performed against related field data performs a universal time search. It does not cause original local values to be searched.

If you perform a structured search on universal time fields, you should be aware of the following limitations:

■ For all users:
 • Wildcard (*) and truncation (.) characters are not allowed in search arguments.

■ For users in time zones that observe Daylight Saving Time (DST):
 • A search which specifies a time or time range must also specify a date or date range in the related date field.
 • A date range specified with a related time value cannot include all or part of more than 5 calendar years. For example, a search from 01/01/2001 to 12/31/2005 is acceptable, whereas a search from 12/31/2001 to 01/01/2006 is not acceptable because it includes part of 6 calendar years.
 • A search will fail if its parameters fall entirely within the skipped hour when DST begins.
 • Search times that occur during the repeated hour when DST ends are assumed to occur during the first hour (the hour before DST ends). For example, a search range for 10/29/2000 01:30–03:30 using US Eastern Time as the time zone will find all records with a value between the “first” 1:30 and 3:30, a range of three hours that would include the 01:15 that occurs after DST ends.

Scenario Showing Search of Universal Time Values

In this scenario, users in three different time zones in standard time simultaneously experience a problem and enter a problem record with the date and time the problem occurred as follows:

■ A user in Toronto enters 03/18/2001 11:15. The user is in the ET time zone (US, Canada Eastern time zone with daylight savings).
■ A user in St. Louis enters 03/18/2001 10:15. The user is in the CT time zone (US, Canada, Mexico Central time zone with daylight savings).
■ A user in Phoenix enters 03/18/2001 09:15. The user is in the MST time zone (US, Canada, Mexico Mountain time zone without daylight savings). (Phoenix never goes on Daylight Saving Time.)

Because the month is March, none of these time zones are on Daylight Saving Time.
Internally, the times entered by the Toronto, St. Louis, and Phoenix users are converted into universal time:

- **Toronto**: 11:15 (5 hr offset from UT = 16:15)
- **St. Louis**: 10:15 (6 hr offset from UT = 16:15)
- **Phoenix**: 09:15 (7 hr offset from UT = 16:15)

A user in New York (same time zone as Toronto) searches for those records. She enters a structured search and types `03/18/2001` and `11:15` as the date and time the problem occurred. The search is performed using the equivalent universal time values.

She could also have entered the following freeform search to find the same records:

```
se dato&2001/03/18 timo&16:15
```

All three records will be found by the search because the problems really did occur at the same time, even though the original local time values entered by the users were different. The ampersand character tells Tivoli Information Management for z/OS to find the data using universal time equivalents. This type of search can be useful if you need to find records associated with events occurring around the world.

For example, suppose your network support team installs a new network router, and the router was not installed successfully and problems occurred at many of your company’s geographic locations. You may want to judge the impact of that installation by finding all the problems that occurred at a particular time (or time range) at all your company’s locations. If you used the regular slash character in the freeform search instead (as shown below), the search would yield no matching records because 16:15 does not match the original local values of 11:15, 10:15, or 09:15.

```
se dato/2001/03/18 timo/16:15
```

Note: Your users may not have a need to enter searches that narrow in focus, but if they do, they should understand how freeform and structured searches are performed when working with related field data. If you choose to implement universal time processing, your Tivoli Information Management for z/OS administrator should be prepared to educate users on how to perform searches of date and time fields. The [Tivoli Information Management for z/OS User’s Guide](https://www.ibm.com/support/knowledgecenter/SSEKCI_6.1.0/ibm_tivoli_info_mgt_for_zos_users_guide_node.html) also describes how to perform searching when universal time processing is enabled.

More About Related Fields

To perform the universal time-to-local time conversion, Tivoli Information Management for z/OS requires data for both fields in a related pair. If a date is entered and there is no value for the related time field, the universal time date is set to the same value as the local date. If the time is entered but there is no value for the related date, the time zone is adjusted by the base universal time offset of the local time zone. Since the date is not known, no adjustment is performed for Daylight Saving Time. In both of these cases, the date and time values are adjusted if necessary when a value is entered for the related time or date field.

There may be situations where fields that were collected as related fields are processed as independent fields. If any of the conditions below are true, then the fields are not defined as related in that environment:

- The session does not have the TIMEZONE keyword on BLGPARMS, and is therefore not processing universal time dates.
The database does not contain a DATETIME record (perhaps because it was deleted or the record accessed was UNFLATTENed into a database without a DATETIME record).

The DATETIME record does not contain a row for the field (perhaps because it was deleted or the record accessed was UNFLATTENed into a database with different definitions in the DATETIME record).

In these cases, the field is treated as an independent field and the user’s local date and time values are set to the same values as the original local date and time values. This enables sessions without the TIMEZONE keyword to access records created by sessions with the TIMEZONE keyword and still see the date and time values as they were entered. If the fields are updated, they will be stored as independent fields and the universal time values will be lost. This can result in incorrect values being stored. To avoid this problem, it is recommended that:

- All databases have the same definitions in the DATETIME record.
- All sessions have the TIMEZONE keyword specified. (The TIMEZONE keyword values can be different.)
- Definitions in the DATETIME record are never changed or deleted.

For list processor data, the related field is the one with the related root and the same row index. For example, the date in row 3 of a date list is related to the time in row 3 of a time list.

Only a single value can be entered in a related date or time field. If a user tries to enter multiple responses in one or both related time fields, an error message is displayed and the data is not accepted.

Changing one field’s value can cause the universal time value in the related field to change also. For example, if you change the time (in Eastern daylight time, ET) from 18:00 to 21:00, the universal date changes. That is, the addition of 3 hours (from 6 p.m. to 9 p.m.) means that the next day has already started in universal time.

The use of related fields may be associated with some minor performance impact. Records with a large number of related pairs may take longer to read because each related date and time pair is converted to local time and external format when the record is read.

Relating Date and Time Fields

The tasks described in this section can be performed by your program administrator or the person responsible for customizing your system.

To relate a date field and a time field, create a DATETIME reference record and add a row that specifies the s-word index of the two fields that are related. You can create a DATETIME record through the entry panel of the System application of Tivoli Information Management for z/OS.

A DATETIME record including most of the related fields is provided with the base Tivoli Information Management for z/OS product.

On BLG00010, the System Record Entry panel, type 2 and press Enter.
On the Reference Entry panel, select option 5 and press Enter.

On the Date/Time Field Relationship Entry panel, enter the s-word index values for the date and time fields, the prefix word for the time field, and, optionally, a comment that describes the pair of fields (for administrative purposes).
Implementing Universal Time Processing

<table>
<thead>
<tr>
<th>BLGLDTTM</th>
<th>Date/Time Field Relationship Entry</th>
<th>LINE 1 OF 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE.....List relationships between date and time fields. Fields listed here will be processed internally using Universal Time (UT).</td>
<td>RECORD: DATETIME</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S-word indexes</th>
<th>Time</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ ____ ____ ____</td>
<td>____ ____ ____ ____</td>
<td>____ ____ ____ ____</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Cmds:</th>
<th>A=After</th>
<th>B=Before</th>
<th>C=Copy</th>
<th>D=Delete</th>
<th>E=Erase</th>
<th>I=Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=Line entry</td>
<td>M=Move</td>
<td>R=Repeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type DOWN, UP, LEFT, or RIGHT to scroll the panel, or type END to exit.

Leave the **Record** field blank unless you have the situation where a particular date and time combination is used differently across record types (see the following note).

If you are using list processor data, specify the root s-word of the two related lists. The related date and time s-words must both be list processor roots or must both be regular field s-words. If a list processor root is related to a regular field s-word, neither will be processed correctly.

Press Enter after entering the s-word index values. Type **end** on the command line and press Enter to file the record.

Note: Generally, relationships are one date to one time, with an s-word existing in the table only once. For example, you would not typically have the **Date entered** field listed once with a **Time entered** field and again with a **Time opened** field. However, you may have unique circumstances where the s-word for a date is associated with more than one time s-word across record types, or the time is associated with more than one date field. In this case you should specify each date and time field combination on a separate line and also specify the s-word index value for the record type. For example, if S0C34 is usually related to S0C61, but in change records only, S0C34 is instead related to S8123, then you would include one line S0B06 0C34 8123 to define the relationship for change records, and another line 0C34 0C61 to define the relationship for all other records.

All record-specific pairs must be listed before any general pairs that use the same s-word. See the following panel BLGLDTTM for an example.
After the DATETIME record is filed, the changes take effect as follows:

- For interactive 3270 users: Changes take effect when a new session is started, or, if logical database partitions are used, when the user changes partitions.

- For API applications (including MRESs and API server applications used for Tivoli Information Management for z/OS Desktop and web interfaces): Changes take effect when a new session initialization transaction is performed, or, in the case of logical database partitions, when the partition is changed. In general this means Desktop users will not see these changes until the IBM HTTP server is restarted or program interface data tables are refreshed.

You can change the contents of an existing DATETIME record by updating the record (UPD R DATETIME) and filing the changes.

Warning
You must be very careful when changing existing rows. Deleting or changing s-words in a row can cause data with those s-words to be lost or corrupted.

Defining and Using Time Zones

A set of commonly used time zone definitions for many geographic locations is available in the TIMEZONE record provided with Tivoli Information Management for z/OS. The TIMEZONE record is a list processor table containing a list of time zone names (symbols) and their corresponding definitions.

You may have unique needs that are not met by these definitions. If you need to use other time zones not provided in the TIMEZONE record, or need to change the time zone...
Implementing Universal Time Processing

definitions provided, you can update the record to add your own definitions. When defining the TIMEZONE record, any symbol can be defined, but session members and user profiles must use a symbol that has been defined in the TIMEZONE record.

The time zone definitions provided are shown in Table 17 on page 267. An asterisk (*) in the offset column indicates that the time zone observes Daylight Saving Time. You can install the default TIMEZONE record provided with Tivoli Information Management for z/OS by running the BLHRCDSL TSX, which is also used to install data model records. (Complete instructions on running the BLHRCDSL TSX are provided in Loading Records Provided with Tivoli Information Management for z/OS on page 213.) The TIMEZONE record is included in the basic record set defined in the BLHLRBAS list.

Users can view the list of defined time zones by selecting the appropriate option in their user profile. The time zone for a particular user can be set in the following ways:

- In the session parameters (TIMEZONE keyword in the BLGPARMS macro). The setting of this keyword is required for time zone processing.
- In the user profile (User and database defaults option). A user profile selection overrides the TIMEZONE session parameter.
- By an API transaction (TIME_ZONE PDB). A value passed on the PDB overrides the TIMEZONE session parameter.

Users can view the time zone currently in effect by issuing the HELP STATUS command. The following panel is an example of the HELP STATUS output:

<table>
<thead>
<tr>
<th>COMMAND NAME</th>
<th>COMMAND DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGUMENT</td>
<td>ADD/DELETE/MODIFY FREEFORM ARGUMENTS</td>
</tr>
<tr>
<td>BACK</td>
<td>BACK UP TO LAST DISPLAYED OR PROCESSED PANEL</td>
</tr>
<tr>
<td>CANCEL</td>
<td>TERMINATE THE CURRENT DIALOG WITHOUT SAVE</td>
</tr>
<tr>
<td>CHANGE</td>
<td>CHANGE SEARCH ARGUMENT OR AN SRC RECORD</td>
</tr>
<tr>
<td>COPY</td>
<td>COPY RECORD FROM THE CURRENT DATABASE</td>
</tr>
<tr>
<td>DELETE</td>
<td>DELETE RECORD FROM THE CURRENT DATABASE</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>DISPLAY RECORD FROM THE CURRENT DATABASE</td>
</tr>
<tr>
<td>DROP</td>
<td>DROP USER-DEFINED LINE COMMAND</td>
</tr>
<tr>
<td>END</td>
<td>TERMINATE THE CURRENT DIALOG WITH SAVE</td>
</tr>
</tbody>
</table>

Note: Normally, the equal sign (=) processing function, in which a user can type an equal sign into a date or time field to get the current system date or time, is based on the local time of the CPU of the system running Tivoli Information Management for z/OS. If universal time processing is enabled by coding the TIMEZONE keyword (and, optionally, the OTIMEZON keyword) in the session-parameters member, then
equal sign processing for date and fields is determined differently. The current
universal time is extracted from the system and adjusted by the offset for the local
time zone. For example, the system may be physically based in Germany, but a user
in California would receive the equivalent of California date and time when typing
the equal sign into a date or time field. Equal sign processing automatically adjusts
for the start and end of Daylight Saving Time, even if the local time on the z/OS
system running Tivoli Information Management for z/OS is not changed.

If the TIMEZONE keyword is not specified, the current local time from the system is
extracted and adjusted by the TIMEDEL value, if any TIMEDEL value was specified.

Table 17. Time Zone Definitions in the TIMEZONE Reference Record

<table>
<thead>
<tr>
<th>Time Zone Symbol</th>
<th>Offset from Universal Time (UT)</th>
<th>Description of areas covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZT</td>
<td>+ 12:00 *</td>
<td>New Zealand (ex.Chatham)</td>
</tr>
<tr>
<td>EAT</td>
<td>+ 10:00 *</td>
<td>Australia Eastern with DST</td>
</tr>
<tr>
<td>EAST</td>
<td>+ 10:00 *</td>
<td>Australia Eastern without DST</td>
</tr>
<tr>
<td>TASMANIA</td>
<td>+ 10:00 *</td>
<td>Australia-Tasmania</td>
</tr>
<tr>
<td>CAT</td>
<td>+ 09:30 *</td>
<td>Australia Central with DST</td>
</tr>
<tr>
<td>CAST</td>
<td>+ 09:30</td>
<td>Australia Central without DST</td>
</tr>
<tr>
<td>KST</td>
<td>+ 09:00</td>
<td>Korea</td>
</tr>
<tr>
<td>JST</td>
<td>+ 09:00</td>
<td>Japan, E. Indonesia</td>
</tr>
<tr>
<td>CHINA</td>
<td>+ 08:00</td>
<td>China, Taiwan, Hong Kong, Singapore, C. Indonesia, Malaysia</td>
</tr>
<tr>
<td>WAST</td>
<td>+ 08:00</td>
<td>Australia West without DST</td>
</tr>
<tr>
<td>INDIA</td>
<td>+ 05:30</td>
<td>India</td>
</tr>
<tr>
<td>MSK</td>
<td>+ 03:00 *</td>
<td>Moscow, Russia</td>
</tr>
<tr>
<td>EET</td>
<td>+ 02:00 *</td>
<td>Eastern Europe with DST</td>
</tr>
<tr>
<td>SAFRICA</td>
<td>+ 02:00</td>
<td>South Africa</td>
</tr>
<tr>
<td>CET</td>
<td>+ 01:00 *</td>
<td>Central Europe with DST</td>
</tr>
<tr>
<td>WET</td>
<td>+ 00:00 *</td>
<td>UK, Western Europe</td>
</tr>
<tr>
<td>UT</td>
<td>+ 00:00</td>
<td>UT, GMT</td>
</tr>
<tr>
<td>NDT</td>
<td>− 03:30 *</td>
<td>Newfoundland with DST</td>
</tr>
<tr>
<td>AT</td>
<td>− 04:00 *</td>
<td>Canada Atlantic with DST</td>
</tr>
<tr>
<td>CHILE</td>
<td>− 04:00 *</td>
<td>Chile</td>
</tr>
<tr>
<td>ET</td>
<td>− 05:00 *</td>
<td>US/Canada Eastern with DST</td>
</tr>
<tr>
<td>EST</td>
<td>− 05:00</td>
<td>US/Canada Eastern without DST</td>
</tr>
<tr>
<td>CT</td>
<td>− 06:00 *</td>
<td>US/Canada/Mexico Central with DST</td>
</tr>
</tbody>
</table>
The procedure to define a time zone varies depending on whether or not the time zone observes Daylight Saving Time (DST). If it does, you should define the Daylight Saving Time rules (when daylight savings starts and stops) before adding a time zone definition.

Defining Daylight Saving Time Rules

To define Daylight Saving Time rules for a new time zone, or to change the existing Daylight Saving Time rules for an existing time zone entry in the TIMEZONE record, follow these procedures.

Update the TIMEZONE record (UPD R TIMEZONE). The Time Zone Definition Summary panel is displayed.

<table>
<thead>
<tr>
<th>Time Zone Symbol</th>
<th>Offset from Universal Time (UT)</th>
<th>Description of areas covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>− 07:00 *</td>
<td>US/Canada/Mexico Mountain with DST</td>
</tr>
<tr>
<td>MST</td>
<td>− 07:00</td>
<td>US/Canada/Mexico without DST (Arizona)</td>
</tr>
<tr>
<td>PT</td>
<td>− 08:00 *</td>
<td>US/Canada/Mexico Pacific with DST</td>
</tr>
<tr>
<td>AKT</td>
<td>− 09:00 *</td>
<td>Alaska</td>
</tr>
<tr>
<td>HST</td>
<td>− 10:00 *</td>
<td>Hawaii</td>
</tr>
</tbody>
</table>

*Indicates the time zone observes Daylight Saving Time.

The procedure to define a time zone varies depending on whether or not the time zone observes Daylight Saving Time (DST). If it does, you should define the Daylight Saving Time rules (when daylight savings starts and stops) before adding a time zone definition.

Defining Daylight Saving Time Rules

To define Daylight Saving Time rules for a new time zone, or to change the existing Daylight Saving Time rules for an existing time zone entry in the TIMEZONE record, follow these procedures.

Update the TIMEZONE record (UPD R TIMEZONE). The Time Zone Definition Summary panel is displayed.

<table>
<thead>
<tr>
<th>TIME ZONE DEFINITION SUMMARY RECORD: TIMEZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose 1 to define rules for Daylight Saving Time start and stop date/time.</td>
</tr>
<tr>
<td>Choose 2 to define time zones, including symbol, offset from UT, Daylight Saving Time adjustment amount and which start/stop rules apply.</td>
</tr>
<tr>
<td>Select one of the following, type END to save your changes, or type CANCEL to discard your changes.</td>
</tr>
<tr>
<td>1. Daylight Saving rules. 2. Time zone definitions.</td>
</tr>
</tbody>
</table>

Type 1 and press Enter. An entry panel is displayed for you to enter the rules for starting and stopping Daylight Saving Time. After entering the data on the Daylight Saving Time Schedule Entry panel, type **end** and press Enter to save the changes.
The panel example shows the entry of a Daylight Saving Time rule called MYREGION. In this example, Daylight Saving Time starts at 2:00 a.m. local time on the last Friday of April and ends on the last Thursday of September at 2:00 a.m.

The second row shows the rule for North America. Daylight savings time starts on the first Sunday of April at 02:00 local time and ends on the last Sunday of October at 02:00. In Syria, it starts on April 1 and ends on October 1. In Chile, it starts on the first Sunday on or after October 9 and ends on the first Sunday on or after March 9.

The From Year and To Year fields are used only if rules are different in different years. For example, some part of a country may begin Daylight Saving Time earlier than other years due to special events. For instance, in 2000 part of Australia began Daylight Saving Time earlier than usual due to the Sydney Olympics. In this case, three lines are required: one for years up to and including 1999, one for the special rules in 2000, and a third for 2001 and beyond. For example:

<table>
<thead>
<tr>
<th>Schedule ID</th>
<th>From Year</th>
<th>To Year</th>
<th>Mon Week</th>
<th>Mon Week</th>
<th>Mon Time</th>
<th>Mon Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRAL1</td>
<td>1999</td>
<td>2000</td>
<td>10</td>
<td>7</td>
<td>02:00</td>
<td>03:00</td>
</tr>
<tr>
<td>AUSTRAL1</td>
<td>2000</td>
<td>2000</td>
<td>08</td>
<td>27</td>
<td>02:00</td>
<td>03:00</td>
</tr>
<tr>
<td>AUSTRAL1</td>
<td>2001</td>
<td>2001</td>
<td>10</td>
<td>7</td>
<td>02:00</td>
<td>03:00</td>
</tr>
</tbody>
</table>

A description of the entry fields follows:

Schedule ID

A unique 1 to 8–character identifier used to represent the Daylight Saving Time start and stop rules. (This identifier is also used later on the Time Zone Definition panel to specify which rule should apply to a time zone.)
Implementing Universal Time Processing

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Year</td>
<td>The first year the Daylight Saving Time rule should apply. Normally, if the rules do not change from year to year, this field is blank or 0.</td>
</tr>
<tr>
<td>To Year</td>
<td>The last year the Daylight Saving Time rule should apply. If the rule is expected to remain in effect with no expiration, leave this field blank or enter 9999.</td>
</tr>
<tr>
<td>Start Mon</td>
<td>A number (01–12) representing the month during which the Daylight Saving Time starts (for example, 04 for April).</td>
</tr>
<tr>
<td>Start Week</td>
<td>A value (1–4, or L) indicating which week of the month (if you were to look at a Gregorian calendar) Daylight Saving Time starts:</td>
</tr>
<tr>
<td></td>
<td>1 - First week of the month</td>
</tr>
<tr>
<td></td>
<td>2 - Second week of the month</td>
</tr>
<tr>
<td></td>
<td>3 - Third week of the month</td>
</tr>
<tr>
<td></td>
<td>4 - Fourth week of the month</td>
</tr>
<tr>
<td></td>
<td>L - Last week of the month</td>
</tr>
<tr>
<td>Start Day of Week</td>
<td>A number (1–7) defining which day of the week Daylight Saving Time starts. For example:</td>
</tr>
<tr>
<td></td>
<td>1 - Monday</td>
</tr>
<tr>
<td></td>
<td>2 - Tuesday</td>
</tr>
<tr>
<td></td>
<td>3 - Wednesday</td>
</tr>
<tr>
<td></td>
<td>4 - Thursday</td>
</tr>
<tr>
<td></td>
<td>5 - Friday</td>
</tr>
<tr>
<td></td>
<td>6 - Saturday</td>
</tr>
<tr>
<td></td>
<td>7 - Sunday</td>
</tr>
<tr>
<td>Start Day of Mon</td>
<td>A number (01–31) that defines the start day of the month as one of the following:</td>
</tr>
<tr>
<td></td>
<td>■ If no values are specified for Start Week and Start Day of Week, the actual date on which Daylight Saving Time starts.</td>
</tr>
<tr>
<td></td>
<td>■ If values are specified for Start Week and Start Day of Week, the earliest date on which Daylight Saving Time can start. For example, if the following values are entered, Daylight Saving Time starts on the first Sunday on or after the 10th of April:</td>
</tr>
<tr>
<td></td>
<td>04 1 7 10</td>
</tr>
<tr>
<td></td>
<td>The default value is 01.</td>
</tr>
<tr>
<td>Start Local Time</td>
<td>The local time (00:00 to 23:59) when Daylight Saving Time starts. For example, 02:00 represents 2 a.m. The default value is 00:00.</td>
</tr>
<tr>
<td>End Mon</td>
<td>A number (01–12) representing the month during which Daylight Saving Time ends (for example, 04 for April).</td>
</tr>
<tr>
<td>End Week</td>
<td>A value (1–4, or L) that defines which week of the month Daylight Saving Time ends (for example, 1 for the first week, L is for the last week).</td>
</tr>
</tbody>
</table>
End Day of Week
A number (1–7) that defines which day of the week Daylight Saving Time ends (for example, 1 for Monday, 5 for Friday, 7 for Sunday).

End Day of Mon
A number (01–31) that defines the end day of the month as one of the following:

- If no values are specified for End Week and End Day of Week, the actual date on which Daylight Saving Time ends.
- If values are specified for End Week and End Day of Week, the earliest date on which Daylight Saving Time can end. For example, if the following values are entered, Daylight Saving Time ends on the first Sunday on or after the 10th of November:

 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{End Day of Mon} & 11 & 7 \\
 \text{End Day of Week} & 1 & 10 \\
 \hline
 \end{array}
 \]

 The default value is 01.

End Local Time
The local time (00:00–23:59) when Daylight Saving Time ends (for example, 02:00 represents 2:00 a.m.). The default value is 00:00.

After updating this panel and typing end to save your changes, you are returned to the summary panel where you can type 9 and press Enter to file the TIMEZONE record or select another option.

```
BLG0200 TIME ZONE DEFINITION SUMMARY RECORD: TIMEZONE

Choose 1 to define rules for Daylight Saving Time start and stop date/time.
Choose 2 to define time zones, including symbol, offset from UT, Daylight Saving Time adjustment amount and which start/stop rules apply.

Select one of the following, type END to save your changes, or type CANCEL to discard your changes.

1. Daylight Saving rules.  2. Time zone definitions.

==>> 2
```

Defining a Time Zone
To add a time zone definition, or to change an existing time zone definition in the TIMEZONE record, update the TIMEZONE record to display the Time Zone Definition Summary panel. Select option 2. Time Zone Definitions and press Enter.
On the Time Zone Definition panel, enter a new row with the appropriate data if you are adding a time zone definition. Specify a time zone symbol, the offset from universal time, any Daylight Saving Time adjustment if applicable, and any optional comments to describe the time zone for administrative purposes. (If you are updating an existing time zone definition, scroll to the definition desired and overtype the values with the new values.)

<table>
<thead>
<tr>
<th>Time Zone Symbol</th>
<th>Offset From UT</th>
<th>Adj. Daylight Saving</th>
<th>Schedule</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYZONE</td>
<td>-08:00</td>
<td>1:00</td>
<td>MYREGION</td>
<td>Turquoise Isle</td>
</tr>
</tbody>
</table>

Type DOWN, UP, LEFT, or RIGHT to scroll the panel, or type END to exit.

End
The symbol can be of your choice; it does not have to match any predetermined symbol provided in the TIMEZONE record. You can change the time zone symbols if desired or add new ones.

Note: If you change the symbol for a time zone already in use, you must also change everything that uses the time zone, such as session members, user profiles, and API applications.

Offset From UT

The offset from universal time (−14:00 to +14:00) of this time zone while not on Daylight Saving Time. For example, +01:00 for Germany, or −05:00 for Eastern United States.

DST Adj.

The adjustment in hours and minutes applied when Daylight Saving Time is in effect. The adjustment is 1:00 in most cases. If the time zone does not observe Daylight Saving Time, then enter 0 or leave blank.

DST Schedule

The schedule ID for one or more rows in the table that describe when Daylight Saving Time starts and stops for this time zone. The schedule ID is defined on the Daylight Saving Time Schedule Entry panel, BLGLDSTS. If the time zone does not observe Daylight Saving Time, then leave blank.

Comment

An optional description of the time zone, which may possibly include the names of major cities. Users see this description when viewing the list of available time zones in the user profile.

Type `end` and press Enter to save your changes and to return to the Time Zone Definition Summary panel. On the Time Zone Definition Summary panel, type `9` and press Enter to file the changes to the TIMEZONE record.

After the TIMEZONE record is filed, the changes take effect as follows:

- **For interactive 3270 users:** Changes take effect when a new session is started, or when the user modifies the time zone in his or her user profile (that is, when the user does a permanent or temporary save or a reset). If logical database partitions are used, the change takes place when the user changes partitions.

- **For API applications** (including MRESs and API server applications used for Tivoli Information Management for z/OS Desktop and web interfaces): Changes take effect when a new session initialization transaction is performed, when the time zone is changed to a different value using the TIME_ZONE PDB on a transaction, or in the case of logical database partitions, when the partition is changed. In general this means that Desktop users will see the changes as soon as any Desktop user on the server with a different time zone in the user profile performs a transaction. If all users have the same time zone specified in their user profiles and use the same logical database partition, the HTTP Server must be restarted to pick up the changes.

Specifying Time Zones

A specific time zone value can be specified through session-parameters members that define the operating characteristics of Tivoli Information Management for z/OS, through an API application interacting with the database, or by a user through a user profile selection.
Specifying a Time Zone with the BLGPARMS TIMEZONE Keyword

To enable universal time processing and to specify a default time zone for all users of a session, include the TIMEZONE keyword on the BLGPARMS macro and specify the appropriate time zone symbol (for example, TIMEZONE=ET) as described on page 332. After updating your session-parameters members with this keyword, you must reassemble them for universal time processing to take place. If session-parameters members are not reassembled, the default date and time support processing provided with Tivoli Information Management for z/OS will be used.

If the TIMEZONE keyword is not specified, no universal time processing will occur, even if the DATETIME and TIMEZONE records are present in the Tivoli Information Management for z/OS database. This means that if the TIMEZONE keyword is not specified, the values of date and time fields will represent the data as it was entered into the record. A list of time zone symbols provided with Tivoli Information Management for z/OS is available in Table 17 on page 267; however, other time zone symbols can be defined in the TIMEZONE reference record and specified in the TIMEZONE keyword. The value for TIMEZONE must be defined in the TIMEZONE reference record. Time zone definitions include rules for Daylight Saving Time adjustments.

The TIMEZONE keyword, if specified, replaces the TIMEDEL keyword. If you already have the TIMEDEL keyword specified, you should remove it. If both the TIMEZONE and TIMEDEL keywords are specified, TIMEDEL is ignored.

The processing of the equal sign function for date and time fields will determine the current local date and time by taking the current universal time from the system and adjusting it by the offset defined for the current time zone. Equal sign processing will automatically adjust for Daylight Saving Time start and end, even if the local time on the computer system is not changed. (If TIMEZONE is not specified, equal sign processing uses the current local time from the computer system, adjusted by any TIMEDEL value if specified.)

The time zone currently in effect can be viewed in the output generated by the HELP STATUS command.

Specifying Time Zones with API Applications

If you are using API applications to interact with the Tivoli Information Management for z/OS database, the TIMEZONE value specified in the session-parameters member is used. To use a time zone other than that specified in the session-parameters member, your API application programmer must do the following:

- For HLAPI applications: Specify the TIME_ZONE control PDB with the desired time zone symbol as the data in any HLAPI transaction.
- For LLAPI applications: Set the PICATZON field with the desired time zone symbol for the LLAPI.

The specified value remains in effect until a subsequent transaction changes it. The time zone symbol selected should be defined in the TIMEZONE record.

End of Programming Interface information
Specifying Time Zones through the User Profile

Users can select a time zone that overrides the time zone set by the BLGPARMS TIMEZONE keyword by specifying an option (User and database defaults) in their user profile. For more information about setting values in user profiles, see “Specifying Preferences in the User Profile” on page 230 or refer to the Tivoli Information Management for z/OS User’s Guide.

By default, all output such as panel displays and report output for the date and time fields collected displays the external format of the user accessing the data. The date format displayed can be changed by a user through the user profile.

If no value is specified in the user profile, then the time zone specified on the TIMEZONE keyword in the session member is used.
Defining Tivoli Information Management for z/OS Data Sets

This appendix describes the Tivoli Information Management for z/OS VSAM data sets and tells how to define them using the Access Method Services (AMS) DEFINE CLUSTER command. The following data sets are described:

- SDDS
- SDIDS
- SDLDS
- DICTDS
- RPANLDS
- WPANLDS

This appendix assumes that you have a working knowledge of VSAM data sets and the DEFINE CLUSTER command. Refer to DFSMS/MVS Access Method Services for VSAM Catalogs for a complete description of the parameters for the AMS DEFINE CLUSTER command. Refer to the following documents for additional information about VSAM:

- DFSMS/MVS Access Method Services for the Integrated Catalog Facility
- DFSMS/MVS Using Data Sets
- DFSMS/MVS Macro Instructions for Data Sets
- DFSMS/MVS DFSMSdfp Storage Administration Reference

This appendix is designed to help you create the VSAM data sets that are used by Tivoli Information Management for z/OS. Most installations initially create small data sets; that is, 10,000 records or smaller. Therefore, the sizes given in this chapter are intended for generating small data sets.

Notes:

1. If you are using sysplex support, VSAM data sets must be managed by SMS (the Storage Management Subsystem facility of DFSMS/MVS).
2. Any key-sequenced data set that follows may be defined as an extended format data set.

Sample JCL

Tivoli Information Management for z/OS provides sample JCL defining the Tivoli Information Management for z/OS VSAM data sets. The following samples can be found in the SBLMSAMP library:

- BLGDATAB (defines an SDDS, SDIDS, and SDLDS for a Tivoli Information Management for z/OS database)
- BLGDICT (defines a DICTDS)
- BLGRPNL (defines an RPANLDS)
- BLMWPNL (defines a WPANLDS)
Understanding the AMS DEFINE CLUSTER Command Syntax Description

The syntax diagrams for the AMS DEFINE CLUSTER commands in this chapter show some parameters with brackets [], braces {}, or vertical bars |. These are for clarification purposes only; they are not part of the commands.

- Brackets indicate optional data
- Braces indicate that you must select exactly one of the choices enclosed within the braces
- Vertical bars indicate selectable items. You must choose one of these items.

In addition, a plus sign + is used at the end of the line on which continuation is required. You can use any valid character that you want to identify continuation.

Using REUSE or NOREUSE

The REUSE option is not supported. When defining clusters, either specify NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying either option.

Defining the SDDS

The syntax diagram for the DEFINE CLUSTER command for defining an SDDS follows:

```
DEFINE +
  CLUSTER ( +
    NAME(sddsname) +
    [INDEXED] +
    KEYS(n 0) +
    [LOG(NONE)] +
    SHAREOPTIONS(1 3) +
    [NOREUSE] +
    VOLUMES(volser [volser...]) +
    [UNIQUE]) +
  DATA( +
    NAME(sddsname.data) +
    [CONTROLINTERVALSIZE(cisize)] +
    RECORDSIZE(avg max) +
    [RECORDS(primary secondary) | TRACKS(primary secondary) | CYLINDERS(primary secondary)] +
    [FREESPACE(freeci freeca)] +
    SPEED) +
  INDEX( +
    [NAME(sddsname.index)] +
    [NOIMBED] +
    [NOREPLICATE])
```

CLUSTER

Indicates that you are defining a VSAM cluster. Follow CLUSTER with the parameters specified for the cluster as a whole. Enclose these parameters in parentheses.

NAME(sddsname)

Specifies the name of the VSAM cluster. You must specify NAME. The *sddsname* is a standard data set name.

You can use up to 100 VSAM clusters in an SDDS. If you use more than one cluster for a Tivoli Information Management for z/OS database, you must define each cluster, and they must conform to the following naming conventions:

- Each cluster must have the same name, except for a 3-character sequence:
• The first character of the 3-character sequence is a trigger character. You can use any valid data-set-name character as the trigger character. You define the trigger character in the BLGCLUST macro, as described under "BLGCLUST Macro — Defining a Database" on page 333. The purpose of this character is to indicate that you are using multiple VSAM clusters in an SDDS.

The trigger character does not have to be a unique character in a cluster name. However, since the trigger character indicates the start of the sequence, it must be the first occurrence of that character in a cluster name.

The trigger character must be identical in each cluster name.

• The remaining 2 characters in the sequence must be numeric. In the first cluster, these characters must range from 00 to 95. In the remaining clusters, these characters must range from 01 to 99.

• The numeric characters following the trigger must be in consecutive numerical order for the database that contains the multiple VSAM clusters.

• The sequence must occur in the same position in each SDDS cluster name.

The following is an example of multiple VSAM clusters that form a 10-cluster SDDS. The number sign (#) is the trigger character.

```
BLM.SDDS#27
BLM.SDDS#28
BLM.SDDS#29
BLM.SDDS#30
BLM.SDDS#31
BLM.SDDS#32
BLM.SDDS#33
BLM.SDDS#34
BLM.SDDS#35
BLM.SDDS#36
```

Note: If you define # as the trigger character and you use more than one # within a name, Tivoli Information Management for z/OS treats only the first # as a trigger character. In this case, Tivoli Information Management for z/OS treats the remaining #s like any other character.

INDEXED

Indicates that the SDDS is a key-sequenced data set. You do not have to specify this keyword because INDEXED is the default.

KEYS(n 0)

The first value, n, indicates the length of the key field in the SDDS VSAM record. Tivoli Information Management for z/OS identifies the format of a record stored in the SDDS. You can specify a value of 7 or 8 for n when you are defining an SDDS for a Tivoli Information Management for z/OS format database. Generally, a key format of 7 is recommended.

Note: SDDSs for databases 0, 1, 2, and 3 must have a key length of 8.

- A value of 7 indicates that the stored record has key 7 format.
- A value of 8 indicates that the stored record has key 8 format.

The second value, 0, specifies the offset of the key field in the SDDS.

You must specify this keyword and its values.
LOG(NONE)
Specifies that CICS should not log changes (the file is non-recoverable). You must include LOG(NONE) if you are using VSAM RLS in a sysplex. RLS requires use of a LOG parameter.

SHAREOPTIONS(1 3)
Specifies how your VSAM cluster can be shared among users. You must specify a value for this keyword. In a non-sysplex environment, the value must be SHAREOPTIONS(1 3).

If you specify SHAREOPTIONS(1 3), you specify that the cluster can be used by only the BLX-SP for read and write processing. VSAM ensures complete data integrity for the cluster.

If sysplex mode is enabled, a value of SHAREOPTIONS(2 3) is recommended. Although the value is not required and is ignored by VSAM RLS, SHAREOPTIONS(2 3) enables other programs such as Access Method Services (IDCAMS) to perform tasks such as opening the data set in NSR read-only mode.

Note: The SHAREOPTIONS value of existing Tivoli Information Management for z/OS VSAM clusters may be changed using the AMS ALTER command.

NOREUSE
The REUSE option is not supported. When defining clusters, either specify NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying either option.

VOLUMES(volser [volser...])
Specifies the volumes to contain the SDDS. Volser is the volume serial number of the device. You must specify one or more devices. This keyword is not required for SMS-managed data sets.

UNIQUE
Indicates you are allocating the SDDS as separate DASD space. This keyword is optional. If you omit it, VSAM defaults to SUBALLOCATION, which allocates the space from existing VSAM data space.

Note: If you are using the integrated catalog facility (ICF) in OS/390 MVS, the UNIQUE and SUBALLOCATION parameters are ignored.

DATA
Specifies attributes of the data component of the SDDS. The attributes follow the DATA keyword, and you must enclose them in parentheses.

NAME(sddsname.data)
Specifies the name of the data component of the SDDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like sddsname.DATA, the name is more recognizable, for example, in a LISTVTOC listing.

CONTROLINTERVALSIZE(cisize)
Specifies the control interval size for the data component of the SDDS. The sizes you can specify must be:
- A multiple of 512 for values from 512 to 8192
- A multiple of 2048 for values from 8192 to 32768
RECORDSIZE(avg max)
Specifies the average and maximum record sizes for the SDDS. The maximum record size must be:
- For a key 7 format SDDS, equal to the control interval size minus 7 (max=cisize−7).
- For a key 8 format SDDS, at least 7 bytes less than the control interval size (max<cisize−7) It is recommended that you set the maximum record size at 7 bytes less than the control interval size so that Tivoli Information Management for z/OS can use the maximum available space for the blocking of the logical records. For example, for the control interval size of 2048, use a maximum record size of 2041.

If you are using a USERS record for notification, use a maximum record size greater than 10 000 because the USERS record is at least this large.

RECORDS(primary secondary)
TRACKS(primary secondary)
CYLINDERS(primary secondary)
Specifies the amount of space to allocate to the SDDS. Primary specifies the initial space allocation; secondary specifies the increments of the allocation when new extents are necessary to extend the SDDS. You can specify the allocation units in terms of RECORDS, TRACKS, or CYLINDERS. One of these keywords is required.

FREESPACE(freeci freeca)
Specifies the percentage of freespace to allocate in the data set. Freeci is the percentage to allocate for each control interval and freeca is the percentage to allocate for each control area. The recommended values for freeci and freeca depend, to a large degree, on how the SDDS is used. If it is used as a repository, relatively little freespace is required. For a high level of update activity before deletion, the use of freespace can be advantageous.

SPEED
Indicates that the data component’s space is not preformatted during initial load. The SPEED keyword is required.

INDEX
Specifies attributes of the index component of the cluster. The attributes follow the INDEX keyword and you must enclose them in parentheses.

NAME(sddsname.index)
Specifies the name of the index component of the SDDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like sddsname.INDEX, the name is more recognizable, for example, in a LISTVTOC listing.

Using IMBED or NOIMBED
IMBED indicates that the lowest level index records (sequence set) of the data set are written as many times as they fit on the first track adjacent to the related control area. This can shorten the time it takes to retrieve records when physical access to the DASD is required. With NOIMBED, the sequence set is written once and resides with the rest of the index levels.

NOIMBED may be the better choice for the SDDS index for the following reasons:
If you are using LSR and have allotted enough buffers to contain all of the SDDS index control intervals (CIs) recommended, then after the first access there are no physical reads of the index from the DASD, so IMBED has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

If you are using a controller cache function, IMBED can be counterproductive. Because entire tracks are buffered into the controller cache, IMBED can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

If you are using RLS (sysplex mode is enabled), you must use NOIMBED. RLS does not support use of IMBED.

Starting with DFSMS/MVS Version 1.5, IMBED is no longer supported, and is ignored if specified on the IDCAMS DEFINE. If sysplex mode is not enabled, you may continue to use the old VSAM data sets that were defined with the IMBED attribute.

For these reasons, NOIMBED is recommended for the SDDS index. Consider using IMBED for the SDDS index only if you are not buffering most of the SDDS index through LSR and you are not using a controller cache function for the SDDS.

Using REPLICATE or NOREPLICATE

REPLICATE indicates that each index (for all levels, not just the sequence set) record is written on a track as many times as it fits. When VSAM reads the DASD to retrieve this lowest level of the index to locate a record, REPLICATE can reduce the rotational delay of the disk.

However, NOREPLICATE may be the better choice for the SDDS index for the following reasons:

If you are using LSR and have allotted enough buffers to contain all of the SDDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so REPLICATE has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

If you are using a controller cache function, REPLICATE may be counterproductive. Because entire tracks are buffered into the controller cache, REPLICATE can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

For these reasons, NOREPLICATE is recommended for the SDDS index. Consider using REPLICATE for the SDDS index only if you are not buffering most of the SDDS index through LSR and you are not using a controller cache function for the SDDS.

Defining the SDIDS

The syntax diagram for the DEFINE CLUSTER command for defining an SDIDS follows:

```
DEFINE +
CLUSTER( +
    NAME(sdidsname) +
    VOLUMES(volser [volser...]) +
    [INDEXED] +
    KEYS(n 0) +
```
CLUSTER
Indicates that you are defining a VSAM cluster. Follow CLUSTER with the parameters specified for the cluster as a whole. Enclose these parameters in parentheses.

NAME(sdidsname)
Specifies the name of the SDIDS. You must specify NAME. The sdidsname is a standard data set name, which is specified on the NAME parameter.

You can use up to 100 VSAM clusters in an SDIDS. If you use more than one cluster for a Tivoli Information Management for z/OS database, you must define each cluster, and they must conform to the following naming conventions. These conventions are the same as those for naming the SDDS.

- Each cluster must have the same name, except for a 3-character sequence:
 - The first character of the 3-character sequence is a trigger character. You can use any valid data-set-name character as the trigger character. You define the trigger character in the BLGCLUST macro, as described under “BLGCLUST Macro — Defining a Database” on page 333. The purpose of this character is to indicate that you are using multiple VSAM clusters in an SDIDS.
 - The trigger character does not have to be a unique character in a cluster name. However, since the trigger character indicates the start of the sequence, it must be the first occurrence of that character in a cluster name.
 - The trigger character must be identical in each cluster name.
 - The remaining 2 characters in the sequence must be numeric. In the first cluster, these characters must range from 00 to 98. In the remaining clusters, these characters must range from 01 to 99.
 - The numeric characters following the trigger must be in consecutive numerical order for the database that contains the multiple VSAM clusters.
 - The sequence must occur in the same position in each SDIDS cluster name.

The following is an example of multiple VSAM clusters that form a 10-cluster SDIDS. The number sign (#) is the trigger character.

BLM.SDIDS#01
BLM.SDIDS#02
BLM.SDIDS#03
BLM.SDIDS#04
BLM.SDIDS#05
BLM.SDIDS#06
Note: If you define # as the trigger character and you use more than one # within a name, Tivoli Information Management for z/OS treats only the first # as a trigger character. In this case, Tivoli Information Management for z/OS treats the remaining #s like any other character.

VOLUMES(volser [volser...])

Specifies the volumes to contain the SDIDS. Volser is the volume serial number of the device. You must specify one or more devices. This keyword is not required for SMS-managed data sets.

INDEXED

Specifies that the SDIDS is a key-sequenced data set. You do not have to specify this keyword because INDEXED is the default.

KEYS(n 0)

Specifies information about the key field of the SDIDS. Tivoli Information Management for z/OS requires that you store the key of the record in the first n bytes of the record. Therefore, the values n and 0 represent the length and offset, respectively, of the key. You must specify this keyword and its values. You can specify a key length of 18 or 34.

The 18-byte key is typically used for SBCS data. The 34-byte key is generally used for DBCS data (but can be used for SBCS data), and supports a longer database search argument.

The 18- and 34-byte sizes provide improved database performance and eliminate the need for VSAM spanned records, which are not supported. The 16- and 32-byte keys provided with earlier releases are also no longer supported.

If you use DBCS characters, the 34-byte key is the better choice. An 18-byte key may severely limit the number of searchable characters. With an 18-byte key, the maximum searchable DBCS characters is 7, as compared to 16 SBCS characters. If your searchable data is prefixed, the amount of DBCS data that can be searched is further limited by the length of the prefix. With a prefix of PERS/, the searchable DBCS data is limited to 4 DBCS characters.

If you use SBCS characters, the 18-byte key is the better choice. The smaller key results in a reduction in the size of the SDIDS data component. This saves on DASD space and more importantly, can increase the effectiveness of buffers for the data component by as much as 30% over a 34-byte key.

Both SBCS and DBCS users can use the 18 or 34 key lengths. If you are currently using an 18-byte key, you can redefine your SDIDS to VSAM and run the BLGUT1 utility program to rebuild your SDIDS, or the BLGUT1M utility program to change the key length. Refer to the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#) for information on these utility programs.

LOG(NONE)

Specifies that CICS should not log changes (the file is non-recoverable). You must include LOG(NONE) if you are using VSAM RLS in a sysplex. RLS requires use of a LOG parameter.
SHAREOPTIONS(1 3)
Specifies how your VSAM cluster can be shared among users. You must specify a value for this keyword. In a non-sysplex environment, the value must be SHAREOPTIONS(1 3).

If you specify SHAREOPTIONS(1 3), you specify that the cluster can be used by only the BLX-SP for read and write processing. VSAM ensures complete data integrity for the cluster.

If sysplex mode is enabled, a value of SHAREOPTIONS(2 3) is recommended. Although the value is not required and is ignored by VSAM RLS, SHAREOPTIONS(2 3) enables other programs such as Access Method Services (IDCAMS) to perform tasks such as opening the data set in NSR read-only mode.

Note: The SHAREOPTIONS value of existing Tivoli Information Management for z/OS VSAM clusters may be changed using the AMS ALTER command.

NOREUSE
The REUSE option is not supported. When defining clusters, either specify NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying either option.

UNIQUE
Indicates you are allocating the SDIDS as separate DASD space. This keyword is optional. If you omit it, VSAM defaults to SUBALLOCATION, which allocates the space from existing VSAM data space. It is recommended that you specify UNIQUE.

Note: If you are using ICF in OS/390 MVS, the UNIQUE and SUBALLOCATION parameters are ignored.

DATA
Specifies attributes of the data component of the SDIDS. The attributes follow the DATA keyword, and you must enclose them in parentheses.

NAME(sdidsname.data)
Specifies the name of the data component of the SDIDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like sdidsname.DATA, the name is more recognizable, for example, in a LISTVTOC listing.

CONTROLINTERVALSIZE(cisize)
Specifies the control interval size for the data component of the SDIDS. The sizes you can specify must be:
- A multiple of 512 for values from 512 to 8192
- A multiple of 2048 for values from 8192 to 32768.

Refer to the calculations for maximum record size above to determine the control interval size for your database.

RECORDSIZE(avg max)
Specifies the average and maximum record sizes for the SDIDS. The maximum record size must be at least 7 bytes less than the control interval size (max ≤ cisize−7). You must have already calculated the maximum (see "Working with SDIDSs" on page 176).
RECORDS *(primary secondary)*

TRACKS *(primary secondary)*

CYLINDERS *(primary secondary)*

Specifies the amount of space to allocate to the SDIDS. *Primary* specifies the initial space allocation; *secondary* specifies the increments of the allocation when new extents are necessary to extend the SDIDS. You can specify the allocation units in terms of RECORDS, TRACKS, or CYLINDERS. One of these keywords is required.

FREESPACE *(freeci freeca)*

Specifies the percentage of freespace to allocate in the data set. *Freeci* is the percentage to allocate for each control interval and *freeca* is the percentage to allocate for each control area.

SPEED

Specifies that the data component’s space is not preformatted during initial load. VSAM uses this keyword only when rebuilding the SDIDS through the BLGUT1 rebuild utility, or when reorganizing the SDIDS. The SDIDS rebuild utility performance is improved if you specify SPEED. The SPEED keyword is recommended.

INDEX

Specifies attributes of the index component of the cluster. The attributes follow the INDEX keyword and you must enclose them in parentheses.

NAME *(sdidsname.index)*

Specifies the name of the index component of the SDIDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to *DFSMSS/VM Using Data Sets* for more information on system-generated names. If you specify a name like *sdidsname.INDEX*, the name is more recognizable, for example, in a LISTVTOC listing.

Using IMBED or NOIMBED

IMBED indicates that the lowest level index records (sequence set) of the data set are written as many times as they fit on the first track adjacent to the related control area. This can shorten the time it takes to retrieve records when physical access to the DASD is required. With NOIMBED, the sequence set is written once and resides with the rest of the index levels.

NOIMBED may be the better choice for the SDIDS index for the following reasons:

- If you are using LSR and have allotted enough buffers to contain all of the SDIDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so IMBED has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- If you are using a controller cache function, IMBED can be counterproductive. Because entire tracks are buffered into the controller cache, IMBED can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

- If you are using RLS (sysplex mode is enabled), you must use NOIMBED. RLS does not support use of IMBED.
Starting with DFSMS/MVS Version 1.5, IMBED is no longer supported, and is ignored if specified on the IDCAMS DEFINE. If sysplex mode is not enabled, you may continue to use the old VSAM data sets that were defined with the IMBED attribute.

For these reasons, NOIMBED is recommended for the SDIDS index. Consider using IMBED for the SDIDS index only if you are not buffering most of the SDIDS index through LSR and you are not using a controller cache function for the SDIDS.

Using REPLICATE or NOREPLICATE

REPLICATE indicates that each index (for all levels, not just the sequence set) record is written on a track as many times as it fits. When VSAM reads the DASD to retrieve this lowest level of the index to locate a record, REPLICATE can reduce the rotational delay of the disk.

However, NOREPLICATE may be the better choice for the SDIDS index for the following reasons:

- If you are using LSR and have allotted enough buffers to contain all of the SDIDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so REPLICATE has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- If you are using a controller cache function, REPLICATE may be counterproductive. Because entire tracks are buffered into the controller cache, REPLICATE can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

For these reasons, NOREPLICATE is recommended for the SDIDS index. Consider using REPLICATE for the SDIDS index only if you are not buffering most of the SDIDS index through LSR and you are not using a controller cache function for the SDIDS.

Defining the SDLDS

The syntax diagram for the DEFINE CLUSTER command for defining an SDLDS follows:

```
DEFINE +
CLUSTER(+
  NAME(sdldsname)
  VOLUMES(volser [volser...])
  NUMBERED
  [LOG(NONE)]
  SHAREOPTIONS(1 3)
  [NOREUSE]
  [UNIQUE])
DATA(
  [NAME(sdldsname.data)]
  [CONTROLINTERVALSIZE(cisize)]
  RECORDSIZE(max max)
  (RECORDS(primary) | TRACKS(primary) | CYLINDERS(primary)))

CLUSTER
Indicates that you are defining a VSAM cluster. Follow CLUSTER with the parameters specified for the cluster as a whole; you must enclose these parameters in parentheses.
NAME(sdldsname)
   Specifies the name of the SDLDS. You must specify NAME. The sdldsname is a
   standard data set name, which is specified on the NAME parameter.

VOLUMES(volser [volser...])
   Specifies the volumes to contain the SDLDS. Volser is the volume serial number
   of the device. You must specify one or more devices. Allocate the SDLDS on
different devices from those on which you allocated the SDDS so that, if the disk
for the SDDS becomes damaged, the SDLDS is not damaged at the same time. This
keyword is not required for SMS-managed data sets.

NUMBERED
   Specifies that the SDLDS is a relative-record data set. This keyword is required.

LOG(NONE)
   Specifies that CICS should not log changes (the file is non-recoverable). You
   must include LOG(NONE) if you are using VSAM RLS in a sysplex. RLS requires use
   of a LOG parameter.

SHAREOPTIONS(1 3)
   Specifies how your VSAM cluster can be shared among users. You must specify a
   value for this keyword. In a non-sysplex environment, the value must be
   SHAREOPTIONS(1 3).

   If you specify SHAREOPTIONS(1 3), you specify that the cluster can be used by
   only the BLX-SP for read and write processing. VSAM ensures complete data
   integrity for the cluster.

   If sysplex mode is enabled, a value of SHAREOPTIONS(2 3) is recommended.
   Although the value is not required and is ignored by VSAM RLS,
   SHAREOPTIONS(2 3) enables other programs such as Access Method Services
   (IDCAMS) to perform tasks such as opening the data set in NSR read-only mode.

   Note: The SHAREOPTIONS value of existing Tivoli Information Management for
   z/OS VSAM clusters may be changed using the AMS ALTER command.

NOREUSE
   The REUSE option is not supported. When defining clusters, either specify
   NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying
   either option.

UNIQUE
   Indicates you are allocating the SDLDS as separate DASD space. This keyword
   is optional. If you omit it, VSAM defaults to SUBALLOCATION, which allocates the
   space from existing VSAM data space. It is recommended that you specify
   UNIQUE.

   Note: If you are using ICF in OS/390 MVS, the UNIQUE and SUBALLOCATION
   parameters are ignored.

DATA
   Specifies attributes of the data component of the SDLDS. The attributes follow
   the DATA keyword, and you must enclose them in parentheses.

NAME(sdldsname.data)
   Specifies the name of the data component of the SDLDS VSAM cluster. This
   keyword is optional. If you omit the name, VSAM automatically generates a data set
name for you. Refer to *DFSMS/MVS Using Data Sets* for more information on system-generated names. If you specify a name like `slddsnname.DATA`, the name is more recognizable, for example, in a LISTVTOC listing.

**CONTROLINTERVALSIZEx(cisize)**

Specifies the control interval size for the data component of the SDLDS. The sizes you can specify must be:

- A multiple of 512 for values from 512 to 8192
- A multiple of 2048 for values from 8192 to 32768.

The recommended size is the same as the control interval size specified for the SDDS.

**RECORDSIZEx(max max)**

 Specifies the size for the SDLDS records. Because this is a NUMBERED data set, the average and maximum record sizes must be the same. The maximum record size must be at least 7 bytes less than the control interval size (`max ≤ cisize−7`).

The recommended size to specify is `cisize−7`. This size must match the maximum record size specified for the SDDS.

**RECORDSp(primary)**

**TRACKSp(primary)**

**CYLINDERSp(primary)**

Specifies the amount of space to allocate to the SDLDS. Do not specify a secondary allocation because the secondary extents are allocated immediately when the SDLDS formatting utility is processed. You can specify the allocation units in terms of RECORDS, TRACKS, or CYLINDERS. One of these keywords is required.

After you define the SDLDS, you must format the data set by running the BLGUTR utility. Refer to the [Tivoli Information Management for z/OS Operation and Maintenance Reference](#). You cannot format the data set until the BLX-SP procedure is started. If you format the data set before the BLX-SP procedure is started, you will receive an ABEND.

### Defining the DICTDS

The dictionary data set (DICTDS) contains s-words and p-words that you use to create and modify panels with PMF and also to generate reports.

The syntax diagram for the DEFINE CLUSTER command for defining a DICTDS follows:

```
DEFINE +
CLUSTER(+
 NAME(dictdsname) +
 [INDEXED] +
 KEYS(3 0) +
 [LOG(NONE)] +
 SHAREOPTIONS(1 3) +
 [NOREUSE] +
 VOLUMES(volser [volser...]) +
 [UNIQUE]) +
DATA(+
 [NAME(dictdsname.data)] +
 [CONTROLINTERVALSIZEx(cisize)] +
 RECORDSIZE(115 115) +
 {RECORDSp(primary secondary) | TRACKSp(primary secondary) |
 CYLINDERSp(primary secondary)} +
 [FREESPACE(freeci freeca)] +
 [SPEED]) +
```

---

**Planning and Installation Guide and Reference**

289
Defining the DICTDS

INDEX(
  [NAME(dictdsname.index)] +
  [NOIMBED] +
  [NOREPLICATE])

CLUSTER
Indicates that you are defining a VSAM cluster. Follow CLUSTER with the parameters specified for the cluster as a whole; you must enclose these parameters in parentheses.

NAME(dictdsname)
Specifies the name of the DICTDS. You must specify NAME. The dictdsname is a standard data set name.

INDEXED
Specifies that the DICTDS is a key-sequenced data set. You do not have to specify this keyword because INDEXED is the default.

KEYS(3 0)
Specifies information about the key field of the DICTDS. Tivoli Information Management for z/OS requires that you store the key of the record in the first three bytes of the record. Therefore, the values 3 and 0 represent the length and offset, respectively, of the key. You must specify this keyword and its values.

LOG(NONE)
Specifies that CICS should not log changes (the file is non-recoverable). You must include LOG(NONE) if you are using VSAM RLS in a sysplex. RLS requires use of a LOG parameter.

SHAREOPTIONS(1 3)
Specifies how your VSAM cluster can be shared among users. You must specify a value for this keyword. In a non-sysplex environment, the value must be SHAREOPTIONS(1 3).

If you specify SHAREOPTIONS(1 3), you specify that the cluster can be used by only the BLX-SP for read and write processing. VSAM ensures complete data integrity for the cluster.

If sysplex mode is enabled, a value of SHAREOPTIONS(2 3) is recommended. Although the value is not required and is ignored by VSAM RLS, SHAREOPTIONS(2 3) enables other programs such as Access Method Services (IDCAMS) to perform tasks such as opening the data set in NSR read-only mode.

Note: The SHAREOPTIONS value of existing Tivoli Information Management for z/OS VSAM clusters may be changed using the AMS ALTER command.

NOREUSE
The REUSE option is not supported. When defining clusters, either specify NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying either option.

VOLUMES(volser [volser...])
Specifies the volumes to contain the DICTDS. Volser is the volume serial number of the device. You must specify one or more devices. This keyword is not required for SMS-managed data sets.

UNIQUE
Indicates you are allocating the dictionary data set as separate DASD space. This
keyword is optional. If you omit it, VSAM defaults to SUBALLOCATION, which allocates the space from existing VSAM data space. It is recommended that you specify UNIQUE.

**Note:** If you are using ICF in OS/390 MVS, the UNIQUE and SUBALLOCATION parameters are ignored.

**DATA**
Specifies attributes of the data component of the dictionary data set. The attributes follow the DATA keyword, and you must enclose them in parentheses.

**NAME(dictdsname.data)**
Specifies the name of the data component of the DICTDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to *DFSMS/MVS Using Data Sets* for more information on system-generated names. If you specify a name like `dictdsname.DATA`, the name is more recognizable, for example, in a LISTVTOC listing.

**CONTROLINTERVALSIZE(cisize)**
Specifies the control interval size for the data component of the DICTDS. The sizes you can specify must be:
- A multiple of 512 for values from 512 to 8192
- A multiple of 2048 for values from 8192 to 32768.

The recommended size is 4096.

**RECORDSIZE(115 115)**
Specifies the average and maximum record sizes for the DICTDS. The size of the dictionary data set records is fixed at 115 bytes. Therefore, the value that you should specify for both average and maximum is 115.

**RECORDS(primary secondary)**
**TRACKS(primary secondary)**
**CYLINDERS(primary secondary)**
Specifies the amount of space to allocate to the DICTDS. *Primary* specifies the initial space allocation; *secondary* specifies the increments of the allocation when new extents are necessary to extend the DICTDS. You can specify the allocation units in terms of RECORDS, TRACKS, or CYLINDERS. One of these keywords is required. The dictionary data set as distributed by Tivoli uses approximately 30 tracks for Tivoli Information Management for z/OS on a 3380 DASD device.

**FREESPACE(freeci freeca)**
Specifies the percentage of freespace to allocate in the data set. *Freeci* is the percentage to allocate for each control interval and *freeca* is the percentage to allocate for each control area. The dictionary has two sections (s-words and p-words). Any s-word or p-word that you add always appends to the end of its respective section. Therefore, it is recommended that you specify no freespace for either the control intervals or the control areas. When you add your first s-word or p-word, a control area split occurs for the last control area for the section. Thereafter, when you add more s-words or p-words, they fit in the area that was split.

**SPEED**
Specifies that the data component’s space is not preformatted during initial load. VSAM uses this keyword only when you use the BLGUT5 utility program to
initially load DICTDS or when you are reorganizing the DICTDS. The BLGUT5 utility program performance improves if you specify SPEED. This applies to only the first DICTDS load; subsequent DICTDS loads do not improve performance. The SPEED keyword is recommended.

INDEX
Specifications attributes of the index component of the cluster. The attributes follow the INDEX keyword and you must enclose them in parentheses.

NAME(dictdsname.index)
Specifies the name of the index component of the DICTDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like dictdsname.INDEX, the name is more recognizable, for example, in a LISTVTOC listing.

Using IMBED or NOIMBED
IMBED indicates that the lowest level index records (sequence set) of the data set are written as many times as they fit on the first track adjacent to the related control area. This can shorten the time it takes to retrieve records when physical access to the DASD is required. With NOIMBED, the sequence set is written once and resides with the rest of the index levels.

NOIMBED may be the better choice for the DICTDS index for the following reasons:

- If you are using LSR and have allotted enough buffers to contain all of the DICTDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so IMBED has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- Normally, you would not use a controller cache function for the DICTDS, but if you were, IMBED can be counterproductive. Because entire tracks are buffered into the controller cache, IMBED can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

- If you are using RLS (sysplex mode is enabled), you must use NOIMBED. RLS does not support use of IMBED.

- Starting with DFSMS/MVS Version 1.5, IMBED is no longer supported, and is ignored if specified on the IDCAMS DEFINE. If sysplex mode is not enabled, you may continue to use the old VSAM data sets that were defined with the IMBED attribute.

For these reasons, NOIMBED is recommended for the DICTDS index. Consider using IMBED for the DICTDS index only if you are not buffering most of the DICTDS index through LSR.

Using REPLICATE or NOREPLICATE
REPLICATE indicates that each index (for all levels, not just the sequence set) record is written on a track as many times as it fits. When VSAM reads the DASD to retrieve this lowest level of the index to locate a record, REPLICATE can reduce the rotational delay of the disk.

However, NOREPLICATE may be the better choice for the DICTDS index for the following reasons:
If you are using LSR and have allotted enough buffers to contain all of the DICTDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so REPLICATE has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

Normally, you would not use a controller cache function for the DICTDS, but if you were, REPLICATE may be counterproductive. Because entire tracks are buffered into the controller cache, REPLICATE can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

For these reasons, NOREPLICATE is recommended for the DICTDS index. Consider using REPLICATE for the DICTDS index only if you are not buffering most of the DICTDS index through LSR.

After you define the dictionary (DICTDS), you must initialize the data in the dictionary by copying the supplied dictionary from a PDS into the VSAM dictionary. Use the BLGUT5 utility program to do this. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for information on using BLGUT5.

Defining the RPANLDS

You can use any number of read panel data sets, but, with more data sets, Tivoli Information Management for z/OS must search the multiple data sets for the panels. This activity can affect performance, depending upon the value used in the PNLBCNT parameter on the BLGPARMS macro. See “Using One or More Read Panel Data Sets” on page 198 for additional information.

The size of your RPANLDS depends on the number of panels that you store in it and the average size of a panel. You can choose whatever record size and control interval size you want.

The panels that you create or modify are probably similar to the Tivoli distributed panels. Therefore, you should use the same control interval and record sizes when defining your read panel data sets.

The syntax diagram for the DEFINE CLUSTER command for defining an RPANLDS follows:

```
DEFINE CLUSTER(+
 NAME(rpanldsname) +
 [INDEXED] +
 KEYS(10 0) +
 [LOG(NONE)] +
 SHAREOPTIONS(1 3) +
 [UNIQUE] +
 VOLUMES(volser [volser...]) +
 [UNIQUE] +
 DATA(+
 [NAME(rpanldsname.data)] +
 [CONTROLINTERVALSIZE(cisize)] +
 RECORDSIZE(avg max) +
 (RECORDS(primary secondary) | TRACKS(primary secondary) | CYLINDERS(primary secondary)) +
 [FREESPACE(freeci freeca)] +
 [SPEED]) +
```
Defining the RPANLDS

```plaintext
INDEX(
 [NAME(rpanldsname.index)] +
 [NOIMBED] +
 [NOREPLICATE])

CLUSTER
Indicates that you are defining a VSAM cluster. Follow CLUSTER with the parameters specified for the cluster as a whole; you must enclose these parameters in parentheses.

NAME(rpanldsname)
Specifies the name of the RPANLDS. You must specify NAME. The rpanldsname is a standard data set name.

INDEXED
Specifies that the RPANLDS is a key-sequenced data set. You do not have to specify this keyword because INDEXED is the default.

KEYS(10 0)
Specifies information about the key field of the RPANLDS. Tivoli Information Management for z/OS requires that you store the key of the record in the first 10 bytes of the record. Therefore, the values 10 and 0 represent the length and offset, respectively, of the key. You must specify this keyword and its values.

LOG(NONE)
Specifies that CICS should not log changes (the file is non-recoverable). You must include LOG(NONE) if you are using VSAM RLS in a sysplex. RLS requires use of a LOG parameter.

SHAREOPTIONS(1 3)
Specifies how your VSAM cluster can be shared among users. You must specify a value for this keyword. In a non-sysplex environment, the value must be SHAREOPTIONS(1 3).

If you specify SHAREOPTIONS(1 3), you specify that the cluster can be used by only the BLX-SP for read and write processing. VSAM ensures complete data integrity for the cluster.

If sysplex mode is enabled, a value of SHAREOPTIONS(2 3) is recommended. Although the value is not required and is ignored by VSAM RLS, SHAREOPTIONS(2 3) enables other programs such as Access Method Services (IDCAMS) to perform tasks such as opening the data set in NSR read-only mode.

Note: The SHAREOPTIONS value of existing Tivoli Information Management for z/OS VSAM clusters may be changed using the AMS ALTER command.

NOREUSE
The REUSE option is not supported. When defining clusters, either specify NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying either option.

VOLUMES(volser [volser...])
Specifies the volumes to contain the RPANLDS. Volser is the volume serial number of the device. You must specify one or more devices. This keyword is not required for SMS-managed data sets.

UNIQUE
Indicates you are allocating the RPANLDS as separate DASD space. This keyword
```
is optional. If you omit it, VSAM defaults to SUBALLOCATION, which allocates the space from existing VSAM data space. It is recommended that you specify UNIQUE.

**Note:** If you are using ICF in OS/390 MVS, the UNIQUE and SUBALLOCATION parameters are ignored.

**DATA**
Specifies attributes of the data component of the RPANLDS. The attributes follow the DATA keyword, and you must enclose them in parentheses.

**NAME(rpanldsnam.data)**
Specifies the name of the data component of the RPANLDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to *DFSMS/MVS Using Data Sets* for more information on system-generated names. If you specify a name like *rpanldsnam.DATA*, the name is more recognizable, for example, in a LISTVTOC listing.

**CONTROLINTERVALSIZE(cisize)**
Specifies the control interval size for the data component of the RPANLDS. The recommended size for the shipped Tivoli base panel data set is 4096.

**RECORDSIZE(avg max)**
Specifies the average and maximum record sizes for the RPANLDS. The average size of panels shipped by Tivoli is 900.

The recommended maximum size for the shipped Tivoli base panels is 4089.

The maximum record size must be:

- At least 7 bytes less than the control interval size (max ≤ cisize – 7)
- Greater than or equal to 80.

**RECORDS(primary secondary)**

**TRACKS(primary secondary)**

**CYLINDERS(primary secondary)**
Specifies the amount of space to allocate to the RPANLDS. *Primary* specifies the initial space allocation; *secondary* specifies the increments of the allocation when new extents are necessary to extend the RPANLDS. You can specify the allocation units in terms of RECORDS, TRACKS, or CYLINDERS. One of these keywords is required.

**FREESPACE(freeci freeca)**
Specifies the percentage of freespace to allocate in the data set. *Freeci* is the percentage to allocate for each control interval and *freeca* is the percentage to allocate for each control area.

Normally, freespace offers little value for panel data sets.

**SPEED**
Specifies that the data component’s space is not preformatted during initial load. This keyword applies only when you are using the Tivoli Information Management for z/OS BLGUT6 utility program to initially load the RPANLDS, or when you are reorganizing the RPANLDS. The BLGUT6 utility program performance improves if you specify SPEED. This applies to only the first RPANLDS load; subsequent RPANLDS loads do not improve performance. The SPEED keyword is recommended.
INDEX
Specifies attributes of the index component of the cluster. The attributes follow the INDEX keyword and you must enclose them in parentheses.

NAME(rpanldsnamel.index)
Specifies the name of the index component of the RPANLDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like rpanldsnamel.INDEX, the name is more recognizable, for example, in a LISTVTOC listing.

Using IMBED or NOIMBED
IMBED indicates that the lowest level index records (sequence set) of the data set are written as many times as they fit on the first track adjacent to the related control area. This can shorten the time it takes to retrieve records when physical access to the DASD is required. With NOIMBED, the sequence set is written once and resides with the rest of the index levels.

NOIMBED may be the better choice for the RPANLDS index for the following reasons:

- If you are using LSR and have allotted enough buffers to contain all of the RPANLDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so IMBED has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- Normally, you would not use a controller cache function for the RPANLDS, but if you were, IMBED can be counterproductive. Because entire tracks are buffered into the controller cache, IMBED can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

- If you are using RLS (sysplex mode is enabled), you must use NOIMBED. RLS does not support use of IMBED.

- Starting with DFSMS/MVS Version 1.5, IMBED is no longer supported, and is ignored if specified on the IDCAMS DEFINE. If sysplex mode is not enabled, you may continue to use the old VSAM data sets that were defined with the IMBED attribute.

For these reasons, NOIMBED is recommended for the RPANLDS index. Consider using IMBED for the RPANLDS index only if you are not buffering most of the RPANLDS index through LSR.

Using REPLICATE or NOREPLICATE
REPLICATE indicates that each index (for all levels, not just the sequence set) record is written on a track as many times as it fits. When VSAM reads the DASD to retrieve this lowest level of the index to locate a record, REPLICATE can reduce the rotational delay of the disk.

However, NOREPLICATE may be the better choice for the RPANLDS index for the following reasons:

- If you are using LSR and have allotted enough buffers to contain all of the RPANLDS index CIs (as recommended), then after the first access there are no
physical reads of the index from the DASD, so REPLICATE has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- Normally, you would not use a controller cache function for the RPANLDS, but if you were, REPLICATE may be counterproductive. Because entire tracks are buffered into the controller cache, REPLICATE can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

For these reasons, NOREPLICATE is recommended for the RPANLDS index. Consider using REPLICATE for the RPANLDS index only if you are not buffering most of the RPANLDS index through LSR.

After you define the RPANLDS for your production database, you must copy the Tivoli panels from a PDS into this VSAM RPANLDS. You do this by processing the BLGUT6 utility program. Refer to the *Tivoli Information Management for z/OS Operation and Maintenance Reference*.

If you are defining an RPANLDS to contain your own panels, no such initialization is necessary.

### Defining the WPANLDS

The write panel data set (WPANLDS) is similar to the RPANLDS in that the format of the data is the same. The size of your WPANLDS depends on the number of panels you expect it to contain at any one time. Remember that you must use your WPANLDS only for modifying and testing panels using the PMF facility of Tivoli Information Management for z/OS. After you fully test your new panels, copy the panels into your production RPANLDS. Then you can delete the panels in your WPANLDS.

The syntax diagram for the DEFINE CLUSTER command for defining an WPANLDS follows:

```plaintext
DEFINE +
 CLUSTER(+
 NAME(wpanldsname) +
 [INDEXED] +
 KEYS(10 0) +
 [LOG(NONE)] +
 SHAREOPTIONS(1 3) +
 [NOREUSE] +
 VOLUMES(volser [volser...]) +
 [UNIQUE]) +
 DATA(+
 [NAME(wpanldsname.data)] +
 [CONTROLINTERVALSIZE(cisize)] +
 RECORDSIZE(avg max) +
 {RECORDS(primary secondary) | TRACKS(primary secondary) |
 CYLINDERS(primary secondary)} +
 [FREESPACE(freeci freeca)] +
 INDEX(+
 [NAME(wpanldsname.index)] +
 [NOIMBED] +
 [NOREPLICATE])

CLUSTER
 Indicates that you are defining a VSAM cluster. Follow CLUSTER with the parameters specified for the cluster as a whole; you must enclose these parameters in parentheses.
```
NAME(wpanldsname)
   Specifies the name of the WPANLDS. You must specify NAME. The wpanldsname
   is a standard data set name.

INDEXED
   Specifies that the WPANLDS is a key-sequenced data set. You do not have to
   specify this keyword because INDEXED is the default.

KEYS(10 0)
   Specifies information about the key field of the WPANLDS. Tivoli Information
   Management for z/OS requires that you store the key of the record in the first ten
   bytes of the record. Therefore, the values 10 and 0 represent the length and offset,
   respectively, of the key. You must specify this keyword and its values.

LOG(NONE)
   Specifies that CICS should not log changes (the file is non-recoverable). You must
   include LOG(NONE) if you are using VSAM RLS in a sysplex. RLS requires use of
   a LOG parameter.

SHAREOPTIONS(1 3)
   Specifies how your VSAM cluster can be shared among users. You must specify a
   value for this keyword. In a non-sysplex environment, the value must be
   SHAREOPTIONS(1 3).

   If you specify SHAREOPTIONS(1 3), you specify that the cluster can be used by
   only the BLX-SP for read and write processing. VSAM ensures complete data
   integrity for the cluster.

   If sysplex mode is enabled, a value of SHAREOPTIONS(2 3) is recommended.
   Although the value is not required and is ignored by VSAM RLS,
   SHAREOPTIONS(2 3) enables other programs such as Access Method Services
   (IDCAMS) to perform tasks such as opening the data set in NSR read-only mode.

Note: The SHAREOPTIONS value of existing Tivoli Information Management for
   z/OS VSAM clusters may be changed using the AMS ALTER command.

NOREUSE
   The REUSE option is not supported. When defining clusters, either specify
   NOREUSE explicitly, or allow VSAM to default to NOREUSE by not specifying
   either option.

VOLUMES(volser [volser...])
   Specifies the volumes to contain the WPANLDS. Volser is the volume serial number
   of the device. You must specify one or more devices. This keyword is not required
   for SMS-managed data sets.

UNIQUE
   Indicates you are allocating the WPANLDS as separate DASD space. This keyword
   is optional. If you omit it, VSAM defaults to SUBALLOCATION, which allocates
   the space from existing VSAM data space. It is recommended that you specify
   UNIQUE.

Note: If you are using ICF in OS/390 MVS, the UNIQUE and SUBALLOCATION
   parameters are ignored.
DATA
Specifies attributes of the data component of the WPANLDS. The attributes follow the DATA keyword, and you must enclose them in parentheses.

NAME(wpanldsnname.data)
Specifies the name of the data component of the WPANLDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like wpanldsnname.DATA, the name is more recognizable, for example, in a LISTVTOC listing.

CONTROLINTERVALSIZE(cisize)
Specifies the control interval size for the data component of the WPANLDS. The sizes you can specify must be:
- A multiple of 512 for values from 512 to 8192
- A multiple of 2048 for values from 8192 to 32768.

The recommended size is the same size that you used to define your read panel data sets.

RECORDSIZE(avg max)
Specifies the average and maximum record sizes for the WPANLDS. The maximum record size must be:
- At least 7 bytes less than the control interval size (max ≤ cisize−7)
- Greater than or equal to 80.

The recommended sizes are the same values that you used to define your read panel data sets.

RECORDS(primary secondary)
TRACKS(primary secondary)
CYLINDERS(primary secondary)
Specifies the amount of space to allocate to the WPANLDS. Primary specifies the initial space allocation; secondary specifies the increments of the allocation when new extents are necessary to extend the WPANLDS. You can specify the allocation units in terms of RECORDS, TRACKS, or CYLINDERS. One of these keywords is required.

FREESPACE(freeci freeca)
Specifies the percentage of freespace to allocate in the data set. Freeci is the percentage to allocate for each control interval and freeca is the percentage to allocate for each control area.

INDEX
Specifies attributes of the index component of the cluster. The attributes follow the INDEX keyword and you must enclose them in parentheses.

NAME(wpanldsnname.index)
Specifies the name of the index component of the WPANLDS VSAM cluster. This keyword is optional. If you omit the name, VSAM automatically generates a data set name for you. Refer to DFSMS/MVS Using Data Sets for more information on system-generated names. If you specify a name like wpanldsnname.INDEX, the name is more recognizable, for example, in a LISTVTOC listing.
Using **IMBED** or **NOIMBED**

IMBED indicates that the lowest level index records (sequence set) of the data set are written as many times as they fit on the first track adjacent to the related control area. This can shorten the time it takes to retrieve records when physical access to the DASD is required. With NOIMBED, the sequence set is written once and resides with the rest of the index levels.

Whether you use IMBED or NOIMBED for the WPANLDS index probably makes very little difference to performance, since the WPANLDS is usually not heavily used.

- If you are using LSR and have allotted enough buffers to contain all of the WPANLDS index CIs, then after the first access there are no physical reads of the index from the DASD, so IMBED has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- Normally, you would not use a controller cache function for the WPANLDS, but if you were, IMBED can be counterproductive. Because entire tracks are buffered into the controller cache, IMBED can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

- Starting with DFSMS/MVS Version 1.5, IMBED is no longer supported, and is ignored if specified on the IDCAMS DEFINE. If sysplex mode is not enabled, you may continue to use the old VSAM data sets that were defined with the IMBED attribute.

NOIMBED is recommended for the WPANLDS index. Consider using IMBED for the WPANLDS index only if performance for PMF users is important and you are unable to buffer most of the WPANLDS index through LSR.

Using **REPLICATE** or **NOREPLICATE**

REPLICATE indicates that each index (for all levels, not just the sequence set) record is written on a track as many times as it fits. When VSAM reads the DASD to retrieve this lowest level of the index to locate a record, REPLICATE can reduce the rotational delay of the disk.

However, NOREPLICATE may be the better choice for the WPANLDS index for the following reasons:

- If you are using LSR and have allotted enough buffers to contain all of the WPANLDS index CIs (as recommended), then after the first access there are no physical reads of the index from the DASD, so REPLICATE has little value to offset its costs (extra DASD space, and extra time to write changes to the replicated indexes).

- Normally, you would not use a controller cache function for the WPANLDS, but if you were, REPLICATE may be counterproductive. Because entire tracks are buffered into the controller cache, REPLICATE can cause cache memory in the controller to be used to unnecessarily store the replicated index records.

NOREPLICATE is recommended for the WPANLDS index. Consider using REPLICATE for the WPANLDS index only if performance for PMF users is important and you are unable to buffer most of the WPANLDS index through LSR.
Defining VSAM Resources to the BLX-SP in a Non-Sysplex Environment

Non-Sysplex Environment
The information in this chapter applies to you if you are installing Tivoli Information Management for z/OS in a non-sysplex environment only. If you are installing Tivoli Information Management for z/OS in a sysplex, there is no need to define VSAM resources to the BLX-SP because the BLX-SP does not manage those resources in a sysplex.

This appendix provides the following:
- A procedure for defining a VSAM resource definition member
- Syntax and examples of the following Tivoli Information Management for z/OS macros:
  - BLXNSR
  - BLXDSN
  - BLXGEN
- An example of how to define an LSR buffer pool using the VSAM BLDVRP macro
- A sample VSAM resource definition member for Tivoli Information Management for z/OS

This appendix assumes that you have a working knowledge of the VSAM BLDVRP macro. For more information on this macro, refer to the DFSMS/MVS Macro Instructions for Data Sets.

This appendix is designed to help you define VSAM resources to the BLX-SP.

Defining a VSAM Resource Definition Member

Follow these steps to define VSAM resources to the BLX-SP in a non-sysplex environment:

1. Create a BLX-SP VSAM resource definition member. You must define a VSAM resource definition member for your BLX-SP whether you use NSR or LSR. Multiple BLX-SPs can share a VSAM resource definition member.
   a. Use the BLXNSR macro to identify the number of concurrent users (VSAM placeholders) required for the access of VSAM data sets using NSR. This must be the first macro coded in the VSAM resource definition member.
   b. Use the BLXDSN macro to identify the names of the VSAM data sets and:
The shared resource pool that the data set uses (LSR keyword), or
Default to NSR (omit LSR keyword).

c. Use the BLXGEN macro to identify the end of the BLX-SP VSAM resource
definition. This must be the last BLX macro coded in the VSAM resource definition
member. The BLXGEN macro must precede all BLDVRP macros.
d. Include your VSAM BLDVRP macro specifications that define the LSR pools. Do
this step only if you are using LSR.

2. Assemble and link-edit the BLX-SP VSAM resource definition member. You must
link-edit this member with the following attributes:
   RMODE=24
   NORENT
   REUS

If you do not use these attributes, a failure occurs when you attempt to initialize the
BLX-SP.

You can link-edit the VSAM resource definition member into your program library that
contains the rest of the BLX-SP executable code. You must assemble and link-edit all
VSAM resource definition members before attempting to start the BLX-SP. Refer to the
Assembler H Version 2 Language Reference or the High Level Assembler Language
Reference for information about assembling modules.

Note: If you are migrating from an earlier version of the product, you do not have to
assemble and link-edit the VSAM resource definition members again unless you
had SHARE=YES specified on one or more BLXDSN macros. The SHARE
keyword is no longer supported.

3. Specify the BLX-SP VSAM resource definition member name in the BLX-SP parameters
member. The VSAM resource definition member name can be any valid data set member
name. The BLX-SP parameters member is processed during initialization. The
VSAMRESOURCES keyword identifies the member name containing the LSR pool
definitions, NSR placeholders, and connections between these resources and VSAM data
sets.

Note: See the sample in “Defining BLX-SP Parameters Members” on page 343

Understanding the Macro Syntax Description

The syntax diagrams for the Tivoli Information Management for z/OS macros in this chapter
show some parameters with brackets [ ], braces { }, or vertical bars |. These are for
clarification purposes only; they are not part of the macros.
- Brackets indicate optional data.
- Braces indicate that you must select exactly one of the choices enclosed within the
  braces.
- Vertical bars indicate selectable items. You must choose one of these items.
- Bold, underlined values in these macro descriptions are the default values.
BLXNSR Macro — Specifying the Number of Nonshared Resource Placeholders

The BLXNSR macro specifies the number of VSAM placeholders to allocate for all VSAM data sets that use nonshared resources. The value you specify for the PLACES keyword defines the number of VSAM placeholders to allocate for these VSAM data sets. All of the VSAM data sets that use nonshared resources share these placeholders.

You cannot change the number of placeholders during processing of the BLX-SP. If the value you initially specified for the PLACES keyword is not adequate, you must stop the BLX-SP and restart it with an updated VSAM resource definition member.

The syntax for the BLXNSR macro is:

```
BLXNSR PLACES=value
```

**PLACES**

Specifies the number of placeholders to allocate for all VSAM data sets that use nonshared resources. The value you specify must be numeric and in the range of 15–255. This includes data sets not defined in the VSAM definition member, which default to using NSR (see note, page 304).

NSR placeholders are required when data sets are accessed in load mode, even if you specify LSR for the data sets.

**Coding the BLX-SP BLXNSR Macro**

In the example that is described in “Defining LSR Buffer Pools” on page 80, three data sets use nonshared resources. These data sets are allocated for write access when used by the users’ address spaces. Because only one user’s address space can have write access to a data set at a time, only three placeholders are required (one position per data set). Because NSR placeholders are required to access data sets in load mode and when single user access is requested by some utilities, additional NSR placeholders may be required. Code the BLXNSR macro as shown in Figure 24.

```
* * DEFINE NON-SHARED RESOURCES TO BLX-SP
* * BLXNSR PLACES=20 Twenty places for NSR.
```

Figure 24. Coding the BLX-SP BLXNSR Macro

BLXDSN Macro — Connecting VSAM Resources to a VSAM Data Set

You can use the BLXDSN macro to connect VSAM resources to a VSAM data set and to assign a logical name for the data set. You can use this name to reference the data set by using operator commands.

You must specify one BLXDSN macro for each data set you want to make a connection to or assign a logical name to. If you want to use LSR with the clusters in a multiple-cluster SDDS, you must specify the BLXDSN macro for each cluster. You can specify a shared resource pool for the data set by using the LSR keyword. You must specify this keyword if you define LSRs for the data set and intend to use LSR to access the data set. If you omit the LSR keyword, nonshared resources are used to access the data set.
The maximum number of concurrent positions that you can have within the data set is determined either by the shared resource pool definition identified with the LSR keyword or by the value you specify for the PLACES keyword in the BLXNSR macro. If you do not specify the LSR keyword, the identified data set uses the nonshared resource placeholder pool defined by the BLXNSR macro.

**Note:** You do not need to code the BLXDSN macro for key-sequenced data sets that use nonshared resources for data set access. Data sets allocated by a user’s address space for which there is no data set definition are automatically allocated using nonshared resources for data set access. This automatic process also generates a logical name for the data set.

The syntax for the BLXDSN macro is:

```
[label] BLXDSN DSN=dsname
 [,LSR={lsrpoolid|[lsrdataid,lsrindexid]}]
 [,DSORG={NUM|KEY}]
 [,USERBUF={n|0}]
```

**Note:** The SHARE keyword is no longer supported.

**label** A standard assembler language instruction label. The label you specify must not begin with the characters BL or SYS. This label is optional. If you specify this label, the BLX-SP assigns it as the logical name for the data set. If you do not specify this label, the BLX-SP generates a logical name for the data set. Although this label is optional, it is recommended that you use one. You can reference the data set using this label on operator commands.

**DSN** Name of the key-sequenced VSAM data set. You must use a cataloged data set and specify 1–44 characters for its name. This keyword is required.

**LSR** Indicates whether this data set uses a VSAM LSR pool. You may not want to specify LSR for relative record data sets because it does not provide any performance improvements for them. If you do not specify this keyword, then NSR will be used with this data set.

**lsrpoolid** Identifies the BLDVRP macro that defines the VSAM shared resource pool containing buffers to use for both the data and index components of this data set. The value you specify for lsrpoolid corresponds to the value that you specified for the SHRPOOL keyword in the VSAM BLDVRP macro that defines the shared resource pool for the data set index and data component buffers.

**lsrdataid** Identifies the BLDVRP macro that defines the VSAM shared resource pool containing buffers to use for the data component of this data set. The value you specify for lsrdataid corresponds to the value that you specified for the SHRPOOL keyword in the VSAM BLDVRP macro that defines the shared resource pool for the data set data component buffers.

**lsrindexid** Identifies the BLDVRP macro that defines the VSAM shared resource pool containing buffers to use for the index component of this data set. The value you specify for lsrindexid corresponds to the value that you specified for the
SHRPOOL keyword in the VSAM BLDVRP macro that defines the shared resource pool for the data set index component buffers.

**DSORG**
Identifies the organization of the VSAM data set. Key-sequenced organization is the default if you do not code the DSORG keyword.

**NUM**
Identifies the organization of the data set as a VSAM relative-record data set. The SDLDS is a VSAM relative-record data set.

**KEY**
Identifies the organization of the data set as a VSAM key-sequenced data set. The SDDS, SDIDS, dictionary, and panel data sets are VSAM key-sequenced data sets.

**USERBUF=n**
Specifies the number (n) of temporary buffers the BLX-SP should maintain for this data set. The value of n ranges from 0 to 32767. The default value is 0.

A value of 0 means that storage for a temporary user buffer is obtained and released from the system for every I/O processing request to this data set from a user. This can cause minor performance degradation.

A value greater than 0 means that the BLX-SP maintains up to the specified number of buffers allocated and assigns them to users, reducing system storage obtain/release requests, but potentially increasing the amount of storage required for the BLX-SP.

The size of each buffer is the maximum LRECL of the data set. Buffers are not allocated until they are needed, so even if 50 buffers are specified, if the maximum ever used is 10, only 10 are allocated. Because these buffers are generally only used for brief periods of time during an I/O processing request, the number of buffers needed is much smaller than the number of active users. If at any time, more buffers are needed than are available in the BLX-SP, additional buffers are obtained from the system. As I/O processing requests complete and buffers become available again, if the number of available buffers exceeds the value specified for this keyword, the excess buffer storage is returned to the system.

This keyword is optional.

**Coding the BLX-SP BLXDSN Macros**
Using the data from the example in “Defining LSR Buffer Pools” on page 80, code the BLXDSN macros as shown in Figure 25 on page 306.
BLXGEN Macro — Generating the BLX-SP VSAM Resource Definition Member CSECT

The BLXGEN macro indicates the end of the BLX-SP VSAM resource definition macro set. This macro begins the code-generation phase of the VSAM resource definition member CSECT (assembler language). This macro must follow all other BLX-SP VSAM resource definition macros, but must precede the list forms of the VSAM BLDVRP macros used to define one or more LSR pools.

The syntax for the BLXGEN macro is:

```
BLXGEN
```

The BLXGEN macro has no parameters.

BLDVRP Macro—Defining Buffer Pools

You can define LSR buffer pools using the VSAM BLDVRP macro.

VSAM BLDVRP Macro Keyword Considerations

Consider the following points when coding the VSAM BLDVRP macro:

- You cannot use VSAM global shared resources (GSR) because the BLX-SP environment does not support them. If you specify GSR in the BLDVRP macro, the BLX-SP uses LSR for the data set.
- The MF keyword of the BLDVRP macro must be specified as MF=L to define a list form of the macro so that it can be run when the VSAM resource definition member is processed.
The MODE keyword of the BLDVRP macro must be omitted or coded as MODE=24. If MODE=31 is specified, the VSAM resource definition member is rejected.

The value of the RMODE31 keyword in the BLDVRP macro is ignored and replaced with a value of ALL when the BLDVRP macro is run.

The VSAM resource definition member must be link-edited with the following attribute. Otherwise, the VSAM resource definition member is rejected:

- RMODE=24
- NORENT
- REUS

**Note:** RMODE, NORENT, and REUS represent relocation mode, nonreentrant, and reusable, respectively.

STRNO defines the number of placeholders for the buffer pool. See [Using VSAM Placeholders](#) on page 77 for guidelines.

**Note:** Refer to DFSMS/MVS Macro Instructions for Data Sets for a description of the VSAM BLDVRP macro. Also refer to DFSMS/MVS Using Data Sets for additional information about using the VSAM BLDVRP macro.

### Coding the VSAM BLDVRP Macros

Figure 26 through Figure 30 are examples based on the analysis and assumptions made in the example given in [Defining LSR Buffer Pools](#) on page 80. The following guidelines are used in coding the BLDVRP macro:

**Note:** Remember, if a buffer of the exact control interval size is not available, VSAM uses the next larger buffer size available.

Use separate data and index pools for key-sequenced data sets so that later changes in data set definitions do not affect index buffer pools, and each buffer pool is used for its intended purpose.

In addition, use an LSR pool to define the placeholders required for the production database user group. Define the first LSR pool for the production database SDDS. This resource pool has both a data and an index pool defined. Define the second LSR pool for the production database SDIDS. This resource pool has both a data and index pool defined. Define the third LSR pool for the read panel and dictionary data sets. The data pool requires separate placeholders defined for the:

- Dictionary data components
- Production base panel data component
- Production read panel data component
- Development test panel data component

The index pool requires separate placeholders defined for the:

- Dictionary index components
- Production base panel index component
- Production read panel index component
- Development test panel index component
The minimum number of buffers in a buffer pool that can be allocated for the data component of any VSAM data set is the number of positions that are maintained in the shared resource pool plus one.

Define the first LSR pool for the production database SDDS. It defines the resources required for the production database user group. Figure 26 shows how to define this pool.

```bash

* RESOURCE POOL ZERO (FOR PRODUCTION DATABASE SDDS) *

* RESOURCE POOL ZERO (SDDS DATA BUFFER POOLS) *
* LSRDO BLDVRP BUFFERS=(4096(31)), SDDS DATA BUFFERS X
 KEYLEN=7, POOL USED BY SDDS X
 STRNO=30, MAINTAIN 30 POSITIONS X
 SHRPOOL=0, IDENTIFY POOL X
 TYPE=(LSR,DATA), DATA BUFFERS ONLY X
 RMODE31=ALL, X
 MODE=24, X
 MF=L
* RESOURCE POOL ZERO (SDDS INDEX BUFFER POOLS) *
* LSRIO BLDVRP BUFFERS=(2048(53)), SDDS INDEX BUFFERS AND X
 SHRPOOL=0, POOL IDENTIFIER X
 TYPE=(LSR,INDEX), INDEX BUFFERS ONLY X
 RMODE31=ALL, X
 MODE=24, X
 MF=L

Figure 26. Defining Resource Pool 0: Production Database SDDS
```

Define the second LSR pool for the production database SDIDS. It defines the resources required for the production database user group. The example uses a 34-byte key. You can use an 18-byte key. The key size you use depends on the key size you specified when you created your SDIDS. See "SDIDS Keys" on page 43 for information on SDIDS key size. Figure 27 on page 309 shows how to define this pool.
Define the third LSR pool for the dictionary and read panel data sets. It defines the resources required for both the production and the test and development user groups. The resource pool requires separate placeholders defined for the:

- Common base panel data set data component
- Common dictionary data set data component
- Production read panel data set data component
- Test and development test panel data set data component
- Common base panel data set index component
- Common dictionary data set index component
- Production read panel data set index component
- Test and development test panel data set index component.

Figure 28 on page 310 shows how to define this pool.
Define the fourth LSR pool for the test and development database SDDS. It defines the resources required for the test and development database user group. Figure 29 shows how to define this pool.

**RESOURCE POOL TWO (Panel/Dictionary Data Sets)**

**RESOURCE POOL TWO (Panel/Dictionary Data Buffer Pools)**

LSRD2  BLDVRP  BUFFERS=(4096(36)),  DICT/PANEL DATA BUFFERS  X
KEYLEN=10,  POOL USED BY DICT/panels  X
SHRPPOOL=2,  POOL IDENTIFIER  X
STRNO=35,  COMBINED POSITIONS REQUIRED  X
TYPE=(LSR,DATA),  INDEX AND DATA POOL  X
RMODE31=ALL,  X
MODE=24,  X
MF=L

**RESOURCE POOL TWO (Panel/Dictionary Index Buffer Pools)**

LSRI2  BLDVRP  BUFFERS=(1536(30)),  DICT/PANEL INDEX BUFFERS  X
SHRPPOOL=2,  POOL IDENTIFIER  X
TYPE=(LSR,INDEX),  INDEX BUFFERS ONLY  X
RMODE31=ALL,  X
MODE=24,  X
MF=L

Figure 28. Defining Resource Pool 2: Panel and Dictionary Data Sets

Define the fourth LSR pool for the test and development database SDDS. It defines the resources required for the test and development database user group. Figure 29 shows how to define this pool.

**RESOURCE POOL THREE (Test/development database SDDS)**

**RESOURCE POOL THREE (SDDS Data Buffer Pools)**

LSRD3  BLDVRP  BUFFERS=(4096(6)),  SDDS DATA BUFFERS  X
KEYLEN=7,  POOL USED BY SDDS  X
STRNO=20,  MAINTAIN 20 POSITIONS  X
SHRPPOOL=3,  IDENTIFY POOL  X
TYPE=(LSR,DATA),  DATA BUFFERS ONLY  X
RMODE31=ALL,  X
MODE=24,  X
MF=L

**RESOURCE POOL THREE (SDDS Index Buffer Pools)**

LSRI3  BLDVRP  BUFFERS=(512(5)),  SDDS INDEX BUFFERS +PAD  X
SHRPPOOL=3,  POOL IDENTIFIER  X
TYPE=(LSR,INDEX),  INDEX BUFFERS ONLY  X
RMODE31=ALL,  X
MODE=24,  X
MF=L

Figure 29. Defining Resource Pool 3: Test and Development Database SDDS

Define the fifth LSR pool for the test and development database SDIDS. It defines the resources required for the test and development database user group. Figure 30 shows how to define this pool.
Note: If you are using a multiple-cluster SDDS or SDIDS, you need one BLXDSN macro per SDDS or SDIDS in a cluster. You cannot simply put the data set numbered #01 in the VSAM resource definition member.

* RESOURCE POOL FOUR (TEST/DEVELOPMENT DATABASE SDIDS) *
*******************************************************************************
* RESOURCE POOL FOUR (SDIDS DATA BUFFER POOLS) *
* LSRD4  BLDVRP  BUFFERS=(2048(50)),  SDIDS DATA BUFFERS + PAD  X
  KEYLEN=34,  POOL USED BY SDIDS  X
  STRNO=20,  MAINTAIN 20 POSITIONS  X
  SHRPOOL=4,  IDENTIFY POOL  X
  TYPE=(LSR,DATA),  DATA BUFFERS ONLY  X
  RMODE31=ALL,  X
  MODE=24,  X
  MF=L  
*
* RESOURCE POOL FOUR (SDIDS INDEX BUFFER POOLS) *
* LSRD4  BLDVRP  BUFFERS=(512(3)),  SDIDS INDEX BUFFERS + PAD  X
  SHRPOOL=4,  POOL IDENTIFIER  X
  TYPE=(LSR,INDEX),  INDEX BUFFERS ONLY  X
  RMODE31=ALL,  X
  MODE=24,  X
  MF=L  

Figure 30. Defining Resource Pool 4: Test and Development Database SDIDS

Sample VSAM Resource Definition Member—BLXVDEF

Figure 31 on page 312 combines the previous steps to define the VSAM resource definition member to the BLX-SP for use in a non-sysplex environment. This example is called BLXVDEF in the SBLMSAMP library. Refer to your assembler language documentation for information on working with the assembler language (see the Bibliography).
Sample VSAM Resource Definition Member – BLXVDEF

//BLXVDEF JOB
//*
//*****************************************************************************
//* THIS JOB IS USED TO DEFINE, ASSEMBLE AND LINKEDIT THE VSAM DEFINITION FOR BLX-SP.
//* THE FUNCTION OF THIS JOB IS TO:
//* 1. SPECIFY VSAM DATA SETS USING LSR POOLS AND CONNECT THE RESOURCE POOL TO THE DATA SET.
//* 2. SPECIFY VSAM DATA SETS USING NON-SHARED RESOURCES.
//* 3. SPECIFY THE NUMBER NON-SHARED RESOURCE PLACEHOLDERS.
//* 4. SPECIFY THE VSAM BLDVRP USED TO BUILD THE LSR POOLS.
//* 5. ASSEMBLE THIS VSAM RESOURCE DEFINITION.
//* 6. LINKEDIT THIS VSAM RESOURCE DEFINITION NAMED BLXVDEF.
//*
// SETUP REQUIREMENTS:
//*
// 1. JOB CARD CHANGED TO MEET INSTALLATION REQUIREMENTS.
// 2. INFORMATION MANAGEMENT for z/OS MACRO LIBRARY INSTALLED.
// 3. VSAM MACROS ARE ASSUMED TO BE IN SYS1.MACLIB.
// 4. DATA SET NAMES CHANGED TO MEET INSTALLATION REQUIREMENTS.
// 5. RESOURCE POOL SIZES CHANGED TO MEET INSTALLATION REQUIREMENTS.
// 6. PLACEHOLDER NUMBERS CHANGED TO MEET INSTALLATION REQUIREMENTS.
// 7. LOAD MODULE NAME CHANGED TO MEET INSTALLATION REQUIREMENTS.
//*
// EXAMPLE ASSUMPTIONS:
//*
// 1. THREE NSR DATA SETS
// 2. PRODUCTION AND DEVELOPMENT DATABASES REQUIRED
// A. NINETY PRODUCTION USERS
// B. TWENTY DEVELOPMENT USERS
// 3. CONTROL INTERVAL SIZES ARE AS DESCRIBED IN THE PLANNING AND INSTALLATION GUIDE AND REFERENCE

Figure 31. Example: VSAM Resource Definition Member—BLXVDEF (Part 1 of 5)
Sample VSAM Resource Definition Member – BLXVDEF

C. Defining VSAM Resources (Non-Sysplex)

Figure 31. Example: VSAM Resource Definition Member—BLXVDEF (Part 2 of 5)
GENERATE VSAM DEFINITION FOR BLX-SP

RESOURCE POOL ZERO (FOR PRODUCTION DATABASE SDDS)

LSRD0 BLDVRP BUFFERS=(4096(31)), SDDS DATA BUFFERS
KEYLEN=7, POOL USED BY SDDS
STRNO=30, MAINTAIN 30 POSITIONS
SHRPOOL=0, IDENTIFY POOL
TYPE=(LSR,DATA), DATA BUFFERS ONLY
RMODE31=ALL,
MODE=24,
MF=L

RESOURCE POOL ZERO (SDDS DATA BUFFER POOLS)

LSRI0 BLDVRP BUFFERS=(2048(53)), SDDS INDEX BUFFERS AND
SHRPOOL=1, POOL IDENTIFIER
TYPE=(LSR,INDEX), INDEX BUFFERS ONLY
RMODE31=ALL,
MODE=24,
MF=L

RESOURCE POOL ONE (FOR PRODUCTION DATABASE SDIDS)

LSRD1 BLDVRP BUFFERS=(2048(500)), SDIDS DATA BUFFERS + PAD
KEYLEN=34, POOL USED BY SDIDS
STRNO=45, MAINTAIN 45 POSITIONS
SHRPOOL=1, IDENTIFY POOL
TYPE=(LSR,DATA), DATA BUFFERS ONLY
RMODE31=ALL,
MODE=24,
MF=L

RESOURCE POOL ONE (SDIDS DATA BUFFER POOLS)

LSRII BLDVRP BUFFERS=(3584(34)), SDIDS INDEX BUFFERS
SHRPOOL=1, POOL IDENTIFIER
TYPE=(LSR,INDEX), INDEX BUFFERS ONLY
RMODE31=ALL,
MODE=24,
MF=L

Figure 31. Example: VSAM Resource Definition Member—BLXVDEF (Part 3 of 5)
***********************************************************************
* RESOURCE POOL TWO (PANEL/DICTIONARY DATA SETS) *
***********************************************************************
*
* RESOURCE POOL TWO (PANEL/DICTIONARY DATA BUFFER POOLS)
*
  LSRD2 BLDVRP BUFFERS=(4096(36)), DICT/PANEL DATA BUFFERS X
  KEYLEN=10, POOL USED BY DICT/PANELS X
  SHRPOOL=2, POOL IDENTIFIER X
  STRNO=35, COMBINED POSITIONS REQUIRED X
  TYPE=(LSR,DATA), INDEX AND DATA POOL X
  RMODE31=ALL, X
  MODE=24, X
  MF=L
*
* RESOURCE POOL TWO (PANEL/DICTIONARY INDEX BUFFER POOLS)
*
  LSRI2 BLDVRP BUFFERS=(1536(30)), DICT/PANEL INDEX BUFFERS X
  SHRPOOL=2, POOL IDENTIFIER X
  TYPE=(LSR,INDEX), INDEX BUFFERS ONLY X
  RMODE31=ALL, X
  MODE=24, X
  MF=L
  SPACE 2

***********************************************************************
* RESOURCE POOL THREE (TEST/DEVELOPMENT DATABASE SDDS) *
***********************************************************************
*
* RESOURCE POOL THREE (SDDS DATA BUFFER POOLS)
*
  LSRD3 BLDVRP BUFFERS=(4096(6)), SDDS DATA BUFFERS X
  KEYLEN=7, POOL USED BY SDDS X
  STRNO=20, MAINTAIN 20 POSITIONS X
  SHRPOOL=3, IDENTIFY POOL X
  TYPE=(LSR,DATA), DATA BUFFERS ONLY X
  RMODE31=ALL, X
  MODE=24, X
  MF=L
*
* RESOURCE POOL THREE (SDDS INDEX BUFFER POOLS)
*
  LSRI3 BLDVRP BUFFERS=(512(5)), SDDS INDEX BUFFERS +PAD X
  SHRPOOL=3, POOL IDENTIFIER X
  TYPE=(LSR,INDEX), INDEX BUFFERS ONLY X
  RMODE31=ALL, X
  MODE=24, X
  MF=L
  SPACE 2

Figure 31. Example: VSAM Resource Definition Member—BLXVDEF (Part 4 of 5)
Sample VSAM Resource Definition Member – BLXVDEF

***********************************************************************
* RESOURCE POOL FOUR (TEST/DEVELOPMENT DATABASE SDIDS) *
***********************************************************************

* RESOURCE POOL FOUR (SDIDS DATA BUFFER POOLS)
*
LSRD4 BLDVRP BUFFERS=(2048(50)), SDIDS DATA BUFFERS + PAD X
  KEYLEN=34, POOL USED BY SDIDS X
  STRNO=20, MAINTAIN 20 POSITIONS X
  SHRPOOL=4, IDENTIFY POOL X
  TYPE=(LSR,DATA), DATA BUFFERS ONLY X
  RMODE31=ALL, X
  MODE=24, X
  MF=L X

* RESOURCE POOL FOUR (SDIDS INDEX BUFFER POOLS)
*
LSRI4 BLDVRP BUFFERS=(512(3)), SDIDS INDEX BUFFERS + PAD X
  SHRPOOL=4, POOL IDENTIFIER X
  TYPE=(LSR,INDEX), INDEX BUFFERS ONLY X
  RMODE31=ALL, X
  MODE=24, X
  MF=L

SPACE 2
END BLXVDEF

/P*/
//*******************************************************************************/
// LINK VSAM DEFINITION ON GOOD ASSEMBLY
//*******************************************************************************/
//LKED EXEC PGM=IEWL,COND=(1,LT,ASSEM),
//  PARM='XREF,LET,LIST,MAP,REUS,NCAL,AMODE=24,RMODE=24'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYSLMOD DD DSN=BLM.SBLMMOD1,DISP=SHR
//SYSLIN DD DSN=&OBJLIB,DISP=(OLD,DELETE)
// DD *
ENTRY BLXVDEF
NAME BLXVDEF(R)

Figure 31. Example: VSAM Resource Definition Member—BLXVDEF (Part 5 of 5)

End of Programming Interface information
This appendix provides:
- The naming convention for session-parameters members
- The syntax and descriptions for the following Tivoli Information Management for z/OS macros:
  - BLGPARMS
  - BLGCLUST
  - BLGCLDSN
  - BLGGEN
- Sample JCL and session-parameters CSECT for creating a session-parameters member.

This appendix is designed to help you create a session-parameters member.

**Defining Session-Parameters Members (BLGSESaa)**

You specify session parameters by using the assembler language macros described in this appendix to define a control section (CSECT). The macros are delimited by a CSECT statement and an END statement. You must store each set of session parameters as a member of a PDS.

Tivoli Information Management for z/OS processes the session parameters during its initialization phase.
- You must link-edit session-parameters members as nonreentrant and nonreusable.
- To work in Tivoli Information Management for z/OS Version 7.1, all currently existing session-parameters members must be reassembled. See Figure 32 on page 340 for an example. Also, refer to your assembler language documentation for information on assembling modules.
- Review the changes to the session parameters to see what changes might be required or that you might want to apply.
- As in Information/Management Version 5.1, VSAM macros are no longer used in the session-parameters member.
- If you define multiple session-parameters members for your installation, be sure that a data set defined as a read panel data set in one session-parameters member is not defined as a write panel data set in a different session-parameters member.
Defining an Initialization Load Module

You create an initialization load module by assembling and link-editing a session-parameters member CSECT into the appropriate load library. Because the BLGSESaa modules are nonreentrant, you must use NORENT as one of your linkage editor parameters. See Figure 32 on page 340 for a sample job stream to assemble and link-edit a session-parameters member. The load module must reside in one of the load libraries accessible to Tivoli Information Management for z/OS:

- A task library (that is, ISPF's ISPLLIB DD statement)
- A step or a job library
- A system link library (such as SYS1.LINKLIB)

The load library contains one or more load modules that you define; you can put different load modules in different load libraries. The load module must contain a single assembler language CSECT that you create. You can name this CSECT anything you want; however, for convenience, you can use the load module’s name.

Naming the Session-Parameters Member

The member name you use must follow these naming rules:

- The name can be 7 or 8 characters long.
- The first 6 characters of the name must be BLGSES.
- The remaining 1 or 2 characters can be alphabetic, numeric, or national (#, $, @).

If you use a single numeric digit, it is right-justified with a leading zero. If you use a single alphabetic or national character, it is left-justified with a trailing blank. If you omit the SESS keyword when you start Tivoli Information Management for z/OS, a default suffix of 00 is used.

Understanding the Macro Syntax Description

In the lists of parameters for the macros and session-parameters members described in this chapter, some parameters are shown with brackets [], braces {}, or vertical bars |. These are for clarification purposes only; they are not part of any keyword in the lists.

- Brackets indicate optional data.
- Braces indicate that you must select exactly one of the choices enclosed within the braces.
- Vertical bars indicate selectable items. You must choose one of these items.
- **Bold, underlined values** in these macro and session-parameters member descriptions are the default values.

BLGPARMS Macro — Defining Tivoli Information Management for z/OS’s Operating Characteristics

The BLGPARMS assembler macro defines the data sets that the users’ address spaces share. It also defines other operating characteristics for a session, such as the report tailoring parameters and the maximum amount of program storage Tivoli Information Management for z/OS uses.

The syntax of the BLGPARMS macro is:

```
[label] BLGPARMS RPANLDS=(maclabel,...),DATEFMT=extfmt
[,APIENUQ={WAIT|NOWAIT}]
[,APIRETRY={n|25}]
[,ATTNKEY={DISABLE|ENABLE}]
[,CAS={ssss|BLX1}]
```
Note: Before Version 5 of Information/Management, the LSR, ENQVLVL, BREPORT, and IREPORT keywords were valid operands on the BLGPARMS macro. These keywords are not required in Tivoli Information Management for z/OS Version 7.1, but they can still be used for compatibility with old session parameters. However, if you specify these keywords, the Tivoli Information Management for z/OS code does not process them. Before Information/Management Version 6.2, SRCHENQ was a valid operand on the BLGPARMS macro. If you set this operand in Information/Management Version 5.1, you do not have to change it unless you want to change the value. If you change the value, you must use the SRCHLIMIT operand.

**label**
A standard assembler language instruction label. This label is optional.

**maclabel,**
Specifies the label of a BLGCLDSN macro, that identifies a RPANLDS that you are using. You must specify a minimum of one label. You can specify RPANLDS=maclabel if there is only one label. This label is used only for the RPANLDS.

**RPANLDS**
Identifies the BLGCLDSN macros that describe the read panel data sets.

This keyword is required. You can specify the labels of one or more BLGCLDSN macros in a list. The user’s address spaces share the RPANLDS, which are normally accessed in read-only mode. If you do not specify RDONLY=YES in the BLGCLDSN macro for an RPANLDS, that RPANLDS is automatically accessed in read/write mode. In read/write mode, you can issue a request to copy a panel into the data set.

The order in which you specify the BLGCLDSN labels determines the order in which Tivoli Information Management for z/OS searches for a panel during normal
processing. For example, assume that you specify RPANLDS(A,B,C) and the BLGCLDSN macros A, B, and C define data sets X, Y, and Z, respectively. When Tivoli Information Management for z/OS retrieves a panel, it first looks for the panel in data set X. If Tivoli Information Management for z/OS does not find the panel in data set X, it looks in data set Y, and finally in data set Z. The result is that Tivoli Information Management for z/OS provides logical data set concatenation for these VSAM data sets.

Specifying more than one read panel data set degrades performance. The amount of performance degradation varies, depending on the following factors:

- The number of panel buffers specified on the PNLBCNT keyword (see page 327)
- The number of BLX-SP user buffers maintained for each read panel data set (specified by the USERBUF keyword on the BLXDSN macro in the VSAM definition member for a non-sysplex environment)
- The number of read panel data sets that you must access to retrieve a panel
- The number of panels in each data set
- Whether the VSAM index components for these data sets are completely maintained in virtual storage through shared resource pools
- Whether the VSAM data components for these data sets are partially or completely maintained in virtual storage through shared resource pools.

You must decide whether to accept the reduced performance to gain the advantage of maintaining your modified panels in a separate data set from the Tivoli base panel definitions and any service that may be applied to these definitions.

**DATEFMT**

Enables you to specify a default external date format. This keyword is required unless a value other than BLGCDATS is specified for the DATECNV keyword. The value specified for the external date format is the default value for the session.

The external date formats in use by a session can be displayed by entering the HELP STATUS command.

**extfmt**

Specifies the external date format that you select from the list below. The external date format is the default format for the session. Users can override this format through a user profile selection. If no user profile selection of external date format is made, users will see this format when entering or working with records on panels or when viewing data in reports.

EXTFMT can be any one of the following external date formats:

- MM/DD/YY
- DD/MM/YY
- YY/MM/DD
- DDMYYY
- MM/DD/YYYY
- DD/MM/YYYY
- YYYY/MM/DD
- DDMYYYY
- MM-DD-YY
- DD-MM-YY
- YY-MM-DD
- YYDDD
- MM-DD-YYYY
- DD-MM-YYYY
- YYYY-MM-DD
- YYYYDDD
- MM.DD.YY
- DD.MM.YY
- YY.MM.DD
- MM.DD.YYYY
- DD.MM.YYYY
- YYYY.MM.DD

Only one format can be specified. If none of the formats above satisfy your external date format requirements, you can specify your own date conversion routine in the datertn parameter of the DATECNV keyword.
The default external date format specified on the DATEFMT keyword is the format used for all new records created in Tivoli Information Management for z/OS. If you have records in your database that were created or updated with versions of Tivoli Information Management for z/OS prior to Version 7.1 (including Information/Management and Tivoli Service Desk for OS/390), and those records used an external date format which was different from the format specified on DATEFMT, you can specify the ODATEFMT keyword to enable those older records to be processed by Tivoli Information Management for z/OS. The ODATEFMT keyword causes Tivoli Information Management for z/OS to automatically migrate records in the older external date format as they are being accessed.

More information about date formats is provided in “Enabling Alternative Date and Time-of-Day Formats” on page 227.

**APIENQ**

Specifies whether to place an API in a wait condition after it fails to enqueue on a record.

- If you specify **WAIT**, the API is placed in a wait condition until the record is available.
- If you specify **NOWAIT**, the API either bypasses the record or retries the enqueue depending on the APIRETRY value and how many times it has already tried. **NOWAIT** is the default value.

**APIRETRY**

Specifies the number of times a Tivoli Information Management for z/OS API that is performing add record relations, update, and check-in tasks retries an enqueue on a record. Tivoli Information Management for z/OS waits approximately 1 second between retries. If the API cannot enqueue on the record after this number of attempts, the user receives a message, or a return code, or both, saying that the record is not available.

You can use any number from 0 through 255. The default value is 25.

**Note:** Use this parameter only if you specified a value of **NOWAIT** for the APIENQ parameter.

**ATTNKEY**

Indicates how you use the attention key during sessions with Tivoli Information Management for z/OS. The valid values for ATTNKEY are:

**ENABLE**

Indicates that Tivoli Information Management for z/OS does not attempt to control the effect of an attention interrupt. ATTNKEY=ENABLE can end your Tivoli Information Management for z/OS session. This value is the default.

**DISABLE**

Indicates that Tivoli Information Management for z/OS code attempts to intercept attention interrupts and causes them to be ignored.

**Notes:**

1. During a file operation, pressing the attention key to end an Tivoli Information Management for z/OS session can result in a corrupted database record.
2. If you code ATTNKEY=DISABLE, Tivoli Information Management for z/OS issues the STAX macro. This STAX macro remains in effect until Tivoli Information Management for z/OS is ended or the STAX macro is issued again. Refer to TSO/E Programming Services for further details about the STAX macro.

3. DISABLE is the recommended value when spanned records are defined in the SDIDS.

CAS  Specifies the name of the BLX-SP subsystem that this session-parameters member is used with. This name must be the same as the one in the BLXSSINM module for the subsystem. Otherwise, an ABEND will occur. See “Defining a Subsystem to MVS” on page 144 for information about creating the BLXSSINM module.

The name you use must follow these naming rules:
  ■ The name must have 4 characters.
  ■ The first character must be an alphabetic or national (#, $, @) character.
  ■ The remaining characters can be alphabetic, numeric, or national characters.

This keyword is optional. If you do not specify it, the default value, BLXI is used. If you use the default value, it is recommended that you not specify a keyword.

DATECNV  Specifies the name of a date conversion routine. This keyword is optional, and the default is BLGCDATS. BLGCDATS is the name of the routine supplied with Tivoli Information Management for z/OS. As an alternative, you can specify the name of a date-conversion-exit load module written by personnel at the installation site. This exit routine transforms the format of a date from internal to external form and from external to internal form. If you specify this load module, Tivoli Information Management for z/OS loads it during its initialization phase. The exit routine must exist in a load library accessible to Tivoli Information Management for z/OS.

The date conversion routine BLGCDATS must be specified for users to choose their own external date format interactively through the user profile or through an API program.

If you omit this parameter, the BLGCDATS routine runs. BLGCDATS handles all the external date formats that are supported by the DATEFMT keyword which are listed on page 320.

If you plan to supply your own installation exit, evaluate its effect on an existing database. When you install your user exit, enter dates in your external format for all new records that you create.

For more information on using your own date conversion routine, see “Implementing an External Date Format through User Exits” on page 242.

DICTDS  Identifies the BLGCLDSN macro that describes the dictionary data set (DICTDS). This keyword is required if you use the session-parameters member for PMF or for reports (including record printing).

The DICTDS is accessed in read/write mode if you do not specify RDONLY=YES in the BLGCLDSN macro for this data set.

EXTSORT  Specifies whether the sort routine specified by the SORT parameter should also be
used to sort list data and search results lists (sort-on-prefix data). This parameter is ignored if the table panel used to display the list data or search results do not specify sort-on-prefix.

**Note:** You can only sort cognized data.

**YES** Specifies that Tivoli Information Management for z/OS use the sort routine specified by the SORT parameter to sort search results lists and list data.

**Notes:**
1. If EXTSORT=YES is specified and the SORT parameter is not specified, the default sort routine for the SORT parameter is used.
2. If EXTSORT=YES is specified, the $n3$ value for the SORTPFX parameter is ignored because the $n3$ value applies only to sorts done by the Tivoli Information Management for z/OS internal sort routine.
3. Using an external sort routine for sorting is not as efficient as using the Tivoli Information Management for z/OS internal sort routine, so it is recommended that you specify an external sort routine only if you find that the Tivoli Information Management for z/OS internal sort routine does not sort the list data or search results list in the right order for your language.

**NO** Specifies that Tivoli Information Management for z/OS use its internal sort routines to sort list data and search results lists. This is the default value.

**GBLPID**
Specifies the Global Partition Name. If you have a set of records which you would like to be accessible to all users, put all such records into a single partition which is designated “Global”. For information about database partitioning, refer to the Tivoli Information Management for z/OS Program Administration Guide and Reference.

These are the rules for specifying a Global Partition Name:
- The value can be up to nine alphanumeric characters.
- If a value is not provided on the GBLPID= parameter and a Global Partition Name is not specified via program exit BLG01448, then no Global Partition exists.
- If a value is supplied on the GBLPID= parameter, that value is used instead of the value set via program exit BLG01448.
- If a value of GBLPID="" is supplied, the default Global Partition Name established via program exit BLG01448 is ignored.
- If GBLPID= is omitted, the Global Partition Name set by, program exit BLG01448 will be used.

**LINECNT**
Indicates the maximum number of lines to allocate in virtual storage for the display of Tivoli Information Management for z/OS search results. The specified number applies to each active or pending display of the search results list. The size of the display screen determines the minimum number of lines allocated.

Specifying a number between 0 and the number of lines that the screen can display, implies that no additional lines are available beyond the number required to display a single screen.
If you specify a small number, such as 3, each active or pending display of the search results list uses less virtual storage. However, when you scroll up or down on that display, the database must supply the new information. This occurs for each scroll operation, thereby increasing response time because of the required I/O operation.

If you specify a large number, such as 100, each active or pending display of the search results list uses more virtual storage. However, if you scroll up or down into previously displayed information that was not yet deleted internally, additional database I/O is unnecessary, thus improving response time.

For example, assume that your workstation can display 20 search results matches and you do a search that produces a large number of matches. Assume that you scroll down one page, scroll down another page, and finally scroll up the maximum number of lines to return to the top of the list.

Regardless of the value you specify for the LINECNT keyword, the database must supply information for the first 20 matches in order to generate the first display of the search results list. When you scroll down one page, the database must supply information for the second set of 20 matches. When you scroll down another page, the database must supply information for the third set of 20 matches. However, when you scroll up the maximum number of lines (to display the first 20 matches), the database may or may not have to supply information.

If you specify 40 or less for this keyword, the database must supply information for all of the first 20 matches. If you specify 60 or more, the database does not have to supply information for the redisplays of the first 20 matches. If you choose 55, the database supplies information for only the first 5 matches; the other 15 matches remain in virtual storage.

Each logical record in a search results list uses a certain number of bytes of virtual storage. One line (one logical record) in a search results list for database 5 (the Tivoli Information Management for z/OS database) uses 127 bytes. Therefore, if you specify LINECNT=50 and you obtain 50 or more search matches from the Tivoli Information Management for z/OS database, the search results list uses 6350 (that is, 50 x 127) bytes of virtual storage.

The default value for this keyword is 0.

**LPLNCMD**

Specifies whether to use the list processor line commands as they existed prior to Information/Management Version 6.2 or to use the line commands as shipped in Tivoli Information Management for z/OS Version 7.1. For information about the current line commands for list processor panels, refer to the BLG01396 program exit in the [Tivoli Information Management for z/OS Panel Modification Facility Guide](#).

**ALL** Specifies the use of Tivoli Information Management for z/OS Version 7.1 list processor line commands. This value is the default.

**V61** Specifies the use of list processor line commands as they existed in Information/Management Version 6.1 with the following additions:

- Add and Repeat can be used on any line, not just the last line.
- The block forms of Delete (DD) and Repeat (RR) are supported.
- The block forms with a repetition factor of Delete and Repeat (for example, DD5 or RR3) are supported.
MODELDB

Enables you to specify a data model database and a trigger character to identify data attribute records. The database specified is also the database where the validation records (and data view and data attribute records) reside.

\{4|5|6|7|8|9\}

Specifies the number of the database which contains the data model records. The default value is 5.

dartchr

Specifies the data attribute record trigger character. The trigger character can be an alphabetic, numeric, or national (\@, \#, $) character. The ampersand (&) character is reserved for use by data attribute records provided with Tivoli Information Management for z/OS. The trigger character is used to distinguish a panel name from a data attribute record identifier when running Tivoli Information Management for z/OS interactively. If the value specified for dartchr is the same as the character in the fourth position of a panel name being loaded, the name is assumed to be that of a data attribute and the record is loaded from the data model database. There is no default value for dartchr.

MODSIZE

Identifies the maximum virtual storage size (in bytes) that Tivoli Information Management for z/OS can attempt to use for its load modules. Tivoli Information Management for z/OS tries to maintain load module storage at or below the value you specify. However, if you request several nested functions (for example, SUSPEND, DISPLAY, and UPDATE commands), the actual amount of virtual storage used for load modules can exceed the value you specify until you end the requested functions. Tivoli Information Management for z/OS uses a least-recently-used (LRU) algorithm to determine which load modules to delete. The default value for this keyword is MAX.

If you specify a very low value, such as 0, Tivoli Information Management for z/OS maintains low storage use, with increased overhead, by continually deleting modules and loading the requested modules. However, certain Tivoli Information Management for z/OS load modules are always in virtual storage, such as BLGINIT, BLGINIT1, BLGMAIMS, because they are required for every Tivoli Information Management for z/OS session.

If you specify a large value, such as 750,000, Tivoli Information Management for z/OS keeps load modules in virtual storage even though they are currently not in use. This can result in more overhead on the z/OS swapping subsystem, but it reduces the overhead of deleting and loading modules.

When you specify any number, Tivoli Information Management for z/OS continually maintains internal tables so that it can always verify the following:

- When the number exceeds the one you specified
- When a load module is currently in use, and, hence, it is not a candidate for deletion
- When that module is freed, and, hence, it is a candidate for deletion.

Tivoli Information Management for z/OS requires a small amount of processing time to maintain its internal tables. This processing time is in addition to loading a module from one of the load libraries, if it becomes necessary.
When you specify a number for MODSIZE, Tivoli Information Management for z/OS counts the size of each load module regardless of whether a load library or the link pack area supplied that module. Instead of specifying a numeric value for MODSIZE, you can specify the word MAX. If you specify MAX, currently loaded modules remain in storage for the duration of the Tivoli Information Management for z/OS session. Tivoli Information Management for z/OS need not to update its internal tables continually, and thus avoids the previously mentioned performance degradation. Also, because each load module is loaded only once from a load library, the performance of an Tivoli Information Management for z/OS session improves.

A value of MAX is suggested for this keyword:
- If you decide to place reentrant Tivoli Information Management for z/OS load modules in the link pack area (LPALIB).
- If you are running one of the Tivoli Information Management for z/OS utilities that uses this session-parameters member.

**ODATEFMT**

Enables you to specify an external date format for older records in your database. This keyword is optional. The default value is the value specified for `extfmt` on the DATEFMT keyword.

The default external date format on the DATEFMT keyword is the date format used for all new records created in Tivoli Information Management for z/OS. The ODATEFMT keyword parameter (`oldextfmt`) is used to process records that were created with versions of Tivoli Information Management for z/OS prior to Version 7.1 (including Information/Management and Tivoli Service Desk for OS/390). This keyword causes Tivoli Information Management for z/OS to automatically migrate older records as they are being accessed so that users can process the records and optionally take advantage of a user profile option which enables them to specify a preferred date format when working with records.

If you specify a value for ODATEFMT, ensure that:
- The value specified for ODATEFMT is one of the 22 supported external date formats recognized by Tivoli Information Management for z/OS.
- A default external date format is also specified on the DATEFMT keyword.
- The default external date format is different from the format specified for ODATEFMT. Specifically, the lengths of the two external date formats are different.

An error condition will occur during assembly of the session-parameters member if the lengths of the two external date formats are the same. For example, the following statement will result in an error because both entries have a length of 10 even though the format MM/DD/YYYY is different from DD/MM/YYYY:

```
DATEFMT=MM/DD/YYYY
ODATEFMT=DD/MM/YYYY
```

For databases containing two different old formats, one should be specified on DATEFMT and the other on ODATEFMT.

**OTIMEZON**

Specifies the time zone symbol associated with older records in the database if the time zone symbol is different from the default time zone symbol specified through the TIMEZONE keyword. This keyword is optional. If you have records in the
database that were created with versions of Tivoli Information Management for z/OS prior to Version 7.1 (including Information/Management and Tivoli Service Desk for OS/390), and the dates and times in those records are for a time zone which is different from the default time zone being used, you should specify the OTIMEZON keyword and supply the time zone symbol associated with the older records as the value for OTIMEZON. The value is used to convert dates and times in the old records to universal time.

If you include a value for OTIMEZON, you must also specify a default time zone symbol with the TIMEZONE keyword. If TIMEZONE is not specified, OTIMEZON is ignored. If OTIMEZON is not specified, the value for TIMEZONE is used as the default. Only one time zone can be specified with the OTIMEZON keyword.

The time zone currently in effect can be viewed in the output generated by the HELP STATUS command. For more information about setting time zones, see "Defining a Time Zone" on page 277.

A list of time zone symbols provided with Tivoli Information Management for z/OS is available in Table 17 on page 267; however, other time zone symbols can be defined in the TIMEZONE reference record and specified here. Values specified as time zone symbols must be defined in the TIMEZONE reference record.

PANEL

Specifies the name of the control panel to use upon entry to Tivoli Information Management for z/OS. This control panel selects the Primary Options menu to display. It is also used as the target of the :INITIALIZE command.

This keyword is optional. If you omit it, the default is BLG0ENTR.

PNLBCNT

Indicates the maximum number of local panel buffers to allocate in virtual storage. This number must be a positive integer from 1 to 32767. The default value for this keyword is 50. Panels are automatically eliminated from this set of buffers as necessary, using a least-recently-used (LRU) algorithm.

Specifying a small number of buffers increases the chance that the BLX-SP must provide a panel. This reduces system performance, but less storage is required in the user’s address space.

Maintaining panel buffers in the user’s address space reduces the load on the BLX-SP and reduces the time for panel-to-panel transition. Message BLG22556, which is saved in the BLX-SP log data set, indicates the number of panel buffers a session used. After the session ends, this information can be obtained from the BLX-SP LOGSYSOUT queue and used to determine the optimal value to specify for this keyword.

Notes:

1. While testing for the optimal number of panel buffers to specify, specify some extra buffers to enable infrequently used panels to be loaded without displacing panels used in the typical work session.

2. See page 345 for information about the LOGSYSOUT parameter.

RFTDS

Identifies the BLGCLDSN macro that describes the data set containing the Report Format Tables (RFTs) or application program interface (API) data and pattern tables.
The RFTs control the format of reports generated by Tivoli Information Management for z/OS. Unlike the other data sets, this is a PDS.

Users’ address spaces share the RFTDS and access it in read-only mode.

This keyword is optional, but you must specify it if you run reports against the database, if you print records, or if you call an API using the session-parameters member.

**SIDEVC**

Indicates the SORTIN data set device characteristics that the Tivoli Information Management for z/OS report function uses.

**unit** Indicates the type of unit on which the data set is to reside. The unit type can be a unit address (entered as 3 hexadecimal characters), an IBM-supplied device type (entered as either 1 to 8 decimal digits or the character hyphen (-)), or a user-assigned group name (entered as 1 to 8 alphanumeric characters). If you omit the unit type, the data set is automatically allocated using SYSDA as the default dynamic allocation unit name.

Consider using a virtual input/output (VIO) unit type for your SORTIN data set.

**trksize** Indicates a decimal number less than or equal to the minimum track size, in bytes, of the types of devices covered by the unit type. If you omit the `trksize`, the default number is 3120 bytes.

If the `trksize` value you specify is less than the logical record size that you write to the SORTIN data set, use the logical record size instead. The maximum value for `trksize` is 32 752.

**Notes on the SIDEVC keyword:**

See [“SORTIN, SORTOUT, and SORTWK01 Data Sets” on page 165](#) for more information on this data set.

**SODEVC**

Indicates the SORTOUT data set device characteristics that the Tivoli Information Management for z/OS report function uses.

**unit** Indicates the type of unit on which the data set is to reside. The unit type can be a unit address (entered as 3 hexadecimal characters), an IBM-supplied device type (entered as either 1 to 8 decimal digits or the character hyphen (-)), or a user-assigned group name (entered as 1 to 8 alphanumeric characters). If you omit the unit type, the data set is automatically allocated using SYSDA as the default dynamic allocation unit name.

Consider using a VIO unit type for your SORTOUT data set.

**trksize** Indicates a decimal number less than or equal to the minimum track size, in bytes, of the types of devices covered by the unit type. If you omit the `trksize`, the default number is 3120 bytes.

If the `trksize` value you specify is less than the logical record size that you write to the SORTOUT data set, use the logical record size instead. The maximum value for `trksize` is 32 752.
Notes on the SODEVC keyword:
See "SORTIN, SORTOUT, and SORTWK01 Data Sets" on page 165 for more information on this data set.

SORT  Entry-point name of the program Tivoli Information Management for z/OS uses to perform sorts. This keyword is optional. The default is SORT (IBM OS/VS Sort/Merge - 5740-SM1).

Note: This keyword only affects sorting for reports, list data, and search results lists if the EXTSORT keyword value is YES. If EXTSORT is NO, sorting is done internally by Tivoli Information Management for z/OS.

Figure 15 on page 167 contains the parameter lists that Tivoli Information Management for z/OS passes to the SORT routine that you indicate. Tivoli Information Management for z/OS calls the SORT routine twice, and Figure 15 shows both parameter lists. Refer to the DFSORT Application Programming Guide for the standard interface to the IBM Sort/Merge program.

You can allocate a data set with the ddname of BLGSMSG in your TSO logon procedure to receive any Sort/Merge program product messages generated during your use of Tivoli Information Management for z/OS. This data set is optional.

SORTPFX
Enables you to specify parameters (n1, n2, n3) to control both the building of record results and the Tivoli Information Management for z/OS sort-on-prefix function.

Note: You can sort cognized data only.

You may not need to sort your search results list by RNID if you chose not to reuse SDDS position numbers. Refer to the description of the BLGUT9 utility and the Tivoli Information Management for z/OS Program Administration Guide and Reference for more information on storing records in system-assigned RNID order.

n1  Specifies the maximum number of lines that you want a search results list to contain. If the number of records that satisfy the search exceeds this value, Tivoli Information Management for z/OS does not build a search results list; however, the number of search results appears. The valid range for n1 is from 1 to 2,147,483,647. The default value is 2,147,483,647.

Note: If the number of matches in the search results list is less than n1 but greater than 32,767, Tivoli Information Management for z/OS displays a maximum of 32,767 matches.

Through an API, you can also use this parameter to limit the number of search results matches returned from inquiry processing. Because the APIs do not sort on search results lists, this field can be used to limit the number of results returned in the programming interface results table (PIRT). Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for more information.

n2  Specifies the maximum number of matches in the search results list that controls the sort-on-prefix function used in building record results for display. The Tivoli Information Management for z/OS code ignores the n2 parameter if the table panel used to display the search results does not
specify sort-on-prefix. If the number of records that satisfy the search does not exceed this number and the table panel used to display the results specifies sort-on-prefix, the sort-on-prefix operation occurs before the record results display. If the number of records that satisfy the search exceeds this value, no sort-on-prefix operation occurs even though you specified it in the table panel that displays the results. The search results are displayed in the order in which the SDIDS finds them. The valid range for \( n2 \) is from 1 to 32 767. The default value is 32 767.

\( n3 \) Specifies the maximum number of lines you want sorted using the sort routine that is more efficient for sorting a smaller number of lines. This sort technique reads all the matched SDDS records, extracts the sort field value, sorts a table of all those values, and then retrieves the records to be displayed. The Tivoli Information Management for z/OS code ignores the \( n3 \) parameter if the table panel used to display the search results does not specify sort-on-prefix. If the number of your search matches is greater than this number, the SDIDS is read and the records are placed in the search results list in order. This technique can be very fast for sorting large search results lists, but it becomes a performance problem when the sort field contains large numbers of different values. For more information on avoiding massive-range reads from the SDIDS, see "Sorting Search Results Lists" on page 61. The valid range for \( n3 \) is from 1 to 32 767. The default value is 500.

**SWDEVC**

Indicates the SORTWK01 data set device characteristics that the Tivoli Information Management for z/OS report function uses.

**unit** Indicates the type of unit on which the data set is to reside. The unit type can be a unit address (entered as three hexadecimal characters), an IBM-supplied device type (entered either as one to eight decimal digits or the character hyphen), or a user-assigned group name (entered as one to eight alphanumeric characters). If you omit the unit type, the data set is automatically allocated using SYSDA as the default dynamic allocation unit name.

Consider using a VIO unit type for your SORTWK01 data set.

**trksize**

Indicates a decimal number less than or equal to the minimum track size, in bytes, of the types of devices covered by the unit type. If you omit the \( \text{trksize} \), a default number of 3120 bytes is used.

If the \( \text{trksize} \) value you specify is less than the logical record size that must be written to the SORTWK01 data set, use the logical record size instead. The maximum value for \( \text{trksize} \) is 32 752.

**Notes on the SWDEVC keyword:**

See "SORTIN, SORTOUT, and SORTWK01 Data Sets" on page 165 for more information on this data set.

**TEXTAUD**

Indicates whether a freeform text audit trail (date, time, and user who last altered the text) is to be maintained when the ISPF/PDF editor initiates processing for a record that already contains the requested type of text.
YES Indicates that you want a text audit trail maintained when users add to or change existing text. When a user selects the type of text, if the record already contains that type of text, a prompt asks the user to choose whether to add new text or update existing text.

- If the response is to add, the ISPF/PDF editor is used to add text. When the user saves the additions, the new text with its audit information is appended to the existing text.
- If the user chooses update, the Tivoli Information Management for z/OS editor is used to update existing text.

NO Indicates that the text audit trail is not important for this particular session-parameters member. If a user chooses PDF in the profile editor selection, the ISPF/PDF editor is accessed. All previous control information for the requested type of text in this record is replaced by the date and time that the ISPF/PDF editor was started. This is the default value.

Tivoli Information Management for z/OS ignores the TEXTAUD keyword when either of the following is true:
- The user profile specifies the Tivoli Information Management for z/OS editor.
- The record the user is updating contains no text of the requested type.

TIMECNV

Specifies the name of a time-of-day conversion-exit load module written by personnel at the installation site. This exit routine transforms the format of a time from internal to external form and from external to internal form. If you specify this load module, Tivoli Information Management for z/OS loads it during its initialization phase. The exit routine must exist in a load library accessible to Tivoli Information Management for z/OS. The AMODE of your time conversion routine must be 31.

If you omit this keyword, the external form of time defaults to 24-hour clock HH:MM, where HH is the hour of the day and MM is the minutes within the hour. If you plan to supply your own installation exit, you must evaluate its effect on an existing database. When you install your user exit, you must enter times in your external format for all new records that you create. However, a display of an old record shows any times in the old format.

Note: When you are running Tivoli Information Management for z/OS utilities that require session-parameters members, be sure you are using the same time conversion routine that you specified in the session-parameters member to create records. Otherwise, unpredictable results can occur. Updating old times in existing records damages your SDIDS unless your time conversion routine can convert your user external format and can also support the HH:MM Tivoli Information Management for z/OS format. Your time conversion routine does need not be able to convert the Tivoli Information Management for z/OS format, but it does need to recognize the format so that it does not attempt to convert it (this could damage your SDIDS).

TIMEDEL

A number specified as \[-\]{HH[:MM]}\}. It indicates that a remote terminal is in a different time zone from that of the processor. The current date or time supplied by Tivoli Information Management for z/OS (using the equal sign during record create/update or by a predefined system date or time variable within an RFT) is the
same as the processor’s, although you receive the date and time appropriate for the
time zone in which the terminal resides. That is, the date or time is stored in the
record as modified by the TIMEDEL keyword value.

The TIMEDEL keyword value specifies the number of hours and minutes, positive
or negative, to add to the processor’s current date and time to arrive at the terminal’s
current date and time. For instance, if a terminal is in the Pacific Standard Time
zone and is remotely connected to a processor in the Eastern Standard Time zone,
use a TIMEDEL keyword value of -3. Two a.m. Eastern Standard Time on
December 31, 2000, for the processor is adjusted to 11:00 PM Pacific Standard Time
on December 30, 2000, for the workstation.

Note: This time zone adjustment does not include communication delays.

The default value for the TIMEDEL keyword is 00:00.

Note: If universal time processing is enabled (the TIMEZONE keyword is
specified), TIMEDEL should not be specified.

TIMEZONE

Specifies the default time zone symbol for all users of the session (for example
TIMEZONE=ET for United States/Canada Eastern with daylight savings time). This
keyword is required if you are implementing universal time processing. If
TIMEZONE is not specified, no universal time processing will occur, even if the
DATETIME and TIMEZONE records are present in the Tivoli Information
Management for z/OS database.

A list of time zone symbols provided with Tivoli Information Management for z/OS
is available in [Table 17 on page 267]; however, other time zone symbols can be
defined in the TIMEZONE reference record and specified here. Values specified as
time zone symbols must be defined in the TIMEZONE reference record.

The time zone currently in effect can be viewed in the output generated by the
HELP STATUS command. For more information about setting time zones, see
“Defining a Time Zone” on page 271.

Only one time zone symbol should be specified on the TIMEZONE keyword. If you
need to include a different time zone symbol for older records in your database, see
the description of the OTIMEZON keyword on page 326. OTIMEZON is required if
you have records in the database that contain date and time fields that were created
before those date and time fields were defined as universal time fields and were
entered in a time zone different than the one specified on the TIMEZONE keyword.
If you have records in the database that were created with versions of Tivoli
Information Management for z/OS prior to Version 7.1 (including
Information/Management and Tivoli Service Desk for OS/390), and the dates and
times in those records are for a time zone which is different from the default time
zone being used, you should specify the OTIMEZON keyword.

The TIMEZONE keyword replaces the TIMEDEL keyword if specified. If you
already have the TIMEDEL keyword specified, you should remove it. If the
TIMEDEL keyword is specified, it will be ignored.

The time zone symbol specified with this keyword can be overridden by API
applications using the TIME_ZONE PDB.
Notes:
1. Universal time processing is not supported in the Integration Facility. Therefore, you should not code the TIMEZONE keyword if you are using the Integration Facility.
2. To avoid having users experiment with the User’s time zone field in the user profile if you are not implementing universal time processing through use of this keyword, it is recommended that your Tivoli Information Management for z/OS administrator use PMF to remove the field from panel BLG0P700, User and Database Defaults.

**TSXTASKS**
Specifies the maximum number of nested TSXs allowed and the number of subtasks that should be kept idle in storage.

- **max** The maximum number of concurrent (nested) TSXs allowed. The default is 7. The maximum is 255.
- **idle** The maximum number of subtasks, which were attached for previous TSXs, will be kept attached and idle when all TSXs have finished processing. The default is 2. The maximum is 255.

When you run a TSX, a TSX subtask is created. If that TSX calls another TSX (which is considered nested under the calling TSX), another TSX subtask is created if one does not already exist. A nested TSX can be started with a LINK or PROCESS control line or with the RUN command.

**WPANLDS**
Identifies the BLGCLDSN macro that describes the read/write panel data set. Use this data set to write or copy panels in PMF. If you plan to use PMF, you must specify this keyword.

If you create or modify a panel using PMF, the new or changed panel is stored in the write panel data set (WPANLDS). After the panel is stored in the WPANLDS, you can display it or copy it to another panel data set using PMF. You can also copy panels to the WPANLDS from another panel data set using PMF.

**BLGCLUST Macro — Defining a Database**
The BLGCLUST assembler macro defines the databases that are available during a Tivoli Information Management for z/OS session. Use this macro once for each database you want to access during a Tivoli Information Management for z/OS session. You can specify that the SDDS for the Tivoli Information Management for z/OS read/write database consist of one VSAM cluster or up to 100 VSAM clusters. You can also specify that the SDDS for the Tivoli Information Management for z/OS-format read-only databases (4, 6, 7, 8, and 9) consist of one VSAM cluster or up to 100 VSAM clusters. However, the user-defined format read-only databases (0, 1, 2, and 3) can have only one cluster.

One BLGCLUST macro must specify NAME=5; that is, the number of the Tivoli Information Management for z/OS read/write database.

You can also specify that the SDIDS for the Tivoli Information Management for z/OS index database consist of one to 100 VSAM clusters.

The syntax of the BLGCLUST macro is:
**BLGCLUST Macro**

```plaintext
[label] BLGCLUST NAME=n
 ,SDDS=label
 ,SDIDS=label
 [,COGENQ={n|10}]
 [,IDSKEYP=key]
 [,SDLDS=label]
 [,SRCHLIMIT=([{enque|0}] [,srchwarn|0] [,srchend|0])]
 [,TRIGGER=(t, [xx],[yy])]

Note: Before Information/Management Version 5, the PRODUCT keyword was required. This keyword is not required in this version but you can still use it to maintain compatibility with old session-parameters members. However, if you specify the PRODUCT keyword, the Tivoli Information Management for z/OS code ignores it.

label A standard assembler language instruction label. This label is optional.

NAME
External name to assign to this database. You cannot use the same name twice. The name must be a single numeric digit (n), defined as follows:

0 A user database in a user-defined format
1 A user database in a user-defined format
2 A user database in a user-defined format
3 A user database in a user-defined format
4 A Tivoli Information Management for z/OS read-only database
5 The Tivoli Information Management for z/OS read/write database
6 A Tivoli Information Management for z/OS read-only database (reserved for use with Tivoli Inventory)
7 A Tivoli Information Management for z/OS read-only database
8 A Tivoli Information Management for z/OS read-only database
9 A Tivoli Information Management for z/OS read-only database

SDDS Identifies the label on the BLGCLDSN macro that defines the SDDS. The read/write SDDS (NAME=5) data set is used to store the records created through Tivoli Information Management for z/OS. A read-only SDDS (NAME=4, 6, 7, 8, or 9) data set contains records created when Tivoli Information Management for z/OS accesses the read/write data set (NAME=5) through another session-parameters member.

If you specify a multiple-cluster SDDS for the Tivoli Information Management for z/OS read/write database, you specify only the first SDDS cluster in SDDS=label. Tivoli Information Management for z/OS determines the names of the remaining clusters as explained under "Defining the SDDS" on page 278.

If the session-parameters member is used for defining a user database referenced by the BLGOZUD utility, databases 0, 1, 2, and 3 require a one-cluster SDDS. Otherwise, you receive an error message when you attempt to assemble the session-parameters member.

The databases cannot share an SDDS; that is, you can use only one BLGCLUST macro to reference any BLGCLDSN macro that defines an SDDS. You must specify this keyword for all database definitions.

SDIDS
Identifies the label on the BLGCLDSN macro that defines the SDIDS. The SDIDS data set contains an index for the SDDS. The index is used when searching for or sorting records in the SDDS. A read-only SDIDS (NAME=4, 6, 7, 8, or 9) data set
contains indexes created when Tivoli Information Management for z/OS accesses the read/write data set (NAME=5) through another session-parameters member.

The databases cannot share an SDIDS; that is, you can use only one BLGCLUST macro to reference any BLGCLDSN macro that defines an SDIDS. You must specify this keyword for all database definitions.

COGENQ

Specifies the number of fields to be cognized when a record is filed while holding an enqueue. The enqueue is released after this number of fields are cognized to allow other transactions access to the database. If all the identified fields were not cognized during the first enqueue, the enqueue is requested again. When the enqueue is obtained, the remaining fields (up to the specified number for the COGENQ parameter) are cognized. The cycle continues until all the fields marked to be cognized in the record are cognized.

This keyword is optional and used only in a non-sysplex (non-RLS) environment. If sysplex mode is enabled and you specify this keyword, it will be ignored. However, if you do not specify a keyword value in a non-sysplex environment, a default value of 10 is used. You can use any number from 0 through 32 767.

- 0 Holds the enqueue until all fields marked to be cognized in the record are cognized.
- 1 Releases the enqueue after cognizing one field in a record.
- 2 - 32 767 Holds the enqueue until the specified number of fields are cognized (or uncognized) when a record is filed, or until all the fields in the record are cognized.

idskeyp=key

Identifies a label prefix which relates key range values to the SDIDS component of a database. The idskeyp keyword is used with multiple-cluster SDIDS databases and is optional. It should consist of 1 to 7 characters. If you specify it, you must also specify the TRIGGER keyword to define the trigger character. The label prefix you enter for key is used as a partial label identifier on BLGCLKEY macro statements.

In the following assembler example, MYKEY is used as the label prefix. MYKEY must also be found as part of the BLGCLKEY macro label.

```assembler
BLGCLUST NAME=5,TRIGGER=(#,1,6),
    SDDS=DBS5DDS,
    SDIDS=DBSIDS5,IDSKEYP=MYKEY,
...
MYKEY1 BLGCLKEY KEY=BA,TYPE=HEX
MYKEY2 BLGCLKEY KEY=BC,TYPE=HEX
MYKEY3 BLGCLKEY KEY=A
MYKEY4 BLGCLKEY KEY=RN
MYKEY5 BLGCLKEY KEY=RO
```

SDLDS

Identifies the label on the BLGCLDSN macro that defines the SDLDS. The SDLDS data set is used to recover a damaged read/write SDDS.

The databases cannot share an SDLDS; that is, you can use only one BLGCLUST macro to reference any BLGCLDSN macro that defines an SDLDS. You must include this keyword if you want stored records recovered in the event the read/write SDDS becomes unusable.

You can use this keyword only if you specify NAME=5.
SRCHLIMIT

Enables you to specify parameters that deal with the SDIDS enqueue and the searching of the SDIDS:

enqueue Specifies the number of records that a search or report can read from the SDIDS before the SDIDS is released to other users who are performing updates. Define one session-parameters member for interactive users and another session-parameters member for batch reports. The batch reports should have a lower value specified for enqueue than the interactive user.

The enqueue value is ignored when sysplex mode is enabled because data set enqueues are not necessary. Therefore, in a sysplex, you do not have to specify a value for this keyword.

You can use values from 0 to 99,999,999; leading zeros are ignored. This keyword is optional, but if you do not specify it, a default value of 0 is used.

If you specify 0 or you do not enter a value for this keyword, Tivoli Information Management for z/OS holds the database as long as it takes to do the search. In some cases, this could take a longer time than you want, and other users cannot access the database until the search is completed.

Note: Enque replaces the SRCHENQ keyword. However, the SRCHENQ keyword is still accepted. The two provide the same function. However, if you want to change the value of SRCHENQ, then you must use the SRCHLIMIT parameter.

srchwarn Specifies the maximum number of SDIDS records that Tivoli Information Management for z/OS reads before it displays a message to warn the user that a search or sort has caused an excessive number of reads.

You can use values from 0 to 99,999,999; leading zeros are ignored. This keyword is optional and if you do not specify it, a default value of 0 is used.

A value of 0 specifies that no warning message is issued. If the value you specify for srchend is greater than 0, then the value you specify for srchwarn must be less than or equal to the value you specify for srchend. Otherwise, you cannot assemble your session-parameters member. This restriction prevents you from setting a warning limit that can never be reached, because the search or sort ends when srchend is reached.

srchend Specifies the maximum number of SDIDS records that Tivoli Information Management for z/OS reads before ending a search or sort, and then issues a message that tells you the search or sort ended. Specifying a maximum value can help keep a search or sort from performing excessive reads of the SDIDS.

You can use values from 0 to 99,999,999; leading zeros are ignored. This keyword is optional, and if you do not specify it, a default value of 0 is used.

A value of 0 means that Tivoli Information Management for z/OS can perform an unlimited number of reads of the SDIDS, and the search or sort will run to completion. If this value is greater than 0, then it must be equal
to or greater than the value you specified for srchwarn. Otherwise, you
cannot to assemble your session-parameters member. This restriction
prevents you from setting a warning limit that can never be reached, because
the search or sort ends when srchend is reached.

The following are examples and descriptions of various combinations of the
SRCHLIMIT values:

SRCHLIMIT=(0,0,0)

The enqueue on the SDIDS is not released, and no messages are issued.

SRCHLIMIT=(100,0,300)

The enqueue on the SDIDS is released after every 100 SDIDS reads, and the
search or sort ends after 300 SDIDS reads. This value can also be specified
as SRCHLIMIT=(100,,300).

SRCHLIMIT=(0,300,0)

The enqueue on the SDIDS is not released, and a warning message is issued
after 300 SDIDS reads. This value can also be specified as
SRCHLIMIT=(,,300).

SRCHLIMIT=(100,300,300)

The enqueue on the SDIDS is released after every 100 SDIDS reads, and
both warning and ending messages are issued after 300 SDIDS reads.

SRCHLIMIT=(100,300,200)

Not valid.

TRIGGER

Indicates that you are using a multiple-cluster database for the SDDS, SDIDS, or
both.

T represents the trigger character in the names of the database. You must use this
same trigger character when naming the clusters. If you are using multiple clusters
for both the SDDS and SDIDS, the same trigger character must be used for both.
The trigger character can be an alphabetic, numeric, or national (@, #, $) character.

XX specifies how many SDDS clusters are to be used for the SDDS database
components.

YY specifies how many SDIDS clusters are to be used for cognized word bit lists.

For example, **TRIGGER=(#,1,6)** indicates the pound sign will be used as the trigger
character for all the clusters, which consist of one SDDS cluster and six SDIDS
clusters.

The value of **xx** or **yy** must have a numeric value in the range from 1 through 99. If
the trigger character and the values are omitted, then there is no trigger character
and all of the data is stored in one VSAM cluster. If the trigger character is
specified, but no value is specified for **xx** or **yy**, the specified trigger character is
used and the SDDS data is stored in 5 VSAM clusters and the SDIDS data is stored
in 1 VSAM cluster. See the naming conventions for a multiple-cluster SDDS given
[on page 278](#) for rules on specifying this character.

Note: Do not specify this parameter for databases 0, 1, 2, and 3 because you cannot
use multiple-cluster SDDSs or multiple-cluster SDIDSs for those databases.
The BLGCLDSN assembler macro assigns a name to a Tivoli Information Management for z/OS data set (for example, a read panel data set) and defines the data set's attributes. Use one BLGCLDSN macro for each data set you name.

The syntax of the BLGCLDSN macro is:

```
[label] BLGCLDSN [DSN=dsname]
[,FILE=ddname]
[,RDONLY={YES|NO}]
```

Note: Before Information/Management Version 5, the LSR keyword was required. This keyword is not required in this version but you can still use it to maintain compatibility with old session-parameters members. However, if you specify the LSR keyword, the Tivoli Information Management for z/OS code ignores it.

label A standard assembler language instruction label. The label you specify must not begin with the characters BL or SYS. This label is required and you must specify it as a parameter in either the BLGPARMS or BLGCLUST macro. Labels in the form `SDDSx#y` are reserved for generated names. If you specify a label in this form, an assembly error occurs when you attempt to generate your sessions.

DSN Name of the data set that you are specifying. You must use a cataloged data set and specify 1–44 characters for its name. This keyword is optional for the RFTDS. Otherwise, this keyword is required.

If you are using a multiple-cluster SDDS, specify only the first cluster name.

FILE Identifies the ddname for RFTDSs. This keyword is optional; it is only applicable for the BLGCLDSN macro that defines the RFTDS. If you want more than one RFTDS, you must use the FILE keyword to identify a ddname. To use multiple RFTDSs, concatenate the RFTDSs to this ddname before starting a Tivoli Information Management for z/OS session. If you concatenate RFTDSs to this ddname, the block sizes of all the concatenated data sets must be identical.

Notes:

1. If you concatenate RFTDSs to this ddname, Tivoli Information Management for z/OS does not use the RFTDS that is specified in the session-parameters member.

2. Tivoli Information Management for z/OS first tries to use the DD statement for the RFTDS. If you omit the FILE keyword or you did not preallocate the DD statement, Tivoli Information Management for z/OS uses the data set name (DSN).

RDONLY

Indicates the access mode for the data set. This keyword applies to panel and dictionary data sets only; it cannot be used for the SDLDS. If you omit the RDONLY keyword, NO is the default.

If you omit the RDONLY keyword or specify a value of NO, you access the data set in read/write mode so that you can write to the data set during the Tivoli Information Management for z/OS session.

If you specify a value of YES, you access the data set in read-only mode.
BLGCLKEY Macro — Defining an SDIDS Key Range String

The BLGCLKEY macro is used when setting up a multiple-cluster SDIDS environment to define the beginning key value for an SDIDS cluster.

Each SDIDS cluster, except the first SDIDS cluster, must have a starting key value defined for it. Do not define a starting key value for the first SDIDS cluster; X'00' is predefined as the starting key value for this cluster. The remaining key values determine which index information is contained in each cluster. Key values can be entered using the BLGCLKEY macro. The control record in each cluster contains the key range information for that cluster.

Each BLGCLKEY macro label must be unique. A single BLGCLKEY macro label may be referenced by multiple idskeyp keywords in the BLGCLUST macro. You can put the BLGCLKEY macro anywhere in the session-parameters member, as long as it appears after the CSECT statement and before the BLGGGEN macro.

The syntax of the BLGCLKEY macro is:

```
[label] BLGCLKEY KEY=value,[TYPE=HEX]
```

label A standard assembler language instruction label. The label you specify must not begin with the characters BL or SYS. This label is required and it must contain the label prefix you defined as the idskeyp value in the BLGCLUST macro for the SDIDS. The label prefix can exist anywhere in the label.

Example:

```
BLGCLUST NAME=5,TRIGGER=(#,1,6),
  SDDS=DBS5DDS,
  SDIDS=DBSIDS5,IDSKEYP=MYKEY,
...  
MYKEY1 BLGCLKEY KEY=BA,TYPE=HEX
MYKEY2 BLGCLKEY KEY=BC,TYPE=HEX
MYKEY3 BLGCLKEY KEY=A
MYKEY4 BLGCLKEY KEY=RN
MYKEY5 BLGCLKEY KEY=RO
```

KEY Defines the beginning key value for an SDIDS cluster. Specify a string from 1 to 32 characters. If you enter less than 32 characters, Tivoli Information Management for z/OS pads the string on the right with hexadecimal zeros. This keyword is required.

The key of the first record in the first cluster is always assumed to be hexadecimal zeros. This keyword enables you to define the key values for the first record in the remaining clusters. The key value of the last record in the last cluster is assumed to be less than 32X'FF'.

TYPE=HEX Specifies that the value specified by the KEY keyword should be treated as a hexadecimal value. HEX is the only value permitted for TYPE. The keyword TYPE=HEX is optional. If it is specified, the first two characters of the key value are treated as hexadecimal values. If it is not specified, the first character of the key value is treated as a character value. If you are entering an s-word value for the SDIDS key, you should specify a key type of HEX.
BLGEN Macro — Beginning the Code-Generation Phase

The BLGEN macro indicates the end of the Tivoli Information Management for z/OS macro set. This macro indicates that you specified all the Tivoli Information Management for z/OS macro instructions. In addition, this macro begins the code-generation phase for your session-parameters assembler language CSECT. This macro must follow all other Tivoli Information Management for z/OS definition macros, and it must precede the assembler END statement.

The syntax of the BLGEN macro is:

```
BLGEN [LIST={YES|NO}]
```

LIST Specifies whether or not the generated control block structures are shown in the assembler listing output. The default is `LIST=NO`, which indicates the control block structures are not listed.

Sample JCL for a Session-Parameters Member

Figure 32 is a sample job stream that you can use to assemble and link-edit a session-parameters member (BLGSESaa). The JCL member is called BLGALSPM; it is provided in the SBLMSAMP library.

```
//BLGALSPM JOB
//********************************************************************
//* SAMPLE JCL TO ASSEMBLE AND LINK-EDIT SESSION MODULE USING SESSION
//*  MODEL BLGSES00.  IN THIS EXAMPLE, THE SOURCE IS LOCATED IN
//*  BLM.SBLMSAMP(BLGSES00), THE INFORMATION MANAGEMENT for z/OS MACROS
//*  ARE LOCATED IN BLM.SBLMMACS AND THE MODULE IS PLACED IN
//*  BLM.SBLMMOD1
//********************************************************************
//ASM EXEC PGM=ASMA90,REGION=1024K,PARM='NODECK'
//SYSPRINT DD SYSOUT=*  
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(3,1))
//SYSLIB DD DISP=SHR,DSN=BLM.SBLMMACS
//DD DISP=SHR,DSN=SYS1.MACLIB
//SYSLIN DD DISP=(MOD,PASS),DSN=&LOADSET,UNIT=SYSDA,
//   SPACE=(80,(200,50))
//SYSIN DD DISP=SHR,DSN=BLM.SBLMMACS(BLGSES00)
//LINK1 EXEC PGM=IEWL,PARM='LIST,XREF,LET,NORENT'
//SYSPRINT DD SYSOUT=*  
//SYSLMOD DD DISP=SHR,DSN=BLM.SBLMMOD1(BLGSES00)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(50,10))
//SYSLIN DD DISP=(OLD,DELETE),DSN=&LOADSET
//DD *
//ENTRY BLGSES00
//NAME BLGSES00(R)
//********************************************************************
```

Figure 32. Example: JCL to assemble and link-edit a Session-Parameters Member

Sample Session-Parameters CSECT

Figure 33 on page 341 shows a sample session-parameters member. The sample session-parameters member is called BLGSES00; it is provided in the SBLMSAMP library.
Sample Session-Parameters CSECT

**
* SAMPLE SESSION-PARAMETERS MEMBER WITH ONE READ PANEL DATA SET,
* ONE WRITE PANEL DATA SET, AND A SINGLE-CLUSTER SDDS.
**

TITLE 'BLGSES00 - SESSION PARAMETERS'

BLGPARMS DICTDS=DICTDS, NAME THE DICTIONARY X
RFTDS=RFTS, NAME THE REPORT FORMAT TABLES X
DATEFMT=MM/DD/YYYY, INT/EXIT DATE FORMAT X
RPANLDS=RPANEL1, NAME THE READ PANEL DATA SET X
WPANLDS=WPANELS NAME THE WRITE PANEL DATA SET

******** CAS=BLX1, SPECIFY TARGET BLX-SP SERVER X

* UNCOMMENT THE ABOVE LINE AND ADD IT TO THE BLGPARMS MACRO INVOCATION
* IF YOU WANT TO USE THIS MEMBER WITH A BLX-SP SERVER OTHER THAN THE
* DEFAULT BLX-SP SERVER
*

MGMT BLGCLUST NAME=5, READ/WRITE CLUSTER X
SDDS=MGTSDDS, NAME THE SDDS X
SDIDS=MGTSDIDS, NAME THE SDIDS X
SDLDS=MGTSDLDS NAME THE SDLDS

MGTSDDS BLGCLDSN DSN=BLM.SDDS
MGTSDIDS BLGCLDSN DSN=BLM.SDIDS
MGTSDLDS BLGCLDSN DSN=BLM.SDLDS
DICTDS BLGCLDSN DSN=BLM.DICT

RFTS BLGCLDSN DSN=BLM.SBLOMFMT,FILE=RFTDD

RPANEL1 BLGCLDSN DSN=BLM.IBMPNLS,RDONLY=YES
WPANELS BLGCLDSN DSN=BLM.WPANELS

BLGGEN

END

Figure 33. Example: Session-Parameters Member with Macros

End of Programming Interface information
Defining BLX-SP Parameters Members

This appendix provides:

- The syntax and descriptions of the BLX-SP parameters
- A sample BLX-SP parameters member

This appendix is designed to help you create a BLX-SP parameters member.

Programming Interface information

Defining BLX-SP Parameters Members

BLX-SP parameters members control the operation of the BLX-SP for all user sessions.

Naming a BLX-SP Parameters Member

These members are standard text files contained as members of a PDS. The member name you use must follow these naming rules:

- The name can be 5 or 6 characters long.
- The name must begin with an alphabetic or national (#, $, @) character.
- The remaining characters can be alphabetic, numeric, or national characters.
- The first 4 characters must be the same as the 4 characters of the BLX-SP subsystem that you want to use.

The BLX-SP procedure must specify the PDS in which the specified member resides through a DD statement with the ddname BLXPRM. See "Defining a BLX-SP Procedure" on page 146 for information about the BLX-SP procedure.

Understanding the BLX-SP Parameters Member Syntax Description

In the list of parameters described, some parameters are shown with brackets [], braces { }, or vertical bars |. These are for clarification purposes only; they are not part of any keyword in the lists.

- Brackets indicate optional data.
- Braces indicate that you must select one of the choices enclosed within the braces.
- Vertical bars indicate selectable items. You must choose one of these items.
- **Bold, underlined values** in these BLX-SP parameter descriptions are the default values.

Using the BLX-SP Parameters

The BLX-SP parameters members contain the following parameters:

- `APISECURITY={ON|OFF}`
- `[APICHKOUTLIM=hhmmssth]`
- `[DBCS={NO|YES}]`
- `[LOG={ON|OFF}]`
- `[LOGLINES={n|0}]`
- `[LOGSYSOUT={class|A}]`
[LOGTOD=\{x\|y\|z\}]
[MAILQ=(queue_name,warning_limit,maximum_limit)]
[MAILQWAITTM=hhmmssst]
SHUTDOWNWT=hhmmssst
SHUTDOWNTFY=hhmmssst
[SYPLEX={YES|NO}]
[TRACE={ON|OFF}]
[TRACELINES=n]
[TRACEPOINTS=\{x\|y\|z\}]
[TRACESYSOUT={class|A}]
[TRACETOD=\{x\|y\|z\}]
[VSAMRESOURCES=VSAM_resource_load_module_name]
[WRITEOPER=code]

Notes:

1. The DESTNAMES parameter which was used previously in a shared database environment to specify names of BLX-SP that should receive buffer invalidation messages is no longer supported.

2. You can modify the log and trace parameters through the TRACE/LOG (TL) command. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference for a description of and instructions for using this command.

APICHKOUTLIM

Specifies a period of time that a record can be checked out by an API application user. When this time period is exceeded for a checked out record, the record is made available to other users.

You must specify this time in the following format: HHMMSSTH. HH, MM, SS, T, and H represent hours, minutes, seconds, tenths of seconds, and hundredths of seconds, respectively. The default is 0 (record is checked out forever until it is checked in).

This keyword enables you to release a checked-out record after the check out period has expired. If the check out period is exceeded, the record is no longer checked out.

When a record is checked out by an API application (through the HLAPI transaction HL04 or LLAPI transaction T104), the following occurs:

- If the record is not already checked out, or if it is checked out and the check out period has expired, the check out period is added to the current clock time and stored in the record.
- If the record is already checked out to a different application ID and the check out period has not expired, an error is returned to the API application to indicate the record is already in use.
- If the record is already checked out to the same application ID, the check out period is reset to a full check out period and saved in the record.

The check out period is checked when the API application performs an Update Record or Delete Record transaction. The check out period is also checked when an interactive user updates or deletes a record.

This keyword is optional. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide for more information on API transactions for checking out records.

APISECURITY

Specifies whether to activate the BLX-SP security checking for the APIs. The
security check validates that the MVS application user ID is allowed to access a Tivoli Information Management for z/OS database with the application ID specified in PICAUSRN. Additional information on API security can be found in the Tivoli Information Management for z/OS Application Program Interface Guide. This is a required parameter, and there is no default value. The parameter member is shipped with a setting of ON, but it can be set to OFF to disable this security checking feature. Because APISecurity is a required parameter, the BLX-SP initialization process will fail with a parsing error if it is not added to a parameter member from a previous version before use.

DBCS Specifies whether the BLX-SP supports DBCS data. If you do not use DBCS data, specify NO or omit the parameter (the default value is NO) so your installation’s performance is not affected by the overhead required to process DBCS data.

LOG Specifies whether to activate (ON) or not to activate (OFF) the BLX-SP log data set. If you enter the LOG keyword, you must specify one of the valid keyword values. If you omit this keyword, the default LOG value is OFF.

LOGLINES Instructs the BLX-SP to close and free the BLX-SP log data set and to allocate and activate a new BLX-SP log data set whenever the number of lines (records) in the data set meets or exceeds the limit value \(n \) that you specify.

Valid values for \(n \) are:

- 0, to indicate that you do not want data set switching to occur, regardless of the number of lines (records) in the data set.
- Any whole number from 50 to 200,000 (inclusive).

If you omit this keyword, the default LOGLINES value is 0.

LOGSYSOUT Specifies the SYSOUT class \(c \) to which the BLX-SP log data set is allocated.

Valid values for \(c \) are A–Z and 0–9.

If you omit this keyword, the default SYSOUT class value is A.

LOGTOD Specifies from one to three time-of-day values. At the specified time-of-day, BLX-SP closes and frees the BLX-SP log data set, and allocates and activates a new log data set (regardless of any value entered on LOGLINES). If you specify more than one time-of-day value, you must enclose the values in parentheses. You must specify each time-of-day value as HH:MM:SS. HH, MM, and SS represent hours, minutes, and seconds, respectively, and the three values are separated by colons (:).

A 24-hour, 60-minute, 60-second clock is the unit of measure for all time-of-day values. When you specify a time-of-day value, you must include hours, minutes, and seconds. Hours must range from 00 to 23, minutes must range from 00 to 59, and seconds must range from 00 to 59. To specify midnight, you must use 00:00:00.

If you specify this parameter with a null value or with any other value that contains fewer than eight characters, you receive an error. If you omit this keyword, there is no timed log switching.

MAILQ Specifies the BLX-SP queue to use for e-mail notification. To use the queue, you
must set a warning limit and define the maximum number of mail items that can be
placed on the queue. For example, MAILQ=(PROBLEM,5,10) specifies that the
problem queue will issue a warning when the sixth mail notice is queued. The queue
is full after the 10th piece of mail is queued.

queue name

Specifies the mail queue name defined to the BLX-SP. The queue name can
be 1 to 8 alphabetic or numeric characters. Up to three names can be defined
as separate MAILQ parameter entries. Default queue names are MAILQ1,
MAILQ2, and MAILQ3.

warning_limit

Specifies the number of items that can be placed on the BLX-SP mail queue
before a message is issued to the operator stating that the limit has been
reached. Valid values are between 0 (no mail queuing) and 32767. The
default is 0.

maximum_limit

Specifies the number of items that can be on the BLX-SP mail queue before
a message is issued to the operator stating that the queue is full. Any new
mail items sent to the queue beyond this limit are discarded. Valid values are
between 0 (no mail queuing) and 32767. The default is 0.

All three values are required. If a parameter value is missing, invalid, or out
of range, the BLX-SP service provider will not start. Currently no check is
made to ensure the maximum limit is greater than or equal to the warning
limit.

MAILQWAITTM

Specifies a period of time that the BLX-SP is to wait for mail to clear off the mail
queue(s) before shutting down. The specified wait time is broken down into 10
second intervals, and the BLX-SP checks every 10 seconds. Once the queues are
cleared, the BLX-SP continues the shutdown. If the mail queues are not cleared by
the time specified in this parameter, the queues are flushed (mail items are lost) and
shutdown processing continues.

After shutdown is started, you cannot query the mail queues to determine the queue
status (number of items on the queues). The only way to clear the queues is to have
one or more TSXs using the DEQMAIL control line to extract items from the
queues until they are empty. Use care in choosing the MAILQWAITTM value so
that it supports the minimum amount of time that you can wait for the BLX-SP to
shut down.

You must specify this time in the following format: HHMMSSSTH. HH, MM, SS, T,
and H, represent hours, minutes, seconds, tenths of seconds, and hundredths of
seconds, respectively. The default is 0 (no wait time).

SHUTDOWNWT

Specifies a period of time that the BLX-SP is to continue processing after receiving
a STOP command. This time permits Tivoli Information Management for z/OS users
to complete any processing that was active when the operator issued the STOP
command. Users cannot start Tivoli Information Management for z/OS during this
time, but those already running Tivoli Information Management for z/OS can
continue until the time expires. If no users are active when the MVS STOP
command is issued, the BLX-SP stops processing immediately regardless of the
SHUTDOWNWT interval.
You must specify this time in the following format: HHMMSSSTH. HH, MM, SS, T, and H, represent hours, minutes, seconds, tenths of seconds, and hundredths of seconds, respectively.

This keyword is required.

SHUTDOWNFY
Specifies the amount of time between operator notification messages. After the operator issues the STOP command, Tivoli Information Management for z/OS sends messages to the operator periodically to indicate the number of users who still have processing active.

You must specify this interval in the following format: HHMMSSSTH. HH, MM, SS, T, and H, represent hours, minutes, seconds, tenths of seconds, and hundredths of seconds, respectively.

This keyword is required.

SYSPLEX
Specifies whether to enable sysplex mode.

SYSPLEX=YES enables sysplex mode for the BLX-SP and all its users and is required for sysplex data sharing. If you are not sharing VSAM data sets, SYSPLEX=YES is optional. When sysplex mode is enabled, all VSAM data sets are accessed using VSAM record-level sharing (RLS). Data sets are not accessed using local shared resource (LSR) or nonshared resource (NSR) buffer pools.

Note: If SYSPLEX=YES is specified, the BLX-SP parameter VSAMRESOURCES keyword is ignored.

NO specifies that the BLX-SP should not run in sysplex mode. VSAM data sets are accessed using local shared resource (LSR) buffer pools and cross-memory support, or nonshared resources (NSR), depending on what is defined for your VSAM resources. Sharing of VSAM data sets is not allowed when SYSPLEX=NO.

This keyword is optional. If you omit this keyword, the default SYSPLEX value is NO.

TRACE
Specifies whether to activate (ON) or not to activate (OFF) the BLX-SP trace data set.

If you enter the TRACE keyword, one of the valid keyword values is required. If you omit this keyword, the default TRACE value is OFF.

Note: The trace data set collects information for diagnostic purposes. Do not activate the trace data set unless you experience problems with Tivoli Information Management for z/OS and your Tivoli service representative supplies you with trace points.

TRACELINES
Instructs the BLX-SP to close and free the BLX-SP trace data set and to allocate and activate a new BLX-SP trace data set whenever the number of lines (records) in the data set meets or exceeds the limit value (n) that you specify.

This keyword has no default. Valid values for n are:
If you omit this keyword, the default TRACELINES value is 0.

TRACEPOINTS

Specifies one or more trace points to set. The values $x, y,$ and $z,$ are specified as decimal digits within the range of 1 to 64. Each number represents a trace point to turn on. If you omit the TRACEPOINTS keyword, all trace points are initially set to OFF.

TRACESYSOUT

Specifies the SYSOUT class to which the BLX-SP trace data set is allocated.

If you omit this keyword, the default SYSOUT class value is A.

TRACETOD

Specifies from one to three time-of-day values. At the specified time-of-day, the BLX-SP closes and frees the BLX-SP trace data set, and allocates and activates a new BLX-SP trace data set (regardless of any value entered on TRACELINES). If you specify more than one time-of-day value, you must enclose the values in parentheses. You must specify each time-of-day value as HH:MM:SS. HH, MM, and SS represent hours, minutes, and seconds, respectively, and the three values are separated by colons (:).

A 24-hour, 60-minute, 60-second clock is the unit of measure for all time-of-day values. When you specify a time-of-day value, you must include hours, minutes, and seconds. Hours must range from 00 to 23, minutes must range from 00 to 59, and seconds must range from 00 to 59. To specify midnight, you must use 00:00:00.

VSAMRESOURCES

Specifies the name of the VSAM resource definition module constructed with the VSAM BLDVRP and BLX-SP BLXDSN, BLXNSR, and BLXGEN macros. You can provide additional VSAM resource definitions to the BLX-SP by using the BLX-SP ADDVDEF command. However, when you restart the BLX-SP, you lose the data that these definitions contain. Therefore, you may want to include these additional resource definitions in VSAMRESOURCES.

This keyword is required when sysplex mode is not enabled (BLX-SP parameter is SYSPLEX=NO) or when the BLX-SP SYSPLEX keyword is omitted. This keyword is ignored when SYSPLEX=YES.

See "BLXDSN Macro — Connecting VSAM Resources to a VSAM Data Set” on page 303, "BLXNSR Macro — Specifying the Number of Nonshared Resource Placeholders” on page 303, and "BLXGEN Macro — Generating the BLX-SP VSAM Resource Definition Member CSECT” on page 307, which describe the macros used to specify VSAM resources.

WRITEOPER

Specifies the default write to operator (WTO) routing code. Valid values are from 1 to 128. All WTOs that are not a result of command responses are automatically routed to this code. To determine the routing codes for a console, you can do one of the following:

- Display console characteristics by issuing the DISPLAY CONSOLES, A command from a console
Review the ROUTCODE parameter of the CONSOLE statements in the CONSOLxx member of SYS1.PARMLIB.

Refer to the OS/390 MVS: System Commands for more information about consoles and routing codes.

Coding a BLX-SP Parameters Member

There are several basic rules you must follow when you code a BLX-SP parameters member.

- Comments must begin with /* and end with */.
- Comments can be in any column between 1 and 72, inclusive.
- Nothing can be present in column 1 (except comments).
- Nothing can be present past column 72.
- Begin the parameters member with a statement identifier of BLXPRM.
- You can separate parameters with commas. Parameters do not have to appear on separate lines.
- End the parameters member with a semicolon (;) after the last parameter.

Sample BLX-SP Parameters Member

Figure 34 on page 350 shows a sample BLX-SP parameters member. See member BLX100 in the SBLMSAMP library. For a sample BLX-SP parameters member that uses sysplex data sharing, see member BLX1SH in SBLMSAMP or refer to Figure 14 on page 160.
Sample BLX-SP Parameters Member

**
/* BLX-SP OPERATING PARAMETERS */
**
BLXPRM /* SPECIFY BLX-SP PARAMETERS */
**
/* BLX-SP TRACE OPTIONS */
**
TRACE=OFF, /* DON'T PRODUCE TRACE OUTPUT */
**
/* BLX-SP LOG OPTIONS */
**
LOG=ON, /* PRODUCE LOG INFORMATION */
LOGSYSOUT=A, /* JES SYSOUT CLASS FOR LOG DS */
LOGLINES=0, /* MAX # OF LINES IN A LOG DS */
**
/* BLX-SP SHUT DOWN OPTIONS */
**
SHUTDOWNWT=00050000, /* SHUTDOWN WAIT TIME HHMMSSTH */
SHUTDOWNTFY=00001000, /* SHUTDOWN NOTIFY WT HHMMSSTH */
**
/* BLX-SP MESSAGE ROUTING OPTIONS */
**
WRITEOPER=1, /* DEFAULT WTO ROUTING CODE */
**
/* API OPTIONS */
**
APISECURITY=XXX, /* Replace XXX with ON or OFF */
APICHKOUTLIM=00000000, /* HHMMSSTH - NO LIMIT SET */
**
/* MAILQ OPTIONS */
**
MAILQ=(PROBLEM,5,10), /* DEFINE FIRST MAIL QUEUE */
MAILQ=(CHANGE,5,10), /* DEFINE SECOND MAIL QUEUE */
MAILQ=(ACTIVITY,5,10), /* DEFINE THIRD MAIL QUEUE */
MAILQWAITTM=00050000, /* SUSPEND SHUTDOWN FOR HHMMSSTH */
**
/* BLX-SP VSAM RELATED OPTIONS */
**
VSAMRESOURCES=BLXVDEF; /* BLXDSN, BLXNSR, BLXGEN AND */
THE VSAM BLDVRP MACROS */
**

Figure 34. Example: BLX-SP Parameters Member (for use in a non-sysplex environment)

End of Programming Interface information
Resource Names That Tivoli Information Management for z/OS Enqueues On

The following table lists the resource names that Tivoli Information Management for z/OS enqueues on. This information may be useful to you for diagnostic purposes, or if you are sharing data sets across z/OS systems through use of a component other than global resource serialization.

When setting up GRS or any other enqueue manager, note that the resources enqueued with a scope of SYSTEMS must be enqueued across systems; those with a scope of SYSTEM should only be enqueued within a single system.

Major Resource Names

Tivoli Information Management for z/OS enqueues on the major resource names shown in the following table. Also listed are the enqueue scopes. The minor resource names are described in the Notes column.

<table>
<thead>
<tr>
<th>Major Resource Name</th>
<th>Enqueue Scope – Non-Sysplex</th>
<th>Enqueue Scope – Sysplex Enabled</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPI</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name identifies a record in a data set.</td>
</tr>
<tr>
<td>BLGDICTN</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name identifies a record in a data set.</td>
</tr>
<tr>
<td>BLGMAIL</td>
<td>SYSTEM</td>
<td>SYSTEM</td>
<td>Minor name identifies the mail queue from which mail is currently being dequeued.</td>
</tr>
<tr>
<td>BLGPMFPU</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name identifies a record in a data set.</td>
</tr>
<tr>
<td>BLGRNID</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name identifies a record in a data set.</td>
</tr>
<tr>
<td>BLGSEQN</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name identifies a record in a data set.</td>
</tr>
<tr>
<td>BLGSDIDS</td>
<td>–</td>
<td>SYSTEMS</td>
<td>Minor name identifies a data set name. Resource name is used only when sysplex support is enabled.</td>
</tr>
<tr>
<td>BLGUT4</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name is the VSAM data set name of the SDLDS.</td>
</tr>
<tr>
<td>BLGVCGZR</td>
<td>SYSTEM</td>
<td>SYSTEMS</td>
<td>Minor name identifies a record in a data set.</td>
</tr>
</tbody>
</table>
Major Resource Names

<table>
<thead>
<tr>
<th>Major Resource Name</th>
<th>Enqueue Scope – Non-Syplex</th>
<th>Enqueue Scope – Sysplex Enabled</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLXCAS</td>
<td>SYSTEM</td>
<td>SYSTEM</td>
<td>Minor name is <code>xxxx</code> where <code>xxxx</code> is the 4-character BLX-SP subsystem name.</td>
</tr>
<tr>
<td>BLXDASDS</td>
<td>SYSTEM</td>
<td>–</td>
<td>Minor name identifies a data set name. Resource name is used only when sysplex support is not enabled.</td>
</tr>
<tr>
<td>BLXDSCTL</td>
<td>SYSTEMS</td>
<td>SYSTEMS</td>
<td>Minor name identifies a data set name.</td>
</tr>
<tr>
<td>BLXLCDS</td>
<td>SYSTEM</td>
<td>SYSTEM</td>
<td>Minor name identifies a data set name.</td>
</tr>
<tr>
<td>BLXSNAP</td>
<td>SYSTEM</td>
<td>SYSTEM</td>
<td>Minor name identifies a data set name.</td>
</tr>
<tr>
<td>BLXSPCAS</td>
<td>SYSTEM</td>
<td>SYSTEM</td>
<td>Minor name is STOP <code>xxxx</code> where <code>xxxx</code> is the 4-character BLX-SP subsystem name.</td>
</tr>
</tbody>
</table>
Translate Tables

This appendix displays the Latin and non-Latin alphabet translate tables, used for display, and the Latin and non-Latin blank substitution translate tables. The Latin and non-Latin alphabet translation tables are used for displaying and indexing (cognizing) data in the database. Each table denotes the first hexadecimal digit in the first column on the left (for example, 0x) and the second hexadecimal digit across the top (for example, x7).

Latin and Non-Latin Translate Tables

Table 18. Latin Alphabet Translate Table for Displaying Data

<table>
<thead>
<tr>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
<th>x6</th>
<th>x7</th>
<th>x8</th>
<th>x9</th>
<th>xA</th>
<th>xB</th>
<th>xC</th>
<th>xD</th>
<th>xE</th>
<th>xF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
</tr>
<tr>
<td>1x</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
<td>1E</td>
</tr>
<tr>
<td>2x</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>2A</td>
<td>2B</td>
<td>2C</td>
<td>2D</td>
<td>2E</td>
</tr>
<tr>
<td>3x</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>3A</td>
<td>3B</td>
<td>3C</td>
<td>3D</td>
<td>3E</td>
</tr>
<tr>
<td>4x</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>4A</td>
<td>4B</td>
<td>4C</td>
<td>4D</td>
<td>4E</td>
</tr>
<tr>
<td>5x</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>5A</td>
<td>5B</td>
<td>5C</td>
<td>5D</td>
<td>5E</td>
</tr>
<tr>
<td>6x</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>6A</td>
<td>6B</td>
<td>6C</td>
<td>6D</td>
<td>6E</td>
</tr>
<tr>
<td>7x</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>7A</td>
<td>7B</td>
<td>7C</td>
<td>7D</td>
<td>7E</td>
</tr>
<tr>
<td>8x</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>8A</td>
<td>8B</td>
<td>8C</td>
<td>8D</td>
<td>8E</td>
</tr>
<tr>
<td>9x</td>
<td>90</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>9A</td>
<td>9B</td>
<td>9C</td>
<td>9D</td>
<td>9E</td>
</tr>
<tr>
<td>Ax</td>
<td>A0</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
<td>A6</td>
<td>A7</td>
<td>A8</td>
<td>A9</td>
<td>AA</td>
<td>AB</td>
<td>AC</td>
<td>AD</td>
<td>AE</td>
</tr>
<tr>
<td>Dx</td>
<td>D0</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>DA</td>
<td>DB</td>
<td>DC</td>
<td>DD</td>
<td>DE</td>
</tr>
<tr>
<td>Ex</td>
<td>E0</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>E9</td>
<td>EA</td>
<td>EB</td>
<td>EC</td>
<td>ED</td>
<td>EE</td>
</tr>
<tr>
<td>Fx</td>
<td>F0</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>FA</td>
<td>FB</td>
<td>FC</td>
<td>FD</td>
<td>FE</td>
</tr>
</tbody>
</table>

Table 19. Non-Latin Alphabet Translate Table for Displaying Data

<table>
<thead>
<tr>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
<th>x6</th>
<th>x7</th>
<th>x8</th>
<th>x9</th>
<th>xA</th>
<th>xB</th>
<th>xC</th>
<th>xD</th>
<th>xE</th>
<th>xF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
</tr>
<tr>
<td>1x</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
<td>1E</td>
</tr>
<tr>
<td>2x</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>2A</td>
<td>2B</td>
<td>2C</td>
<td>2D</td>
<td>2E</td>
</tr>
<tr>
<td>3x</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>3A</td>
<td>3B</td>
<td>3C</td>
<td>3D</td>
<td>3E</td>
</tr>
<tr>
<td>4x</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>4A</td>
<td>4B</td>
<td>4C</td>
<td>4D</td>
<td>4E</td>
</tr>
</tbody>
</table>
Latin and Non-Latin Translate Tables

Table 19. Non-Latin Alphabet Translate Table for Displaying Data (continued)

<table>
<thead>
<tr>
<th>5x</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>5A</th>
<th>5B</th>
<th>5C</th>
<th>5D</th>
<th>5E</th>
<th>5F</th>
</tr>
</thead>
<tbody>
<tr>
<td>6x</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>6A</td>
<td>6B</td>
<td>6C</td>
<td>6D</td>
<td>6E</td>
<td>6F</td>
</tr>
<tr>
<td>7x</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>7A</td>
<td>7B</td>
<td>7C</td>
<td>7D</td>
<td>7E</td>
<td>7F</td>
</tr>
<tr>
<td>8x</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>8A</td>
<td>8B</td>
<td>8C</td>
<td>8D</td>
<td>8E</td>
<td>8F</td>
</tr>
<tr>
<td>9x</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>9A</td>
<td>9B</td>
<td>9C</td>
<td>9D</td>
<td>9E</td>
<td>9F</td>
</tr>
<tr>
<td>Ax</td>
<td>A0</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
<td>A6</td>
<td>A7</td>
<td>A8</td>
<td>A9</td>
<td>AA</td>
<td>AB</td>
<td>AC</td>
<td>AD</td>
<td>AE</td>
<td>AF</td>
</tr>
<tr>
<td>Bx</td>
<td>B0</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>BA</td>
<td>BB</td>
<td>BC</td>
<td>BD</td>
<td>BE</td>
<td>BF</td>
</tr>
<tr>
<td>Cx</td>
<td>C0</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>CA</td>
<td>CB</td>
<td>CC</td>
<td>CD</td>
<td>CE</td>
<td>CF</td>
</tr>
<tr>
<td>Dx</td>
<td>D0</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>DA</td>
<td>DB</td>
<td>DC</td>
<td>DD</td>
<td>DE</td>
<td>DF</td>
</tr>
<tr>
<td>Ex</td>
<td>E0</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>E9</td>
<td>EA</td>
<td>EB</td>
<td>EC</td>
<td>ED</td>
<td>EE</td>
<td>EF</td>
</tr>
<tr>
<td>Fx</td>
<td>F0</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>FA</td>
<td>FB</td>
<td>FC</td>
<td>FD</td>
<td>FE</td>
<td>FF</td>
</tr>
</tbody>
</table>

Table 20. Latin Blank Substitution Translate Table, for Cognizing Data

<table>
<thead>
<tr>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
<th>x6</th>
<th>x7</th>
<th>x8</th>
<th>x9</th>
<th>xA</th>
<th>xB</th>
<th>xC</th>
<th>xD</th>
<th>xE</th>
<th>xF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>40</td>
</tr>
<tr>
<td>1x</td>
<td>40</td>
</tr>
<tr>
<td>2x</td>
<td>40</td>
</tr>
<tr>
<td>3x</td>
<td>40</td>
</tr>
<tr>
<td>4x</td>
<td>40</td>
</tr>
<tr>
<td>5x</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>6x</td>
<td>40</td>
</tr>
<tr>
<td>7x</td>
<td>40</td>
</tr>
<tr>
<td>8x</td>
<td>40</td>
</tr>
<tr>
<td>9x</td>
<td>40</td>
</tr>
<tr>
<td>Ax</td>
<td>40</td>
</tr>
<tr>
<td>Bx</td>
<td>40</td>
</tr>
<tr>
<td>Cx</td>
<td>40</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Dx</td>
<td>40</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Ex</td>
<td>40</td>
<td>E0</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Fx</td>
<td>F0</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 21. Non-Latin Blank Substitution Translate Table, for Cognizing Data

<table>
<thead>
<tr>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
<th>x6</th>
<th>x7</th>
<th>x8</th>
<th>x9</th>
<th>xA</th>
<th>xB</th>
<th>xC</th>
<th>xD</th>
<th>xE</th>
<th>xF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>40</td>
</tr>
<tr>
<td>1x</td>
<td>40</td>
</tr>
<tr>
<td>2x</td>
<td>40</td>
</tr>
<tr>
<td>3x</td>
<td>40</td>
</tr>
<tr>
<td>4x</td>
<td>40</td>
</tr>
<tr>
<td>5x</td>
<td>40</td>
</tr>
<tr>
<td>6x</td>
<td>40</td>
</tr>
<tr>
<td>7x</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 21. Non-Latin Blank Substitution Translate Table, for Cognizing Data (continued)

<table>
<thead>
<tr>
<th>8x</th>
<th>40</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>8A</th>
<th>40</th>
<th>8C</th>
<th>8D</th>
<th>8E</th>
<th>8F</th>
</tr>
</thead>
<tbody>
<tr>
<td>9x</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>9A</td>
<td>40</td>
<td>40</td>
<td>9D</td>
<td>9E</td>
<td>9F</td>
</tr>
<tr>
<td>Ax</td>
<td>40</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
<td>A6</td>
<td>A7</td>
<td>A8</td>
<td>A9</td>
<td>AA</td>
<td>40</td>
<td>AC</td>
<td>AD</td>
<td>AE</td>
<td>AF</td>
</tr>
<tr>
<td>Bx</td>
<td>40</td>
<td>BB</td>
<td>BC</td>
<td>BD</td>
<td>BE</td>
<td>BF</td>
<td></td>
</tr>
<tr>
<td>Cx</td>
<td>40</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Dx</td>
<td>40</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Ex</td>
<td>E0</td>
<td>40</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>E9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Fx</td>
<td>F0</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
<td>F6</td>
<td>F7</td>
<td>F8</td>
<td>F9</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Programming Interface Macros

This appendix lists the macros that Tivoli Information Management for z/OS provides as programming interfaces for customers.

Note: Do not use any Tivoli Information Management for z/OS macros other than those identified in this section as programming interfaces.

Executable Macros

<table>
<thead>
<tr>
<th>Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGCKDSN</td>
</tr>
<tr>
<td>BLGCKNUM</td>
</tr>
<tr>
<td>BLGCLDSN</td>
</tr>
<tr>
<td>BLGCLGKY</td>
</tr>
<tr>
<td>BLGCLGS</td>
</tr>
<tr>
<td>BLGCLSEP</td>
</tr>
<tr>
<td>BLGCLSKY</td>
</tr>
<tr>
<td>BLGCLUD</td>
</tr>
<tr>
<td>BLGGEN</td>
</tr>
<tr>
<td>BLGGENPT</td>
</tr>
<tr>
<td>BLGPARMS</td>
</tr>
<tr>
<td>BLGREPDB</td>
</tr>
<tr>
<td>BLGREPDD</td>
</tr>
<tr>
<td>BLXCKDSN</td>
</tr>
<tr>
<td>BLXCKNUM</td>
</tr>
<tr>
<td>BLXCLGKY</td>
</tr>
<tr>
<td>BLXCLGS</td>
</tr>
<tr>
<td>BLXDMSG</td>
</tr>
<tr>
<td>BLXDMGG</td>
</tr>
<tr>
<td>BLXDSN</td>
</tr>
<tr>
<td>BLXGEN</td>
</tr>
<tr>
<td>BLXMODID</td>
</tr>
<tr>
<td>BLXNSR</td>
</tr>
</tbody>
</table>
Mapping Macros

BLGUCCB
BLGUHICA
BLGUHICC
BLGUHIDM
BLGUHIVP
BLGUPALT
BLGUPDB
BLGUPIAT
BLGUPICA
BLGUPICC
BLGUPIDT
BLGUPIHT
BLGUPIMB
BLGUPIPT
BLGUPIRT
BLGUSLB
BLGUSRIB
BLGUSUB
BLGUWSCA
BLMVATSR
This appendix lists the Tivoli Information Management for z/OS program data sets and the members of the Tivoli Information Management for z/OS sample library, SBLMSAMP.

Program Data Sets

All the members of the Tivoli Information Management for z/OS data set libraries supplied with Tivoli Information Management for z/OS Version 7.1 have member names beginning with BLG, BLH, BLM, BLX, BTN, EYL, or EYM.

The Tivoli Information Management for z/OS program is distributed on tape (with some features provided on separate tapes), and you must install it using SMP/E, as outlined in the Program Directory. During SMP/E installation, several data sets are created. Table 22 lists and describes these data sets.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBLMCMOD</td>
<td>The Tivoli Enterprise Console Adapter feature</td>
</tr>
<tr>
<td>SBLMDICT</td>
<td>The Tivoli Information Management for z/OS dictionary</td>
</tr>
<tr>
<td>SBLMEXEC</td>
<td>Installation Tailoring Facility REXX EXECs</td>
</tr>
<tr>
<td>SBLMFMT</td>
<td>Report format tables (RFTs) that are used to generate reports, relational data mapping tables (RDMTs) used by the DB2 Extract Facility, and program interface data tables (PIDTs) and program interface pattern tables (PIPTs) that define problem, change, and configuration data models for use with the application program interfaces (APIs).</td>
</tr>
<tr>
<td>SBLMHTMV</td>
<td>Data set used with the web connector feature</td>
</tr>
<tr>
<td>SBLMINST</td>
<td>Installation Tailoring Facility files and panels</td>
</tr>
<tr>
<td>SBLMMACS</td>
<td>Macros that you use to assemble session-parameters members and API control block mapping macros</td>
</tr>
<tr>
<td>SBLMMD1</td>
<td>The Tivoli Information Management for z/OS load modules</td>
</tr>
<tr>
<td>SBLMPNLS</td>
<td>The Tivoli Information Management for z/OS panels</td>
</tr>
<tr>
<td>SBLMRCDS</td>
<td>Records shipped with Tivoli Information Management for z/OS for special purposes (such as data model records)</td>
</tr>
<tr>
<td>SBLMREXD</td>
<td>Data set used to support using DBCS data with the Tivoli Information Management for z/OS Desktop</td>
</tr>
<tr>
<td>SBLMREXX</td>
<td>Data set used with the web connector feature</td>
</tr>
</tbody>
</table>
Table 22. Target Data Set Libraries (continued)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBLMSAMP</td>
<td>Sample job control language (JCL), ISPF panel style members, ISPF PDF edit macro, BLGISMAC, and source statements used to build the PIDTs and PIPTs contained in BLM..SBLMFMT. Also contains interface materials for the Integration Facility and API and NetView Bridge Adapter examples.</td>
</tr>
<tr>
<td>SBLMSRC1</td>
<td>Message CSECT source that you can use to customize your messages</td>
</tr>
<tr>
<td>SBLMSTUB</td>
<td>Stub modules for resolving external references during SMP/E installation</td>
</tr>
<tr>
<td>SBLMTSX</td>
<td>TSX REXX EXECs</td>
</tr>
<tr>
<td>SBLMTXT1</td>
<td>Common parts needed for installation of optional features</td>
</tr>
</tbody>
</table>

Sample Members

Table 23 describes the samples that are supplied with Tivoli Information Management for z/OS. These members are located in the SBLMSAMP sample library. Samples are listed for the base product and optional features.

Table 23. Description of Sample Members in SBLMSAMP Library

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGABDBG</td>
<td>GML source for Debug action bar</td>
</tr>
<tr>
<td>BLGABDIA</td>
<td>GML source for Dialog action bar</td>
</tr>
<tr>
<td>BLGABENV</td>
<td>GML source for Environment action bar</td>
</tr>
<tr>
<td>BLGABHLP</td>
<td>GML source for Help action bar</td>
</tr>
<tr>
<td>BLGABOPT</td>
<td>GML source for Options action bar</td>
</tr>
<tr>
<td>BLGABPMF</td>
<td>GML source for PMF action bar</td>
</tr>
<tr>
<td>BLGABREC</td>
<td>GML source for Record action bar</td>
</tr>
<tr>
<td>BLGABSCR</td>
<td>GML source for Scroll action bar</td>
</tr>
<tr>
<td>BLGABSER</td>
<td>GML source for Search action bar</td>
</tr>
<tr>
<td>BLGABSRC</td>
<td>GML source for SRC action bar</td>
</tr>
<tr>
<td>BLGABWIN</td>
<td>GML source for Window action bar</td>
</tr>
<tr>
<td>BLGALSPM</td>
<td>Assembles and link-edits a BLG session-parameters member. See Figure 32 on page 340.</td>
</tr>
<tr>
<td>BLGALTER</td>
<td>Migrates existing VSAM data sets so that they are enabled for VSAM RLS</td>
</tr>
<tr>
<td>BLGARCCJ</td>
<td>Runs the Archiver</td>
</tr>
<tr>
<td>BLGARCP</td>
<td>Provides Archiver input parameters</td>
</tr>
<tr>
<td>BLGBSPCX</td>
<td>Procedure to start the NetView Bridge Adapter. Refer to the Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications</td>
</tr>
<tr>
<td>BLGCCHK</td>
<td>Obtains information for the control PDBs for the HLAPI’s delete, check-in, and check-out transactions</td>
</tr>
<tr>
<td>BLGCCRT</td>
<td>Obtains information for the control PDBs for the HLAPI’s create transaction</td>
</tr>
<tr>
<td>BLGCINQ</td>
<td>Obtains information for the control PDBs for the HLAPI’s inquiry transaction</td>
</tr>
<tr>
<td>BLGCOSBT</td>
<td>Obtains information for the control PDBs for the HLAPI’s obtain record transaction</td>
</tr>
<tr>
<td>BLGCPDB</td>
<td>Definition of the HLAPI’s PDB control block in C; used by BLGNBSRC</td>
</tr>
<tr>
<td>BLGCRET</td>
<td>Obtains information for the control PDBs for the HLAPI’s retrieve transaction</td>
</tr>
<tr>
<td>BLGCTPCA</td>
<td>Definition of the NetView Bridge Adapter’s TPCS control block in C; used by BLGNBSRC</td>
</tr>
</tbody>
</table>
Table 23. Description of Sample Members in SBLMSAMP Library (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGCTRAN</td>
<td>Primary selection panel</td>
</tr>
<tr>
<td>BLGCTSP</td>
<td>Obtains information for the control PDBs for the HLAPI’s invoke TSP transaction</td>
</tr>
<tr>
<td>BLGCUPD</td>
<td>Obtains information for the control PDBs for the HLAPI’s update record transaction</td>
</tr>
<tr>
<td>BLGDATAB</td>
<td>Defines the Tivoli Information Management for z/OS database</td>
</tr>
<tr>
<td>BLGDATE8</td>
<td>JCL to convert dates from 10 to 8 characters on panels</td>
</tr>
<tr>
<td>BLGDG1</td>
<td>JCL that shows a sample of defining a GDG data set</td>
</tr>
<tr>
<td>BLGDICT</td>
<td>Defines the dictionary data set (DICTDS). Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGD2000</td>
<td>Sample date conversion routine used when records have dates in two different external date formats</td>
</tr>
<tr>
<td>BLGEXPND</td>
<td>Expands a database. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGHFCRT</td>
<td>Field help for the create transaction control PDBs</td>
</tr>
<tr>
<td>BLGHFDEL</td>
<td>Field help for the delete transaction control PDBs</td>
</tr>
<tr>
<td>BLGHFFFT</td>
<td>Help panel for freeform text entry panel</td>
</tr>
<tr>
<td>BLGHFINQ</td>
<td>Field help for the inquiry transaction control PDBs</td>
</tr>
<tr>
<td>BLGHFLDA</td>
<td>Help panel for HLAPI input PDBs</td>
</tr>
<tr>
<td>BLGHFLDB</td>
<td>Help panel for HLAPI input PDBs</td>
</tr>
<tr>
<td>BLGHFLD1</td>
<td>Help panel for HLAPI input PDBs</td>
</tr>
<tr>
<td>BLGHFLD2</td>
<td>Help panel for HLAPI input PDBs</td>
</tr>
<tr>
<td>BLGHFOBT</td>
<td>Field help for the obtain record transaction control PDBs</td>
</tr>
<tr>
<td>BLGHFRET</td>
<td>Field help for the retrieve transaction control PDBs</td>
</tr>
<tr>
<td>BLGHFTSP</td>
<td>Field help for the invoke TSP transaction control PDBs</td>
</tr>
<tr>
<td>BLGHFUPD</td>
<td>Field help for the update transaction control PDBs</td>
</tr>
<tr>
<td>BLGHMAIN</td>
<td>Help panel for main selection panel</td>
</tr>
<tr>
<td>BLGHPCRT</td>
<td>Help panel explaining PF key function for create transaction</td>
</tr>
<tr>
<td>BLGHPINQ</td>
<td>Help panel explaining PF key function for inquiry transaction</td>
</tr>
<tr>
<td>BLGHPMSG</td>
<td>Help panel explaining PF key function on messages panel</td>
</tr>
<tr>
<td>BLGHPRT</td>
<td>PF key help after an inquiry transaction</td>
</tr>
<tr>
<td>BLGHPFF1</td>
<td>General PF key help</td>
</tr>
<tr>
<td>BLGHPFF2</td>
<td>General PF key help</td>
</tr>
<tr>
<td>BLGHPREC</td>
<td>Help panel explaining the results of an inquiry transaction</td>
</tr>
<tr>
<td>BLGHRET</td>
<td>Help panel explaining PF key function for retrieve transaction</td>
</tr>
<tr>
<td>BLGHPSTA</td>
<td>PF key help on input PDB panels</td>
</tr>
<tr>
<td>BLGHPUPD</td>
<td>Help panel explaining PF key function for update transaction</td>
</tr>
<tr>
<td>BLGIATTR</td>
<td>GML source for panel)ATTR section</td>
</tr>
<tr>
<td>BLGICRT</td>
<td>Panel used to obtain input PDB information for create transaction</td>
</tr>
<tr>
<td>BLGIFFT</td>
<td>Panel used to obtain freeform text data for inquiry transaction</td>
</tr>
<tr>
<td>BLGIGMLA</td>
<td>GML source for panel BLGISPFA</td>
</tr>
<tr>
<td>BLGIGMLD</td>
<td>GML source for panel BLGISPFD</td>
</tr>
<tr>
<td>BLGIGMLE</td>
<td>GML source for panel BLGISPFE</td>
</tr>
<tr>
<td>Member Name</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>BLGIGMLI</td>
<td>GML source for panel BLGISPFI</td>
</tr>
<tr>
<td>BLGIINIT</td>
<td>GML source for panel)INIT section</td>
</tr>
<tr>
<td>BLGIINQ</td>
<td>Panel used to obtain input PDB information for inquiry transaction</td>
</tr>
<tr>
<td>BLGIPROC</td>
<td>GML source for panel)PROC section</td>
</tr>
<tr>
<td>BLGIRET</td>
<td>Panel used to obtain input PDB information for retrieve transaction</td>
</tr>
<tr>
<td>BLGISGUI</td>
<td>Runs Tivoli Information Management for z/OS as a background job under ISPF with the GUI parameter specified</td>
</tr>
<tr>
<td>BLGISMAC</td>
<td>ISPF PDF edit macro</td>
</tr>
<tr>
<td>BLGISPFA</td>
<td>ISPF panel containing the INFO window for enhanced panel style. Action bar contains “Environment Dialog Record Window ISPF Help” plus administrator actions for “PMF SRC Debug”.</td>
</tr>
<tr>
<td>BLGISPFD</td>
<td>ISPF panel shipped with V5 that contains the window for standard panel style, that is no action bars</td>
</tr>
<tr>
<td>BLGISPFE</td>
<td>ISPF panel containing the INFO window for enhanced panel style. Action bar contains “Environment Dialog Record Window ISPF Help”.</td>
</tr>
<tr>
<td>BLGISPFI</td>
<td>ISPF panel containing the INFO window for enhanced panel style. Action bar contains “Environment Dialog Record Window ISPF Help” plus inquiry actions for “Search Scroll”.</td>
</tr>
<tr>
<td>BLGISTAT</td>
<td>Panel used to obtain additional input PDB information</td>
</tr>
<tr>
<td>BLGIUPD</td>
<td>Panel used to obtain input PDB information for update transaction</td>
</tr>
<tr>
<td>BLGKDATA</td>
<td>Used to link edit non-Latin alphabet table</td>
</tr>
<tr>
<td>BLGLDICT</td>
<td>Loads the DICTDS</td>
</tr>
<tr>
<td>BLGLRPNL</td>
<td>Loads the read panel data set (RPANLDS). Refer to the "Tivoli Information Management for z/OS Operation and Maintenance Reference"</td>
</tr>
<tr>
<td>BLGNBLNK</td>
<td>JCL to link-edit BLGNBSRC with BLGBUSR</td>
</tr>
<tr>
<td>BLGNBREX</td>
<td>REXX EXEC, runs under NetView and calls the NetView Bridge Adapter</td>
</tr>
<tr>
<td>BLGNBSRC</td>
<td>C source code for a user-written program that can be called by the NetView Bridge Adapter</td>
</tr>
<tr>
<td>BLGOFFT</td>
<td>Panel for obtaining freeform text data set for retrieve transaction</td>
</tr>
<tr>
<td>BLGOMSG</td>
<td>Messages panel for inquiry transaction</td>
</tr>
<tr>
<td>BLGORECS</td>
<td>Display record IDs that met search criteria on inquiry transaction</td>
</tr>
<tr>
<td>BLGORET</td>
<td>Display panel for a record retrieved by the inquiry transaction</td>
</tr>
<tr>
<td>BLGPANEL</td>
<td>The list of new, changed, and deleted panels for Tivoli Information Management for z/OS Version 7.1. This list does not include message and help panels.</td>
</tr>
<tr>
<td>BLGPVARS</td>
<td>Contains profile variables. Refer to the "Tivoli Information Management for z/OS Program Administration Guide and Reference"</td>
</tr>
<tr>
<td>BLGRECV</td>
<td>CLIST to receive the offload data set sent by the SEND component of the Automatic Log Save function</td>
</tr>
<tr>
<td>BLGRPNL</td>
<td>Defines the read panel data set (RPANLDS).</td>
</tr>
<tr>
<td>BLGSESO0</td>
<td>Sample session-parameters member. See Figure 33 on page 341</td>
</tr>
<tr>
<td>BLGSRNID</td>
<td>Assembler user exit that returns the RNID of a record to the calling TSP for record manipulation. Refer to the "Tivoli Information Management for z/OS Panel Modification Facility Guide"</td>
</tr>
<tr>
<td>BLGTECAD</td>
<td>Sample JCL for running the TEC adapter TSX</td>
</tr>
<tr>
<td>BLGTOAMS</td>
<td>Produces SAM reports</td>
</tr>
<tr>
<td>Member Name</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>BLGUSERJ</td>
<td>Sample JCL used with the Archiver for user relationships</td>
</tr>
<tr>
<td>BLGUTIMC</td>
<td>External time-conversion routine</td>
</tr>
<tr>
<td>BLGUTRJ</td>
<td>Formats a recovery log data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT1J</td>
<td>Rebuilds SDIDS from corresponding SDDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT1MJ</td>
<td>Initializes/migrates the SDIDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT10J</td>
<td>JCL used with the case converter utility, BLGUT10</td>
</tr>
<tr>
<td>BLGUT10P</td>
<td>Input parameters for use with the BLGUT10 utility</td>
</tr>
<tr>
<td>BLGUT20J</td>
<td>Obtains statistics about SDDS data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT21J</td>
<td>Obtains statistics about SDIDS data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT22J</td>
<td>Obtains statistics about VSAM panel data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT3J</td>
<td>Restores database from log data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT4J</td>
<td>Offloads log data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT5FJ</td>
<td>Offloads VSAM dictionary data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT5J</td>
<td>Loads or maintains VSAM dictionary data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT6FJ</td>
<td>Offloads panels from a VSAM panel data set to a PDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT6J</td>
<td>Loads or maintains VSAM panel data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT6MJ</td>
<td>Migrates field lengths and validation patterns on panels. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT7J</td>
<td>Creates 7-byte key SDDS from 8-byte key SDDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT8J</td>
<td>Builds PIDT and PIPT tables. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGUT9J</td>
<td>Sets database option of reusing SDDS position numbers for new records. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGU23BJ</td>
<td>Backs up the SDDS. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGU23PJ</td>
<td>Prunes and sorts offloaded log data. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGU23RJ</td>
<td>Restores the SDDS from a master backup data set. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGU23UJ</td>
<td>Updates master backup data with pruned log data. Refer to the Tivoli Information Management for z/OS Operation and Maintenance Reference.</td>
</tr>
<tr>
<td>BLGYACCS</td>
<td>Produces a create type PIDT for activity records</td>
</tr>
</tbody>
</table>
Table 23. Description of Sample Members in SBLMSAMP Library (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGYACIS</td>
<td>Produces an inquiry type PIDT for activity records</td>
</tr>
<tr>
<td>BLGYACLS</td>
<td>Produces an inquiry type PIDT for activity records related to change records</td>
</tr>
<tr>
<td>BLGYACRS</td>
<td>Produces a retrieve type PIDT for activity records</td>
</tr>
<tr>
<td>BLGYACUS</td>
<td>Produces an update type PIDT for activity records</td>
</tr>
<tr>
<td>BLGYCAIS</td>
<td>Produces an inquiry type PIDT for call records</td>
</tr>
<tr>
<td>BLGYCHAS</td>
<td>Produces an add record relations PIDT for change records</td>
</tr>
<tr>
<td>BLGYCHCS</td>
<td>Produces a create type PIDT for change records</td>
</tr>
<tr>
<td>BLGYCHIS</td>
<td>Produces an inquiry type PIDT for change records</td>
</tr>
<tr>
<td>BLGYCHRS</td>
<td>Produces a retrieve type PIDT for change records</td>
</tr>
<tr>
<td>BLGYCHUS</td>
<td>Produces an update type PIDT for change records</td>
</tr>
<tr>
<td>BLGYDAIS</td>
<td>Produces an inquiry type PIDT for data attribute records</td>
</tr>
<tr>
<td>BLGYDCCS</td>
<td>Produces a create type PIDT for data center records</td>
</tr>
<tr>
<td>BLGYDCIS</td>
<td>Produces an inquiry type PIDT for data center records</td>
</tr>
<tr>
<td>BLGYDCRS</td>
<td>Produces a retrieve type PIDT for data center records</td>
</tr>
<tr>
<td>BLGYDCUS</td>
<td>Produces an update type PIDT for data center records</td>
</tr>
<tr>
<td>BLGYDYNS</td>
<td>Source PIDT for the Archiver</td>
</tr>
<tr>
<td>BLGYHCCS</td>
<td>Produces a create type PIDT for configuration hardware component records</td>
</tr>
<tr>
<td>BLGYHCIS</td>
<td>Produces an inquiry type PIDT for configuration hardware component records</td>
</tr>
<tr>
<td>BLGYHCRS</td>
<td>Produces a retrieve type PIDT for configuration hardware component records</td>
</tr>
<tr>
<td>BLGYHCUS</td>
<td>Produces an update type PIDT for configuration hardware component records</td>
</tr>
<tr>
<td>BLGYHFAS</td>
<td>Produces PIDT to add feature relations to hardware component records</td>
</tr>
<tr>
<td>BLGYHFCS</td>
<td>Produces a create type PIDT for configuration hardware component feature records</td>
</tr>
<tr>
<td>BLGYHFIS</td>
<td>Produces an inquiry type PIDT for configuration hardware component feature records</td>
</tr>
<tr>
<td>BLGYHFLS</td>
<td>Produces an inquiry type PIDT used to list hardware features of a component record</td>
</tr>
<tr>
<td>BLGYHFRS</td>
<td>Produces a retrieve type PIDT for configuration hardware component feature records</td>
</tr>
<tr>
<td>BLGYHFUS</td>
<td>Produces an update type PIDT for configuration hardware component feature records</td>
</tr>
<tr>
<td>BLGYHNCS</td>
<td>Produces a create type PIDT for financial hardware records</td>
</tr>
<tr>
<td>BLGYHNIS</td>
<td>Produces an inquiry type PIDT for financial hardware records</td>
</tr>
<tr>
<td>BLGYHNRS</td>
<td>Produces a retrieve type PIDT for financial hardware records</td>
</tr>
<tr>
<td>BLGYHNUS</td>
<td>Produces an update type PIDT for financial hardware records</td>
</tr>
<tr>
<td>BLGYHSCS</td>
<td>Produces a create type PIDT for configuration hardware subcomponent records</td>
</tr>
<tr>
<td>BLGYHISIS</td>
<td>Produces an inquiry type PIDT for configuration hardware subcomponent records</td>
</tr>
<tr>
<td>BLGYHISRS</td>
<td>Produces a retrieve type PIDT for configuration hardware subcomponent records</td>
</tr>
<tr>
<td>BLGYHSUS</td>
<td>Produces an update type PIDT for configuration hardware subcomponent records</td>
</tr>
<tr>
<td>BLGYHXAS</td>
<td>Produces PIDT to add connection relations to hardware component records</td>
</tr>
<tr>
<td>BLGYHXCS</td>
<td>Produces a create type PIDT for configuration hardware component connection records</td>
</tr>
<tr>
<td>BLGYHXIS</td>
<td>Produces an inquiry type PIDT for configuration hardware component connection records</td>
</tr>
<tr>
<td>BLGYHXLS</td>
<td>Produces an inquiry type PIDT for hardware component-related connection list</td>
</tr>
<tr>
<td>BLGYHXRS</td>
<td>Produces a retrieve type PIDT for configuration hardware component connection records</td>
</tr>
<tr>
<td>BLGYHXUS</td>
<td>Produces an update type PIDT for configuration hardware component connection records</td>
</tr>
</tbody>
</table>
Table 23. Description of Sample Members in SBLMSAMP Library (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGYPRCS</td>
<td>Produces a create type PIDT for problem records</td>
</tr>
<tr>
<td>BLGYPRIS</td>
<td>Produces an inquiry type PIDT for problem records</td>
</tr>
<tr>
<td>BLGYPRRS</td>
<td>Produces a retrieve type PIDT for problem records</td>
</tr>
<tr>
<td>BLGYPRUS</td>
<td>Produces an update type PIDT for problem records</td>
</tr>
<tr>
<td>BLGYSCCS</td>
<td>Produces a create type PIDT for configuration software component records</td>
</tr>
<tr>
<td>BLGYSCIS</td>
<td>Produces an inquiry type PIDT for configuration software component records</td>
</tr>
<tr>
<td>BLGYSCRS</td>
<td>Produces a retrieve type PIDT for configuration software component records</td>
</tr>
<tr>
<td>BLGYSCUS</td>
<td>Produces an update type PIDT for configuration software component records</td>
</tr>
<tr>
<td>BLGYSFAS</td>
<td>Produces PIDT to add feature relations to software component records</td>
</tr>
<tr>
<td>BLGYSFCIS</td>
<td>Produces a create type PIDT for configuration software component feature records</td>
</tr>
<tr>
<td>BLGYSFIS</td>
<td>Produces an inquiry type PIDT for configuration software component feature records</td>
</tr>
<tr>
<td>BLGYSFLS</td>
<td>Produces an inquiry type PIDT used to list software features of a component record</td>
</tr>
<tr>
<td>BLGYSFRS</td>
<td>Produces a retrieve type PIDT for configuration software component feature records</td>
</tr>
<tr>
<td>BLGYSFUS</td>
<td>Produces an update type PIDT for configuration software component feature records</td>
</tr>
<tr>
<td>BLGYSNCS</td>
<td>Produces a create type PIDT for financial software records</td>
</tr>
<tr>
<td>BLGYSNIS</td>
<td>Produces an inquiry type PIDT for financial software records</td>
</tr>
<tr>
<td>BLGYSNRS</td>
<td>Produces a retrieve type PIDT for financial software records</td>
</tr>
<tr>
<td>BLGYSNUS</td>
<td>Produces an update type PIDT for financial software records</td>
</tr>
<tr>
<td>BLGYSVCS</td>
<td>Produces a create type PIDT for service records</td>
</tr>
<tr>
<td>BLGYSVIS</td>
<td>Produces an inquiry type PIDT for service records</td>
</tr>
<tr>
<td>BLGYSVRS</td>
<td>Produces a retrieve type PIDT for service records</td>
</tr>
<tr>
<td>BLGYSVUS</td>
<td>Produces an update type PIDT for service records</td>
</tr>
<tr>
<td>BLGYSXAS</td>
<td>Produces PIDT to add connection relations to software component records</td>
</tr>
<tr>
<td>BLGYSXCS</td>
<td>Produces a create type PIDT for configuration software component connection records</td>
</tr>
<tr>
<td>BLGYSXIS</td>
<td>Produces an inquiry type PIDT for configuration software component connection records</td>
</tr>
<tr>
<td>BLGYSXLS</td>
<td>Produces an inquiry type PIDT used to list software connections for a component</td>
</tr>
<tr>
<td>BLGYSXRS</td>
<td>Produces a retrieve type PIDT for configuration software component connection records</td>
</tr>
<tr>
<td>BLGYSXUS</td>
<td>Produces an update type PIDT for configuration software component connection records</td>
</tr>
<tr>
<td>BLGYSYCS</td>
<td>Produces a create type PIDT for system records</td>
</tr>
<tr>
<td>BLGYSYIS</td>
<td>Produces an inquiry type PIDT for system records</td>
</tr>
<tr>
<td>BLGYSYRS</td>
<td>Produces a retrieve type PIDT for system records</td>
</tr>
<tr>
<td>BLGYSYUS</td>
<td>Produces an update type PIDT for system records</td>
</tr>
<tr>
<td>BLGYVLIS</td>
<td>Produces an retrieve type PIDT for validation records</td>
</tr>
<tr>
<td>BLGYVLRS</td>
<td>Produces an inquiry type PIDT for validation records</td>
</tr>
<tr>
<td>BLG0CMDS</td>
<td>ISPF table containing aliases for all Tivoli Information Management for z/OS commands to be issued using function keys and action bars on enhanced panel style windows.</td>
</tr>
<tr>
<td>BLG0EPSC</td>
<td>GML source for command table</td>
</tr>
<tr>
<td>BLG0EPSK</td>
<td>GML source for keylists</td>
</tr>
<tr>
<td>BLG0KEYS</td>
<td>ISPF table containing INFO context-specific function key definitions</td>
</tr>
<tr>
<td>BLHRCDSJ</td>
<td>JCL to load data model records into the database</td>
</tr>
</tbody>
</table>
Table 23. Description of Sample Members in SBLMSAMP Library (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM@EDIT</td>
<td>Panel used to display field data on the PDF editor panel</td>
</tr>
<tr>
<td>BLMACCPT</td>
<td>Performs SMP/E ACCEPT of Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td>BLMALALC</td>
<td>Allocates target and distribution data sets for all FMIDs</td>
</tr>
<tr>
<td>BLMALDEF</td>
<td>Defines DDDEFs to SMP/E for all FMIDs</td>
</tr>
<tr>
<td>BLMALLOC</td>
<td>Allocates target and distribution data sets</td>
</tr>
<tr>
<td>BLMAPPLY</td>
<td>Performs SMP/E APPLY of Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td>BLMDDDEF</td>
<td>Defines DDDEFS to SMP/E</td>
</tr>
<tr>
<td>BLMESCAL</td>
<td>Runs problem escalation</td>
</tr>
<tr>
<td>BLMHLCJ</td>
<td>JCL to compile, link, and run the 370 HLAPI sample program BLMHLCJ. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMHLCJ</td>
<td>C sample programs for the HLAPI. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMHLCU</td>
<td>C include file that defines HLAPI structures. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMHLPS</td>
<td>PL/I to access Tivoli Information Management for z/OS through the HLAPI. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMHLPS</td>
<td>PL/I to access Tivoli Information Management for z/OS through the HLAPI. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMHLXJ</td>
<td>JCL to run sample REXX/HLAPI interface EXEC HLMHLXS. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMHLXS</td>
<td>REXX sample program for the REXX/HLAPI interface. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMISMKD</td>
<td>Creates installation directories in HFS</td>
</tr>
<tr>
<td>BLMKACPT</td>
<td>JCL used with SMP/E to accept the HLAPI/CICS client</td>
</tr>
<tr>
<td>BLMKALOC</td>
<td>JCL to allocate product data sets for HLAPI/CICS client</td>
</tr>
<tr>
<td>BLMKAPLY</td>
<td>JCL used with SMP/E to apply the HLAPI/CICS client</td>
</tr>
<tr>
<td>BLMKDDEF</td>
<td>JCL to define the DDDEF statements for the HLAPI/CICS client</td>
</tr>
<tr>
<td>BLMLLCS</td>
<td>C sample programs for the LLAPI. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMLLCU</td>
<td>C include file that defines the LLAPI structures. Refer to the Tivoli Information Management for z/OS Application Program Interface Guide.</td>
</tr>
<tr>
<td>BLMMRES</td>
<td>Procedure to start the MRES</td>
</tr>
<tr>
<td>BLMMRESP</td>
<td>Provides parameters to start the MRES</td>
</tr>
<tr>
<td>BLMNINDJ</td>
<td>JCL to run the BLMNINDJ batch job that updates the text search indexes used by OS/390 Text Search.</td>
</tr>
<tr>
<td>BLMNNDDEF</td>
<td>JCL to define the DDDEF statements for the CALLIBs for the NetView Bridge Adapter.</td>
</tr>
<tr>
<td>BLMSAL1</td>
<td>Second part of JCL that performs Automatic Log Save Receive processing</td>
</tr>
<tr>
<td>BLMSARV</td>
<td>First part of JCL that performs Automatic Log Save Receive processing</td>
</tr>
<tr>
<td>BLMSASD</td>
<td>JCL that performs Automatic Log Save Send processing</td>
</tr>
<tr>
<td>BLMSASDA</td>
<td>JCL that performs Automatic Log Save Send processing—automatically submitted after a successful Automatic Log Save Receive</td>
</tr>
<tr>
<td>BLMSASDE</td>
<td>JCL to process an existing Automatic Log Save Send data set</td>
</tr>
<tr>
<td>BLMSDCS</td>
<td>JCL to copy Automatic Log Save Send data set to a generation of a generation data group</td>
</tr>
</tbody>
</table>
Table 23. Description of Sample Members in SBLMSAMP Library (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLMSDSD</td>
<td>JCL to perform DB2 Extract Send processing</td>
</tr>
<tr>
<td>BLMSL1</td>
<td>Partial JCL to load DB2 Extract SQL information into DB2</td>
</tr>
<tr>
<td>BLMSL2</td>
<td>JCL to load DB2 Extract SQL information into DB2 for recovery</td>
</tr>
<tr>
<td>BLMSRCV</td>
<td>Partial JCL to load DB2 Extract information into DB2</td>
</tr>
<tr>
<td>BLMSSND</td>
<td>JCL that processes the DB2 Extract SQL data set</td>
</tr>
<tr>
<td>BLMSTEP2</td>
<td>JCL to compile, link, and bind a new plan for DSNTEP2 for use with the DB2 Extract Facility</td>
</tr>
<tr>
<td>BLMTALOC</td>
<td>JCL to allocate the Tivoli Enterprise Console (TEC) Event Adapter data sets</td>
</tr>
<tr>
<td>BLMTDDEF</td>
<td>JCL to define the DDDEF statements for the TEC Event Adapter</td>
</tr>
<tr>
<td>BLMTECL</td>
<td>Job to link-edit code for the TEC Event Adapter</td>
</tr>
<tr>
<td>BLMTMDIR</td>
<td>JCL to execute the BLMTMKDR EXEC to create directories for the TEC Event Adapter</td>
</tr>
<tr>
<td>BLMTMKDR</td>
<td>Creates the Tivoli Information Management for z/OS TEC Event Adapter hierarchical file system structure for the target libraries</td>
</tr>
<tr>
<td>BLMTSRCJ</td>
<td>JCL to complete customization of the OS/390 Text Search Engine environment for Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td>BLMTSRPJ</td>
<td>JCL to start the text search request processor (TSRP) used with OS/390 Text Search</td>
</tr>
<tr>
<td>BLMTSRPP</td>
<td>Parameters member for the text search request processor</td>
</tr>
<tr>
<td>BLMUALOC</td>
<td>JCL to allocate the HLAPI/USS data sets</td>
</tr>
<tr>
<td>BLMUDDEF</td>
<td>JCL to define the DDDEF statements for the HLAPI/USS client</td>
</tr>
<tr>
<td>BLMUMDIR</td>
<td>JCL to execute the BLMUMKDR EXEC to create the directories for the HLAPI/USS</td>
</tr>
<tr>
<td>BLMUMKDR</td>
<td>Creates the Tivoli Information Management for z/OS HLAPI/USS hierarchical file system structure for the target libraries</td>
</tr>
<tr>
<td>BLMWJCL</td>
<td>JCL to start the web connector server as an MVS batch job</td>
</tr>
<tr>
<td>BLMW.mime</td>
<td>Media type table used with the Web connector</td>
</tr>
<tr>
<td>BLMWPNL</td>
<td>Defines the write panel data set (WPANLDS)</td>
</tr>
<tr>
<td>BLMYKCRE</td>
<td>Sample HLAPI/CICS program (HL08 create record transaction)</td>
</tr>
<tr>
<td>BLMYKCTL</td>
<td>Sample HLAPI/CICS program (start and end logical session)</td>
</tr>
<tr>
<td>BLMYKDEL</td>
<td>Sample HLAPI/CICS program (HL13 delete record transaction)</td>
</tr>
<tr>
<td>BLMYKLINK</td>
<td>Job to link-edit the HLAPI/CICS sample programs</td>
</tr>
<tr>
<td>BLMYKMAP</td>
<td>Maps for the HLAPI/CICS sample program</td>
</tr>
<tr>
<td>BLMYKMNU</td>
<td>Sample HLAPI/CICS program (menu map example)</td>
</tr>
<tr>
<td>BLMYKRTV</td>
<td>Sample HLAPI/CICS program (HL06 retrieve record transaction)</td>
</tr>
<tr>
<td>BLXABMSG</td>
<td>ISPF panel for displaying messages if a user attempts to start Tivoli Information Management for z/OS when the BLX-SP is not running or when the BLX-SPs is restarted</td>
</tr>
<tr>
<td>BLXCFSTR</td>
<td>IXCMIAPU job for coupling facility structures</td>
</tr>
<tr>
<td>BLXPCP</td>
<td>IPCS data and exit definition statements</td>
</tr>
<tr>
<td>BLXRACFT</td>
<td>Sample entry in the RACF started procedures table (ICHRI03) for BLXSR</td>
</tr>
<tr>
<td>BLXRLSCD</td>
<td>Defines RLS share control data sets (IEFBR14 job)</td>
</tr>
<tr>
<td>BLXSR</td>
<td>BLX-SP procedure for sharing data sets</td>
</tr>
<tr>
<td>BLXTAAPM</td>
<td>Sample NetView automation table entry for INFOMGMT APM instrumentation</td>
</tr>
<tr>
<td>BLXVDEF</td>
<td>Defines a VSAM resource definition member to the BLX-SP. See Figure 31 on page 312</td>
</tr>
</tbody>
</table>
Table 23. Description of Sample Members in SBLMSAMP Library (continued)

<table>
<thead>
<tr>
<th>Member Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLX1PROC</td>
<td>Procedure to start the BLX-SP</td>
</tr>
<tr>
<td>BLX1SH</td>
<td>BLX-SP parameters member for sharing data sets</td>
</tr>
<tr>
<td>BLX100</td>
<td>BLX-SP parameters member; it contains BLX-SP operating parameters. See Figure 34 on page 350.</td>
</tr>
<tr>
<td>BTN@ISP</td>
<td>Selection menu screen</td>
</tr>
<tr>
<td>BTNAMS</td>
<td>Starts SAM problem entry</td>
</tr>
<tr>
<td>BTNAMSRP</td>
<td>Creates and prints RMF/SAM reports</td>
</tr>
<tr>
<td>BTN BATCH</td>
<td>Establishes libraries needed for batch interface to Integration Facility</td>
</tr>
<tr>
<td>BTNCNMBD</td>
<td>Integration Facility record access for NPDA</td>
</tr>
<tr>
<td>BTNCNMSU</td>
<td>Updates NPDA records</td>
</tr>
<tr>
<td>BTNCNMTS</td>
<td>Updates NPDA records</td>
</tr>
<tr>
<td>BTNIIIF</td>
<td>Allocates files required by ISPF, PDF, and systems management program</td>
</tr>
<tr>
<td>BTNISPH0</td>
<td>Integration Facility tutorial screen</td>
</tr>
<tr>
<td>BTNMDATE</td>
<td>Converts dates to user format</td>
</tr>
<tr>
<td>BTN NPDA</td>
<td>Starts NPDA alert processing</td>
</tr>
<tr>
<td>BTNNPDPPF</td>
<td>Profiles in description field</td>
</tr>
<tr>
<td>BTNOPCPF</td>
<td>Profiles in description field</td>
</tr>
<tr>
<td>BTN SAM</td>
<td>SAM record update</td>
</tr>
<tr>
<td>BTN SAM MBD</td>
<td>Integration Facility record access for SAM</td>
</tr>
<tr>
<td>BTN SAM MH0</td>
<td>SAM tutorial screen</td>
</tr>
<tr>
<td>BTNSAM</td>
<td>RMF and SAM selection panel</td>
</tr>
<tr>
<td>BTNSAMP</td>
<td>Profiles in description field</td>
</tr>
<tr>
<td>BTN SDATE</td>
<td>Converts dates from user format</td>
</tr>
<tr>
<td>BTNSL RC</td>
<td>Report of closed changes</td>
</tr>
<tr>
<td>BTNSLR CP</td>
<td>Report of closed problems</td>
</tr>
<tr>
<td>BTNSL J1</td>
<td>Report of closed problems</td>
</tr>
<tr>
<td>BTNSL J2</td>
<td>Report of closed problems</td>
</tr>
<tr>
<td>BTNSL RPF</td>
<td>Profiles in description field</td>
</tr>
<tr>
<td>BTN T SDATE</td>
<td>Tests date-conversion interface routine</td>
</tr>
<tr>
<td>BTN TOAMS</td>
<td>Produces SAM reports</td>
</tr>
<tr>
<td>BTN U DATE</td>
<td>Converts a date format to a different format</td>
</tr>
<tr>
<td>BTNX J6 JOB</td>
<td>Creates problem record using Integration Facility</td>
</tr>
<tr>
<td>BTNX J7 JOB</td>
<td>Builds command list (CLIST) when batch job ends in error</td>
</tr>
<tr>
<td>EYL ALIAS</td>
<td>Produces an ALIAS table for the HLAPI</td>
</tr>
<tr>
<td>EYL SJ002</td>
<td>Allocates the input and output data set for use by the NetView Bridge Adapter</td>
</tr>
<tr>
<td>EYMPOST</td>
<td>Starts the NetView AutoBridge PostProcessor</td>
</tr>
</tbody>
</table>
New, Changed, and Removed Panels

This appendix contains lists of new, changed, and deleted panels. Panels added or changed because of authorized program analysis reports (APARs) are included. However, these lists do not include help or message panels for versions prior to Information/Management Version 6.3. The new, changed, and removed panels for Tivoli Information Management for z/OS Version 7.1 are also listed in member BLGPANEL of the SBLMSAMP library.

These panels are grouped according to version number, as follows:

- Panels that are new for Tivoli Information Management for z/OS Version 7.1
- Panels that are changed for Tivoli Information Management for z/OS Version 7.1
- Panels that were removed for Tivoli Information Management for z/OS Version 7.1
- Panels that are new for Tivoli Service Desk for OS/390 Version 1.2
- Panels that are changed for Tivoli Service Desk for OS/390 Version 1.2
- Panels that were removed for Tivoli Service Desk for OS/390 Version 1.2
- Panels that are new for TME 10 Information/Management Version 1.1
- Panels that are changed for TME 10 Information/Management Version 1.1
- Panels that were removed for TME 10 Information/Management Version 1.1
- Panels that are new for Information/Management Version 6.3
- Panels that changed in Information/Management Version 6.3
- Panels that were removed in Information/Management Version 6.3
- Panels that are new for Information/Management Version 6.2
- Panels that changed in Information/Management Version 6.2
- Panels that were removed in Information/Management Version 6.2
- Panels that are new for Information/Management Version 6.1
- Panels that changed in Information/Management Version 6.1
- Panels that were removed in Information/Management Version 6.1

Refer to the Tivoli Information Management for z/OS Terminal Simulator Guide and Reference and the Tivoli Information Management for z/OS Panel Modification Facility Guide for details about panels.

New Panels – Tivoli Information Management for z/OS Version 7.1

<table>
<thead>
<tr>
<th>BLGESCI4</th>
<th>BLG1AELE</th>
<th>BLG6TBAL</th>
<th>BLH1N003</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGESCI6</td>
<td>BLG1AELEU</td>
<td>BLG6TBLD</td>
<td>BLH1N004</td>
</tr>
<tr>
<td>BLGLAPST</td>
<td>BLG1APST</td>
<td>BLG6TBLP</td>
<td>BLH1N008</td>
</tr>
<tr>
<td>BLGLAPVR</td>
<td>BLG1ARED</td>
<td>BLG6TBNM</td>
<td>BLH1N009</td>
</tr>
<tr>
<td>BLGLDSSD</td>
<td>BLG1AREU</td>
<td>BLG6TBSI</td>
<td>BLH1N010</td>
</tr>
<tr>
<td>BLGLDSTS</td>
<td>BLG1ASTS</td>
<td>BLG6TBSW</td>
<td>BLH1N011</td>
</tr>
<tr>
<td>BLGLDTMD</td>
<td>BLG1ATSA</td>
<td>BLG6URN5</td>
<td>BLH1N012</td>
</tr>
<tr>
<td>BLGLDTTM</td>
<td>BLG1AZDF</td>
<td>BLG6UTZN</td>
<td>BLH1N013</td>
</tr>
<tr>
<td>BLGLJ300</td>
<td>BLG1A11B</td>
<td>BLHLNTXT</td>
<td>BLH1N019</td>
</tr>
<tr>
<td>BLGLQ300</td>
<td>BLG1C015</td>
<td>BLHLX0BC</td>
<td>BLH1N020</td>
</tr>
<tr>
<td>BLGLREV</td>
<td>BLG1R0LE</td>
<td>BLHLX0CC</td>
<td>BLH1N040</td>
</tr>
<tr>
<td>BLGLRE</td>
<td>BLG1TDEH</td>
<td>BLHLX0TO</td>
<td>BLH1S000</td>
</tr>
</tbody>
</table>
Changed Panels – Tivoli Information Management for z/OS Version 7.1

<table>
<thead>
<tr>
<th>BLGESC04</th>
<th>BLG06183</th>
<th>BLG0V600</th>
<th>BLM2CUA0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGESC06</td>
<td>BLG06184</td>
<td>BLG0V610</td>
<td>BLM2CU00</td>
</tr>
<tr>
<td>BLG0DATT</td>
<td>BLG06190</td>
<td>BLG0V700</td>
<td>BLM2C000</td>
</tr>
<tr>
<td>BLGLTBDD</td>
<td>BLG06191</td>
<td>BLG0V710</td>
<td>BLM2C030</td>
</tr>
<tr>
<td>BLGLTDK</td>
<td>BLG06192</td>
<td>BLG0V720</td>
<td>BLM2FD17</td>
</tr>
<tr>
<td>BLGLTDL</td>
<td>BLG06193</td>
<td>BLG0V730</td>
<td>BLM2FD32</td>
</tr>
<tr>
<td>BLGLTSDK</td>
<td>BLG06290</td>
<td>BLG0W200</td>
<td>BLM2FD37</td>
</tr>
<tr>
<td>BLGLTSDK</td>
<td>BLG06293</td>
<td>BLG0W210</td>
<td>BLM2FD45</td>
</tr>
<tr>
<td>BLGLTSDL</td>
<td>BLG06337</td>
<td>BLG0W250</td>
<td>BLM2FD46</td>
</tr>
<tr>
<td>BLG0M0G1</td>
<td>BLG06338</td>
<td>BLG0W500</td>
<td>BLM2FD48</td>
</tr>
<tr>
<td>BLG0TPSET</td>
<td>BLG06357</td>
<td>BLG0WS10</td>
<td>BLM2FD77</td>
</tr>
<tr>
<td>BLG0TPAE</td>
<td>BLG06358</td>
<td>BLG0X100</td>
<td>BLM2FD99</td>
</tr>
<tr>
<td>BLG0TPAU</td>
<td>BLG06359</td>
<td>BLG0Y200</td>
<td>BLM2FD94</td>
</tr>
<tr>
<td>BLG0TPCE</td>
<td>BLG06390</td>
<td>BLG0Y300</td>
<td>BLM2FD94</td>
</tr>
<tr>
<td>BLG0TPCU</td>
<td>BLG06391</td>
<td>BLG0ZD50</td>
<td>BLM2FD99</td>
</tr>
<tr>
<td>BLG0TPPE</td>
<td>BLG06392</td>
<td>BLG0ZD51</td>
<td>BLM2PC01</td>
</tr>
<tr>
<td>BLG0TPPU</td>
<td>BLG06490</td>
<td>BLG0ZU00</td>
<td>BLM2PC02</td>
</tr>
<tr>
<td>BLG0AEE0</td>
<td>BLG06493</td>
<td>BLG0ZU50</td>
<td>BLM2PC1B</td>
</tr>
<tr>
<td>BLG0AC01</td>
<td>BLG06590</td>
<td>BLG0Z100</td>
<td>BLM2PC1D</td>
</tr>
<tr>
<td>BLG0AC04</td>
<td>BLG06593</td>
<td>BLG0Z500</td>
<td>BLM2PC1G</td>
</tr>
<tr>
<td>BLG0AC09</td>
<td>BLG06727</td>
<td>BLG0Z510</td>
<td>BLM2PC1H</td>
</tr>
<tr>
<td>BLG0AC22</td>
<td>BLG06728</td>
<td>BLG0Z530</td>
<td>BLM2PC10</td>
</tr>
<tr>
<td>BLG0AC23</td>
<td>BLG06737</td>
<td>BLG00000</td>
<td>BLM2PC19</td>
</tr>
<tr>
<td>BLG0AC27</td>
<td>BLG06738</td>
<td>BLG00001</td>
<td>BLM2PS05</td>
</tr>
<tr>
<td>BLG0AC31</td>
<td>BLG06739</td>
<td>BLG00002</td>
<td>BLM2PT09</td>
</tr>
<tr>
<td>BLG0AC44</td>
<td>BLG06742</td>
<td>BLG00010</td>
<td>BLM2PD02</td>
</tr>
<tr>
<td>BLG0AC45</td>
<td>BLG06747</td>
<td>BLG00011</td>
<td>BLM2PD05</td>
</tr>
<tr>
<td>BLG0BU00</td>
<td>BLG06748</td>
<td>BLG00020</td>
<td>BLM2YE00</td>
</tr>
<tr>
<td>BLG0BU10</td>
<td>BLG06749</td>
<td>BLG1AACP</td>
<td>BLM2YE50</td>
</tr>
<tr>
<td>BLG0BU11</td>
<td>BLG06751</td>
<td>BLG1AACP</td>
<td>BLM2Y250</td>
</tr>
<tr>
<td>BLG0BU90</td>
<td>BLG06770</td>
<td>BLG1AAUP</td>
<td>BLM2Y750</td>
</tr>
</tbody>
</table>

New Panels – Tivoli Information Management for z/OS Version 2.1

- Changed Panels – Tivoli Information Management for z/OS Version 7.1
- New Panels – Tivoli Information Management for z/OS Version 2.1

370
Version 7.1
Changed Panels – Tivoli Information Management for z/OS Version 2.1
BLG0B100
BLG0B200
BLG0B300
BLG0B400
BLG0B402
BLG0B500
BLG0B502
BLG0B901
BLG0B902
BLG0B903
BLG0CU00
BLG0CU01
BLG0CU10
BLG0CU11
BLG0CU21
BLG0CU30
BLG0CU31
BLG0C051
BLG0C052
BLG0C053
BLG0C054
BLG0C055
BLG0C056
BLG0C061
BLG0C062
BLG0C063
BLG0C064
BLG0C065
BLG0C066
BLG0C071
BLG0C072
BLG0C073
BLG0C100
BLG0C151
BLG0C152
BLG0C153
BLG0C154
BLG0C155
BLG0C156
BLG0C161
BLG0C162
BLG0C163
BLG0C164
BLG0C165
BLG0C166
BLG0C171
BLG0C172
BLG0C173
BLG0C200
BLG0C300
BLG0C500
BLG0C600
BLG0C620
BLG0C630
BLG0C700
BLG0C800
BLG0DFSM
BLG0DU01
BLG0DU02
BLG0DU03
BLG0DU04
BLG0DU05
BLG0DU06
BLG0DU07
BLG0DU08
BLG0DU09
BLG0DU10

BLG0G771
BLG0G772
BLG0G780
BLG0G781
BLG0G782
BLG0G787
BLG0G788
BLG0G790
BLG0G791
BLG0G792
BLG0G890
BLG0HU10
BLG0HU11
BLG0H000
BLG0IU00
BLG010E0
BLG0I100
BLG0I200
BLG0JU00
BLG0JU10
BLG0JU11
BLG0J100
BLG0J200
BLG0J210
BLG0J220
BLG0J230
BLG0J240
BLG0J250
BLG0J260
BLG0J270
BLG0J280
BLG0J290
BLG0J295
BLG0J300
BLG0K190
BLG0K291
BLG0K292
BLG0K293
BLG0L100
BLG0L200
BLG0L300
BLG0L400
BLG0L500
BLG0L600
BLG0L700
BLG0L901
BLG0L902
BLG0L903
BLG0M100
BLG0M200
BLG0M300
BLG0M500
BLG0M600
BLG0M620
BLG0M630
BLG0M700
BLG0M800
BLG0N100
BLG0N101
BLG0N105
BLG0N110
BLG0N113
BLG0N120
BLG0N121
BLG0N122
BLG0N130
BLG0N132

Planning and Installation Guide and Reference

BLG1ACOP
BLG1AF68
BLG1ARVC
BLG1A000
BLG1A001
BLG1A097
BLG1A1DD
BLG1A1G1
BLG1A1G2
BLG1A1G5
BLG1A100
BLG1A121
BLG1A504
BLG1A511
BLG1A604
BLG1A704
BLG1A711
BLG1TADD
BLG1TBAC
BLG1TBAT
BLG1TDAD
BLG1TDBA
BLG1TDDE
BLG1TDES
BLG1TDJU
BLG1TDNO
BLG1TDSR
BLG1TDST
BLG1TJUS
BLG1TNOT
BLG1TRES
BLG1TSLX
BLG1TSLY
BLG1TSTA
BLG1TSTT
BLG1UT01
BLG1UT02
BLG1UT07
BLG1UT20
BLG1UT31
BLG1UT32
BLG2ALIS
BLG2CMND
BLG2EN10
BLG2EN20
BLG2FGFD
BLG2FGFL
BLG2FGID
BLG2FGIN
BLG2G115
BLG2G125
BLG2G126
BLG2G130
BLG2G135
BLG2G145
BLG2G155
BLG2G160
BLG2G165
BLG2G175
BLG2G180
BLG2G185
BLG2G195
BLG2G315
BLG2G335
BLG2G355
BLG2G400
BLG2G500

BLM2Y770
BLM2Y780
BLM2ZIMN
BLM6ALDA
BLM6CRTA
BLM6FATA
BLM6INTA
BLM6NPNL
BLM6PANA
BLM6PARA
BLM6PLMD
BLM6PREX
BLM6TRTA
BLM6VENA
BLM6Y00E
BLM6Y007
BLM8CCA0
BLM8CC00
BLM8CC10
BLM8CD00
BLM8CF00
BLM8CF10
BLM8CL10
BLM8CL20
BLM8CL30
BLM8CL50
BLM8CL60
BLM8CT00
BLM8CU00
BLM8CU1A
BLM8CU1B
BLM8CU1E
BLM8CU1H
BLM8CU11
BLM8CU12
BLM8CU13
BLM8CU17
BLM8CU2A
BLM8CU2B
BLM8CU2E
BLM8CU2H
BLM8CU21
BLM8CU22
BLM8CU23
BLM8CU27
BLM8CU31
BLM8CU37
BLM8CU43
BLM8CU47
BLM8CU5A
BLM8CU5B
BLM8CU5D
BLM8CU5E
BLM8CU5I
BLM8CU51
BLM8CU53
BLM8CU55
BLM8CU57
BLM8CU6A
BLM8CU6B
BLM8CU61
BLM8CU63
BLM8CU64
BLM8CU67
BLM8CU7A
BLM8CU7B
BLM8CU7E

J. New, Changed, and
Removed Panels

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

371


Changed Panels – Tivoli Information Management for z/OS Version 2.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG0DU11</td>
<td>BLG0DU133</td>
<td>BLG2G710</td>
<td>BLM8CU7H</td>
</tr>
<tr>
<td>BLG0DU12</td>
<td>BLG0DU134</td>
<td>BLG2G725</td>
<td>BLM8CU71</td>
</tr>
<tr>
<td>BLG0DU13</td>
<td>BLG0DU140</td>
<td>BLG2G730</td>
<td>BLM8CU72</td>
</tr>
<tr>
<td>BLG0DU14</td>
<td>BLG0DU141</td>
<td>BLG2G735</td>
<td>BLM8CU73</td>
</tr>
<tr>
<td>BLG0DU15</td>
<td>BLG0DU142</td>
<td>BLG2G740</td>
<td>BLM8CU76</td>
</tr>
<tr>
<td>BLG0DU16</td>
<td>BLG0DU150</td>
<td>BLG2G745</td>
<td>BLM8CU77</td>
</tr>
<tr>
<td>BLG0DU17</td>
<td>BLG0DU151</td>
<td>BLG2G750</td>
<td>BLM8CU78</td>
</tr>
<tr>
<td>BLG0DU18</td>
<td>BLG0DU153</td>
<td>BLG2G775</td>
<td>BLM8CU79</td>
</tr>
<tr>
<td>BLG0DU19</td>
<td>BLG0DU154</td>
<td>BLG2G785</td>
<td>BLM8CU8A</td>
</tr>
<tr>
<td>BLG0DU20</td>
<td>BLG0DU157</td>
<td>BLG2G795</td>
<td>BLM8CU8B</td>
</tr>
<tr>
<td>BLG0DU21</td>
<td>BLG0DU160</td>
<td>BLG2G850</td>
<td>BLM8CU81</td>
</tr>
<tr>
<td>BLG0DU22</td>
<td>BLG0DU164</td>
<td>BLG2JU00</td>
<td>BLM8CU83</td>
</tr>
<tr>
<td>BLG0DU23</td>
<td>BLG0DU170</td>
<td>BLG2L700</td>
<td>BLM8CU85</td>
</tr>
<tr>
<td>BLG0DU24</td>
<td>BLG0DU172</td>
<td>BLG2PU00</td>
<td>BLM8CU87</td>
</tr>
<tr>
<td>BLG0DU25</td>
<td>BLG0DU200</td>
<td>BLG2Q100</td>
<td>BLM8CU88</td>
</tr>
<tr>
<td>BLG0DU26</td>
<td>BLG0DU201</td>
<td>BLG2THLP</td>
<td>BLM8CU9A</td>
</tr>
<tr>
<td>BLG0DU27</td>
<td>BLG0DU205</td>
<td>BLG2TPRL</td>
<td>BLM8CU9B</td>
</tr>
<tr>
<td>BLG0DU28</td>
<td>BLG0DU210</td>
<td>BLG2TSFD</td>
<td>BLM8CU9C</td>
</tr>
<tr>
<td>BLG0DU29</td>
<td>BLG0DU220</td>
<td>BLG2TSFL</td>
<td>BLM8CU9D</td>
</tr>
<tr>
<td>BLG0DU30</td>
<td>BLG0DU221</td>
<td>BLG2TSID</td>
<td>BLM8CU9E</td>
</tr>
<tr>
<td>BLG0DU31</td>
<td>BLG0DU222</td>
<td>BLG2TSSN</td>
<td>BLM8CU9F</td>
</tr>
<tr>
<td>BLG0DU32</td>
<td>BLG0DU230</td>
<td>BLG2TSTA</td>
<td>BLM8CU9G</td>
</tr>
<tr>
<td>BLG0DU33</td>
<td>BLG0DU231</td>
<td>BLG2TVID</td>
<td>BLM8CU9H</td>
</tr>
<tr>
<td>BLG0DU34</td>
<td>BLG0DU232</td>
<td>BLG2V0Q0</td>
<td>BLM8CU9I</td>
</tr>
<tr>
<td>BLG0DU35</td>
<td>BLG0DU250</td>
<td>BLG2V0Q0</td>
<td>BLM8CU9J</td>
</tr>
<tr>
<td>BLG0DU36</td>
<td>BLG0DU251</td>
<td>BLG2Q0Q0</td>
<td>BLM8CU9K</td>
</tr>
<tr>
<td>BLG0DU37</td>
<td>BLG0DU253</td>
<td>BLG2W500</td>
<td>BLM8CU9L</td>
</tr>
<tr>
<td>BLG0DU38</td>
<td>BLG0DU254</td>
<td>BLG2ZCLA</td>
<td>BLM8CU9M</td>
</tr>
<tr>
<td>BLG0DU39</td>
<td>BLG0DU257</td>
<td>BLG2ZCMD</td>
<td>BLM8CU9N</td>
</tr>
<tr>
<td>BLG0DU40</td>
<td>BLG0DU300</td>
<td>BLG2ZDAT</td>
<td>BLM8CU9P</td>
</tr>
<tr>
<td>BLG0DU42</td>
<td>BLG0DU301</td>
<td>BLG2Z051</td>
<td>BLM8CU9Q</td>
</tr>
<tr>
<td>BLG0DU43</td>
<td>BLG0DU305</td>
<td>BLG2ZGEN</td>
<td>BLM8CU9R</td>
</tr>
<tr>
<td>BLG0DU44</td>
<td>BLG0DU306</td>
<td>BLG2ZMSG</td>
<td>BLM8CU9S</td>
</tr>
<tr>
<td>BLG0DU45</td>
<td>BLG0DU307</td>
<td>BLG2ZOSV</td>
<td>BLM8CU9T</td>
</tr>
<tr>
<td>BLG0DU46</td>
<td>BLG0DU310</td>
<td>BLG2ZPAN</td>
<td>BLM8CU9U</td>
</tr>
<tr>
<td>BLG0DU47</td>
<td>BLG0DU320</td>
<td>BLG2ZPRO</td>
<td>BLM8CU9V</td>
</tr>
<tr>
<td>BLG0DU48</td>
<td>BLG0DU350</td>
<td>BLG2ZREP</td>
<td>BLM8CU9W</td>
</tr>
<tr>
<td>BLG0DU49</td>
<td>BLG0DU352</td>
<td>BLG2ZSRN</td>
<td>BLM8CU9X</td>
</tr>
<tr>
<td>BLG0DU50</td>
<td>BLG0DU353</td>
<td>BLG2Z500</td>
<td>BLM8CU9Y</td>
</tr>
<tr>
<td>BLG0DU51</td>
<td>BLG0DU355</td>
<td>BLG20002</td>
<td>BLM8CU9Z</td>
</tr>
<tr>
<td>BLG0DU52</td>
<td>BLG0DU357</td>
<td>BLG6ALTD</td>
<td>BLM8CU91</td>
</tr>
<tr>
<td>BLG0DU53</td>
<td>BLG0DU360</td>
<td>BLG6ASSD</td>
<td>BLM8CU92</td>
</tr>
<tr>
<td>BLG0DU54</td>
<td>BLG0DU400</td>
<td>BLG6ATSN</td>
<td>BLM8BU00</td>
</tr>
<tr>
<td>BLG0DU55</td>
<td>BLG0DU410</td>
<td>BLG6CDFR</td>
<td>BLM8BU10</td>
</tr>
<tr>
<td>BLG0DU56</td>
<td>BLG0DU500</td>
<td>BLG6CDTO</td>
<td>BTN0BU11</td>
</tr>
<tr>
<td>BLG0DU57</td>
<td>BLG0DU510</td>
<td>BLG6CLUS</td>
<td>BTN0BU100</td>
</tr>
<tr>
<td>BLG0DU58</td>
<td>BLG0DU600</td>
<td>BLG6CMPP</td>
<td>BTN0BU101</td>
</tr>
<tr>
<td>BLG0DU59</td>
<td>BLG0DU610</td>
<td>BLG6CPU</td>
<td>BTN0BU102</td>
</tr>
<tr>
<td>BLG0DU60</td>
<td>BLG0DU700</td>
<td>BLG6CRDT</td>
<td>BTN0BU200</td>
</tr>
<tr>
<td>BLG0DU61</td>
<td>BLG0DU701</td>
<td>BLG6CRTA</td>
<td>BTN0BU300</td>
</tr>
<tr>
<td>BLG0DU62</td>
<td>BLG0DU710</td>
<td>BLG6DABA</td>
<td>BTN0BU500</td>
</tr>
<tr>
<td>BLG0DU63</td>
<td>BLG0DU720</td>
<td>BLG6DARX</td>
<td>BTN0CETX</td>
</tr>
<tr>
<td>BLG0DU64</td>
<td>BLG0DU721</td>
<td>BLG6DATX</td>
<td>BTN0CU00</td>
</tr>
<tr>
<td>BLG0DU65</td>
<td>BLG0DU722</td>
<td>BLG6DONOT</td>
<td>BTN0CU01</td>
</tr>
<tr>
<td>BLG0DU66</td>
<td>BLG0DU740</td>
<td>BLG6DSTA</td>
<td>BTN0CU100</td>
</tr>
<tr>
<td>BLG0DU67</td>
<td>BLG0DU741</td>
<td>BLG6H8SR</td>
<td>BTN0CU101</td>
</tr>
<tr>
<td>BLG0DU68</td>
<td>BLG0DU742</td>
<td>BLG6HRFH</td>
<td>BTN0CU200</td>
</tr>
<tr>
<td>BLG0DU69</td>
<td>BLG0DU750</td>
<td>BLG6INSID</td>
<td>BTN0CU300</td>
</tr>
<tr>
<td>BLG0DU70</td>
<td>BLG0DU751</td>
<td>BLG6INTA</td>
<td>BTN0DU001</td>
</tr>
<tr>
<td>BLG0DU71</td>
<td>BLG0DU753</td>
<td>BLG6ISPF</td>
<td>BTN0DU003</td>
</tr>
<tr>
<td>BLG0DU72</td>
<td>BLG0DU754</td>
<td>BLG6TYP</td>
<td>BTN0DU008</td>
</tr>
<tr>
<td>BLG0DU73</td>
<td>BLG0DU757</td>
<td>BLG6JEX</td>
<td>BTN0DU1018</td>
</tr>
<tr>
<td>BLG0DU74</td>
<td>BLG0DU758</td>
<td>BLG6LOFI</td>
<td>BTN0DU2018</td>
</tr>
<tr>
<td>BLG0DU75</td>
<td>BLG0DU759</td>
<td>BLG6CCD</td>
<td>BTN0DU3010</td>
</tr>
<tr>
<td>BLG0DU76</td>
<td>BLG0DU760</td>
<td>BLG6PREX</td>
<td>BTN0DU3031</td>
</tr>
<tr>
<td>BLG0DU100</td>
<td>BLG0DU764</td>
<td>BLG6PURD</td>
<td>BTN0DU1000</td>
</tr>
<tr>
<td>BLG0DU102</td>
<td>BLG0DU770</td>
<td>BLG6PU01</td>
<td>BTN0DU102</td>
</tr>
<tr>
<td>BLG0D105</td>
<td>BLG0N772</td>
<td>BLG6REQD</td>
<td>BTN0D200</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>BLG0D107</td>
<td>BLG0N780</td>
<td>BLG6SCHD</td>
<td>BTN0D500</td>
</tr>
<tr>
<td>BLG0D113</td>
<td>BLG0N781</td>
<td>BLG6TARD</td>
<td>BTN0ENCQ</td>
</tr>
<tr>
<td>BLG0D120</td>
<td>BLG0N782</td>
<td>BLG6TBAT</td>
<td>BTN0ENCX</td>
</tr>
<tr>
<td>BLG0D140</td>
<td>BLG0N784</td>
<td>BLG6TSTA</td>
<td>BTN0ENNO</td>
</tr>
<tr>
<td>BLG0D150</td>
<td>BLG0N787</td>
<td>BLG6URN3</td>
<td>BTN0ENCS</td>
</tr>
<tr>
<td>BLG0D151</td>
<td>BLG0N790</td>
<td>BLG6VPAD</td>
<td>BTN0ENPC</td>
</tr>
<tr>
<td>BLG0D152</td>
<td>BLG0N791</td>
<td>BLG600CD</td>
<td>BTN0ENSU</td>
</tr>
<tr>
<td>BLG0D153</td>
<td>BLG0N792</td>
<td>BLG600WIN</td>
<td>BTN0ENSY</td>
</tr>
<tr>
<td>BLG0D154</td>
<td>BLG0P100</td>
<td>BLG8RWIN</td>
<td>BTN0EN20</td>
</tr>
<tr>
<td>BLG0D157</td>
<td>BLG0P101</td>
<td>BLH0I000</td>
<td>BTN0E000</td>
</tr>
<tr>
<td>BLG0D160</td>
<td>BLG0P102</td>
<td>BLH0I001</td>
<td>BTN0E090</td>
</tr>
<tr>
<td>BLG0D164</td>
<td>BLG0P300</td>
<td>BLH0I002</td>
<td>BTN0E190</td>
</tr>
<tr>
<td>BLG0D172</td>
<td>BLG0P410</td>
<td>BLH0I004</td>
<td>BTN0E290</td>
</tr>
<tr>
<td>BLG0D200</td>
<td>BLG0P420</td>
<td>BLH0I010</td>
<td>BTN0E890</td>
</tr>
<tr>
<td>BLG0D204</td>
<td>BLG0P430</td>
<td>BLH0I011</td>
<td>BTN0E990</td>
</tr>
<tr>
<td>BLG0D205</td>
<td>BLG0P510</td>
<td>BLH0I012</td>
<td>BTN0F000</td>
</tr>
<tr>
<td>BLG0D230</td>
<td>BLG0P520</td>
<td>BLH0I022</td>
<td>BTN0F190</td>
</tr>
<tr>
<td>BLG0D250</td>
<td>BLG0P521</td>
<td>BLH0I023</td>
<td>BTN0F290</td>
</tr>
<tr>
<td>BLG0D251</td>
<td>BLG0P530</td>
<td>BLH0I024</td>
<td>BTN0F390</td>
</tr>
<tr>
<td>BLG0D253</td>
<td>BLG0P531</td>
<td>BLH0I120</td>
<td>BTN0G000</td>
</tr>
<tr>
<td>BLG0D254</td>
<td>BLG0P700</td>
<td>BLH0I121</td>
<td>BTN0G1A1</td>
</tr>
<tr>
<td>BLG0D257</td>
<td>BLG0P810</td>
<td>BLH0I122</td>
<td>BTN0G1A3</td>
</tr>
<tr>
<td>BLG0D300</td>
<td>BLG0P811</td>
<td>BLH0I132</td>
<td>BTN0G190</td>
</tr>
<tr>
<td>BLG0D302</td>
<td>BLG0P820</td>
<td>BLH0I141</td>
<td>BTN0G191</td>
</tr>
<tr>
<td>BLG0D305</td>
<td>BLG0P821</td>
<td>BLH0I122A</td>
<td>BTN0H000</td>
</tr>
<tr>
<td>BLG0D306</td>
<td>BLG0P830</td>
<td>BLH0I122B</td>
<td>BTN0J000</td>
</tr>
<tr>
<td>BLG0D307</td>
<td>BLG0P831</td>
<td>BLH0I122C</td>
<td>BTN0J200</td>
</tr>
<tr>
<td>BLG0D353</td>
<td>BLG0Q100</td>
<td>BLH0I123</td>
<td>BTN0J300</td>
</tr>
<tr>
<td>BLG0D355</td>
<td>BLG0Q200</td>
<td>BLH0I124</td>
<td>BTN0L100</td>
</tr>
<tr>
<td>BLG0D356</td>
<td>BLG0Q210</td>
<td>BLH0I125</td>
<td>BTN0L200</td>
</tr>
<tr>
<td>BLG0D357</td>
<td>BLG0Q213</td>
<td>BLH0I126</td>
<td>BTN0L300</td>
</tr>
<tr>
<td>BLG0D400</td>
<td>BLG0Q214</td>
<td>BLH0I127</td>
<td>BTN0L500</td>
</tr>
<tr>
<td>BLG0D500</td>
<td>BLG0Q215</td>
<td>BLH0I128</td>
<td>BTN0M010</td>
</tr>
<tr>
<td>BLG0D600</td>
<td>BLG0Q216</td>
<td>BLH0I129</td>
<td>BTN0M100</td>
</tr>
<tr>
<td>BLG0D700</td>
<td>BLG0Q220</td>
<td>BLH0I130</td>
<td>BTN0M200</td>
</tr>
<tr>
<td>BLG0D703</td>
<td>BLG0Q230</td>
<td>BLH0I131</td>
<td>BTN0M300</td>
</tr>
<tr>
<td>BLG0D720</td>
<td>BLG0Q240</td>
<td>BLH0I132</td>
<td>BTN0N101</td>
</tr>
<tr>
<td>BLG0D740</td>
<td>BLG0Q250</td>
<td>BLH0I133</td>
<td>BTN0N134</td>
</tr>
<tr>
<td>BLG0D750</td>
<td>BLG0Q260</td>
<td>BLH0I134</td>
<td>BTN0N200</td>
</tr>
<tr>
<td>BLG0D751</td>
<td>BLG0Q270</td>
<td>BLH0I135</td>
<td>BTN0N201</td>
</tr>
<tr>
<td>BLG0D752</td>
<td>BLG0Q280</td>
<td>BLH0I136</td>
<td>BTN0N500</td>
</tr>
<tr>
<td>BLG0D753</td>
<td>BLG0Q290</td>
<td>BLH0I137</td>
<td>BTN0N510</td>
</tr>
<tr>
<td>BLG0D754</td>
<td>BLG0Q300</td>
<td>BLH0I138</td>
<td>BTN0N510</td>
</tr>
<tr>
<td>BLG0D757</td>
<td>BLG0R000</td>
<td>BLH0I139</td>
<td>BTN0Q100</td>
</tr>
<tr>
<td>BLG0D758</td>
<td>BLG0R010</td>
<td>BLH0I140</td>
<td>BTN0Q200</td>
</tr>
<tr>
<td>BLG0D759</td>
<td>BLG0R011</td>
<td>BLH0I141</td>
<td>BTN0Q300</td>
</tr>
<tr>
<td>BLG0D760</td>
<td>BLG0R020</td>
<td>BLH0I142</td>
<td>BTN0S010</td>
</tr>
<tr>
<td>BLG0D764</td>
<td>BLG0R030</td>
<td>BLH0I143</td>
<td>BTN0S020</td>
</tr>
<tr>
<td>BLG0D770</td>
<td>BLG0R040</td>
<td>BLH0I144</td>
<td>BTN0S021</td>
</tr>
<tr>
<td>BLG0D772</td>
<td>BLG0R050</td>
<td>BLH0I145</td>
<td>BTN0W020</td>
</tr>
<tr>
<td>BLG0D780</td>
<td>BLG0R060</td>
<td>BLH0I146</td>
<td>BTN0XAUT</td>
</tr>
<tr>
<td>BLG0D783</td>
<td>BLG0R070</td>
<td>BLH0I147</td>
<td>BTN0XDES</td>
</tr>
<tr>
<td>BLG0D784</td>
<td>BLG0R080</td>
<td>BLH0I148</td>
<td>BTN0XHID</td>
</tr>
<tr>
<td>BLG0D787</td>
<td>BLG0R090</td>
<td>BLH0I149</td>
<td>BTN0XPC</td>
</tr>
<tr>
<td>BLG0D790</td>
<td>BLG0R100</td>
<td>BLH0I150</td>
<td>BTN0XSUM</td>
</tr>
<tr>
<td>BLG0E010</td>
<td>BLG0S010</td>
<td>BLH0I151</td>
<td>BTN0XSR</td>
</tr>
<tr>
<td>BLG0E011</td>
<td>BLG0S011</td>
<td>BLH0I152</td>
<td>BTN0TCI</td>
</tr>
<tr>
<td>BLG0E090</td>
<td>BLG0S012</td>
<td>BLH0I153</td>
<td>BTN0TDE</td>
</tr>
<tr>
<td>BLG0E190</td>
<td>BLG0S013</td>
<td>BLH0I154</td>
<td>BTN0TDST</td>
</tr>
<tr>
<td>BLG0E290</td>
<td>BLG0S014</td>
<td>BLH0I155</td>
<td>BTN0TENC</td>
</tr>
<tr>
<td>BLG0E390</td>
<td>BLG0S015</td>
<td>BLH0I156</td>
<td>BTN0TENC</td>
</tr>
<tr>
<td>BLG0E490</td>
<td>BLG0S016</td>
<td>BLH0I157</td>
<td>BTN0TENC</td>
</tr>
</tbody>
</table>

Changed Panels – Tivoli Information Management for z/OS Version 2.1

Planning and Installation Guide and Reference
| Changed Panels – Tivoli Information Management for z/OS Version 2.1 |
|-------------------------|-------------------------|-------------------------|-------------------------|
| BLG0E590 | BLGOT110 | BLMOYU10 | BTN2ENNO |
| BLG0E690 | BLGOT200 | BLMOYU11 | BTN2ENOM |
| BLG0E790 | BLG0U000 | BLMOYU50 | BTN2ENPC |
| BLG0E890 | BLG0U001 | BLMOYU51 | BTN2ENSU |
| BLG0F090 | BLG0U100 | BLMOYU60 | BTN2ENSY |
| BLG0F190 | BLG0U120 | BLMOYU61 | BTN6ALTD |
| BLG0F270 | BLG0U200 | BLMOYU80 | BTN6ASSD |
| BLG0F271 | BLG0V050 | BLMOYU90 | BTN6CMDP |
| BLG0F272 | BLG0V051 | BLMOYU91 | BTN6CMPO |
| BLG0F273 | BLG0V060 | BLMOY100 | BTN6CRDT |
| BLG0F278 | BLG0V061 | BLMOY203 | BTN6DATE |
| BLG0F280 | BLG0V070 | BLMOY251 | BTN6DATX |
| BLG0F281 | BLG0V071 | BLMOY261 | BTN6DONOT |
| BLG0F282 | BLG0VE60 | BLMOY300 | BTN6DSTA |
| BLG0F283 | BLG0VE61 | BLMOY310 | BTN6DSTT |
| BLG0F288 | BLG0VE62 | BLMOY330 | BTN6ENDD |
| BLG0F290 | BLG0VE70 | BLMOY600 | BTN6OCCD |
| BLG0F390 | BLG0VE71 | BLMOY650 | BTN6REQD |
| BLG0F590 | BLG0VE72 | BLMOY703 | BTN6SCHD |
| BLG0F890 | BLG0VE73 | BLMOY713 | BTN6TARD |
| BLG0G110 | BLG0VE74 | BLMOY751 | BTN6OCCD |
| BLG0G111 | BLG0VE75 | BLMOY761 | BTN7CMPO |
| BLG0G11A | BLG0VQ50 | BLMOY771 | BTN7TARD |
| BLG0G12A | BLG0VQ52 | BLMOY781 | EYMA100 |
| BLG0G13A | BLG0VQ60 | BLMOY793 | EYMB100 |
| BLG0G14A | BLG0VQ61 | BLMOY800 | EYMS100 |
| BLG0G15A | BLG0VQ62 | BLMOY810 | EYMS100 |
| BLG0G11B | BLG0VQ70 | BLMOY830 | EYMS110 |
| BLG0G12B | BLG0VQ71 | BLMOY850 | EYMS200 |
| BLG0G13B | BLG0VQ72 | BLMOY860 | EYMS250 |
| BLG0G14B | BLG0VQ73 | BLMOY880 | EYM6ALTD |
| BLG0G15B | BLG0VQ74 | BLMS201 | EYM6CRDT |
| BLG0G137 | BLG0VQ50 | BLMS203 | EYMA100 |
| BLG0G138 | BLG0VU60 | BLMS204 | |
| BLG0G167 | BLG0VU70 | BLMT0DE | |
| BLG0G168 | BLG0VQ90 | BLMY115 | |
| BLG0G170 | BLG0V190 | BLMY1615 | |
| BLG0G171 | BLG0V500 | BLM2152 | |
| BLG0G172 | BLG0V502 | BLM2CN00 | |
| BLG0G182 | BLG0V510 | BLM2CR10 | |

| Removed Panels – Tivoli Information Management for z/OS Version 7.1 |
|-------------------------|-------------------------|-------------------------|-------------------------|
| BLG3S223 | BLH0I241 | BLM0B004 | |
| BLM0B008 | BLM1B070 | EYMTSPPE | |

| New Panels — Tivoli Service Desk for OS/390 Version 1.2 |
|-------------------------|-------------------------|-------------------------|-------------------------|
| BLGLFGFD | BLG4T200 | BLHTS121 | BLH9A002 |
| BLGLFGFK | BLG4T210 | BLHTS199 | BLH9A003 |
| BLGLFGFL | BLG4T211 | BLH0I120 | BLH9A004 |
| BLGLFGID | BLG4T213 | BLH0I121 | BLH9A005 |
| BLGLFGIN | BLG4T215 | BLH0I100 | BLH9A006 |
| BLGTL5FD | BLG4T216 | BLH0I1001 | BLH9A007 |
| BLGTL5FK | BLG4T217 | BLH0I1002 | BLH9A008 |
| BLGTL5FL | BLG4T218 | BLH0I1004 | BLH9A009 |
| BLGTL5ID | BLG4T303 | BLH0I1010 | BLH9I001 |
| BLGTL5IN | BLG4T304 | BLH0I1011 | BLM1PROB |
| BLG0CB00 | BLG4T305 | BLH0I1012 | BLM0B000 |
| BLG0E790 | BLG4T306 | BLH0I1022 | BLM0B001 |
New Panels – Tivoli Service Desk for OS/390 Version 1.2

<table>
<thead>
<tr>
<th>Panel Code</th>
<th>Description</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG0J280</td>
<td></td>
<td>BLG4T307</td>
<td>BLH0I023</td>
</tr>
<tr>
<td>BLG0J295</td>
<td></td>
<td>BLG4T308</td>
<td>BLH0I12A</td>
</tr>
<tr>
<td>BLG0K850</td>
<td></td>
<td>BLG4T309</td>
<td>BLH0I120</td>
</tr>
<tr>
<td>BLG0L700</td>
<td></td>
<td>BLG4T310</td>
<td>BLH0I121</td>
</tr>
<tr>
<td>BLG0M600</td>
<td></td>
<td>BLG4T311</td>
<td>BLH0I123</td>
</tr>
<tr>
<td>BLG0Q280</td>
<td></td>
<td>BLG4T312</td>
<td>BLH0I132</td>
</tr>
<tr>
<td>BLG0Y300</td>
<td></td>
<td>BLG4T313</td>
<td>BLH0I141</td>
</tr>
<tr>
<td>BLG1A329</td>
<td></td>
<td>BLG4V529</td>
<td>BLH0I22A</td>
</tr>
<tr>
<td>BLG1A380</td>
<td></td>
<td>BLG6ATSN</td>
<td>BLH0I220</td>
</tr>
<tr>
<td>BLG1ARFR</td>
<td></td>
<td>BLG6ATTI</td>
<td>BLH0I221</td>
</tr>
<tr>
<td>BLG1ASS0</td>
<td></td>
<td>BLG6CDCA</td>
<td>BLH0I222</td>
</tr>
<tr>
<td>BLG1ATBO</td>
<td></td>
<td>BLG6CGMX</td>
<td>BLH0I223</td>
</tr>
<tr>
<td>BLG1A11Z</td>
<td></td>
<td>BLG6CVL</td>
<td>BLH0I224</td>
</tr>
<tr>
<td>BLG1A550</td>
<td></td>
<td>BLG6FAT</td>
<td>BLH0I225</td>
</tr>
<tr>
<td>BLG1A551</td>
<td></td>
<td>BLG6FAUT</td>
<td>BLH0I226</td>
</tr>
<tr>
<td>BLG1A770</td>
<td></td>
<td>BLG6FSCD</td>
<td>BLH0I227</td>
</tr>
<tr>
<td>BLG1A771</td>
<td></td>
<td>BLG6FGID</td>
<td>BLH0I228</td>
</tr>
<tr>
<td>BLG1CSMT</td>
<td></td>
<td>BLG6FGTX</td>
<td>BLH0I229</td>
</tr>
<tr>
<td>BLG1C800</td>
<td></td>
<td>BLG6FGMM</td>
<td>BLH0I230</td>
</tr>
<tr>
<td>BLG1GFL</td>
<td></td>
<td>BLG6FHN</td>
<td>BLH0I231</td>
</tr>
<tr>
<td>BLG1FGLX</td>
<td></td>
<td>BLG6HHFN</td>
<td>BLH1A101</td>
</tr>
<tr>
<td>BLG1FGLY</td>
<td></td>
<td>BLG6HTYP</td>
<td>BLH1A102</td>
</tr>
<tr>
<td>BLG1TBAT</td>
<td></td>
<td>BLG6JPEX</td>
<td>BLH1A104</td>
</tr>
<tr>
<td>BLG1TBIN</td>
<td></td>
<td>BLG6PRMT</td>
<td>BLH1A110</td>
</tr>
<tr>
<td>BLG1TID</td>
<td></td>
<td>BLG6SLCT</td>
<td>BLH1A112</td>
</tr>
<tr>
<td>BLG1TPLR</td>
<td></td>
<td>BLG6SNFM</td>
<td>BLH1A114</td>
</tr>
<tr>
<td>BLG1TSNX</td>
<td></td>
<td>BLG6SNPN</td>
<td>BLH1A115</td>
</tr>
<tr>
<td>BLG1TSLY</td>
<td></td>
<td>BLG6TTID</td>
<td>BLH1A118</td>
</tr>
<tr>
<td>BLG2FDFD</td>
<td></td>
<td>BLG6TSIX</td>
<td>BLH1A119</td>
</tr>
<tr>
<td>BLG2FGFL</td>
<td></td>
<td>BLG6TS NM</td>
<td>BLH1A120</td>
</tr>
<tr>
<td>BLG2FGID</td>
<td></td>
<td>BLG6UPSD</td>
<td>BLH1A121</td>
</tr>
<tr>
<td>BLG2FGIN</td>
<td></td>
<td>BLG6C083</td>
<td>BLH1A199</td>
</tr>
<tr>
<td>BLG2L700</td>
<td></td>
<td>BLG6C146</td>
<td>BLH1A211</td>
</tr>
<tr>
<td>BLG2TPRL</td>
<td></td>
<td>BLG6C147</td>
<td>BLH1A212</td>
</tr>
<tr>
<td>BLG2TSD</td>
<td></td>
<td>BLG6C148</td>
<td>BLH1A213</td>
</tr>
<tr>
<td>BLG2TSFL</td>
<td></td>
<td>BLG6C149</td>
<td>BLH1A214</td>
</tr>
<tr>
<td>BLG2TSID</td>
<td></td>
<td>BLG6C150</td>
<td>BLH1A241</td>
</tr>
<tr>
<td>BLG2TSIN</td>
<td></td>
<td>BLG6C151</td>
<td>BLH1A297</td>
</tr>
<tr>
<td>BLG2Y300</td>
<td></td>
<td>BLG6E067</td>
<td>BLH1THW0</td>
</tr>
<tr>
<td>BLG4C063</td>
<td></td>
<td>BLG6F034</td>
<td>BLH21001</td>
</tr>
<tr>
<td>BLG4C069</td>
<td></td>
<td>BLG6J034</td>
<td>BLH21002</td>
</tr>
<tr>
<td>BLG4C070</td>
<td></td>
<td>BLG6P037</td>
<td>BLH4A001</td>
</tr>
<tr>
<td>BLG4C083</td>
<td></td>
<td>BLHLL122</td>
<td>BLH4A002</td>
</tr>
<tr>
<td>BLG4C146</td>
<td></td>
<td>BLHLL124</td>
<td>BLH4A003</td>
</tr>
<tr>
<td>BLG4C147</td>
<td></td>
<td>BLHLL125</td>
<td>BLH4A004</td>
</tr>
<tr>
<td>BLG4C148</td>
<td></td>
<td>BLHLL126</td>
<td>BLH4A005</td>
</tr>
<tr>
<td>BLG4C149</td>
<td></td>
<td>BLHLL127</td>
<td>BLH4A006</td>
</tr>
<tr>
<td>BLG4C150</td>
<td></td>
<td>BLHLL128</td>
<td>BLH4A007</td>
</tr>
<tr>
<td>BLG4C151</td>
<td></td>
<td>BLHLL129</td>
<td>BLH4A008</td>
</tr>
<tr>
<td>BLG4C067</td>
<td></td>
<td>BLHLL130</td>
<td>BLH4A009</td>
</tr>
<tr>
<td>BLG4F034</td>
<td></td>
<td>BLHLL131</td>
<td>BLH4I001</td>
</tr>
<tr>
<td>BLGJ034</td>
<td></td>
<td>BLHSTS104</td>
<td>BLH6ACCN</td>
</tr>
<tr>
<td>BLG4N021</td>
<td></td>
<td>BLHSTS110</td>
<td>BLH6ITMR</td>
</tr>
<tr>
<td>BLG4P037</td>
<td></td>
<td>BLHSTS120</td>
<td>BLH9A001</td>
</tr>
</tbody>
</table>
Changed Panels – Tivoli Service Desk for OS/390 Version 1.2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPIDI</td>
<td>BLG0OU23</td>
<td>BLG00164</td>
<td>BLG0G175</td>
</tr>
<tr>
<td>BLGAPI00</td>
<td>BLG0OU24</td>
<td>BLG0200</td>
<td>BLG0G180</td>
</tr>
<tr>
<td>BLGAPI05</td>
<td>BLG0OU25</td>
<td>BLG0220</td>
<td>BLG0G182</td>
</tr>
<tr>
<td>BLGDOMU1</td>
<td>BLG0OU26</td>
<td>BLG0230</td>
<td>BLG0G183</td>
</tr>
<tr>
<td>BLGLDAT1</td>
<td>BLG0OU27</td>
<td>BLG0253</td>
<td>BLG0G184</td>
</tr>
<tr>
<td>BLGLDST1</td>
<td>BLG0OU28</td>
<td>BLG0254</td>
<td>BLG0G185</td>
</tr>
<tr>
<td>BLGLVES1</td>
<td>BLG0OU29</td>
<td>BLG0307</td>
<td>BLG0G190</td>
</tr>
<tr>
<td>BLGMG01</td>
<td>BLG0OU30</td>
<td>BLG0357</td>
<td>BLG0G191</td>
</tr>
<tr>
<td>BLGTP1</td>
<td>BLG0OU31</td>
<td>BLG0700</td>
<td>BLG0G193</td>
</tr>
<tr>
<td>BLG0AC01</td>
<td>BLG0OU32</td>
<td>BLG0703</td>
<td>BLG0G195</td>
</tr>
<tr>
<td>BLG0AC04</td>
<td>BLG0OU33</td>
<td>BLG0720</td>
<td>BLG0G290</td>
</tr>
<tr>
<td>BLG0AC09</td>
<td>BLG0OU34</td>
<td>BLG0740</td>
<td>BLG0G293</td>
</tr>
<tr>
<td>BLG0AC12</td>
<td>BLG0OU35</td>
<td>BLG0780</td>
<td>BLG0G315</td>
</tr>
<tr>
<td>BLG0AC22</td>
<td>BLG0OU36</td>
<td>BLG0790</td>
<td>BLG0G335</td>
</tr>
<tr>
<td>BLG0AC23</td>
<td>BLG0OU37</td>
<td>BLG0ENTR</td>
<td>BLG0G337</td>
</tr>
<tr>
<td>BLG0AC27</td>
<td>BLG0OU38</td>
<td>BLG0EN10</td>
<td>BLG0G338</td>
</tr>
<tr>
<td>BLG0AC31</td>
<td>BLG0OU39</td>
<td>BLG0EN20</td>
<td>BLG0G355</td>
</tr>
<tr>
<td>BLG0AC44</td>
<td>BLG0OU40</td>
<td>BLG0E090</td>
<td>BLG0G359</td>
</tr>
<tr>
<td>BLG0AC45</td>
<td>BLG0OU42</td>
<td>BLG0E190</td>
<td>BLG0G390</td>
</tr>
<tr>
<td>BLG0BUS1</td>
<td>BLG0OU43</td>
<td>BLG0E290</td>
<td>BLG0G391</td>
</tr>
<tr>
<td>BLG0BUS10</td>
<td>BLG0OU44</td>
<td>BLG0E300</td>
<td>BLG0G392</td>
</tr>
<tr>
<td>BLG0BUS11</td>
<td>BLG0OU45</td>
<td>BLG0E890</td>
<td>BLG0G490</td>
</tr>
<tr>
<td>BLG0BUS100</td>
<td>BLG0OU46</td>
<td>BLG0F090</td>
<td>BLG0G493</td>
</tr>
<tr>
<td>BLG0BUS200</td>
<td>BLG0OU47</td>
<td>BLG0F190</td>
<td>BLG0G500</td>
</tr>
<tr>
<td>BLG0BUS300</td>
<td>BLG0OU48</td>
<td>BLG0F270</td>
<td>BLG0G590</td>
</tr>
<tr>
<td>BLG0BUS500</td>
<td>BLG0OU49</td>
<td>BLG0F271</td>
<td>BLG0G593</td>
</tr>
<tr>
<td>BLG0CU00</td>
<td>BLG0OU50</td>
<td>BLG0F272</td>
<td>BLG0G710</td>
</tr>
<tr>
<td>BLG0CU01</td>
<td>BLG0OU51</td>
<td>BLG0F273</td>
<td>BLG0G725</td>
</tr>
<tr>
<td>BLG0CU10</td>
<td>BLG0OU52</td>
<td>BLG0F278</td>
<td>BLG0G727</td>
</tr>
<tr>
<td>BLG0CU11</td>
<td>BLG0OU53</td>
<td>BLG0F280</td>
<td>BLG0G728</td>
</tr>
<tr>
<td>BLG0CU21</td>
<td>BLG0OU54</td>
<td>BLG0F281</td>
<td>BLG0G730</td>
</tr>
<tr>
<td>BLG0CU30</td>
<td>BLG0OU55</td>
<td>BLG0F282</td>
<td>BLG0G735</td>
</tr>
<tr>
<td>BLG0CU31</td>
<td>BLG0OU56</td>
<td>BLG0F283</td>
<td>BLG0G737</td>
</tr>
<tr>
<td>BLG0CU100</td>
<td>BLG0OU57</td>
<td>BLG0F288</td>
<td>BLG0G738</td>
</tr>
<tr>
<td>BLG0CU200</td>
<td>BLG0OU58</td>
<td>BLG0F290</td>
<td>BLG0G739</td>
</tr>
<tr>
<td>BLG0CU300</td>
<td>BLG0OU59</td>
<td>BLG0F300</td>
<td>BLG0G740</td>
</tr>
<tr>
<td>BLG0CU600</td>
<td>BLG0OU60</td>
<td>BLG0F890</td>
<td>BLG0G742</td>
</tr>
<tr>
<td>BLG0CU620</td>
<td>BLG0OU61</td>
<td>BLG0G1A1</td>
<td>BLG0G745</td>
</tr>
<tr>
<td>BLG0CU630</td>
<td>BLG0OU62</td>
<td>BLG0G1A2</td>
<td>BLG0G747</td>
</tr>
<tr>
<td>BLG0DAT1</td>
<td>BLG0OU63</td>
<td>BLG0G1A3</td>
<td>BLG0G748</td>
</tr>
<tr>
<td>BLG0DU01</td>
<td>BLG0OU64</td>
<td>BLG0G1A4</td>
<td>BLG0G749</td>
</tr>
<tr>
<td>BLG0DU02</td>
<td>BLG0OU65</td>
<td>BLG0G1A5</td>
<td>BLG0G750</td>
</tr>
<tr>
<td>BLG0DU03</td>
<td>BLG0OU66</td>
<td>BLG0G1B1</td>
<td>BLG0G751</td>
</tr>
<tr>
<td>BLG0DU04</td>
<td>BLG0OU67</td>
<td>BLG0G1B2</td>
<td>BLG0G770</td>
</tr>
<tr>
<td>BLG0DU05</td>
<td>BLG0OU68</td>
<td>BLG0G1B3</td>
<td>BLG0G771</td>
</tr>
<tr>
<td>BLG0DU06</td>
<td>BLG0OU69</td>
<td>BLG0G1B4</td>
<td>BLG0G772</td>
</tr>
<tr>
<td>BLG0DU07</td>
<td>BLG0OU70</td>
<td>BLG0G1B5</td>
<td>BLG0G775</td>
</tr>
<tr>
<td>BLG0DU08</td>
<td>BLG0OU71</td>
<td>BLG0G1B5</td>
<td>BLG0G780</td>
</tr>
<tr>
<td>BLG0DU09</td>
<td>BLG0OU72</td>
<td>BLG0G1B6</td>
<td>BLG0G781</td>
</tr>
<tr>
<td>BLG0DU10</td>
<td>BLG0OU73</td>
<td>BLG0G1B7</td>
<td>BLG0G782</td>
</tr>
<tr>
<td>BLG0DU11</td>
<td>BLG0OU74</td>
<td>BLG0G1B8</td>
<td>BLG0G785</td>
</tr>
<tr>
<td>BLG0DU12</td>
<td>BLG0OU75</td>
<td>BLG0G1B9</td>
<td>BLG0G787</td>
</tr>
<tr>
<td>BLG0DU13</td>
<td>BLG0OU76</td>
<td>BLG0G1B8</td>
<td>BLG0G788</td>
</tr>
<tr>
<td>BLG0DU14</td>
<td>BLG0OU77</td>
<td>BLG0G1B9</td>
<td>BLG0G790</td>
</tr>
<tr>
<td>BLG0DU15</td>
<td>BLG0OU78</td>
<td>BLG0G1C1</td>
<td>BLG0G791</td>
</tr>
<tr>
<td>BLG0DU16</td>
<td>BLG0OU80</td>
<td>BLG0G1C2</td>
<td>BLG0G792</td>
</tr>
<tr>
<td>BLG0DU17</td>
<td>BLG0OU81</td>
<td>BLG0G1C3</td>
<td>BLG0G795</td>
</tr>
<tr>
<td>BLG0DU18</td>
<td>BLG0OU82</td>
<td>BLG0G1C4</td>
<td>BLG0G850</td>
</tr>
<tr>
<td>BLG0DU19</td>
<td>BLG0OU83</td>
<td>BLG0G1C5</td>
<td>BLG0G890</td>
</tr>
<tr>
<td>BLG0DU20</td>
<td>BLG0OU84</td>
<td>BLG0G1D1</td>
<td>BLG0G893</td>
</tr>
<tr>
<td>BLG0DU21</td>
<td>BLG0OU85</td>
<td>BLG0G1D2</td>
<td>BLG0G910</td>
</tr>
<tr>
<td>BLG0DU22</td>
<td>BLG0OU86</td>
<td>BLG0G1D3</td>
<td>BLG0G911</td>
</tr>
</tbody>
</table>
Changed Panels – Tivoli Service Desk for OS/390 Version 1.2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG0H011</td>
<td>BLG0N610</td>
<td>BLG0VQ73</td>
<td>BLG1TCOL</td>
</tr>
<tr>
<td>BLG0H000</td>
<td>BLG0N700</td>
<td>BLG0VQ74</td>
<td>BLG1TCON</td>
</tr>
<tr>
<td>BLG0J000</td>
<td>BLG0N701</td>
<td>BLG0VU50</td>
<td>BLG1TCOS</td>
</tr>
<tr>
<td>BLG0J000</td>
<td>BLG0N710</td>
<td>BLG0VU60</td>
<td>BLG1TDAD</td>
</tr>
<tr>
<td>BLG0J200</td>
<td>BLG0N720</td>
<td>BLG0VU70</td>
<td>BLG1TDAB</td>
</tr>
<tr>
<td>BLG0JU00</td>
<td>BLG0N721</td>
<td>BLG0U090</td>
<td>BLG1TDDE</td>
</tr>
<tr>
<td>BLG0JU01</td>
<td>BLG0N722</td>
<td>BLG0U190</td>
<td>BLG1TDEES</td>
</tr>
<tr>
<td>BLG0J210</td>
<td>BLG0N740</td>
<td>BLG0V510</td>
<td>BLG1TDHIV</td>
</tr>
<tr>
<td>BLG0J212</td>
<td>BLG0N741</td>
<td>BLG0V700</td>
<td>BLG1TJOU</td>
</tr>
<tr>
<td>BLG0J212</td>
<td>BLG0N742</td>
<td>BLG0V710</td>
<td>BLG1TONO</td>
</tr>
<tr>
<td>BLG0K190</td>
<td>BLG0N780</td>
<td>BLG0V720</td>
<td>BLG1TDORE</td>
</tr>
<tr>
<td>BLG0K210</td>
<td>BLG0N781</td>
<td>BLG0V730</td>
<td>BLG1TDSR</td>
</tr>
<tr>
<td>BLG0K291</td>
<td>BLG0N782</td>
<td>BLG0W000</td>
<td>BLG1TDSRT</td>
</tr>
<tr>
<td>BLG0K292</td>
<td>BLG0N790</td>
<td>BLG0W104</td>
<td>BLG1TJUS</td>
</tr>
<tr>
<td>BLG0L000</td>
<td>BLG0N791</td>
<td>BLG0W105</td>
<td>BLG1TNOT</td>
</tr>
<tr>
<td>BLG0L000</td>
<td>BLG0N792</td>
<td>BLG0W106</td>
<td>BLG1TRES</td>
</tr>
<tr>
<td>BLG0L300</td>
<td>BLG0P000</td>
<td>BLG0W107</td>
<td>BLG1TSTT</td>
</tr>
<tr>
<td>BLG0L500</td>
<td>BLG0P420</td>
<td>BLG0W108</td>
<td>BLG1TVID</td>
</tr>
<tr>
<td>BLG0M000</td>
<td>BLG0P520</td>
<td>BLG0W109</td>
<td>BLG1TV12</td>
</tr>
<tr>
<td>BLG0M000</td>
<td>BLG0P521</td>
<td>BLG0W110</td>
<td>BLG1UT20</td>
</tr>
<tr>
<td>BLG0M300</td>
<td>BLG0P820</td>
<td>BLG0W111</td>
<td>BLG2AL15</td>
</tr>
<tr>
<td>BLG0M500</td>
<td>BLG0P821</td>
<td>BLG0W112</td>
<td>BLG2CMND</td>
</tr>
<tr>
<td>BLG0M600</td>
<td>BLG0Q000</td>
<td>BLG0W113</td>
<td>BLG2CU00</td>
</tr>
<tr>
<td>BLG0M620</td>
<td>BLG0Q100</td>
<td>BLG0W114</td>
<td>BLG2DATT</td>
</tr>
<tr>
<td>BLG0M630</td>
<td>BLG0Q210</td>
<td>BLG0W115</td>
<td>BLG2EN10</td>
</tr>
<tr>
<td>BLG0N100</td>
<td>BLG0Q213</td>
<td>BLG0W116</td>
<td>BLG2EN20</td>
</tr>
<tr>
<td>BLG0N101</td>
<td>BLG0Q214</td>
<td>BLG0W117</td>
<td>BLG2EN26</td>
</tr>
<tr>
<td>BLG0N110</td>
<td>BLG0Q215</td>
<td>BLG0W118</td>
<td>BLG2G125</td>
</tr>
<tr>
<td>BLG0N120</td>
<td>BLG0R000</td>
<td>BLG0W119</td>
<td>BLG2G126</td>
</tr>
<tr>
<td>BLG0N121</td>
<td>BLG0R010</td>
<td>BLG0W120</td>
<td>BLG2G130</td>
</tr>
<tr>
<td>BLG0N122</td>
<td>BLG0R011</td>
<td>BLG0W200</td>
<td>BLG2G135</td>
</tr>
<tr>
<td>BLG0N130</td>
<td>BLG0R020</td>
<td>BLG0W210</td>
<td>BLG2G145</td>
</tr>
<tr>
<td>BLG0N132</td>
<td>BLG0S050</td>
<td>BLG0W300</td>
<td>BLG2G155</td>
</tr>
<tr>
<td>BLG0N133</td>
<td>BLG0S010</td>
<td>BLG0W301</td>
<td>BLG2G160</td>
</tr>
<tr>
<td>BLG0N140</td>
<td>BLG0S011</td>
<td>BLG0W302</td>
<td>BLG2G165</td>
</tr>
<tr>
<td>BLG0N141</td>
<td>BLG0S020</td>
<td>BLG0W500</td>
<td>BLG2G175</td>
</tr>
<tr>
<td>BLG0N142</td>
<td>BLG0S021</td>
<td>BLG0Y100</td>
<td>BLG2G180</td>
</tr>
<tr>
<td>BLG0N153</td>
<td>BLG0S060</td>
<td>BLG0ZD50</td>
<td>BLG2G185</td>
</tr>
<tr>
<td>BLG0N154</td>
<td>BLG0S061</td>
<td>BLG0ZD51</td>
<td>BLG2G195</td>
</tr>
<tr>
<td>BLG0N164</td>
<td>BLG0S0510</td>
<td>BLG0ZU00</td>
<td>BLG2G315</td>
</tr>
<tr>
<td>BLG0N200</td>
<td>BLG0TU01</td>
<td>BLG0ZU50</td>
<td>BLG2G335</td>
</tr>
<tr>
<td>BLG0N201</td>
<td>BLG0TU02</td>
<td>BLG0Z510</td>
<td>BLG2G355</td>
</tr>
<tr>
<td>BLG0N210</td>
<td>BLG0T100</td>
<td>BLG0Z530</td>
<td>BLG2G400</td>
</tr>
<tr>
<td>BLG0N220</td>
<td>BLG0T101</td>
<td>BLG00000</td>
<td>BLG2G500</td>
</tr>
<tr>
<td>BLG0N221</td>
<td>BLG0U001</td>
<td>BLG00001</td>
<td>BLG2G710</td>
</tr>
<tr>
<td>BLG0N222</td>
<td>BLG0V050</td>
<td>BLG00002</td>
<td>BLG2G725</td>
</tr>
<tr>
<td>BLG0N230</td>
<td>BLG0V051</td>
<td>BLG00011</td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLG0N231</td>
<td>BLG0V060</td>
<td>BLG00030</td>
<td>BLG2G735</td>
</tr>
<tr>
<td>BLG0N232</td>
<td>BLG0V061</td>
<td>BLG1AACP</td>
<td>BLG2G740</td>
</tr>
<tr>
<td>BLG0N253</td>
<td>BLG0V070</td>
<td>BLG1AUP</td>
<td>BLG2G745</td>
</tr>
<tr>
<td>BLG0N254</td>
<td>BLG0V071</td>
<td>BLG1ACOP</td>
<td>BLG2G750</td>
</tr>
<tr>
<td>BLG0N340</td>
<td>BLG0E60</td>
<td>BLG1AF69</td>
<td>BLG2G775</td>
</tr>
<tr>
<td>BLG0N307</td>
<td>BLG0F70</td>
<td>BLG1A049</td>
<td>BLG2G785</td>
</tr>
<tr>
<td>BLG0N310</td>
<td>BLG0F72</td>
<td>BLG1A097</td>
<td>BLG2G795</td>
</tr>
<tr>
<td>BLG0N350</td>
<td>BLG0VE75</td>
<td>BLG1A10D</td>
<td>BLG2G850</td>
</tr>
<tr>
<td>BLG0N357</td>
<td>BLG0VQ50</td>
<td>BLG1A210</td>
<td>BLG2J210</td>
</tr>
<tr>
<td>BLG0N360</td>
<td>BLG0VQ60</td>
<td>BLG1A511</td>
<td>BLG2J211</td>
</tr>
<tr>
<td>BLG0N400</td>
<td>BLG0VQ70</td>
<td>BLG1A711</td>
<td>BLG2J212</td>
</tr>
<tr>
<td>BLG0N410</td>
<td>BLG0VQ71</td>
<td>BLG1TADD</td>
<td>BLG2K210</td>
</tr>
<tr>
<td>BLG0N500</td>
<td>BLG0VQ72</td>
<td>BLG1TBAD</td>
<td>BLG2Q210</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>BLG2Q211</td>
<td>BLG4C074</td>
<td>BLG4J030</td>
<td>BLG4O231</td>
</tr>
<tr>
<td>BLG2S020</td>
<td>BLG4C075</td>
<td>BLG4J031</td>
<td>BLG4O242</td>
</tr>
<tr>
<td>BLG2THLP</td>
<td>BLG4C077</td>
<td>BLG4J032</td>
<td>BLG4O243</td>
</tr>
<tr>
<td>BLG2TV1D</td>
<td>BLG4C078</td>
<td>BLG4J033</td>
<td>BLG4O244</td>
</tr>
<tr>
<td>BLG2VQ50</td>
<td>BLG4C085</td>
<td>BLG4K003</td>
<td>BLG4O246</td>
</tr>
<tr>
<td>BLG2VG70</td>
<td>BLG4C086</td>
<td>BLG4K005</td>
<td>BLG4O248</td>
</tr>
<tr>
<td>BLG2GW500</td>
<td>BLG4C089</td>
<td>BLG4K007</td>
<td>BLG4O249</td>
</tr>
<tr>
<td>BLG2ZCLA</td>
<td>BLG4C095</td>
<td>BLG4K008</td>
<td>BLG4O250</td>
</tr>
<tr>
<td>BLG2ZCMD</td>
<td>BLG4C098</td>
<td>BLG4L001</td>
<td>BLG4O251</td>
</tr>
<tr>
<td>BLG2ZCRE</td>
<td>BLG4C102</td>
<td>BLG4L002</td>
<td>BLG4O470</td>
</tr>
<tr>
<td>BLG2ZD51</td>
<td>BLG4C113</td>
<td>BLG4M001</td>
<td>BLG4P006</td>
</tr>
<tr>
<td>BLG2ZGEN</td>
<td>BLG4C114</td>
<td>BLG4N001</td>
<td>BLG4P007</td>
</tr>
<tr>
<td>BLG2ZMSG</td>
<td>BLG4C122</td>
<td>BLG4O007</td>
<td>BLG4P018</td>
</tr>
<tr>
<td>BLG2ZOSV</td>
<td>BLG4C124</td>
<td>BLG4O008</td>
<td>BLG4P019</td>
</tr>
<tr>
<td>BLG2ZPAN</td>
<td>BLG4C125</td>
<td>BLG4O009</td>
<td>BLG4P020</td>
</tr>
<tr>
<td>BLG2ZPR0</td>
<td>BLG4C127</td>
<td>BLG4O063</td>
<td>BLG4P025</td>
</tr>
<tr>
<td>BLG2ZREP</td>
<td>BLG4C128</td>
<td>BLG4O064</td>
<td>BLG4P027</td>
</tr>
<tr>
<td>BLG2ZSC6</td>
<td>BLG4C129</td>
<td>BLG4O66</td>
<td>BLG4P029</td>
</tr>
<tr>
<td>BLG2ZSRN</td>
<td>BLG4C140</td>
<td>BLG4O074</td>
<td>BLG4P030</td>
</tr>
<tr>
<td>BLG2Z500</td>
<td>BLG4C141</td>
<td>BLG4O089</td>
<td>BLG4P032</td>
</tr>
<tr>
<td>BLG2Z0002</td>
<td>BLG4C500</td>
<td>BLG4O104</td>
<td>BLG4P050</td>
</tr>
<tr>
<td>BLG4A002</td>
<td>BLG4C824</td>
<td>BLG4O147</td>
<td>BLG4P054</td>
</tr>
<tr>
<td>BLG4A500</td>
<td>BLG4C835</td>
<td>BLG4O148</td>
<td>BLG4P055</td>
</tr>
<tr>
<td>BLG4C001</td>
<td>BLG4C838</td>
<td>BLG4O193</td>
<td>BLG4P057</td>
</tr>
<tr>
<td>BLG4C002</td>
<td>BLG4C839</td>
<td>BLG4O194</td>
<td>BLG4P058</td>
</tr>
<tr>
<td>BLG4C004</td>
<td>BLG4C864</td>
<td>BLG4O195</td>
<td>BLG4P059</td>
</tr>
<tr>
<td>BLG4C005</td>
<td>BLG4C870</td>
<td>BLG4O196</td>
<td>BLG4P059</td>
</tr>
<tr>
<td>BLG4C006</td>
<td>BLG4C871</td>
<td>BLG4O197</td>
<td>BLG4P059</td>
</tr>
<tr>
<td>BLG4C008</td>
<td>BLG4C918</td>
<td>BLG4O199</td>
<td>BLG4P059</td>
</tr>
<tr>
<td>BLG4C017</td>
<td>BLG4D006</td>
<td>BLG4O200</td>
<td>BLG4P059</td>
</tr>
<tr>
<td>BLG4C018</td>
<td>BLG4D008</td>
<td>BLG4O201</td>
<td>BLG4S000</td>
</tr>
<tr>
<td>BLG4C019</td>
<td>BLG4D009</td>
<td>BLG4O202</td>
<td>BLG4S001</td>
</tr>
<tr>
<td>BLG4C020</td>
<td>BLG4E003</td>
<td>BLG4O203</td>
<td>BLG4S100</td>
</tr>
<tr>
<td>BLG4C021</td>
<td>BLG4E007</td>
<td>BLG4O204</td>
<td>BLG4S101</td>
</tr>
<tr>
<td>BLG4C022</td>
<td>BLG4E008</td>
<td>BLG4O205</td>
<td>BLG4S102</td>
</tr>
<tr>
<td>BLG4C023</td>
<td>BLG4E011</td>
<td>BLG4O206</td>
<td>BLG4S103</td>
</tr>
<tr>
<td>BLG4C024</td>
<td>BLG4E023</td>
<td>BLG4O207</td>
<td>BLG4S104</td>
</tr>
<tr>
<td>BLG4C025</td>
<td>BLG4E058</td>
<td>BLG4O208</td>
<td>BLG4S105</td>
</tr>
<tr>
<td>BLG4C026</td>
<td>BLG4E060</td>
<td>BLG4O209</td>
<td>BLG4S107</td>
</tr>
<tr>
<td>BLG4C029</td>
<td>BLG4E061</td>
<td>BLG4O210</td>
<td>BLG4S108</td>
</tr>
<tr>
<td>BLG4C030</td>
<td>BLG4E062</td>
<td>BLG4O211</td>
<td>BLG4S109</td>
</tr>
<tr>
<td>BLG4C032</td>
<td>BLG4E063</td>
<td>BLG4O212</td>
<td>BLG4S110</td>
</tr>
<tr>
<td>BLG4C034</td>
<td>BLG4E064</td>
<td>BLG4O213</td>
<td>BLG4S202</td>
</tr>
<tr>
<td>BLG4C039</td>
<td>BLG4F024</td>
<td>BLG4O214</td>
<td>BLG4S214</td>
</tr>
<tr>
<td>BLG4C031</td>
<td>BLG4F026</td>
<td>BLG4O215</td>
<td>BLG4S217</td>
</tr>
<tr>
<td>BLG4C045</td>
<td>BLG4F503</td>
<td>BLG4O216</td>
<td>BLG4S223</td>
</tr>
<tr>
<td>BLG4C048</td>
<td>BLG4F506</td>
<td>BLG4O217</td>
<td>BLG4S224</td>
</tr>
<tr>
<td>BLG4C052</td>
<td>BLG4F507</td>
<td>BLG4O218</td>
<td>BLG4S225</td>
</tr>
<tr>
<td>BLG4C053</td>
<td>BLG4F508</td>
<td>BLG4O220</td>
<td>BLG4S226</td>
</tr>
<tr>
<td>BLG4C054</td>
<td>BLG4F509</td>
<td>BLG4O221</td>
<td>BLG4S227</td>
</tr>
<tr>
<td>BLG4C055</td>
<td>BLG4F510</td>
<td>BLG4O222</td>
<td>BLG4S509</td>
</tr>
<tr>
<td>BLG4C056</td>
<td>BLG4H052</td>
<td>BLG4O223</td>
<td>BLG4T003</td>
</tr>
<tr>
<td>BLG4C057</td>
<td>BLG4H056</td>
<td>BLG4O224</td>
<td>BLG4T029</td>
</tr>
<tr>
<td>BLG4C058</td>
<td>BLG4H072</td>
<td>BLG4O225</td>
<td>BLG4U004</td>
</tr>
<tr>
<td>BLG4C059</td>
<td>BLG4J003</td>
<td>BLG4O226</td>
<td>BLG4V002</td>
</tr>
<tr>
<td>BLG4C062</td>
<td>BLG4J012</td>
<td>BLG4O227</td>
<td>BLG4V003</td>
</tr>
<tr>
<td>BLG4C064</td>
<td>BLG4J022</td>
<td>BLG4O228</td>
<td>BLG4V004</td>
</tr>
<tr>
<td>BLG4C066</td>
<td>BLG4J024</td>
<td>BLG4O229</td>
<td>BLG4V007</td>
</tr>
<tr>
<td>BLG4C067</td>
<td>BLG4J028</td>
<td>BLG4O230</td>
<td>BLG4V008</td>
</tr>
<tr>
<td>BLG4C068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Panels – Tivoli Service Desk for OS/390 Version 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. New, Changed, and Removed Panels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLG4V511</th>
<th>BLG9C025</th>
<th>BLG9F022</th>
<th>BLM0Y251</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG4V512</td>
<td>BLG9C026</td>
<td>BLG9F023</td>
<td>BLM0Y261</td>
</tr>
<tr>
<td>BLG4V513</td>
<td>BLG9C028</td>
<td>BLG9F024</td>
<td>BLM0Y300</td>
</tr>
<tr>
<td>BLG4V550</td>
<td>BLG9C029</td>
<td>BLG9F025</td>
<td>BLM0Y310</td>
</tr>
<tr>
<td>BLG4V557</td>
<td>BLG9C030</td>
<td>BLG9F026</td>
<td>BLM0Y330</td>
</tr>
<tr>
<td>BLG4V558</td>
<td>BLG9C033</td>
<td>BLG9F027</td>
<td>BLM0Y600</td>
</tr>
<tr>
<td>BLG4W011</td>
<td>BLG9C077</td>
<td>BLG9H058</td>
<td>BLM0Y703</td>
</tr>
<tr>
<td>BLG4W027</td>
<td>BLG9C078</td>
<td>BLG9H059</td>
<td>BLM0Y713</td>
</tr>
<tr>
<td>BLG4W032</td>
<td>BLG9C080</td>
<td>BLG9H072</td>
<td>BLM0Y751</td>
</tr>
<tr>
<td>BLG4Z002</td>
<td>BLG9C081</td>
<td>BLG9I008</td>
<td>BLM0Y761</td>
</tr>
<tr>
<td>BLG6ALTD</td>
<td>BLG9C086</td>
<td>BLG9J014</td>
<td>BLM0Y771</td>
</tr>
<tr>
<td>BLG6ASSD</td>
<td>BLG9C088</td>
<td>BLG9K003</td>
<td>BLM0Y793</td>
</tr>
<tr>
<td>BLG6CDFR</td>
<td>BLG9C096</td>
<td>BLG9K006</td>
<td>BLM0Y800</td>
</tr>
<tr>
<td>BLG6CDTO</td>
<td>BLG9C097</td>
<td>BLG9K007</td>
<td>BLM0Y810</td>
</tr>
<tr>
<td>BLG6CFMI</td>
<td>BLG9C100</td>
<td>BLG9K008</td>
<td>BLM0Y830</td>
</tr>
<tr>
<td>BLG6CLUS</td>
<td>BLG9C101</td>
<td>BLG9L001</td>
<td>BLM0Y850</td>
</tr>
<tr>
<td>BLG6CNRD</td>
<td>BLG9C102</td>
<td>BLG9L002</td>
<td>BLM0Y860</td>
</tr>
<tr>
<td>BLG6CPSD</td>
<td>BLG9C103</td>
<td>BLG9N001</td>
<td>BLM0Y880</td>
</tr>
<tr>
<td>BLG6CPSD</td>
<td>BLG9C104</td>
<td>BLG9N002</td>
<td>BLM1AC05</td>
</tr>
<tr>
<td>BLG6CPUR</td>
<td>BLG9C105</td>
<td>BLG9O052</td>
<td>BLM1T218</td>
</tr>
<tr>
<td>BLG6CRDT</td>
<td>BLG9C106</td>
<td>BLG9O055</td>
<td>BLM1T221</td>
</tr>
<tr>
<td>BLG6DABA</td>
<td>BLG9C107</td>
<td>BLG9O061</td>
<td>BLM1T223</td>
</tr>
<tr>
<td>BLG6DARC</td>
<td>BLG9C108</td>
<td>BLG9O062</td>
<td>BLM1T224</td>
</tr>
<tr>
<td>BLG6DARR</td>
<td>BLG9C109</td>
<td>BLG9O063</td>
<td>BLM1T225</td>
</tr>
<tr>
<td>BLG6DATX</td>
<td>BLG9C110</td>
<td>BLG9O064</td>
<td>BLM1T226</td>
</tr>
<tr>
<td>BLG6DCBCZ</td>
<td>BLG9C111</td>
<td>BLG9O074</td>
<td>BLM1T228</td>
</tr>
<tr>
<td>BLG6DONOT</td>
<td>BLG9C112</td>
<td>BLG9O018</td>
<td>BLM1T229</td>
</tr>
<tr>
<td>BLG6DSTA</td>
<td>BLG9C113</td>
<td>BLG9P024</td>
<td>BLM1T260</td>
</tr>
<tr>
<td>BLG6ECDW</td>
<td>BLG9C114</td>
<td>BLG9P025</td>
<td>BLM1Y115</td>
</tr>
<tr>
<td>BLG6FMID</td>
<td>BLG9C115</td>
<td>BLG9P031</td>
<td>BLM1Y165</td>
</tr>
<tr>
<td>BLG6FMIE</td>
<td>BLG9C117</td>
<td>BLG9P032</td>
<td>BLM1Y565</td>
</tr>
<tr>
<td>BLG6HBSR</td>
<td>BLG9C118</td>
<td>BLG9P034</td>
<td>BLM2G000</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9C129</td>
<td>BLG9R002</td>
<td>BLM2C060</td>
</tr>
<tr>
<td>BLG6IFSI</td>
<td>BLG9C130</td>
<td>BLG9S216</td>
<td>BLM2R010</td>
</tr>
<tr>
<td>BLG6LOFI</td>
<td>BLG9C131</td>
<td>BLG9S223</td>
<td>BLM2UA00</td>
</tr>
<tr>
<td>BLG6NPEP</td>
<td>BLG9C132</td>
<td>BLG9T001</td>
<td>BLM2U000</td>
</tr>
<tr>
<td>BLG6NPSD</td>
<td>BLG9C133</td>
<td>BLG9V003</td>
<td>BLM2C000</td>
</tr>
<tr>
<td>BLG6OCCD</td>
<td>BLG9C134</td>
<td>BLG9W009</td>
<td>BLM2C030</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9C135</td>
<td>BLG9W100</td>
<td>BLM2FD17</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9C136</td>
<td>BLG9W113</td>
<td>BLM2FD37</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9C137</td>
<td>BLG9W115</td>
<td>BLM2FD45</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9C199</td>
<td>BLG9W333</td>
<td>BLM2FD46</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9D001</td>
<td>BLG9W343</td>
<td>BLM2FD48</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9D012</td>
<td>BLG9Z002</td>
<td>BLM2FD55</td>
</tr>
<tr>
<td>BLG6PFFY</td>
<td>BLG9E046</td>
<td>BLG9E050</td>
<td>BLM2FD58</td>
</tr>
<tr>
<td>BLG6REGQ</td>
<td>BLG9E026</td>
<td>BLM0AC02</td>
<td>BLM2FD77</td>
</tr>
<tr>
<td>BLG6REQ</td>
<td>BLG9E051</td>
<td>BLM0Y000</td>
<td>BLM2FD89</td>
</tr>
<tr>
<td>BLG6REQ</td>
<td>BLG9E052</td>
<td>BLM0Y010</td>
<td>BLM2FD9A</td>
</tr>
<tr>
<td>BLG6RERE</td>
<td>BLG9E053</td>
<td>BLM0Y111</td>
<td>BLM2FD91</td>
</tr>
<tr>
<td>BLG6RERE</td>
<td>BLG9E054</td>
<td>BLM0Y500</td>
<td>BLM2FD94</td>
</tr>
<tr>
<td>BLG6RERE</td>
<td>BLG9E057</td>
<td>BLM0Y511</td>
<td>BLM2FD99</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9E058</td>
<td>BLM0Y600</td>
<td>BLM2FC01</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9F002</td>
<td>BLM0Y611</td>
<td>BLM2FC04</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9F003</td>
<td>BLM0Y800</td>
<td>BLM2FC05</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9F004</td>
<td>BLM0Y900</td>
<td>BLM2PC01</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9F005</td>
<td>BLM0Y911</td>
<td>BLM2PC01D</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9F020</td>
<td>BLM0Y100</td>
<td>BLM2PC1G</td>
</tr>
<tr>
<td>BLG6TARD</td>
<td>BLG9F021</td>
<td>BLM0Y203</td>
<td>BLM2PC1H</td>
</tr>
<tr>
<td>Changed Panels – Tivoli Service Desk for OS/390 Version 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2PC1M BLM4R076 BLM90098 BTN0D200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2PC10 BLM4R077 BLM90101 BTN0D500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2PC19 BLM4R102 BLM90152 BTN0ENOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2PS05 BLM4R105 BLM90153 BTN0EN20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2PT09 BLM4S001 BLM90237 BTN0EPPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2P020 BLM6CDCA BLM90P015 BTN0E000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2TPDS BLM6CGMX BLM9P100 BTN0E090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2YE00 BLM6CRTA BLM9P101 BTN0E190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2YE50 BLM6CSVL BLM9R069 BTN0E290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2Y250 BLM6NPNL BLM9R070 BTN0E390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2Y750 BLM6PANA BLM9R071 BTN0E890</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2Y770 BLM6PARA BLM9R072 BTN0F000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2Y780 BLM6PLMD BLM9R073 BTN0F090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM2Z5IMN BLM6FREX BLM9R076 BTN0F190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4C077 BLM6VENA BLM9S001 BTN0F290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4C078 BLM6Y00E BLM9S002 BTN0F390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4C090 BLM6Y007 BLM9S003 BTN0G000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D001 BLMBCL10 BLM9S004 BTN0G1A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D004 BLMBCL20 BLX4C104 BTN0G1A3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D005 BLMBCL50 BLX4C113 BTN0G190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D008 BLMBCL60 BLX4C120 BTN0G191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D015 BLMBCUA0 BLX4C127 BTN0J000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D016 BLMBCU17 BLX4C128 BTN0J100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D038 BLMBCU27 BLX4C129 BTN0J200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D039 BLMBCU37 BLX4C140 BTN0J300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D059 BLMBCU47 BLX4C141 BTN0J500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D066 BLMBCU50 BLX4C142 BTN0M000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D072 BLMBCU57 BLX4C170 BTN0M200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D082 BLMBCU67 BLX4C172 BTN0N000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D096 BLMBCU77 BLX4C173 BTN0N101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D098 BLMBCU85 BLX4C195 BTN0N200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D115 BLMBCU87 BLX4C196 BTN0N201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D140 BLMBCU97 BLX4C197 BTN0N500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D142 BLM9C001 BLX4C198 BTN0N510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D152 BLM90002 BLX45022 BTN0Q010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D153 BLM90003 BLX4T101 BTN0S010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D154 BLM90004 BLX4T102 BTN0S020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D237 BLM90005 BTN0BU00 BTN0S201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4D300 BLM90006 BTN0BU10 BTN0W020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I011 BLM9009 BTN0BU11 BTN0XSUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I014 BLM9010 BTN0B100 BTN00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I015 BLM9012 BTN0B102 BTN00001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I016 BLM9020 BTN0B200 BTN1TDDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I020 BLM9021 BTN0B300 BTN1TDST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I023 BLM9023 BTN0B500 BTN1TSC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I024 BLM9024 BTN0CU00 BTN1TSC4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I025 BLM9025 BTN0CU01 BTN1TSF3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4I027 BLM9031 BTN0C100 BTN1TSF6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4J009 BLM9032 BTN0C101 BTN1TSRN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4J020 BLM9034 BTN0C200 BTN1TSSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM4J021 BLM9037 BTN0C300 BTN1TST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5M002 BLM9039 BTN0DU01 BTN2ENCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R005 BLM9040 BTN0DU03 BTN2ENCF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R006 BLM9055 BTN0DU08 BTN2ENHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R010 BLM9058 BTN0DU18 BTN2ENNO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R025 BLM9066 BTN0DU28 BTN2ENOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R059 BLM9067 BTN0DU30 BTN2ENPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R070 BLM9077 BTN0DU31 BTN2ENSU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R071 BLM9078 BTN0DU10 BTN2ENSY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R072 BLM9079 BTN0DU102 BTN20000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM5R073</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Removed Panels – Tivoli Service Desk for OS/390 Version 1.2

- BLG3S223
- BLG4S106
- EYMTSPPE

New Panels – Information/Management Version 1.1

- BLGTCMIG EYMA100 EYMS100 EYM6R00D
- BLG0DFSM EYMM100 EYMM400 EYMM600
- BLG1DFSM EYMM500 EYMM600 EYM600
- BLG2ZSC6 EYMTSPPE EYMM400 EYMM600
- BLG6COLN EYMM100 EYMM400 EYMM600
- BLG6DCVNG EYMM500 EYMM600 EYM600
- BLG6D0BC EYMM500 EYMM600 EYMM600
- BLMT260 EYMM500 EYMM600 EYM600
- BLMM2D0D EYMM500 EYMM600 EYM600
- BLMM2D0E EYMM500 EYMM600 EYM600
- BLMM2D0G EYMM500 EYMM600 EYM600
- BLMM6C0CA EYMM500 EYMM600 EYM600
- BLMM6C0MG EYMM500 EYMM600 EYM600
- BLMM6CSCM EYMM500 EYMM600 EYM600
- BLMM6CVSL EYMM500 EYMM600 EYM600
- BLMM6CVM EYMM500 EYMM600 EYM600
- BLMM6PLMD EYMM500 EYMM600 EYM600
- BLMM6PLMT EYMM500 EYMM600 EYM600
- BLMM6PLMU EYMM500 EYMM600 EYM600
- BLMM9D049 EYMM500 EYMM600 EYM600

Planning and Installation Guide and Reference

381
The following panels had internal or external changes in Version 1.1. For a list of the panels associated with expanded (10-digit) date fields, see the members listed in the BLM.V1R1M0.SBLMPNLY data set.

<table>
<thead>
<tr>
<th>Removed Panels – Information/Management Version 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No panels were removed in Version 1.1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changed Panels – Information/Management Version 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following panels had internal or external changes in Version 1.1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel Code 1</th>
<th>Panel Code 2</th>
<th>Panel Code 3</th>
<th>Panel Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPI00</td>
<td>BLG0V720</td>
<td>BLG6VDTA</td>
<td>BLM6NEMD</td>
</tr>
<tr>
<td>BLGAPI05</td>
<td>BLG0V730</td>
<td>BLG7ARG1</td>
<td>BLM6PVAL</td>
</tr>
<tr>
<td>BLGAPI10</td>
<td>BLG00001</td>
<td>BLG705AB</td>
<td>BLM6S001</td>
</tr>
<tr>
<td>BLGLDATT</td>
<td>BLG00002</td>
<td>BLG9C062</td>
<td>BLM6S00F</td>
</tr>
<tr>
<td>BLGTDDBXM</td>
<td>BLG00010</td>
<td>BLM1AT02</td>
<td>BLM8C0L00</td>
</tr>
<tr>
<td>BLGTTEXT</td>
<td>BLG00020</td>
<td>BLM1A4OE</td>
<td>BLM8C1L00</td>
</tr>
<tr>
<td>BLG0AC12</td>
<td>BLG00011</td>
<td>BLM1A4OF</td>
<td>BLM8C1L20</td>
</tr>
<tr>
<td>BLG0AC46</td>
<td>BLG1AC0P</td>
<td>BLM1A46J</td>
<td>BLM8C1L50</td>
</tr>
<tr>
<td>BLG0DATT</td>
<td>BLG1AA00</td>
<td>BLM1AA0M</td>
<td>BLM8C1L60</td>
</tr>
<tr>
<td>BLG0EN10</td>
<td>BLG1AA01</td>
<td>BLM1A806</td>
<td>BLM8C1U00</td>
</tr>
<tr>
<td>BLG0EN20</td>
<td>BLG1AA1G1</td>
<td>BLM1TS04</td>
<td>BLM8C6U6B</td>
</tr>
<tr>
<td>BLG0VD70</td>
<td>BLG1AA1G2</td>
<td>BLM1T209</td>
<td>BLM8C6U64</td>
</tr>
<tr>
<td>BLG0VD71</td>
<td>BLG1AA1G8</td>
<td>BLM1T255</td>
<td>BLM8C8U85</td>
</tr>
<tr>
<td>BLG0VE61</td>
<td>BLG1AA1G9</td>
<td>BLM2CR10</td>
<td>BLM8C9U9E</td>
</tr>
<tr>
<td>BLG0VE71</td>
<td>BLG1AA210</td>
<td>BLM2CR20</td>
<td>BLM8C9U9F</td>
</tr>
<tr>
<td>BLG0VE72</td>
<td>BLG1AA604</td>
<td>BLM2FD17</td>
<td>BLM8C9UJ</td>
</tr>
<tr>
<td>BLG0VQ52</td>
<td>BLG1AA704</td>
<td>BLM2FD59</td>
<td>BLM8C9U9U</td>
</tr>
<tr>
<td>BLG0VQ61</td>
<td>BLG1DAARC</td>
<td>BLM2FD60</td>
<td>BLM8C9U9W</td>
</tr>
<tr>
<td>BLG0VQ70</td>
<td>BLG1TV1D</td>
<td>BLM2FD61</td>
<td>BLM8C9U9Y</td>
</tr>
<tr>
<td>BLG0VQ71</td>
<td>BLG2TV1D</td>
<td>BLM2PC04</td>
<td>BLM9D119</td>
</tr>
<tr>
<td>BLG0VQ72</td>
<td>BLG4C026</td>
<td>BLM2PC1L</td>
<td>BTNOEN20</td>
</tr>
<tr>
<td>BLG0VQ73</td>
<td>BLG4C062</td>
<td>BLM2PC1N</td>
<td>BTNOQ300</td>
</tr>
<tr>
<td>BLG0VQ74</td>
<td>BLG40195</td>
<td>BLM2PC1P</td>
<td>EYMAP100</td>
</tr>
<tr>
<td>BLG0VU070</td>
<td>BLG4V517</td>
<td>BLM2PS07</td>
<td>EYM00011</td>
</tr>
<tr>
<td>BLG0V502</td>
<td>BLG605AB</td>
<td>BLM2ZIMN</td>
<td>EYM00020</td>
</tr>
<tr>
<td>BLG0V600</td>
<td>BLG65C0D</td>
<td>BLM40119</td>
<td>EYM1AC0P</td>
</tr>
<tr>
<td>BLG0V700</td>
<td>BLG65OVD</td>
<td>BLM6LIDA</td>
<td>EYM1A210</td>
</tr>
<tr>
<td>BLG0V710</td>
<td>BLG6VDES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Panels – Information/Management Version 6.3

<table>
<thead>
<tr>
<th>Panel Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPIDI</td>
<td>BLG1A502</td>
</tr>
<tr>
<td>BLGAPIPX</td>
<td>BLG1A503</td>
</tr>
<tr>
<td>BLGLCMDD</td>
<td>BLG1A600</td>
</tr>
<tr>
<td>BLGLCMOD</td>
<td>BLG1A604</td>
</tr>
<tr>
<td>BLGLDATT</td>
<td>BLG1A606</td>
</tr>
<tr>
<td>BLGLJHLPL</td>
<td>BLG1A607</td>
</tr>
<tr>
<td>BLGLJSPL</td>
<td>BLG1A608</td>
</tr>
<tr>
<td>BLGLQHPL</td>
<td>BLG1A609</td>
</tr>
<tr>
<td>BLGLQSLP</td>
<td>BLG1A611</td>
</tr>
<tr>
<td>BLGLUSER</td>
<td>BLG1A700</td>
</tr>
<tr>
<td>BLGTFCMD</td>
<td>BLG1A704</td>
</tr>
<tr>
<td>BLGTSALI</td>
<td>BLG1A706</td>
</tr>
<tr>
<td>BLGTSCMD</td>
<td>BLG1A707</td>
</tr>
<tr>
<td>BLGTSDALR</td>
<td>BLG1A708</td>
</tr>
<tr>
<td>BLGTUSDAR</td>
<td>BLG1A709</td>
</tr>
<tr>
<td>BLGTVSAL</td>
<td>BLG1A711</td>
</tr>
<tr>
<td>BLGDDATT</td>
<td>BLG1D0ARC</td>
</tr>
<tr>
<td>BLG0HUI0</td>
<td>BLG1T0PN</td>
</tr>
<tr>
<td>BLG0HUI1</td>
<td>BLG1TPNL</td>
</tr>
<tr>
<td>BLG0USER</td>
<td>BLG1T5RP</td>
</tr>
<tr>
<td>BLG0VD60</td>
<td>BLG1V050</td>
</tr>
<tr>
<td>BLG0VD61</td>
<td>BLG1V060</td>
</tr>
<tr>
<td>BLG0VD70</td>
<td>BLG2AP0N</td>
</tr>
<tr>
<td>BLG0VD71</td>
<td>BLG2CA0P</td>
</tr>
<tr>
<td>BLG0VE60</td>
<td>BLG2CMD0</td>
</tr>
<tr>
<td>BLG0VE61</td>
<td>BLG2CMD1</td>
</tr>
<tr>
<td>BLG0VE62</td>
<td>BLG2D0ATT</td>
</tr>
<tr>
<td>BLG0VE70</td>
<td>BLG2J0HPL</td>
</tr>
<tr>
<td>BLG0VE71</td>
<td>BLG2J0JPL</td>
</tr>
<tr>
<td>BLG0VE72</td>
<td>BLG2Q0KPL</td>
</tr>
<tr>
<td>BLG0VE73</td>
<td>BLG2Q0JPL</td>
</tr>
<tr>
<td>BLG0VE74</td>
<td>BLG2S0EP</td>
</tr>
<tr>
<td>BLG0VE75</td>
<td>BLG2T0PND</td>
</tr>
<tr>
<td>BLG0VQ52</td>
<td>BLG2T0PNL</td>
</tr>
<tr>
<td>BLG0VQ60</td>
<td>BLG2USER</td>
</tr>
<tr>
<td>BLG0VQ61</td>
<td>BLG2VD06</td>
</tr>
<tr>
<td>BLG0VQ62</td>
<td>BLG2V0Q70</td>
</tr>
<tr>
<td>BLG0VQ70</td>
<td>BLG2V0U06</td>
</tr>
<tr>
<td>BLG0VQ71</td>
<td>BLG2V0U70</td>
</tr>
<tr>
<td>BLG0VQ72</td>
<td>BLG2V0040</td>
</tr>
<tr>
<td>BLG0VQ73</td>
<td>BLG40C00</td>
</tr>
<tr>
<td>BLG0VQ74</td>
<td>BLG40E062</td>
</tr>
<tr>
<td>BLG0VQ60</td>
<td>BLG40E063</td>
</tr>
<tr>
<td>BLG0VQ70</td>
<td>BLG40E064</td>
</tr>
<tr>
<td>BLG0VQ52</td>
<td>BLG40E065</td>
</tr>
<tr>
<td>BLG0VQ60</td>
<td>BLG40E066</td>
</tr>
<tr>
<td>BLG0V601</td>
<td>BLG4L002</td>
</tr>
<tr>
<td>BLG0V601</td>
<td>BLG4N002</td>
</tr>
<tr>
<td>BLG0V700</td>
<td>BLG4N003</td>
</tr>
<tr>
<td>BLG0V701</td>
<td>BLG4N004</td>
</tr>
<tr>
<td>BLG0V701</td>
<td>BLG4N005</td>
</tr>
<tr>
<td>BLG0V702</td>
<td>BLG4N006</td>
</tr>
<tr>
<td>BLG0V730</td>
<td>BLG4N007</td>
</tr>
<tr>
<td>BLG00040</td>
<td>BLG4N008</td>
</tr>
<tr>
<td>BLG00401</td>
<td>BLG4N009</td>
</tr>
<tr>
<td>BLG1AJH0</td>
<td>BLG4N010</td>
</tr>
<tr>
<td>BLG1AJ50</td>
<td>BLG4T028</td>
</tr>
<tr>
<td>BLG1AQ52</td>
<td></td>
</tr>
</tbody>
</table>
Changed Panels – Information/Management Version 6.3

<table>
<thead>
<tr>
<th>Panel Code 1</th>
<th>Panel Code 2</th>
<th>Panel Code 3</th>
<th>Panel Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPI02</td>
<td>BLG2APNU</td>
<td>BLG2PTNU</td>
<td>BLG9C064</td>
</tr>
<tr>
<td>BLGAPI05</td>
<td>BLG2BONU</td>
<td>BLG2PUBF</td>
<td>BLG9C141</td>
</tr>
<tr>
<td>BLGLALIS</td>
<td>BLG2CNAM</td>
<td>BLG2PUBS</td>
<td>BLG9E060</td>
</tr>
<tr>
<td>BLGLALSD</td>
<td>BLG2CRDN</td>
<td>BLG2PZFF</td>
<td>BLG9E061</td>
</tr>
<tr>
<td>BLGLVLST</td>
<td>BLG2DEVF</td>
<td>BLG2Q100</td>
<td>BLG9N001</td>
</tr>
<tr>
<td>BLGLVSEL</td>
<td>BLG2DEVL</td>
<td>BLG2REAN</td>
<td>BLG9P039</td>
</tr>
<tr>
<td>BLG0AAE0</td>
<td>BLG2DFEA</td>
<td>BLG2REGF</td>
<td>BLM1A03</td>
</tr>
<tr>
<td>BLG0AC12</td>
<td>BLG2DMSN</td>
<td>BLG2RMID</td>
<td>BLM1T254</td>
</tr>
<tr>
<td>BLG0AC42</td>
<td>BLG2DNUM</td>
<td>BLG2ROUF</td>
<td>BLM2FD0A</td>
</tr>
<tr>
<td>BLG0B901</td>
<td>BLG2DCN</td>
<td>BLG2ROUS</td>
<td>BLM2FD71</td>
</tr>
<tr>
<td>BLG0EN10</td>
<td>BLG2DTYP</td>
<td>BLG2RPON</td>
<td>BLM2PC04</td>
</tr>
<tr>
<td>BLG0EN20</td>
<td>BLG2DVNA</td>
<td>BLG2SLEV</td>
<td>BLM2PC06</td>
</tr>
<tr>
<td>BLG0GU10</td>
<td>BLG2DVSR</td>
<td>BLG2SPID</td>
<td>BLM2ZIMN</td>
</tr>
<tr>
<td>BLG0JU00</td>
<td>BLG2ECCID</td>
<td>BLG2SQMP</td>
<td>BLM4D017</td>
</tr>
<tr>
<td>BLG0JU10</td>
<td>BLG2ECLV</td>
<td>BLG2STM</td>
<td>BLM4D113</td>
</tr>
<tr>
<td>BLG0JU11</td>
<td>BLG2ECNF</td>
<td>BLG2SWCC</td>
<td>BLM4D115</td>
</tr>
<tr>
<td>BLG0J212</td>
<td>BLG2ENVS</td>
<td>BLG2SWRC</td>
<td>BLM4D121</td>
</tr>
<tr>
<td>BLG0J250</td>
<td>BLG2ERCE</td>
<td>BLG2SYMC</td>
<td>BLM4D127</td>
</tr>
<tr>
<td>BLG0K91</td>
<td>BLG2FEAT</td>
<td>BLG2THLP</td>
<td>BLM4D142</td>
</tr>
<tr>
<td>BLG0K100</td>
<td>BLG2FLDF</td>
<td>BLG2UMID</td>
<td>BLM4D144</td>
</tr>
<tr>
<td>BLG0K190</td>
<td>BLG2FMIE</td>
<td>BLG2UTID</td>
<td>BLM4D202</td>
</tr>
<tr>
<td>BLG0K122</td>
<td>BLG2FNAM</td>
<td>BLG2VLST</td>
<td>BLM5FANY</td>
</tr>
<tr>
<td>BLG0K292</td>
<td>BLG2INUM</td>
<td>BLG2VSEL</td>
<td>BLM6PETN</td>
</tr>
<tr>
<td>BLG0L901</td>
<td>BLG2IPID</td>
<td>BLG2ZOSV</td>
<td>BLM8C058</td>
</tr>
<tr>
<td>BLG0Q100</td>
<td>BLG2JU00</td>
<td>BLG2ZSC2</td>
<td>BLM8CU89</td>
</tr>
<tr>
<td>BLG0Q213</td>
<td>BLG2J212</td>
<td>BLG2ZSC3</td>
<td>BLM9D107</td>
</tr>
<tr>
<td>BLG0Q215</td>
<td>BLG2K000</td>
<td>BLG2ZSC4</td>
<td>BLM9D113</td>
</tr>
<tr>
<td>BLG0S010</td>
<td>BLG2K212</td>
<td>BLG2ZSC5</td>
<td>BLM9D114</td>
</tr>
<tr>
<td>BLG0VE71</td>
<td>BLG2LCRM</td>
<td>BLG2ZSC6</td>
<td>BLM9D115</td>
</tr>
<tr>
<td>BLG0VLST</td>
<td>BLG2LIDE</td>
<td>BLG2ZSC0</td>
<td>BLM9D121</td>
</tr>
<tr>
<td>BLG0VQ50</td>
<td>BLG2LOCO</td>
<td>BLG2ZSC1</td>
<td>BLM9D127</td>
</tr>
<tr>
<td>BLG0VU50</td>
<td>BLG2LSPN</td>
<td>BLG2ZSC2</td>
<td>BLM9D142</td>
</tr>
<tr>
<td>BLG0V510</td>
<td>BLG2LYTE</td>
<td>BLG2ZSC3</td>
<td>BLM9D144</td>
</tr>
<tr>
<td>BLG00000</td>
<td>BLG2LWLF</td>
<td>BLG2ZSC4</td>
<td>BLM9D202</td>
</tr>
<tr>
<td>BLG00001</td>
<td>BLG2LWLP</td>
<td>BLG4E060</td>
<td>BLM9D204</td>
</tr>
<tr>
<td>BLG00002</td>
<td>BLG2MAUF</td>
<td>BLG4E061</td>
<td>BLM9D244</td>
</tr>
<tr>
<td>BLG00020</td>
<td>BLG2MIUF</td>
<td>BLG4N001</td>
<td>BTN000P1</td>
</tr>
<tr>
<td>BLG1ATBL</td>
<td>BLG2MNAM</td>
<td>BLG4P030</td>
<td>BTN0EN20</td>
</tr>
<tr>
<td>BLG1A000</td>
<td>BLG2MDF</td>
<td>BLG5ALIS</td>
<td>BTN0JU00</td>
</tr>
<tr>
<td>BLG1000</td>
<td>BLG2MODF</td>
<td>BLG6ALIS</td>
<td>BTN0J100</td>
</tr>
<tr>
<td>BLG1A01</td>
<td>BLG2MDF</td>
<td>BLG6ALIS</td>
<td>BTN0J200</td>
</tr>
<tr>
<td>BLG1A1G1</td>
<td>BLG2MDF</td>
<td>BLG6ALIS</td>
<td>BTN0J300</td>
</tr>
<tr>
<td>BLG1A1G2</td>
<td>BLG2NDF</td>
<td>BLG6ALIS</td>
<td>BTN0J300</td>
</tr>
<tr>
<td>BLG1A1G8</td>
<td>BLG2NDF</td>
<td>BLG6ALIS</td>
<td>BTN0J300</td>
</tr>
<tr>
<td>BLG1A1G9</td>
<td>BLG2NDF</td>
<td>BLG6ALIS</td>
<td>BTN0J300</td>
</tr>
<tr>
<td>BLG1A11</td>
<td>BLG2PCSF</td>
<td>BLG6ALIS</td>
<td>BTN0J300</td>
</tr>
</tbody>
</table>

Removed Panels – Information/Management Version 6.3

<table>
<thead>
<tr>
<th>Panel Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG0AC37</td>
</tr>
</tbody>
</table>

New Panels – Information/Management Version 6.2

<table>
<thead>
<tr>
<th>Panel Code 1</th>
<th>Panel Code 2</th>
<th>Panel Code 3</th>
<th>Panel Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGLVLST</td>
<td>BLG0V500</td>
<td>BLG1A507</td>
<td>BLG6VDTQ</td>
</tr>
<tr>
<td>BLGLVSEL</td>
<td>BLG0V501</td>
<td>BLG1A508</td>
<td>BLM17254</td>
</tr>
<tr>
<td>BLG0ACG6</td>
<td>BLG0V510</td>
<td>BLG1A509</td>
<td>BLM6JUST</td>
</tr>
<tr>
<td>BLG0VD50</td>
<td>BLG1AFTX</td>
<td>BLG1A511</td>
<td>BLM65UPC</td>
</tr>
<tr>
<td>BLG0VD51</td>
<td>BLG1A50A</td>
<td>BLG6VALR</td>
<td>BLM6V8IN</td>
</tr>
</tbody>
</table>
Changed Panels – Information/Management Version 6.2

The following panels had both internal and external changes in Version 6.2:

- BLGTD8XM
- BLGTPSET
- BLGOF173
- BLG0J100
- BLG00000
- BLG00001
- BLGIA1AB

- BLGIA1CB
- BLGIA1DD
- BLGIA19B
- BLG6DEVL
- BLG6ISP
- BLG6PNAM
- BLG7ALTT

- BLM1A03
- BLM1AC0D
- BLM1A205
- BLM1S201
- BLM1T20B
- BLM1T253
- BLM8CU5B

- BLMBCU7B
- BLMBCUB8
- BTNMGD2
- BTN1A112
- BTN1A153
- BTN1A173

New Panels – Information/Management Version 6.2

The following panels had both internal and external changes in Version 6.2:

- BLG00000
- BLG6DEVL
- BLM1T20B
- BLM1T253
- BLM8CU5B

- BLG6VDES
- BLG6VDSQ
- BLG6VDTA
- BLM6VRNM
- BLM6VVIN
The following panels had only external changes made for Version 6.2:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPI02</td>
<td>BLGLECN4</td>
<td>BLGPLR1D</td>
<td>BLGLUMI5</td>
</tr>
<tr>
<td>BLGDUMP0</td>
<td>BLGLECN5</td>
<td>BLGPLTFF</td>
<td>BLGLUT1D</td>
</tr>
<tr>
<td>BLGDUMP1</td>
<td>BLGLNVF</td>
<td>BLGPLTNU</td>
<td>BLGLUT11</td>
</tr>
<tr>
<td>BLGESCAL</td>
<td>BLGLV5</td>
<td>BLGPLTN1</td>
<td>BLGLUT12</td>
</tr>
<tr>
<td>BLGESCO2</td>
<td>BLGLRC</td>
<td>BLGPLTN2</td>
<td>BLGLUT13</td>
</tr>
<tr>
<td>BLGLABD</td>
<td>BLGLFEAT</td>
<td>BLGPLTN3</td>
<td>BLGLUT14</td>
</tr>
<tr>
<td>BLGLALT1</td>
<td>BLGLFEA1</td>
<td>BLGPLTN4</td>
<td>BLGLUT15</td>
</tr>
<tr>
<td>BLGLALT5</td>
<td>BLGLFEA2</td>
<td>BLGPLTN5</td>
<td>BLGMIG30</td>
</tr>
<tr>
<td>BLGLAPNU</td>
<td>BLGLFEA3</td>
<td>BLGPLUBF</td>
<td>BLGMIG3E</td>
</tr>
<tr>
<td>BLGLAPN1</td>
<td>BLGLFEA4</td>
<td>BLGPLUBS</td>
<td>BLGMIG31</td>
</tr>
<tr>
<td>BLGLAPN2</td>
<td>BLGLFEA5</td>
<td>BLGPLZFF</td>
<td>BLGMIG32</td>
</tr>
<tr>
<td>BLGLAPN3</td>
<td>BLGLFLD</td>
<td>BLGLREAN</td>
<td>BLGMIG33</td>
</tr>
<tr>
<td>BLGLAPN4</td>
<td>BLGLFM1E</td>
<td>BLGLREA1</td>
<td>BLGMIG35</td>
</tr>
<tr>
<td>BLGLAPN5</td>
<td>BLGLFNAM</td>
<td>BLGLREA2</td>
<td>BLGMIG37</td>
</tr>
<tr>
<td>BLGLBONU</td>
<td>BLGLFNA1</td>
<td>BLGLREA3</td>
<td>BLGMIG39</td>
</tr>
<tr>
<td>BLGLBON1</td>
<td>BLGLFNA2</td>
<td>BLGLREA4</td>
<td>BLGMIG49</td>
</tr>
<tr>
<td>BLGLBON2</td>
<td>BLGLFNA3</td>
<td>BLGLREA5</td>
<td>BLGMIG62</td>
</tr>
<tr>
<td>BLGLBON3</td>
<td>BLGLFNA4</td>
<td>BLGLREGF</td>
<td>BLGMIG91</td>
</tr>
<tr>
<td>BLGLBON4</td>
<td>BLGLFNA5</td>
<td>BLGLRMID</td>
<td>BLGMIG92</td>
</tr>
<tr>
<td>BLGLBON5</td>
<td>BLGLNUM</td>
<td>BLGLRM11</td>
<td>BLGMIG93</td>
</tr>
<tr>
<td>BLGLCNA1</td>
<td>BLGLIP1D</td>
<td>BLGLRM12</td>
<td>BLGMIG94</td>
</tr>
<tr>
<td>BLGLCNA2</td>
<td>BLGLIP11</td>
<td>BLGLRM13</td>
<td>BLGRFALS</td>
</tr>
<tr>
<td>BLGLCNA3</td>
<td>BLGLIP12</td>
<td>BLGLRM14</td>
<td>BLGRFHBK</td>
</tr>
<tr>
<td>BLGLCNA4</td>
<td>BLGLIP13</td>
<td>BLGLRM15</td>
<td>BLGRFSR</td>
</tr>
<tr>
<td>BLGLCNA5</td>
<td>BLGLIP14</td>
<td>BLGLROUF</td>
<td>BLGSSQMP</td>
</tr>
<tr>
<td>BLGLCNA6</td>
<td>BLGLIP15</td>
<td>BLGLROUS</td>
<td>BLGTAC1R</td>
</tr>
<tr>
<td>BLGLCRDN</td>
<td>BLGLCRM</td>
<td>BLGLRP01</td>
<td>BLGTDX1</td>
</tr>
<tr>
<td>BLGLDEVF</td>
<td>BLGLD1E</td>
<td>BLGLRP02</td>
<td>BLGTZST</td>
</tr>
<tr>
<td>BLGLDEVL</td>
<td>BLGLLOC</td>
<td>BLGLRP03</td>
<td>BLG0AC45</td>
</tr>
<tr>
<td>BLGLDFE1</td>
<td>BLGLLC1</td>
<td>BLGLRP04</td>
<td>BLG0BU00</td>
</tr>
<tr>
<td>BLGLMSN</td>
<td>BLGLLC2</td>
<td>BLGLRP05</td>
<td>BLG0BU10</td>
</tr>
<tr>
<td>BLGLMS1</td>
<td>BLGLLC3</td>
<td>BLGLRP06</td>
<td>BLG0BU11</td>
</tr>
<tr>
<td>BLGLMS2</td>
<td>BLGLLC4</td>
<td>BLGLSLVE</td>
<td>BLG0BU90</td>
</tr>
<tr>
<td>BLGLMS3</td>
<td>BLGLLC5</td>
<td>BLGLSL1</td>
<td>BLG0D100</td>
</tr>
<tr>
<td>BLGLMS4</td>
<td>BLGLLSP</td>
<td>BLGLSL2</td>
<td>BLG0D200</td>
</tr>
<tr>
<td>BLGLMS5</td>
<td>BLGLLTEYE</td>
<td>BLGLSL3</td>
<td>BLG0D300</td>
</tr>
<tr>
<td>BLGLNUM</td>
<td>BLGLLVF</td>
<td>BLGLSL4</td>
<td>BLG0D400</td>
</tr>
<tr>
<td>BLGLDNU1</td>
<td>BLGLLVLP</td>
<td>BLGLSL5</td>
<td>BLG0D402</td>
</tr>
<tr>
<td>BLGLDNU2</td>
<td>BLGLMAUF</td>
<td>BLGLSP1D</td>
<td>BLG0D500</td>
</tr>
<tr>
<td>BLGLDNCN</td>
<td>BLGLMIUF</td>
<td>BLGLSP11</td>
<td>BLG0D502</td>
</tr>
<tr>
<td>BLGLDC1</td>
<td>BLGLMNAM</td>
<td>BLGLSP12</td>
<td>BLG0D901</td>
</tr>
<tr>
<td>BLGLDC2</td>
<td>BLGLMA1</td>
<td>BLGLSP13</td>
<td>BLG0D902</td>
</tr>
<tr>
<td>BLGLDYP1</td>
<td>BLGLMA2</td>
<td>BLGLSP14</td>
<td>BLG0D903</td>
</tr>
<tr>
<td>BLGLDVA1</td>
<td>BLGLMA3</td>
<td>BLGLSP15</td>
<td>BLG0CU00</td>
</tr>
<tr>
<td>BLGLDN1</td>
<td>BLGLMA4</td>
<td>BLGLSQMP</td>
<td>BLG0CU01</td>
</tr>
<tr>
<td>BLGLDVP2</td>
<td>BLGLMNA5</td>
<td>BLGLSTM</td>
<td>BLG0CU10</td>
</tr>
<tr>
<td>BLGLDV3</td>
<td>BLGLMDF</td>
<td>BLGLSUD</td>
<td>BLG0CU11</td>
</tr>
<tr>
<td>BLGLDV4</td>
<td>BLGLMSGC</td>
<td>BLGLSU1</td>
<td>BLG0CU21</td>
</tr>
<tr>
<td>BLGLDV5</td>
<td>BLGLSPRO</td>
<td>BLGLSU12</td>
<td>BLG0CU30</td>
</tr>
<tr>
<td>BLGLVS1</td>
<td>BLGLSR1</td>
<td>BLGLSU13</td>
<td>BLG0CU31</td>
</tr>
<tr>
<td>BLGLNPR2</td>
<td>BLGLSU14</td>
<td>BLG0CU40</td>
<td></td>
</tr>
<tr>
<td>BLGLNPR3</td>
<td>BLGLSU15</td>
<td>BLG0CU51</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP1</td>
<td>BLGLSU16</td>
<td>BLG0CU52</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP2</td>
<td>BLGLSWC</td>
<td>BLG0CU53</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP3</td>
<td>BLGLSWRC</td>
<td>BLG0CU54</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP4</td>
<td>BLGLUM1D</td>
<td>BLG0CU55</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP5</td>
<td>BLGLUM11</td>
<td>BLG0CU56</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP1</td>
<td>BLGLUM12</td>
<td>BLG0CU61</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP2</td>
<td>BLGLUM13</td>
<td>BLG0CU62</td>
<td></td>
</tr>
<tr>
<td>BLGLNUP3</td>
<td>BLGLUM14</td>
<td>BLG0CU63</td>
<td></td>
</tr>
</tbody>
</table>

Version 7.1
Changed Panels – Information/Management Version 6.2

<table>
<thead>
<tr>
<th>Changed Panels</th>
<th>Information/Management Version 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG0C064</td>
<td>BLG0D0153</td>
</tr>
<tr>
<td>BLG0C065</td>
<td>BLG0D154</td>
</tr>
<tr>
<td>BLG0C066</td>
<td>BLG0D157</td>
</tr>
<tr>
<td>BLG0C071</td>
<td>BLG0D160</td>
</tr>
<tr>
<td>BLG0C072</td>
<td>BLG0D164</td>
</tr>
<tr>
<td>BLG0C073</td>
<td>BLG0D170</td>
</tr>
<tr>
<td>BLG0C100</td>
<td>BLG0D172</td>
</tr>
<tr>
<td>BLG0C151</td>
<td>BLG0D200</td>
</tr>
<tr>
<td>BLG0C152</td>
<td>BLG0D204</td>
</tr>
<tr>
<td>BLG0C153</td>
<td>BLG0D205</td>
</tr>
<tr>
<td>BLG0C154</td>
<td>BLG0D220</td>
</tr>
<tr>
<td>BLG0C155</td>
<td>BLG0D230</td>
</tr>
<tr>
<td>BLG0C156</td>
<td>BLG0D250</td>
</tr>
<tr>
<td>BLG0C161</td>
<td>BLG0D251</td>
</tr>
<tr>
<td>BLG0C162</td>
<td>BLG0D253</td>
</tr>
<tr>
<td>BLG0C163</td>
<td>BLG0D254</td>
</tr>
<tr>
<td>BLG0C164</td>
<td>BLG0D257</td>
</tr>
<tr>
<td>BLG0C165</td>
<td>BLG0D290</td>
</tr>
<tr>
<td>BLG0C166</td>
<td>BLG0D291</td>
</tr>
<tr>
<td>BLG0C171</td>
<td>BLG0D292</td>
</tr>
<tr>
<td>BLG0C172</td>
<td>BLG0D293</td>
</tr>
<tr>
<td>BLG0C173</td>
<td>BLG0D294</td>
</tr>
<tr>
<td>BLG0C200</td>
<td>BLG0D295</td>
</tr>
<tr>
<td>BLG0C300</td>
<td>BLG0D296</td>
</tr>
<tr>
<td>BLG0C400</td>
<td>BLG0D297</td>
</tr>
<tr>
<td>BLG0C422</td>
<td>BLG0D298</td>
</tr>
<tr>
<td>BLG0C500</td>
<td>BLG0D299</td>
</tr>
<tr>
<td>BLG0C600</td>
<td>BLG0D300</td>
</tr>
<tr>
<td>BLG0C620</td>
<td>BLG0D301</td>
</tr>
<tr>
<td>BLG0C630</td>
<td>BLG0D302</td>
</tr>
<tr>
<td>BLG0C640</td>
<td>BLG0D303</td>
</tr>
<tr>
<td>BLG0C700</td>
<td>BLG0D304</td>
</tr>
<tr>
<td>BLG0D001</td>
<td>BLG0D305</td>
</tr>
<tr>
<td>BLG0D002</td>
<td>BLG0D306</td>
</tr>
<tr>
<td>BLG0D003</td>
<td>BLG0D307</td>
</tr>
<tr>
<td>BLG0D004</td>
<td>BLG0D308</td>
</tr>
<tr>
<td>BLG0D005</td>
<td>BLG0D309</td>
</tr>
<tr>
<td>BLG0D006</td>
<td>BLG0D310</td>
</tr>
<tr>
<td>BLG0D007</td>
<td>BLG0D311</td>
</tr>
<tr>
<td>BLG0D008</td>
<td>BLG0D312</td>
</tr>
<tr>
<td>BLG0D009</td>
<td>BLG0D313</td>
</tr>
<tr>
<td>BLG0D010</td>
<td>BLG0D314</td>
</tr>
<tr>
<td>BLG0D011</td>
<td>BLG0D315</td>
</tr>
<tr>
<td>BLG0D012</td>
<td>BLG0D316</td>
</tr>
<tr>
<td>BLG0D013</td>
<td>BLG0D317</td>
</tr>
<tr>
<td>BLG0D014</td>
<td>BLG0D318</td>
</tr>
<tr>
<td>BLG0D015</td>
<td>BLG0D319</td>
</tr>
<tr>
<td>BLG0D016</td>
<td>BLG0D320</td>
</tr>
<tr>
<td>BLG0D017</td>
<td>BLG0D321</td>
</tr>
<tr>
<td>BLG0D018</td>
<td>BLG0D322</td>
</tr>
<tr>
<td>BLG0D019</td>
<td>BLG0D323</td>
</tr>
<tr>
<td>BLG0D020</td>
<td>BLG0D324</td>
</tr>
<tr>
<td>BLG0D021</td>
<td>BLG0D325</td>
</tr>
<tr>
<td>BLG0D022</td>
<td>BLG0D326</td>
</tr>
<tr>
<td>BLG0D023</td>
<td>BLG0D327</td>
</tr>
<tr>
<td>BLG0D024</td>
<td>BLG0D328</td>
</tr>
<tr>
<td>BLG0D025</td>
<td>BLG0D329</td>
</tr>
<tr>
<td>BLG0D026</td>
<td>BLG0D330</td>
</tr>
<tr>
<td>BLG0D027</td>
<td>BLG0D331</td>
</tr>
<tr>
<td>BLG0D028</td>
<td>BLG0D332</td>
</tr>
<tr>
<td>BLG0D029</td>
<td>BLG0D333</td>
</tr>
</tbody>
</table>

Planning and Installation Guide and Reference

387
Changed Panels – Information/Management Version 6.2

<table>
<thead>
<tr>
<th>Changed Panels</th>
<th>New Panel Code</th>
<th>Removed Panel Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGN784</td>
<td>BLGT101</td>
<td>BLG1AC06</td>
</tr>
<tr>
<td>BLGN787</td>
<td>BLGT101</td>
<td>BLG1AC07</td>
</tr>
<tr>
<td>BLGN790</td>
<td>BLGT120</td>
<td>BLG1AC08</td>
</tr>
<tr>
<td>BLGN791</td>
<td>BLGT200</td>
<td>BLG1AC09</td>
</tr>
<tr>
<td>BLGN792</td>
<td>BLGU000</td>
<td>BLG1AC1R</td>
</tr>
<tr>
<td>BLGP100</td>
<td>BLGU001</td>
<td>BLG1AC15</td>
</tr>
<tr>
<td>BLGP101</td>
<td>BLGU100</td>
<td>BLG1AC17</td>
</tr>
<tr>
<td>BLGP200</td>
<td>BLGU120</td>
<td>BLG1AC10</td>
</tr>
<tr>
<td>BLGP300</td>
<td>BLGU200</td>
<td>BLG1AC1V</td>
</tr>
<tr>
<td>BLGP410</td>
<td>BLGV090</td>
<td>BLG1AC1W</td>
</tr>
<tr>
<td>BLGP420</td>
<td>BLGV100</td>
<td>BLG1AC10</td>
</tr>
<tr>
<td>BLGP430</td>
<td>BLGV190</td>
<td>BLG1AC11</td>
</tr>
<tr>
<td>BLGP510</td>
<td>BLGV800</td>
<td>BLG1AC12</td>
</tr>
<tr>
<td>BLGP511</td>
<td>BLGW010</td>
<td>BLG1AC13</td>
</tr>
<tr>
<td>BLGP520</td>
<td>BLGW050</td>
<td>BLG1AC14</td>
</tr>
<tr>
<td>BLGP521</td>
<td>BLGW060</td>
<td>BLG1AC15</td>
</tr>
<tr>
<td>BLGP530</td>
<td>BLGW070</td>
<td>BLG1AC16</td>
</tr>
<tr>
<td>BLGP531</td>
<td>BLGW080</td>
<td>BLG1AC17</td>
</tr>
<tr>
<td>BLGP700</td>
<td>BLGW090</td>
<td>BLG1AC18</td>
</tr>
<tr>
<td>BLGP810</td>
<td>BLGW110</td>
<td>BLG1AC19</td>
</tr>
<tr>
<td>BLGP811</td>
<td>BLGW111</td>
<td>BLG1AC25</td>
</tr>
<tr>
<td>BLGP820</td>
<td>BLGW112</td>
<td>BLG1AC2W</td>
</tr>
<tr>
<td>BLGP821</td>
<td>BLGW113</td>
<td>BLG1AC20</td>
</tr>
<tr>
<td>BLGP830</td>
<td>BLGW114</td>
<td>BLG1AC21</td>
</tr>
<tr>
<td>BLGP831</td>
<td>BLGW115</td>
<td>BLG1AC22</td>
</tr>
<tr>
<td>BLGQUP0</td>
<td>BLGW116</td>
<td>BLG1AC23</td>
</tr>
<tr>
<td>BLGQ100</td>
<td>BLGW117</td>
<td>BLG1AC24</td>
</tr>
<tr>
<td>BLGQ200</td>
<td>BLGW118</td>
<td>BLG1AC25</td>
</tr>
<tr>
<td>BLGQ210</td>
<td>BLGW119</td>
<td>BLG1AC26</td>
</tr>
<tr>
<td>BLGQ211</td>
<td>BLGW120</td>
<td>BLG1AC27</td>
</tr>
<tr>
<td>BLGQ212</td>
<td>BLGW121</td>
<td>BLG1AC28</td>
</tr>
<tr>
<td>BLGQ213</td>
<td>BLGW123</td>
<td>BLG1AC29</td>
</tr>
<tr>
<td>BLGQ214</td>
<td>BLGW200</td>
<td>BLG1AC30</td>
</tr>
<tr>
<td>BLGQ215</td>
<td>BLGW210</td>
<td>BLG1AC31</td>
</tr>
<tr>
<td>BLGQ216</td>
<td>BLGW250</td>
<td>BLG1AC32</td>
</tr>
<tr>
<td>BLGQ220</td>
<td>BLGW300</td>
<td>BLG1AC33</td>
</tr>
<tr>
<td>BLGQ230</td>
<td>BLGW301</td>
<td>BLG1AC34</td>
</tr>
<tr>
<td>BLGQ240</td>
<td>BLGW500</td>
<td>BLG1AC35</td>
</tr>
<tr>
<td>BLGQ250</td>
<td>BLGW510</td>
<td>BLG1AC36</td>
</tr>
<tr>
<td>BLGQ260</td>
<td>BLGX100</td>
<td>BLG1AC37</td>
</tr>
<tr>
<td>BLGQ270</td>
<td>BLGY200</td>
<td>BLG1AC39</td>
</tr>
<tr>
<td>BLGQ290</td>
<td>BLGZ050</td>
<td>BLG1AC40</td>
</tr>
<tr>
<td>BLGQ300</td>
<td>BLGZU00</td>
<td>BLG1D00</td>
</tr>
<tr>
<td>BLGRU00</td>
<td>BLGZU50</td>
<td>BLG1D01</td>
</tr>
<tr>
<td>BLGR010</td>
<td>BLGZ100</td>
<td>BLGIAEXT</td>
</tr>
<tr>
<td>BLGR111</td>
<td>BLGZ500</td>
<td>BLG1AF46</td>
</tr>
<tr>
<td>BLGR202</td>
<td>BLGZ510</td>
<td>BLG1AF48</td>
</tr>
<tr>
<td>BLGR100</td>
<td>BLGZ530</td>
<td>BLG1AF49</td>
</tr>
<tr>
<td>BLGOSU50</td>
<td>BLG0001</td>
<td>BLG1AF68</td>
</tr>
<tr>
<td>BLGOS010</td>
<td>BLG0002</td>
<td>BLG1AJ00</td>
</tr>
<tr>
<td>BLGOS011</td>
<td>BLG1AAP</td>
<td>BLG1AJ01</td>
</tr>
<tr>
<td>BLGOS020</td>
<td>BLG1AUP</td>
<td>BLG1AJ20</td>
</tr>
<tr>
<td>BLGOS021</td>
<td>BLG1ACP</td>
<td>BLG1AJ21</td>
</tr>
<tr>
<td>BLGOS060</td>
<td>BLG1ACTL</td>
<td>BLG1AJ30</td>
</tr>
<tr>
<td>BLGOS061</td>
<td>BLG1AC0A</td>
<td>BLG1AJ40</td>
</tr>
<tr>
<td>BLGOS050</td>
<td>BLG1AC00</td>
<td>BLG1AJ60</td>
</tr>
<tr>
<td>BLGOS051</td>
<td>BLG1AC01</td>
<td>BLG1AJ70</td>
</tr>
<tr>
<td>BLGOS030</td>
<td>BLG1AC02</td>
<td>BLG1A001</td>
</tr>
<tr>
<td>BLGOTU01</td>
<td>BLG1AC04</td>
<td>BLG1ARVC</td>
</tr>
<tr>
<td>BLGOTU02</td>
<td>BLG1AC05</td>
<td>BLG1AW00</td>
</tr>
<tr>
<td>BLGOT100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLG1A1DC</td>
<td>BLG1A1E</td>
<td>BLG1A1F</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>BLG1A16</td>
<td>BLG1A17</td>
<td>BLG1A18</td>
</tr>
<tr>
<td>BLG1A1C</td>
<td>BLG1A1D</td>
<td>BLG1A1E</td>
</tr>
<tr>
<td>BLG1A1B</td>
<td>BLG1A1A</td>
<td>BLG1A19</td>
</tr>
<tr>
<td>BLG1A8</td>
<td>BLG1A7</td>
<td>BLG1A6</td>
</tr>
<tr>
<td>BLG1A1C</td>
<td>BLG1A1D</td>
<td>BLG1A1E</td>
</tr>
<tr>
<td>BLG1A1B</td>
<td>BLG1A1A</td>
<td>BLG1A19</td>
</tr>
<tr>
<td>BLG1A8</td>
<td>BLG1A7</td>
<td>BLG1A6</td>
</tr>
<tr>
<td>Panel Code</td>
<td>Description</td>
<td>Panel Code</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>BLGITCON</td>
<td></td>
<td>BLG1XMP3</td>
</tr>
<tr>
<td>BLGITCOS</td>
<td></td>
<td>BLG1XMP4</td>
</tr>
<tr>
<td>BLGITCRL</td>
<td></td>
<td>BLG1XMP5</td>
</tr>
<tr>
<td>BLGITDAD</td>
<td></td>
<td>BLG1XMP6</td>
</tr>
<tr>
<td>BLGITDAK</td>
<td></td>
<td>BLG1ZSTA</td>
</tr>
<tr>
<td>BLGITDIE</td>
<td></td>
<td>BLG2APNU</td>
</tr>
<tr>
<td>BLGITDJU</td>
<td></td>
<td>BLG2CNAM</td>
</tr>
<tr>
<td>BLGITDNO</td>
<td></td>
<td>BLG2CRDN</td>
</tr>
<tr>
<td>BLGITDOR</td>
<td></td>
<td>BLG2DEVF</td>
</tr>
<tr>
<td>BLGITDSD</td>
<td></td>
<td>BLG2DEVL</td>
</tr>
<tr>
<td>BLGITDSR</td>
<td></td>
<td>BLG2DFEA</td>
</tr>
<tr>
<td>BLGITDST</td>
<td></td>
<td>BLG2DMSN</td>
</tr>
<tr>
<td>BLGITESC</td>
<td></td>
<td>BLG2DNUM</td>
</tr>
<tr>
<td>BLGITFEL</td>
<td></td>
<td>BLG2DOCN</td>
</tr>
<tr>
<td>BLGITGLD</td>
<td></td>
<td>BLG2DTPY</td>
</tr>
<tr>
<td>BLGITLHP</td>
<td></td>
<td>BLG2DU01</td>
</tr>
<tr>
<td>BLGITMDS</td>
<td></td>
<td>BLG2DU33</td>
</tr>
<tr>
<td>BLGITJUS</td>
<td></td>
<td>BLG2DU39</td>
</tr>
<tr>
<td>BLGITMOD</td>
<td></td>
<td>BLG2DVNA</td>
</tr>
<tr>
<td>BLGITMSG</td>
<td></td>
<td>BLG2DVSR</td>
</tr>
<tr>
<td>BLGITMSQ</td>
<td></td>
<td>BLG2D000</td>
</tr>
<tr>
<td>BLGITMR</td>
<td></td>
<td>BLG2D104</td>
</tr>
<tr>
<td>BLGITMST</td>
<td></td>
<td>BLG2D701</td>
</tr>
<tr>
<td>BLGITMSV</td>
<td></td>
<td>BLG2ECLV</td>
</tr>
<tr>
<td>BLGITNOT</td>
<td></td>
<td>BLG2ECNU</td>
</tr>
<tr>
<td>BLGITPC</td>
<td></td>
<td>BLG2ENVF</td>
</tr>
<tr>
<td>BLGITPHT</td>
<td></td>
<td>BLG2ENVS</td>
</tr>
<tr>
<td>BLGITREL</td>
<td></td>
<td>BLG2ERCE</td>
</tr>
<tr>
<td>BLGITRES</td>
<td></td>
<td>BLG2FDF</td>
</tr>
<tr>
<td>BLGITSEF</td>
<td></td>
<td>BLG2FAMIE</td>
</tr>
<tr>
<td>BLGITSMF</td>
<td></td>
<td>BLG2FMAM</td>
</tr>
<tr>
<td>BLGITSMW</td>
<td></td>
<td>BLG2GO00</td>
</tr>
<tr>
<td>BLGITSQL</td>
<td></td>
<td>BLG2GO100</td>
</tr>
<tr>
<td>BLGITSRC</td>
<td></td>
<td>BLG2GO100</td>
</tr>
<tr>
<td>BLGITSR</td>
<td></td>
<td>BLG2GO130</td>
</tr>
<tr>
<td>BLGITSTA</td>
<td></td>
<td>BLG2GO135</td>
</tr>
<tr>
<td>BLGITSTT</td>
<td></td>
<td>BLG2G175</td>
</tr>
<tr>
<td>BLGITSUB</td>
<td></td>
<td>BLG2G700</td>
</tr>
<tr>
<td>BLGTVYH</td>
<td></td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLGITYBL</td>
<td></td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLGITVC</td>
<td></td>
<td>BLG2G735</td>
</tr>
<tr>
<td>BLGITVID</td>
<td></td>
<td>BLG2G100</td>
</tr>
<tr>
<td>BLGITVI</td>
<td></td>
<td>BLG2G130</td>
</tr>
<tr>
<td>BLGITVIE</td>
<td></td>
<td>BLG2G135</td>
</tr>
<tr>
<td>BLGITVRD</td>
<td></td>
<td>BLG2G175</td>
</tr>
<tr>
<td>BLGIT006</td>
<td></td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLGIT22</td>
<td></td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLGIT39</td>
<td></td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLGIT01</td>
<td></td>
<td>BLG2G735</td>
</tr>
<tr>
<td>BLGIT02</td>
<td></td>
<td>BLG2G100</td>
</tr>
<tr>
<td>BLGIT02</td>
<td></td>
<td>BLG2G130</td>
</tr>
<tr>
<td>BLGIT20</td>
<td></td>
<td>BLG2G135</td>
</tr>
<tr>
<td>BLGIT24</td>
<td></td>
<td>BLG2G175</td>
</tr>
<tr>
<td>BLGIT25</td>
<td></td>
<td>BLG2G730</td>
</tr>
<tr>
<td>BLGIT26</td>
<td></td>
<td>BLG2G735</td>
</tr>
<tr>
<td>BLGIT31</td>
<td></td>
<td>BLG2G100</td>
</tr>
<tr>
<td>BLGIT32</td>
<td></td>
<td>BLG2G130</td>
</tr>
<tr>
<td>BLG1XMP1</td>
<td></td>
<td>BLG2G135</td>
</tr>
<tr>
<td>BLG1XMP2</td>
<td></td>
<td>BLG2G175</td>
</tr>
</tbody>
</table>

Planning and Installation Guide and Reference
<table>
<thead>
<tr>
<th>Changed Panels</th>
<th>Information/Management Version 6.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. New, Changed, and Removed Panels</td>
<td></td>
</tr>
</tbody>
</table>

Planning and Installation Guide and Reference 393
<table>
<thead>
<tr>
<th>Panel Code</th>
<th>Description</th>
<th>Version 6.2</th>
<th>Version 7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM1A804</td>
<td>BLM1A812</td>
<td>BLM1Y656</td>
<td>BLM8CL10</td>
</tr>
<tr>
<td>BLM1A805</td>
<td>BLM1A815</td>
<td>BLM1Y657</td>
<td>BLM8CL20</td>
</tr>
<tr>
<td>BLM1A806</td>
<td>BLM1A817</td>
<td>BLM1Y658</td>
<td>BLM8CL30</td>
</tr>
<tr>
<td>BLM1A807</td>
<td>BLM1A831</td>
<td>BLM1Y659</td>
<td>BLM8CL50</td>
</tr>
<tr>
<td>BLM1A808</td>
<td>BLM1A832</td>
<td>BLM2FD17</td>
<td>BLM8CL60</td>
</tr>
<tr>
<td>BLM1A809</td>
<td>BLM1A833</td>
<td>BLM2FD39</td>
<td>BLM8CT00</td>
</tr>
<tr>
<td>BLM1A811</td>
<td>BLM1A834</td>
<td>BLM2FD45</td>
<td>BLM8CU00</td>
</tr>
<tr>
<td>BLM1A813</td>
<td>BLM1A835</td>
<td>BLM2FD46</td>
<td>BLM8CU1A</td>
</tr>
<tr>
<td>BLM1A810</td>
<td>BLM1A836</td>
<td>BLM2FD78</td>
<td>BLM8CU1B</td>
</tr>
<tr>
<td>BLM1A812</td>
<td>BLM1A837</td>
<td>BLM6APP</td>
<td>BLM8CU1E</td>
</tr>
<tr>
<td>BLM1A810</td>
<td>BLM1A838</td>
<td>BLM6BDRE</td>
<td>BLM8CU1H</td>
</tr>
<tr>
<td>BLM1A811</td>
<td>BLM1A839</td>
<td>BLM6CRTA</td>
<td>BLM8CU11</td>
</tr>
<tr>
<td>BLM1A812</td>
<td>BLM1A851</td>
<td>BLM6FATA</td>
<td>BLM8CU12</td>
</tr>
<tr>
<td>BLM1A813</td>
<td>BLM1TDP0</td>
<td>BLM6FINA</td>
<td>BLM8CU13</td>
</tr>
<tr>
<td>BLM1A812</td>
<td>BLM1TDP1</td>
<td>BLM6FNAME</td>
<td>BLM8CU17</td>
</tr>
<tr>
<td>BLM1A811</td>
<td>BLM1TDP2</td>
<td>BLM6FRFN</td>
<td>BLM8CU2A</td>
</tr>
<tr>
<td>BLM1A822</td>
<td>BLM1TDP5</td>
<td>BLM6FRPA</td>
<td>BLM8CU2B</td>
</tr>
<tr>
<td>BLM1A823</td>
<td>BLM1TDP6</td>
<td>BLM6FUEX</td>
<td>BLM8CU2E</td>
</tr>
<tr>
<td>BLM1A824</td>
<td>BLM1TDP7</td>
<td>BLM6HEPA</td>
<td>BLM8CU2H</td>
</tr>
<tr>
<td>BLM1A830</td>
<td>BLM1TDP8</td>
<td>BLM6HETA</td>
<td>BLM8CU2I</td>
</tr>
<tr>
<td>BLM1A840</td>
<td>BLM1TSAC</td>
<td>BLM6INLE</td>
<td>BLM8CU22</td>
</tr>
<tr>
<td>BLM1A850</td>
<td>BLM1TSCU</td>
<td>BLM6INTA</td>
<td>BLM8CU23</td>
</tr>
<tr>
<td>BLM1A855</td>
<td>BLM1TSU1</td>
<td>BLM6KPEH</td>
<td>BLM8CU27</td>
</tr>
<tr>
<td>BLM1A855</td>
<td>BLM1TSU2</td>
<td>BLM6LANA</td>
<td>BLM8CU31</td>
</tr>
<tr>
<td>BLM1A850</td>
<td>BLM1TSU4</td>
<td>BLM6NCTA</td>
<td>BLM8CU37</td>
</tr>
<tr>
<td>BLM1A850</td>
<td>BLM1TSU5</td>
<td>BLM6NITA</td>
<td>BLM8CU41</td>
</tr>
<tr>
<td>BLM1A851</td>
<td>BLM1TSU6</td>
<td>BLM6NPNL</td>
<td>BLM8CU43</td>
</tr>
<tr>
<td>BLM1A852</td>
<td>BLM1TSU7</td>
<td>BLM6NRTA</td>
<td>BLM8CU47</td>
</tr>
<tr>
<td>BLM1A853</td>
<td>BLM1TSU8</td>
<td>BLM6PAID</td>
<td>BLM8CU5A</td>
</tr>
<tr>
<td>BLM1A854</td>
<td>BLM1TSU9</td>
<td>BLM6PANA</td>
<td>BLM8CU5O</td>
</tr>
<tr>
<td>BLM1A855</td>
<td>BLM1TUCU</td>
<td>BLM6PARA</td>
<td>BLM8CU5E</td>
</tr>
<tr>
<td>BLM1A856</td>
<td>BLM1TUCU2</td>
<td>BLM6PARM</td>
<td>BLM8CU51</td>
</tr>
<tr>
<td>BLM1A857</td>
<td>BLM1YCC</td>
<td>BLM6PETN</td>
<td>BLM8CU51</td>
</tr>
<tr>
<td>BLM1A858</td>
<td>BLM1YCS</td>
<td>BLM6PGUS</td>
<td>BLM8CU53</td>
</tr>
<tr>
<td>BLM1A859</td>
<td>BLM1YCT</td>
<td>BLM6STFN</td>
<td>BLM8CU55</td>
</tr>
<tr>
<td>BLM1A860</td>
<td>BLM1YCU</td>
<td>BLM6SWD1</td>
<td>BLM8CU57</td>
</tr>
<tr>
<td>BLM1A870</td>
<td>BLM1YCU1</td>
<td>BLM6TFNA</td>
<td>BLM8CU6A</td>
</tr>
<tr>
<td>BLM1A880</td>
<td>BLM1YCU2</td>
<td>BLM6TOγF</td>
<td>BLM8CU6B</td>
</tr>
<tr>
<td>BLM1A890</td>
<td>BLM1YCU3</td>
<td>BLM6TOPA</td>
<td>BLM8CU61</td>
</tr>
<tr>
<td>BLM1A900</td>
<td>BLM1YCU4</td>
<td>BLM6TRTA</td>
<td>BLM8CU63</td>
</tr>
<tr>
<td>BLM1A100</td>
<td>BLM1YCU5</td>
<td>BLM6VENA</td>
<td>BLM8CU64</td>
</tr>
<tr>
<td>BLM1A008</td>
<td>BLM1YCU6</td>
<td>BLM6YACHI</td>
<td>BLM8CU67</td>
</tr>
<tr>
<td>BLM1A101</td>
<td>BLM1YCU7</td>
<td>BLM6YOA</td>
<td>BLM8CU7A</td>
</tr>
<tr>
<td>BLM1A200</td>
<td>BLM1YCU8</td>
<td>BLM6Y00B</td>
<td>BLM8CU7E</td>
</tr>
<tr>
<td>BLM1A030</td>
<td>BLM1YCU9</td>
<td>BLM6Y00C</td>
<td>BLM8CU7H</td>
</tr>
<tr>
<td>BLM1A050</td>
<td>BLM1YCU10</td>
<td>BLM6Y00D</td>
<td>BLM8CU71</td>
</tr>
<tr>
<td>BLM1A060</td>
<td>BLM1YCU11</td>
<td>BLM6Y00F</td>
<td>BLM8CU72</td>
</tr>
<tr>
<td>BLM1A201</td>
<td>BLM1YCU12</td>
<td>BLM6Y00H</td>
<td>BLM8CU73</td>
</tr>
<tr>
<td>BLM1A202</td>
<td>BLM1YCU13</td>
<td>BLM6Y001</td>
<td>BLM8CU77</td>
</tr>
<tr>
<td>BLM1A213</td>
<td>BLM1YCU14</td>
<td>BLM6Y00L</td>
<td>BLM8CU79</td>
</tr>
<tr>
<td>BLM1A214</td>
<td>BLM1YCU15</td>
<td>BLM6Y002</td>
<td>BLM8CU8A</td>
</tr>
<tr>
<td>BLM1A215</td>
<td>BLM1YCU16</td>
<td>BLM6Y003</td>
<td>BLM8CU81</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU17</td>
<td>BLM6Y004</td>
<td>BLM8CU83</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU18</td>
<td>BLM6Y005</td>
<td>BLM8CU85</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU19</td>
<td>BLM6Y006</td>
<td>BLM8CU87</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU20</td>
<td>BLM6Y007</td>
<td>BLM8CU9A</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU21</td>
<td>BLM6Y008</td>
<td>BLM8CU9B</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU22</td>
<td>BLM6Y009</td>
<td>BLM8CU9C</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU23</td>
<td>BLM6Y010</td>
<td>BLM8CU9D</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU24</td>
<td>BLM6Y010</td>
<td>BLM8CU9E</td>
</tr>
<tr>
<td>BLM1A400</td>
<td>BLM1YCU25</td>
<td>BLM6Y010</td>
<td>BLM8CU9F</td>
</tr>
</tbody>
</table>
Changed Panels – Information/Management Version 6.2

BLM8CU9F BTNTCEHW BTNTLA02 BTNT00P1
BLM8CU9G BTNTCENW BTNTLA03 BTNT00U0
BLM8CU9H BTNTCEPC BTNTLA04 BTNT00U10
BLM8CU9I BTNTCESW BTNTLA05 BTNT00U11
BLM8CU9J BTNTCE10 BTNTLA06 BTNT00001
BLM8CU9K BTNTCE11 BTNTLA07 BTNT00002
BLM8CU9L BTNTCN01 BTNTLA08 BTNT00102
BLM8CU9M BTNTCN02 BTNTLA09 BTNT00103
BLM8CU9N BTNTCN03 BTNTLA10 BTNT00104
BLM8CU9O BTNTCN04 BTNTLA11 BTNT02000
BLM8CU9P BTNTCN05 BTNTLA12 BTNT03000
BLM8CU9Q BTNTCN06 BTNTLA13 BTNT05000
BLM8CU9R BTNTCN07 BTNTLA14 BTN0C0TX
BLM8CU9S BTNTCN08 BTNTLA15 BTN0C0U0
BLM8CU9T BTNTCN09 BTNTNPDA BTN0C0U1
BLM8CU9U BTNTCONT BTNTNRES BTN0C101
BLM8CU9V BTNTCSLK BTN1N501 BTN0C200
BLM8CU9W BTNTCSTT BTN1P001 BTN0C300
BLM8CU9X BTNTCST1 BTN1P002 BTN0D0U01
BLM8CU9Y BTNTCST01 BTN1P003 BTN0D0U03
BLM8CU9Z BTNTCST02 BTN1P004 BTN0D0U18
BTN1G1D1 BTN1G1D07 BTN1P007 BTN0D0U31
BTN1G1G1 BTN1G1D125 BTN1P008 BTN0D100
BTN1G1TCE BTN1G1D109 BTN1P009 BTN0D102
BTN1G1RFUSR BTN1G1D108 BTN1P010 BTN0D104
BTN1G1TACLS BTN1G1D111 BTN1P012 BTN0D200
BTN1G1TAC1R BTN1G1D112 BTN1P030 BTN0D500
BTN1G1TAC1S BTN1G1D103 BTN1P032 BTN0E0N20
BTN1G1TAC1U BTN1G1D104 BTN1P033 BTN0E0NPC
BTN1G1TAC1V BTN1G1D105 BTN1P034 BTN0E290
BTN1G1TAC1W BTN1G1D106 BTN1P035 BTN0E290
BTN1G1TAM01 BTN1G1D107 BTN1P036 BTN0E390
BTN1G1TAM02 BTN1G1D108 BTN1P037 BTN0E390
BTN1G1TAPKV BTN1G1D109 BTN1P038 BTN0E690
BTN1G1TARPP BTN1G1D110 BTN1P039 BTN0F090
BTN1G1TARUP BTN1G1D111 BTN1P040 BTN0F190
BTN1G1TASAD BTN1G1D112 BTN1P041 BTN0F290
BTN1G1TASAN BTN1G1D113 BTN1P042 BTN0F390
BTN1G1TASCI BTN1G1D114 BTN1P043 BTN0G1A1
BTN1G1TASC1 BTN1G1D115 BTN1P044 BTN0G1A3
BTN1G1TASCP BTN1G1D116 BTN1P045 BTN0G19A
BTN1G1TASCR BTN1G1D117 BTN1P046 BTN0G19A
BTN1G1TASCS BTN1G1D118 BTN1P047 BTN0G190
BTN1G1TASGP BTN1G1D119 BTN1P048 BTN0G191
BTN1G1ASP1 BTN1G1D120 BTN1P049 BTN0H000
BTN1G1TASPT BTN1G1D121 BTN1P050 BTN0H000
BTN1G1TASRP BTN1G1D122 BTN1P051 BTN0J100
BTN1G1TASUP BTN1G1D123 BTN1P052 BTN0J200
BTN1G1TAAP BTN1G1D124 BTN1P053 BTN0J300
BTN1G1TACDC BTN1G1D125 BTN1P054 BTN0L100
BTN1G1TACAH BTN1G1D126 BTN1P055 BTN0L200
BTN1G1TACAW BTN1G1D127 BTN1P056 BTN0L300
BTN1G1TACPC BTN1G1D128 BTN1P057 BTN0L500
BTN1G1TACSW BTN1G1D129 BTN1P058 BTN0M010
BTN1G1TAC21 BTN1G1D130 BTN1P059 BTN0M100
BTN1G1TACEAE BTN1G1D131 BTN1P060 BTN0M200
BTN1G1TCEAP BTN1G1D132 BTN1P061 BTN0N100
BTN1G1TCE2 BTN1G1D133 BTN1P062 BTN0N101
BTN1G1TCEDC BTN1G1D134 BTN1P063 BTN0N134
BTN1G1TCEF2 BTN1G1D135 BTN1P064 BTN0N135
BTN0N200	BTN1ASCR	BTN1CS04	BTN1S008
BTN0N201	BTN1ASGP	BTN1CS07	BTN1S026
BTNQ100	BTN1ASP	BTN1CT02	BTN1S027
BTNQ200	BTN1ASPT	BTN1C125	BTN1S028
BTNQ300	BTN1ASRP	BTN1DUPN	BTN1TADO
BTN0S010	BTN1ASUP	BTN1EE01	BTN1TAUP
BTN0S020	BTN1AX03	BTN1ENAS	BTN1TBAC
BTN0S021	BTN1AX06	BTN1ENCC	BTN1TDDE
BTN0W001	BTN1AX11	BTN1ENC	BTN1TDES
BTN0W002	BTN1AX12	BTN1ENDS	BTN1TDSD
BTN0W003	BTN1AX13	BTN1ENES	BTN1TDOM
BTN0W004	BTN1IA011	BTN1ENHD	BTN1TINS
BTN0W005	BTN1IA015	BTN1ENHS	BTN1TJUS
BTN0W006	BTN1IA1CA	BTN1ENNS	BTN1TPS1
BTN0W007	BTN1IA1C3	BTN1ENN	BTN1TSAD
BTN0W008	BTN1IA1C4	BTN1ENN0	BTN1TSAI
BTN0W009	BTN1IA1CB	BTN1ENPC	BTN1TSAN
BTN0W010	BTN1IA1C9	BTN1ENPS	BTN1TSC1
BTN0W011	BTN1IA1E2	BTN1ENSA	BTN1TSC2
BTN0W012	BTN1IA1E3	BTN1ENSS	BTN1TSC3
BTN0W013	BTN1IA1E7	BTN1ENSY	BTN1TSC4
BTN0W014	BTN1IA1E8	BTN1IFS01	BTN1TSF1
BTN0W015	BTN1IA1H0	BTN1IFS06	BTN1TSF2
BTN0W016	BTN1IA1I1	BTN1IFS07	BTN1TSF3
BTN0W017	BTN1IA1I2	BTN1IFS08	BTN1TSF4
BTN0W018	BTN1IA1I3	BTN1G001	BTN1TSF5
BTN0W019	BTN1IA1I4	BTN1G002	BTN1TSF6
BTN0W020	BTN1IA1I5	BTN1H0S01	BTN1TSN1
BTN0W021	BTN1IA11B	BTN1H0S02	BTN1TSSE
BTN0W022	BTN1IA119	BTN1H0S03	BTN1TSST
BTN0W023	BTN1IA120	BTN1H0S06	BTN1TTT
BTN0W024	BTN1IA121	BTN1H0S07	BTN1XREF
BTN0W025	BTN1IA123	BTN1INIT	BTN100CN
BTN0W026	BTN1IA125	BTN1NE01	BTN100CR
BTN0W027	BTN1IA128	BTN1NPDA	BTN100PA
BTN0W028	BTN1IA133	BTN1NS01	BTN100PR
BTN0W029	BTN1IA141	BTN1PE01	BTN100P1
BTN0W030	BTN1IA145	BTN1PE29	BTN100T1
BTN0XN0T	BTN1IA146	BTN1PE30	BTN120000
BTN0XNDES	BTN1IA152	BTN1PF01	BTN6ACMN
BTN0XHD	BTN1IA158	BTN1PF02	BTN6BLOQ
BTN0XSUH	BTN1IA172	BTN1PF03	BTN6COM2
BTN0XUSR	BTN1IA178	BTN1PF04	BTN6DEVN
BTN1AC0A	BTN1IA190	BTN1PF06	BTN6 DUPN
BTN1AC04	BTN1BPPP	BTN1PRI1	BTN6DUP1
BTN1AC07	BTN1CAT1	BTN1PRI1	BTN6DVNM
BTN1AC1R	BTN1CCT3	BTN1PSNV	BTN6FMID
BTN1AC1S	BTN1CCT4	BTN1PSTT	BTN6LCRN
BTN1AC1U	BTN1CEAE	BTN1PST1	BTN6LVL5
BTN1AC1V	BTN1CEF1	BTN1PS01	BTN6000C
BTN1AC1W	BTN1CENL	BTN1PS02	BTN601TM
BTN1AC1W	BTN1CET	BTN1PS03	BTN6nPLOC
BTN0AEC	BTN1CE10	BTN1PS04	BTN6PMAM
BTN0AFCN	BTN1CE11	BTN1PS05	BTN6P01
BTN1AM01	BTN1CSL	BTN1PS07	BTN6REQN
BTN1AM02	BTN1CSST	BTN1PTOT	BTN6REQ1
BTN1APP	BTN1CST1	BTN1P1E1	BTN6RDPQ
BTN1ASAD	BTN1CS01	BTN1EQ1	BTN6RQNM
BTN1ASAN	BTN1CS02	BTN1SRC7	BTN6STAT
BTN1ASC	BTN1CS03	BTN1SR13	BTN6TART
Changed Panels – Information/Management Version 6.2

BTN6TIMX	BTN6XRF1	BTN600CR	BTN7ALTO
BTN6TNDP	BTN600AA	BTN600CI	BTN7CLOC
BTN6URN2	BTN600AG	BTN600PA	BTN7PLOC
BTN6URN4	BTN600CC	BTN600PR	BTN700TN
BTN6XREF	BTN600CN	BTN600TN	

Removed Panels – Information/Management Version 6.2

BLM6SNJU

New Panels – Information/Management Version 6.1

BLGDUMP0	BLG05510	BLG6HBDN	BLM1AU5C
BLGDUMP1	BLG05530	BLG6HBDP	BLM1AU5D
BLGLOAD0	BLG0Z050	BLG6HBFP	BLM1AU5B
BLGLOAD1	BLG0Z051	BLG6HBQN	BLM1AU59
BLGLSQMP	BLG0ZU50	BLG6HBLR	BLM6DPFX
BLGRFHBK	BLG0Z500	BLG6HBSR	BLM6DTYP
BLGSSQMP	BLG0Z510	BLG6HBTI	BLM6NPNL
BLGTDXM	BLG0Z530	BLG6ODES	BLM6PGZ
BLGTDXB1	BLG1A091	BLG6PCPO	BLM6SVAL
BLGTPNP1	BLG1A515	BLG6USQF	BLM6UCL
BLGTZSTA	BLG1TDIS	BLG6SQAI	BLM6VAO
BLGOA137	BLG1ZSTA	BLG6SQMP	BLM6XFIN
BLGOA43	BLG1Z500	BLG6ULCD	BLM8CU9U
BLGOA44	BLG1Z511	BLG6URN4	BLM8CU9V
BLGOA45	BLG1Z515	BLMDT0247	BLM8CU9W
BLG0P101	BLG6HBDL	BLMDT0248	BLM8CU9Y
BLG0S500	BLG6HBBZ	BLM1AU5A	BTN7TARD
BLG0S500	BLG6HBCS	BLM1AU5B	

Planning and Installation Guide and Reference
<table>
<thead>
<tr>
<th>Changed Panels – Information/Management Version 6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLGAPI02</td>
</tr>
<tr>
<td>BLGAPI05</td>
</tr>
<tr>
<td>BLGAPI10</td>
</tr>
<tr>
<td>BLGESCAL</td>
</tr>
<tr>
<td>BLGESCO3</td>
</tr>
<tr>
<td>BLGLALSD</td>
</tr>
<tr>
<td>BLGNOTAEX</td>
</tr>
<tr>
<td>BLGNOTAUX</td>
</tr>
<tr>
<td>BLGNOTCE</td>
</tr>
<tr>
<td>BLGNOTCUC</td>
</tr>
<tr>
<td>BLGNOTPEC</td>
</tr>
<tr>
<td>BLGNOTPUC</td>
</tr>
<tr>
<td>BLGTAC1R</td>
</tr>
<tr>
<td>BLGTAC1S</td>
</tr>
<tr>
<td>BLGTAC1T</td>
</tr>
<tr>
<td>BLGTAC1U</td>
</tr>
<tr>
<td>BLGTAC1V</td>
</tr>
<tr>
<td>BLGTAC1W</td>
</tr>
<tr>
<td>BLGTAC1X</td>
</tr>
<tr>
<td>BLGTAC1Y</td>
</tr>
<tr>
<td>BLGTAC1Z</td>
</tr>
<tr>
<td>BLGTAC2A</td>
</tr>
<tr>
<td>BLGTAC2B</td>
</tr>
<tr>
<td>BLGTAC2C</td>
</tr>
<tr>
<td>BLGTAC2D</td>
</tr>
<tr>
<td>BLGTAC2E</td>
</tr>
<tr>
<td>BLGTAC2F</td>
</tr>
<tr>
<td>BLGTAC2G</td>
</tr>
<tr>
<td>BLGTAC2H</td>
</tr>
<tr>
<td>BLGTAC2I</td>
</tr>
<tr>
<td>BLGTAC2J</td>
</tr>
<tr>
<td>BLGTAC2K</td>
</tr>
<tr>
<td>BLGTAC2L</td>
</tr>
<tr>
<td>BLGTAC2M</td>
</tr>
<tr>
<td>BLGTAC2N</td>
</tr>
<tr>
<td>BLGTAC2O</td>
</tr>
<tr>
<td>BLGTAC2P</td>
</tr>
<tr>
<td>BLGTAC2Q</td>
</tr>
<tr>
<td>BLGTAC2R</td>
</tr>
<tr>
<td>BLGTAC2S</td>
</tr>
<tr>
<td>BLGTAC2T</td>
</tr>
<tr>
<td>BLGTAC2U</td>
</tr>
<tr>
<td>BLGTAC2V</td>
</tr>
<tr>
<td>BLGTAC2W</td>
</tr>
<tr>
<td>BLGTAC2X</td>
</tr>
<tr>
<td>BLGTAC2Y</td>
</tr>
<tr>
<td>BLGTAC2Z</td>
</tr>
<tr>
<td>BLGTAC3A</td>
</tr>
<tr>
<td>BLGTAC3B</td>
</tr>
<tr>
<td>BLGTAC3C</td>
</tr>
<tr>
<td>BLGTAC3D</td>
</tr>
<tr>
<td>BLGTAC3E</td>
</tr>
<tr>
<td>BLGTAC3F</td>
</tr>
<tr>
<td>BLGTAC3G</td>
</tr>
<tr>
<td>BLGTAC3H</td>
</tr>
</tbody>
</table>
Removed Panels – Information/Management Version 6.1

<table>
<thead>
<tr>
<th>BLG0P600</th>
<th>BLG0P610</th>
<th>BLG0P621</th>
<th>BLG1A009</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG0P601</td>
<td>BLG0P611</td>
<td>BLG0P630</td>
<td>BLG6LMD</td>
</tr>
<tr>
<td>BLG0P602</td>
<td>BLG0P620</td>
<td>BLG0P631</td>
<td></td>
</tr>
</tbody>
</table>
Your data processing organization can have many different users performing many different tasks. The books in the Tivoli Information Management for z/OS library contain task-oriented scenarios to teach users how to perform the duties specific to their jobs.

The following table describes the typical tasks in a data processing organization and identifies the Tivoli Information Management for z/OS publication that supports those tasks. See “The Tivoli Information Management for z/OS Library” on page 407 for more information about each book.

Typical Tasks

Table 24. Relating Publications to Specific Tasks

<table>
<thead>
<tr>
<th>If You Are:</th>
<th>And You Do This:</th>
<th>Read This:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning to Use Tivoli Information Management for z/OS</td>
<td>Identify the hardware and software requirements of Tivoli Information Management for z/OS. Identify the prerequisite and corequisite products. Plan and implement a test system.</td>
<td>Tivoli Information Management for z/OS Planning and Installation Guide and Reference</td>
</tr>
<tr>
<td>Installing Tivoli Information Management for z/OS</td>
<td>Install Tivoli Information Management for z/OS. Define and initialize data sets. Create session-parameters members.</td>
<td>Tivoli Information Management for z/OS Planning and Installation Guide and Reference</td>
</tr>
<tr>
<td></td>
<td>Define and create multiple Tivoli Information Management for z/OS BLX-SPs.</td>
<td>Tivoli Information Management for z/OS Planning and Installation Guide and Reference</td>
</tr>
<tr>
<td></td>
<td>Define and create APPC transaction programs for clients.</td>
<td>Tivoli Information Management for z/OS Planning and Installation Guide and Reference</td>
</tr>
<tr>
<td></td>
<td>Define coupling facility structures for sysplex data sharing.</td>
<td>Tivoli Information Management for z/OS Planning and Installation Guide and Reference</td>
</tr>
<tr>
<td>Diagnosing problems</td>
<td>Diagnose problems encountered while using Tivoli Information Management for z/OS</td>
<td>Tivoli Information Management for z/OS Diagnosis Guide</td>
</tr>
</tbody>
</table>
Table 24. Relating Publications to Specific Tasks (continued)

<table>
<thead>
<tr>
<th>If You Are:</th>
<th>And You Do This:</th>
<th>Read This:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administering Tivoli Information Management for z/OS</td>
<td>Manage user profiles and passwords. Define and maintain privilege class records. Define and maintain rules records.</td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program Administration Guide and Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define and maintain USERS record. Define and maintain ALIAS record.</td>
<td></td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td>Implement GUI interface. Define and maintain command aliases and authorizations.</td>
<td></td>
<td>Program Administration Guide and Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement and administer Notification Management. Create user-defined line commands. Define logical database partitioning.</td>
<td></td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program Administration Guide and Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create or modify GUI workstation applications that can interact with Tivoli Information Management for z/OS. Install the Tivoli Information Management for z/OS Desktop on user workstations.</td>
<td></td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desktop User’s Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintaining Tivoli Information Management for z/OS</td>
<td>Set up access to the data sets. Maintain the databases. Define and maintain privilege class records.</td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning and Installation Guide and Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program Administration Guide and Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define and maintain the BLX-SP. Run the utility programs.</td>
<td></td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation and Maintenance Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming applications</td>
<td>Use the application program interfaces.</td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application Program Interface Guide</td>
</tr>
<tr>
<td></td>
<td>Use the application program interfaces for Tivoli Information Management for z/OS clients.</td>
<td>Tivoli Information Management for z/OS Client</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation and User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Create Web applications using or accessing Tivoli Information Management for z/OS data.</td>
<td>Tivoli Information Management for z/OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>World Wide Web Interface Guide</td>
</tr>
</tbody>
</table>
Table 24. Relating Publications to Specific Tasks (continued)

<table>
<thead>
<tr>
<th>If You Are:</th>
<th>And You Do This:</th>
<th>Read This:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customizing Tivoli Information Management for z/OS</td>
<td>Design and implement a Change Management system. Design and implement a Configuration Management system. Design and implement a Problem Management system.</td>
<td>Tivoli Information Management for z/OS Problem, Change, and Configuration Management</td>
</tr>
<tr>
<td></td>
<td>Design, create, and test terminal simulator panels or terminal simulator EXEs. Customize panels and panel flow.</td>
<td>Tivoli Information Management for z/OS Terminal Simulator Guide and Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tivoli Information Management for z/OS Panel Modification Facility Guide</td>
</tr>
<tr>
<td></td>
<td>Design, create, and test Tivoli Information Management for z/OS formatted reports.</td>
<td>Tivoli Information Management for z/OS Data Reporting User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Create a bridge between NetView and Tivoli Information Management for z/OS applications. Integrate Tivoli Information Management for z/OS with Tivoli distributed products.</td>
<td>Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications</td>
</tr>
<tr>
<td>Assisting Users</td>
<td>Create, search, update, and close change, configuration, or problem records. Browse or print Change, Configuration, or Problem Management reports.</td>
<td>Tivoli Information Management for z/OS Problem, Change, and Configuration Management</td>
</tr>
<tr>
<td></td>
<td>Use the Tivoli Information Management for z/OS Integration Facility.</td>
<td>Tivoli Information Management for z/OS Integration Facility Guide</td>
</tr>
<tr>
<td>Using Tivoli Information Management for z/OS</td>
<td>Learn about the Tivoli Information Management for z/OS panel types, record types, and commands. Change a user profile.</td>
<td>Tivoli Information Management for z/OS User’s Guide</td>
</tr>
<tr>
<td></td>
<td>Learn about Problem, Change, and Configuration Management records.</td>
<td>Tivoli Information Management for z/OS Problem, Change, and Configuration Management</td>
</tr>
<tr>
<td></td>
<td>Receive and respond to Tivoli Information Management for z/OS messages.</td>
<td>Tivoli Information Management for z/OS Messages and Codes</td>
</tr>
<tr>
<td></td>
<td>Design and create reports.</td>
<td>Tivoli Information Management for z/OS Data Reporting User’s Guide</td>
</tr>
</tbody>
</table>
Tivoli Information Management for z/OS Courses

Education Offerings

Tivoli Information Management for z/OS classes are available in the United States and in the United Kingdom. For information about classes outside the U.S. and U.K., contact your local IBM representative or visit http://www.training.ibm.com on the World Wide Web.

United States

IBM Education classes can help your users and administrators learn how to get the most out of Tivoli Information Management for z/OS. IBM Education classes are offered in many locations in the United States and at your own company location.

For a current schedule of available classes or to enroll, call 1-800-IBM TEACh (1-800-426-8322). On the World Wide Web, visit:

http://www.training.ibm.com

to see the latest course offerings.

United Kingdom

In Europe, the following public courses are held in IBM’s central London education centre at the South Bank at regular intervals. On-site courses can also be arranged.

For course schedules and to enroll, call Enrollments Administration on 0345 581329, or send an e-mail note to:

contact_educ_uk@vnet.ibm.com

On the World Wide Web, visit:

http://www.europe.ibm.com/education-uk

to see the latest course offerings.
Where to Find More Information

The Tivoli Information Management for z/OS library is an integral part of Tivoli Information Management for z/OS. The books are written with particular audiences in mind. Each book covers specific tasks.

The Tivoli Information Management for z/OS Library

The publications shipped automatically with each Tivoli Information Management for z/OS Version 7.1 licensed program are:

- Tivoli Information Management for z/OS Application Program Interface Guide
- Tivoli Information Management for z/OS Client Installation and User's Guide *
- Tivoli Information Management for z/OS Data Reporting User's Guide *
- Tivoli Information Management for z/OS Desktop User's Guide
- Tivoli Information Management for z/OS Diagnosis Guide *
- Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications *
- Tivoli Information Management for z/OS Integration Facility Guide *
- Tivoli Information Management for z/OS Licensed Program Specification
- Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography
- Tivoli Information Management for z/OS Messages and Codes
- Tivoli Information Management for z/OS Operation and Maintenance Reference
- Tivoli Information Management for z/OS Panel Modification Facility Guide
- Tivoli Information Management for z/OS Planning and Installation Guide and Reference
- Tivoli Information Management for z/OS Problem, Change, and Configuration Management *
- Tivoli Information Management for z/OS Reference Summary
- Tivoli Information Management for z/OS Terminal Simulator Guide and Reference
- Tivoli Information Management for z/OS User's Guide
- Tivoli Information Management for z/OS World Wide Web Interface Guide

Note: Publications marked with an asterisk (*) are shipped in softcopy format only.

Also included is the Product Kit, which includes the complete online library on CD-ROM.

To order a set of publications, specify order number SBOF-7028-00.

Additional copies of these items are available for a fee.

Publications can be requested from your Tivoli or IBM representative or the branch office serving your location. Or, in the U.S., you can call the IBM Publications order line directly by dialing 1-800-879-2755.
The following descriptions summarize all the books in the Tivoli Information Management for z/OS library.

Tivoli Information Management for z/OS Application Program Interface Guide, SC31-8737-00, explains how to use the low-level API, the high-level API, and the REXX interface to the high-level API. This book is written for application and system programmers who write applications that use these program interfaces.

Tivoli Information Management for z/OS Client Installation and User's Guide, SC31-8738-00, describes and illustrates the setup and use of Tivoli Information Management for z/OS's remote clients. This book shows you how to use Tivoli Information Management for z/OS functions in the AIX, CICS, HP-UX, OS/2, Sun Solaris, Windows NT, and OS/390 UNIX System Services environments. Also included in this book is complete information about using the Tivoli Information Management for z/OS servers.

Tivoli Information Management for z/OS Data Reporting User's Guide, SC31-8739-00, describes various methods available to produce reports using Tivoli Information Management for z/OS data. It describes Tivoli Decision Support for Information Management (a Discovery Guide for Tivoli Decision Support), the Open Database Connectivity (ODBC) Driver for Tivoli Information Management for z/OS, and the Report Format Facility. A description of how to use the Report Format Facility to modify the standard reports provided with Tivoli Information Management for z/OS is provided. The book also illustrates the syntax of report format tables (RFTs) used to define the output from the Tivoli Information Management for z/OS REPORT and PRINT commands. It also includes several examples of modified RFTs.

Tivoli Information Management for z/OS Desktop User's Guide, SC31-8740-00, describes how to install and use the sample application provided with the Tivoli Information Management for z/OS Desktop. The Tivoli Information Management for z/OS Desktop is a Java-based graphical user interface for Tivoli Information Management for z/OS. Information on how to set up data model records to support the interface and instructions on using the Desktop Toolkit to develop your own Desktop application are also provided.

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00, explains how to identify a problem, analyze its symptoms, and resolve it. This book includes tools and information that are helpful in solving problems you might encounter when you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications, SC31-8744-00, describes the steps to follow to make an automatic connection between NetView and Tivoli Information Management for z/OS applications. It also explains how to customize the application interface which serves as an application enabler for the NetView Bridge and discusses the Tivoli Information Management for z/OS NetView AutoBridge. Information on interfacing Tivoli Information Management for z/OS with other Tivoli management software products or components is provided for Tivoli Enterprise Console, Tivoli Global Enterprise Manager, Tivoli Inventory, Tivoli Problem Management, Tivoli Software Distribution, and Problem Service.

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00, explains the concepts and structure of the Integration Facility. The Integration Facility provides a task-oriented interface to Tivoli Information Management for z/OS that makes the
Tivoli Information Management for z/OS applications easier to use. This book also explains how to use the panels and panel flows in your change and problem management system.

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography, SC31-8747-00, combines the indexes from each hardcopy book in the Tivoli Information Management for z/OS library for Version 7.1. Also included is a complete glossary and bibliography for the product.

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00, contains the messages and completion codes issued by the various Tivoli Information Management for z/OS applications. Each entry includes an explanation of the message or code and recommends actions for users and system programmers.

Tivoli Information Management for z/OS Operation and Maintenance Reference, SC31-8749-00, describes and illustrates the BLX-SP commands for use by the operator. It describes the utilities for defining and maintaining data sets required for using the Tivoli Information Management for z/OS licensed program, Version 7.1.

Tivoli Information Management for z/OS Panel Modification Facility Guide, SC31-8750-00, gives detailed instructions for creating and modifying Tivoli Information Management for z/OS panels. It provides detailed checklists for the common panel modification tasks, and it provides reference information useful to those who design and modify panels.

Tivoli Information Management for z/OS Planning and Installation Guide and Reference, GC31-8751-00, describes the tasks required for installing Tivoli Information Management for z/OS. This book provides an overview of the functions and optional features of Tivoli Information Management for z/OS to help you plan for installation. It also describes the tasks necessary to install, migrate, tailor, and start Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Problem, Change, and Configuration Management, SC31-8752-00, helps you learn how to use Problem, Change, and Configuration Management through a series of training exercises. After you finish the exercises in this book, you should be ready to use other books in the library that apply more directly to the programs you use and the tasks you perform every day.

Tivoli Information Management for z/OS Program Administration Guide and Reference, SC31-8753-00, provides detailed information about Tivoli Information Management for z/OS program administration tasks, such as defining user profiles and privilege classes and enabling the GUI user interface.

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00, is a reference booklet containing Tivoli Information Management for z/OS commands, a list of p-words and s-words, summary information for PMF, and other information you need when you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference, SC31-8755-00, explains how to use terminal simulator panels (TSPs) and EXECs (TSXs) that let you simulate an entire interactive session with a Tivoli Information Management for z/OS program. This book gives instructions for designing, building, and testing TSPs and TSXs, followed by information on the different ways you can use TSPs and TSXs.
Tivoli Information Management for z/OS User’s Guide, SC31-8756-00, provides a general introduction to Tivoli Information Management for z/OS and databases. This book has a series of step-by-step exercises to show beginning users how to copy, update, print, create, and delete records, and how to search a database. It also contains Tivoli Information Management for z/OS command syntax and descriptions and other reference information.

Tivoli Information Management for z/OS World Wide Web Interface Guide, SC31-8757-00, explains how to install and operate the features available with Tivoli Information Management for z/OS that enable you to access a Tivoli Information Management for z/OS database using a Web browser as a client.

Other related publications include the following:

Tivoli Decision Support: Using the Information Management Guide is an online book (in portable document format) that can be viewed with the Adobe Acrobat Reader. This book is provided with Tivoli Decision Support for Information Management (5697-IMG), which is a product that enables you to use Tivoli Information Management for z/OS data with Tivoli Decision Support. This book describes the views and reports provided with the Information Management Guide.

IBM Redbooks™ published by IBM’s International Technical Support Organization are also available. For a list of redbooks related to Tivoli Information Management for z/OS and access to online redbooks, visit Web site http://www.redbooks.ibm.com or http://www.support.tivoli.com
Index

Numerics
31-bit addressing 245
 date format conversion user exit 245
 HLAPI and LLAPI 134
 time-of-day format conversion user exit 249
TSP user exits 129

A
address space 20
 BLX-SP 20
 storage requirements 85, 86
 user performance 78
 sharing resource pools 76
ADDSDATA control line 24
 securing 194
 administrator duties 99
 program 99
 project 99
Advanced Function Printing (AFP) 89
 printer 89
 alternate date format 47, 228
 alternate time-of-day format 47, 245
AMODE 24
 date format conversion user exit 245
 HLAPI and LLAPI 134
 time-of-day format conversion user exit 249
 TSP user exits 129
API (application program interface) 92
 application programmer’s duties 100
 data tables 24
 programs, effect of search operator substitutions 46
 software requirements 92
APPC 33
 clients supported 33
 HLAPI usage with 34
 application programmer’s duties 100
Archiver function 44
 assigning personnel 99
 authorized program facility (APF) library 144
Automatic Log Save 43
 description 43

B
base product 89
 hardware requirements 89
 overview 19
 software requirements 92
batch mode, starting Tivoli Information Management for z/OS 211
blank substitution 164, 354
BLDVRP macro 306
BLG00010, System Record Entry panel 262
BLG00020, Reference Entry panel 263
BLG0CMDS command table 120
 installing 200
BLG0CU00, Change Request Summary (update) 108
BLG0CU01, Change Request Summary (entry) 108
BLG0F590, Change Approver Data Inquiry 110
BLG0F890, Change Control Data Inquiry 110
BLG0KEYS keylist 180, 339
 installing 200
 migration information 121
BLG0P100, Session Defaults 132, 138
BLG0P700, User and Database Defaults 230
BLG0PROF member 210
BLG0S020, Change Summary Display 108
BLG1A121, Change Record File Processing 108
BLG1THLP, Status and Available Commands output 266
BLG60CCD, Problem Occurrence Date panel 48, 137
BLGADMDE DBCS graphics definition 140
BLGCLDSN macro 338
BLGCLKEY macro 178, 339
BLGCLUST macro 333
 SRCHLIMIT and SRCHENQ parameters 68
BLGFLOW output file 204
BLGGEN macro 340
BLGIEDIT member 186
BLGIPROF member 186
BLGISMAC macro 121
BLGISPF, ISPF panel 199
 migration information 121, 134
 selecting 199
BLGISPF, ISPF panel 199
 migration information 121, 134
 selecting 199
BLGISPF, ISPF panel 199
 migration information 121, 134
 selecting 199
BLGISPFM, ISPF panel 199
 migration information 121, 134
 selecting 199
BLGISPFM, ISPF panel 199
 migration information 121, 134
 selecting 199
BLGISTRT command 186
BLGLAPVR, Change Approval Entry 107
BLGLDSTS, Daylight Saving Time panel 268
BLGLDTTM, Date/Time Field Relationship Entry panel 263
BLGLREVR, Change Reviewer Entry 107
BLGLTZDF, Time Zone Definition panel 272
BLGOZUD utility program 168
 loading database from sequential file 168
BLGPARGS macro 318
BLGPARGS macro keywords 318
 APIENQ 321
BLGPARMS macro keywords (continued)

APIRETRY 321
ATTNKEY 321
CAS 322
DATECNV 105, 322
DATEFMT 106, 320
DICTDS 322
EXTSORT 322
GBLPID 323
LNECNT 323
LPLNCMD 324
MODELDB 325
MODSIZE 325
ODATEFMT 106, 326
OTIMEZON 106, 326
PANEL 327
PNLBCNT 327
RFTDS 327
RPANLDS 319
SODEV C 328
SORT 329
SORTPFX 329
SWDEV C 330
TEXTAUD 330
TIMECNV 331
TIMEDEL 331
TIMEZONE 106, 253, 332
TSXTASKS 333
WPANLDS 333
BLGPVARS, ISPF panel 121, 138
BLGSMSG ddname 168, 204
BLGSYMB REXX variable 47
BLGTSPCH TSX 111
BLGTSPCH, HLAPI extension 47
BLGTSPCH HLAPI extension 47
BLGTSX 208
BLGUT1 utility program 5, 116, 117
changing SDSIDS key length 42
BLGUT1M utility program 5, 42, 116, 117, 179
BLGUT20 utility program
 determining average SDDS record size 170, 171
 determining control interval sizes 80
 determining number of SDDS records 41
 determining SDDS size 41
BLGUT21 utility program
 determining control interval sizes 80
 determining multiple SDIDS clusters 178
 obtaining SDIDS statistics 178
BLGUT22 utility program 80
BLGUT23 utility programs 44
BLGUT3 utility program
 using with separate session-parameters member 165
BLGUT4 utility program 182
BLGUT5 utility program 24, 199
BLGUT6 utility program
 loading panels 24, 197
 loading panels with DBCS and NO DBCS keywords 140
 loading panels with UPPERCASE keyword 164, 198
BLGUT6F utility program 198
BLGUT6M utility program 138, 197, 233
BLGUT7 utility program
 and placeholders 77
 changes for multiple-cluster SDIDS 41
 converting to multiple-cluster SDIDS 140
BLGUT9 utility program 120
BLGUTR utility program 199
BLGYHLPI load module 134
BLGYSRVR load module 134
BLHRCDSJ sample JCL 223
BLHRCDSL TSX 223
BLHRCDSU TSX 224
BLM@EDIT, ISPF panel 121
BLX-SP (BLX Service Provider)
 adding to the APF list 144
 calculating region size 86
 description 20
 modifying the Program Properties Table 143
 multiple
 description 39
 enabling 148
 performance 67
 parameters member 114
 defining 147, 343
 description 21
 naming 144, 147, 343
 procedure 146
 resources 76, 301
 setting up 3, 143
 starting 144, 146, 148
 stopping 148
 storage requirements 86
 subsystem, defining 144
BLX-SP parameters
 APICHKOUTLIM 344
 APISECURITY 345
 DBCS 46, 345
 LOG 345
 LOGLINES 345
 LOGSYSOUT 345
 LOGTOD 345
 MAILQ 345
 MAILQWAITTM 346
 SHUTDOWNNTFY 347
 SHUTDOWNWT 346
 SYSPLEX 347
 TRACE 347
 TRACELINES 347
 TRACEP OINTS 348
 TRACES YSOUT 348
 TRACETOD 348
 VSAMRESOURCES 302, 348
 WRITEOPER 348
BLXABMSG, ISPF panel 6, 367
BLXDSN macro 303
BLXGEN macro 306
BLXNSR macro 303
BLXSSINM load module 145, 146, 147
Bridge, Tivoli Service Desk 31
buffer
 size 80
 usage 76
buffer (continued)
 using 16-byte SDIDS key 42
buffer pool
 checklist 83
defining LSR 80, 306
determining size 78, 79, 80
example scenario 80
storage required 86

C
CF (coupling facility) 89, 153
clear change request approvals and software distribution 32
clear channel 89
clear character set, double-byte (DBCS) 89
clear character set, single-byte (SBCS) 89
Class Descriptor Table entries, RACF 191, 193
clear client 33
clear client/server function 33
CLIST starting Tivoli Information Management for z/OS 204
clear clusters, multiple VSAM
 defining SDIDS 23, 177
description 41
migrating 140
naming 278
performance 67
using 172
using LSR 303
clear code page 205
clear cognize enqueue prioritization (COGENQ) 66
clear cognizing, optional s-word 56
clear command table, ISPF
 installing 200
clear communication link, physical 89
Communications Manager/2 90, 94
clear control interval
 buffering 79
 number of 78
 overriding size 82, 83
 size 80, 170
control line
 securing 194
clear conversion routine
 date format 228
time-of-day format 47, 245
Coordinated Universal Time 251
clear coupling facility 89, 153
CPU 90
CRFM policy 153
clear cross-memory support 78
clear cross-system coupling facility 153

data component 79, 170
data-entry panel, number display 105
data model records
 for ODBC driver 37
 for Tivoli Decision Support 219
 for Tivoli Inventory 31
 loading shipped records 219
 moving or flattening 224
data resource, remote 30
data security 194
data sharing
 description 40, 158
 installation tasks 3
 performance considerations 68
Data type field 56
database
clear administrator 100
backup
 recommendations for SDIDS maximum record length 177
 using Automatic Log Save 43
data sets 22
 DB2 44, 93
description 22, 168
loading 45
migration information
 user-defined format database 139
multiple 76
offloading 44
protecting 193
sharing 113, 158
sysplex data sharing 40
Tivoli Information Management for z/OS format 23, 45
user-defined format
 creating 168
description 23, 45, 168
support 139
date, alternate format 47, 228
DATETIME record 256, 262
Daylight Saving Time, specifying 268
DB2 Extract Facility 44, 93
DBCS
 18- or 34-byte SDIDS key 42
 BLX-SP parameter 46
 printing and displaying a character 89
 using the Data type field 56
 ward-42 characters 163
DBCS, BLX-SP parameter 46, 345
DEFINE CLUSTER command 278
defining 176, 282
DELSDATA control line
 securing 194
Desktop, Tivoli Information Management for z/OS 37
DFSMS/MVS 277
dictionary data set
 administrator 99
defining 289
defining resource pools 76, 83
description 22, 24
loading 199
disk space 90

D
DASD
 HLAPI space requirement 90
 SDDS space requirement 171
display station, color graphics 89

E
e-mail notification 54
editor 6, 121
education, scheduling 101
enhanced panel style
description 50
migrating 121, 134
selecting 199
enqueue, resource names 351
Enterprise Console, Tivoli 30
EQQUX006, OPC exit 8
EQQUX007, OPC exit 8
equal sign processing
with universal time enabled 266
error
processing in batch mode 213
resetting Installation Tailoring Facility profile values 187
escalation management
migration information 131
extended format data sets 277
external date format 231

F
features and options, overview 27, 37
field numbers, displaying and hiding 105
FINDSATA, date and time processing 254
fixed disk space 90
FLATTEN control line 194
formatting, SDLDS 199
freeform search 125

G
GINFOMAN Class Descriptor Table entry 191, 193
graphic character substitutions 46
graphical user interface (GUI)
description 53
installing 200
parameter, batch mode with 214
software requirements 93
starting 206
Tivoli Information Management for z/OS Desktop 37
graphics
software requirements 93
graphics, displaying and printing a report
DBCS support 140
software requirements 93
Greenwich mean time 256
groups, RACF 192
GRS (global resource serialization) 159
sysplex performance 73

H
hardware requirement
base product 89
Desktop 90
HLAPI/2 client workstation 90
HLAPI/AIX client workstation 91
HLAPI/CICS client workstation 92
HLAPI/HP client workstation 91
HLAPI/NT client workstation 90
HLAPI/Solaris client workstation 91
HLAPI/UNIX client 92
Multisystem Database Access 89
printing reports with DBCS characters 89
Problem Service 92
sysplex 89
HELP STATUS output 266
high used relative byte address (RBA) 72, 81
Hiperspace buffer 83
HLAPI 33, 124
HLAPI/2
description 33
hardware requirements 90
software requirements 94
HLAPI/CICS
description 33
hardware requirements 92
software requirements 95
HLAPI extension TSX 47
HLAPI for Java 34
HLAPI/HP
hardware requirements 91
software requirements 95
HLAPI/NT
description 33
hardware requirements 90
software requirements 94
HLAPI/UNIX
description 33
hardware requirements 91
software requirements 92, 94, 95
host processor requirement 89

I
i2i program 31
independent field 256
independent fields
definition 256
searching 257
index component 78, 81
INFOMAN Class Descriptor Table entry 191, 193
Information/Access 139
Information/MVS format database 139
Information/System
 date entry format 230
 migrating 113
 time-of-day entry format 245
input/output (I/O)
 panel 79
 performance impact 57
 reducing 78
 storage required for buffers 86, 87
installation checklist 1
Installation Tailoring Facility
description 28
 using 185
installing
 in a new environment 10
installing, verifying success 6
installing and planning Tivoli Information Management for z/OS 1
installing Version 7.1 1
integrating, Tivoli components 31
Integration Facility
 alternate date format 236
 alternate time-of-day format 250
 description 38
 installing interface 8
 software requirements 93
internal date format 116, 228
Inventory 31
IPL, scheduling 140
IRC 39, 206
ISPF (Interactive System Productivity Facility)
 making an ISPF menu selection 210
 profile 187, 210
 starting Tivoli Information Management for z/OS 203
ISPF panel
 BLGISPFA
 migration information 121, 134
 selecting 199
 BLGISPFD 199
 BLGISPFE
 migration information 121, 134
 selecting 199
 BLGISPFI
 migration information 121, 134
 selecting 199
 BLGISPFM 199
 BLPVARS 121
ISPF/PDF 121
ISPPROF ddname 210
ISPSTART command 203
ISPTCM table, modifying 21

K
 key length
 SDDS
 determining average SDDS record size 171
 determining maximum SDDS record size 170
 performance 170
 selecting 170
 SDIDS
 description 42
 migrating 117
 keylist, ISPF
 installing 200

L
 Latin translate table
 alphabet table 353
 blank substitution table 354
 description 45
 using 163
 LIBDEF 21
 link-editing
 BLXSSINM load module 145
 date format conversion user exit 245
 HLAPI 124
 LLAPI 125
 Report Format Facility user exits 128
 session-parameters member 318
 time-of-day format conversion user exit 249
 VSAM resource definition member 302, 307
 link pack area, running from 21, 114
 list of shipped records 223
 list processor
 line command changes 124
 LLAPI migration 125
 load mode, placeholders for accessing data sets 303
 load mode, using LSR 80
 loading
 data model records 219
 database 45
 dictionary 199
 panels 135, 197
 panels with DBCS data
 using the DBCS and NODBCS keywords 140
 using the UPPERCASE keyword 164, 198
 local date and time
 original 256
 user’s 256
 LOG, BLX-SP parameter 345
 logical database partitioning 43, 116
 LOGLINES, BLX-SP parameter 345
 LOGSYSOUT, BLX-SP parameter 345
 LOGTOD, BLX-SP parameter 345
 Low-Level Application Program Interface (LLAPI) 35
 lowercase character 45, 163
 lowercase translate table 46
 LPA, running from 21
 LSR (local shared resource)
 placeholder 77

J
 Java-based desktop 37
LSR (local shared resource) (continued)
storage required for buffer pools 86
usage 76, 151
using 16-byte SDIDS key 42
using with multiple-cluster SDDS 303

M
macro
BLDVRP 306
BLGCLDSN 338
BLGCLUST 333
BLGGEN 340
BLGISMAC 121
BLGPARMS 318
BLM@EDIT 121
BLXDSN 303
BLXGEN 306
BLXNSR 303
Programming Interface 357
MAILQ, BLX-SP parameter 345
MAILQWAITTM, BLX-SP parameter 346
major resource names 351
memory, requirements for performance 65
migrating
assisted-entry panels 56
changed BLGOP100 panel 138
field lengths or validation patterns 138
from previous versions 103
Information/Management Version 4.2 and 4.2.2 139
Information/Management Version 5.1 140
Information/Management Version 6.1 141
Versions 3 and 4 103, 140
minor resource names 351
mixed case support 126
mixed data 56
moving data model records 224
Multiclient Remote Environment Server (MRES)
types of 33
multiple-cluster SDDS 172
multiple-cluster SDIDS 177
Multisystem Database Access 103, 113

N
national language support (continued)
non-Latin translate table
alphabet table 353
blank substitution table 354
description 45
using 163, 197
printing report with DBCS characters 89
SDIDS keys 42
uppercase translate table 46, 163
NetView, starting Tivoli Information Management for z/OS 217
NetView AutoBridge 9, 36
NetView Bridge Adapter
description 35
software requirements 93
NetView Hardware Monitor Interface
date format 230
description 36
starting Tivoli Information Management for z/OS 218
time-of-day 245
using LSR 80
using the Integration Facility 39
non-Latin translate table
alphabet table 353
blank substitution table 354
description 45
using 163, 197
NOREUSE option 278
notification management
description 54
e-mail with 54
enabling 7
migration information 114, 122, 131
NPDA
date format 243
time-of-day format 247
NSR (nonshared resource)
placeholder 77, 303
storage required for buffers 86, 88
usage 76
numbers, entry field 105

O
OPC/ESA 8, 30, 39, 93
Open Database Connectivity (ODBC) driver 8, 37, 93
operating parameter
BLX-SP parameter
description 343, 350
session parameter
description 317
sort routine considerations 167
SORTIN, SORTOUT, and SORTWK01 data set
considerations 165
options and features, overview 27, 37
original local date and time 256
OS/2 90, 94
OS/390 Text Search 33
output file, BLGFLOW 204

416

Version 7.1
overview
 base product 19, 26
 features and options 27

P
 p-word
 location 24
 mapping with DB2 Extract Facility 44
 using with non-Latin translate table 164
 panel
 BLG0P100, Session Defaults 132
 buffering 79, 165
 copying 198
 data set
 administrator 99
 performance 62
 protecting 199
 defining resource pools 79, 80, 83
 effect of search operator substitutions 47
 migrating
 ISPF 121, 134
 panel style 121, 134
 update 127
 using PMF 56
 modifying date formats 236
 modifying time-of-day formats 249
 new, changed, removed 369
 style
 description 50
 migrating 121, 134
 selecting 199
 translating 164, 197
 validation pattern 163, 164
 parallel sysplex 39, 151, 347
 partitioned data set (PDS) 24, 200
 partitions, specifying ID of database 222
 PDF editor 6
 performance consideration
 client transactions 69
 COGENQ parameter 66
 COGNIZE parameter 66
 DASD 59
 data sharing 68
 DBCS, BLX-SP parameter 46
 I/O time 57
 LSR 77, 78
 memory requirements 65
 multiple BLX-SPs 67
 multiple clusters 67, 73
 NSR 77, 79, 80
 panel data sets 62, 198
 PMF 55
 processor 63
 recommendations 70
 RLS 60
 SDIDS and SDDS I/O 57
 shared DASD
 shared databases 68
performance consideration (continued)
 sorting 61
 SRCHENQ and SRCHLIMIT parameters 68
 sysplex 73
 user’s address space 78
 VSAM buffers 72
 PF keys 189, 210
 placeholder
 defining 303
 guidelines for using 77, 82
 monitoring 83
 storage required 86, 87
 planning and installing Tivoli Information Management for z/OS 1
 planning Version 7.1 1
 PMF
 administrator 99
 copying panels 198
 description 55
 effect on performance 55
 migrating panel
 automatic 56
 modifying date format on panel 236
 modifying time-of-day format on panel 249
 modifying write panel data set (WPANLDS) 24
 removing control line 196
 storage requirements 85
 policy, CRFM, 153
 preferences, specifying date and time zone 230
 printer 89, 201
 printing
 graphics reports
 software requirements 93
 output destination 201
 reports with DBCS characters 89
 using a VTAM-attached printer 201
 using remote printers 201
 privilege class, specifying 205
 privilege class records
 migrating 111
 problem, change, and configuration storage requirement 85
 Problem Management, Tivoli 31
 Problem Service 30
 procedure, BLX-SP 146
 profiles
 ISPF 187, 210
 RACF 193
 user 253
 Program Control Facility II 22
 Program Properties Table 143
 Programming Interface macros 357
 proprietary panel 6
 PS/2 90

R
 RACF
 protecting panel data sets 199
 software requirements 92

Planning and Installation Guide and Reference 417

Index
SDLDS (structured description log data set)
allocating space 182
defining 182, 287
defining resource pools 76, 77
description 22, 23
formatting 199
number of placeholders 77
offloading 43, 44, 182
search operators, Boolean 46
searches
characters to use for universal time 261
using independent fields 257
using related date and time fields 259
securing information 194
Service Desk Bridge 31
Service Level Reporter (SLR) 39, 93
session-parameters member
BLGCLDSN macro keywords
DSN 338
FILE 338
RDONLY 338
BLGCLKEY macro keywords
KEY 339
type 339
BLGCLUST macro keywords
COGENQ 335
IDSKEYP 335
NAME 334
SDDS 334
SDIDS 334
SDLDS 335
SRCCHLIMIT 336
TRIGGER 337
BLGGGEN macro keywords
LIST 340
BLGPARMS macro keywords
APIENQ 321
APIRETRY 321
ATTNKEY 321
CAS 322
DATECNV 322
DATEFMT 320
DICTDS 322
EXTSORT 322
GBLPID 323
LINECNT 323
LPLNCMD 324
MODELDB 325
MODSIZE 325
ODATEFMT 326
OTIMEZON 326
PANEL 327
PNLBCNT 327
RFTDS 327
RPANLDS 319
SIDEVC 328
SODEVC 328
SORT 329
SORTPFX 329
SWDEVCE 330
TEXTAUD 330
session-parameters member (continued)
BLGPARMS macro keywords (continued)
TIMECNV 331
TIMEDEL 331
TIMEZONE 332
TSXTASKS 333
WPANLDS 333
defining 317
description 25, 164
migration information
changing to multiple-cluster SDDS 140
enhanced options 117
ensuring compatibility with Version 4.2.2 139
naming 318
starting a session 206
using with utility programs 165
shared databases
administrator 99
description 40
hardware requirements 89
performance 68
setting up a GRS complex 159
SHUTDOWNNTFY, BLX-SP parameter 347
SHUTDOWNWT, BLX-SP parameter 346
SMS 277
Software Distribution 32
software requirements
base product 92
DB2 Extract Facility 93
Desktop 93
graphics reports 93
GUI and 3270 interface 93
HLAPI/2 client workstation 94
HLAPI/ADIX interface 94
HLAPI/CICS interface 95
HLAPI for Java 94
HLAPI/HP interface 95
HLAPI/NT interface 94
HLAPI/Solaris interface 95
HLAPI/USF interface 95
Integration Facility 93
NetView AutoBridge 94
NetView Bridge Adapter 93
ODBC driver 93
Problem Service 96
TEC Event Adapter 96
Tivoli interfaces 96
web connector feature 95
Sort/merge, receiving messages 204
sorting
effects on performance 61
external sort routine using 47
SORTIN, SORTOUT, and SORTWK01 data sets 165
using a sort routine 167
space allocation, SORTIN, SORTOUT, and SORTWK01 data sets 165
spanned data sets 103
spanned records 61
SRC
starting Tivoli Information Management for z/OS 205
SRC (continued)
using the Integration Facility 38
SRCHENQ and SRCHLIMIT parameters, performance 68
START command 144, 146, 148
starting Tivoli Information Management for z/OS 203
STOP command 148
storage requirements
BLX-SP 86
data sets 86, 87
HLAPI/2 90
HLAPI clients 90
I/O buffers 86, 87
LSR buffer pools 86
NSR buffers 86, 88
placeholders 86, 87
PMF 85
problem, change, and configuration functions 85
user’s address space 85
structure, coupling facility 153
structured query language (SQL) access to data 37
subsystem, BLX-SP 144
symbolic destination 160
SYS1.PARMLIB
IEAAPFaa member 144
IEFSSNaa member 144
SCHEDaa member 143
SYS1.PROCLIB 146
SYSEXEC ddname 185
sysplex
BLX-SP parameter 347
COGENQ keyword ignored 335
description 39, 151
enabling sysplex mode 347
hardware requirements 89
performance considerations 68, 73
SRCHLIMIT enque ignored 336
VSAMRESOURCES parameter ignored 348
SYSPLEX, BLX-SP parameter 347
SYSPLEX, BLX-SP parameter 347
SYSPRINT DD statement 213
SYSPROC ddname 185
system analyst’s duties 99
system programmer’s duties 100
system unit 89, 90

T
TAF 217
TEC Event Adapter 32, 96
test system, implementing 101
time, daylight savings 268
time, universal 251
time-of-day, alternate format 47, 245
time zone
defining 265
list of symbols 267
processing 251
selection by user 253
TIMEZONE
definition 266

TIMEZONE (continued)
HLAPI TIME_ZONE PDB 255
keyword, BLGPARMS 253
LLAPI PICATZON field 255
procedure to define 271
record 266
Tivoli Information Management for z/OS format database 45
Tivoli Information Management for z/OS program data sets 359
Tivoli integration
Problem Service 31
Tivoli Business Systems Manager for OS/390 30
Tivoli Decision Support 30
Tivoli Enterprise Console 30
Tivoli Inventory 31
Tivoli NetView for z/OS 29
Tivoli OPC 30
Tivoli Problem Management 31
Tivoli Service Desk Bridge 31
Tivoli Software Distribution 32
Tivoli management software 29
Tivoli products
requirements for interfacing with 96
Toolkit, Desktop 37
TRACE, BLX-SP parameter 347
TRACELINES, BLX-SP parameter 347
TRACEPOINTS, BLX-SP parameter 348
TRACESYSOUT, BLX-SP parameter 348
TRACETOD, BLX-SP parameter 348
training, scheduling 101
translate table
Latin
alphabet table 353
blank substitution table 354
description 45
using 163
non-Latin
alphabet table 353
blank substitution table 354
description 45
using 163, 197
uppercase 46, 163
trigger character 278, 283, 337
TSP (terminal simulator panel)
addressing mode 129
administrator, assigning 99
changed BLG0P100 panel 132
securing control lines 194
starting Tivoli Information Management for z/OS 206
system programmer, assigning 100
using the Integration Facility 38
TSX (terminal simulator EXEC) 54, 208, 223
tuning multiple-cluster SDIDS 180

U
UNFLATTEN control line 195
universal time
definition 49, 256
universal time (continued)
 processing 251
 specifying searches with 261
uppercase character 45, 163
UPPERCASE keyword 164
uppercase translate table 46, 163
user’s address space
 concurrent accesses 77
 panel buffers 165
 performance 78, 83
 sharing resource pools 76, 78
 storage requirements 85
user and database defaults 230
user-defined format database
 description 23, 45, 168
 support 139
user exit
 alternate date format 47, 228
 alternate time-of-day format 47, 245
user profile, specifying date and time zone 230
user’s local date and time 256
USERS record 122
utility program
 BLGUT1M, migrate the SDIDS 42
 BLGUT21, analyze SDIDS 80
 BLGUT22, analyze panel data set 80
 BLGUT23, database backup/recovery 44
 BLGUT3, restore database from log data set 165
 BLGUT4, offload recovery log data set 182
 BLGUT5, load and maintain DICTDS 24
 BLGUT6, install and maintain a panel data set 24
 BLGUT6F, offload a PDS 199
 BLGUT6M, migrate field lengths/validation patterns 138
 BLGUT7, copy SDDS 41
 BLGUT9, set database options 120
 BLGUTR, format a recovery log data set 199

V
verification of installation 6
Version 4.2 and 4.2.2 of Information/Management, migrating 139
Version 5.1 of Information/Management, migrating 140
Version 6.1 of Information/Management, migrating 141
versions, migrating from previous 113
Versions 3 and 4, migrating 103, 140
VSAM
 RLS (record-level sharing)
 sysplex performance considerations 69
VSAM data set
 allocating space 169, 171
 components 170
 concurrent accesses 77, 78
 defining 277
 enabling for RLS 156
 extended format 277
 key-sequenced components 78
 performance 77
 key-sequenced (continued)
 resource pool sharing restrictions 76
 sharing 77
 migrating for sysplex 156
 relative record
 performance 77, 79
 storage requirements 86, 87
 using Imbed or Noimbed 169
 using Replicate or Noreplicate 169
VSAM resource
 connecting to data set 80, 303
 defining 76, 301
 definition member
 defining 147, 301
 description 76
 link-edit 302, 307
 migration information 139
 global (GSR) 76, 306
 local shared (LSR)
 placeholders 77
 storage required for buffer pools 86
 usage 76
 using SDIDS keys 42
 using with multiple-cluster SDDS 303
 LSR definition worksheet 81
 LSR working set 78, 79, 80
 nonshared (NSR)
 placeholder 77, 303
 storage required for buffers 86, 88
 usage 76
 placeholder
 defining 303
 guidelines for using 77, 82
 monitoring 83
 storage required 86, 87
 recommendations 77
 restrictions 80
 RLS (record-level sharing) 154
VSAM resource definition member
 defining 147, 301
 description 25, 76
 link-edit 302, 307
 migration information 139
VSAMRESOURCES, BLX-SP parameter 302, 348
VTAM (Virtual Telecommunication Access Method)
 printing on VTAM-attached printer 201

W
web connector feature 34
WORDFIX control line
 securing 195
 working set 78, 79
write panel data set
 defining 297
 description 22, 24
 modifying with the Panel Modification Facility (PMF) 24
WRITEOPER, BLX-SP parameter 348
X

XCF (cross-system coupling facility) 153
XES (cross-system extended services) 154